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Recently, searches for unstable periodic orbits in biological and medical applications have become of
interest. The motivations for this research range, in order of ascending complexity, from efforts to understand
the dynamics of simple sensory neurons, through speculations regarding neural coding, to the hopeful devel-
opment of new diagnostic and/or control techniques for cardiac and epileptic pathologies. Biological and
medical data are, however, noisy and nonstationary. Findings of unstable periodic orbits in such data thus
require convincing assessments of their statistical significance. Such tests are accomplished by comparison
with surrogate data files designed to test an appropriate null hypothesis. In this paper we test surrogates
generated by three different algorithms against correlated noise as well as stable periodic orbits. One of the
surrogates is new, and has been specifically designed to preserve the shape of the attractor. We discuss the
suitability of these surrogates and argue that the simple shuffled one correctly tests the appropriate null
hypothesis[S1063-651X99)00505-X

PACS numbd(s): 05.45—a, 05.40—a, 87.10+¢

[. INTRODUCTION cific sequence of points in the phase spage versusT, .
In the case of the simple methf@-5] the signature of an
Searches for the signatures of unstable periodic orbitencounter is usually represented by a sequence of several
(UPOg9 date from early analyses of nonlinear physical sys-points as shown by the example given below. The transform
tems and were motivated by the development of new techmethod begins by searching for groups of points near the line
niques for the control of chad4]. Later the control of chaos of periodicities, thus signaling the possible existence of a
was demonstrated in biology using a rat brain slice preparagperiodic fixed point. What is important to note is that both
tion [2], but those findings were not tested against surrogatéhe simple recurrence and the transform methods depend
data. Surrogate testing and concurrent assessments of the st@on the recognition in the data of short sequences of time
tistical significance of the results for typical biological sub- intervals that exhibit a very specific behavioThese se-
strates are essential, because high-dimensional behavior, guences are therefore highly correlated over short times. But
“noise” invariably contaminates the dynamics, and becausehey carry much more information about the dynamical ob-
such substrates are essentially nonstationary. Thus to be céeet of which they are the signature than simple exponential
tain that UPOs have been detected in such experiments,tamporal correlations.
running assessment of the statistical precision of the findings The primary experimental observable is the numiesf
iS necessary. times the general trajectory of the system encounters a sig-
A simple, statistically based recurrence method for countnature. The problem is to accurately assess the statistical
ing the signatures of encounters of the general trajectory witleonfidence level associated with any measuremekt dfor-
an UPO of specific periogh in noisy data files has been mally the statistical confidence level can be assessed by test-
developed. It was demonstrated in a noise contaminated, péig the findings using suitable surrogates constructed from
riodically forced Van der Pol oscillatdi3] and later in the the original data file§14] or from random number sets. Sur-
hydrodynamically forced crayfish caudal photoreceptor sysrogate data are a widely used tool in testing null hypotheses.
tem[4,5]. Moreover, the method has recently been shown tarhey are applied for rejecting hypotheses about the structure
be effective for detecting transient appearances and disapf a given set of data, most often, for example, about the type
pearances of UPO$-8], and thus is effective for analyses of correlations that may be inherent within the data. Ideally
of nonstationary systems. Later a more complex methodurrogate data retain all or most of the properties of the origi-
based on a dynamical transform of the data and a regroupingal data, but are randomized with respect to signatures which
of the encounters with a fixed point of specific periodindicate the presence of the dynamics sought, in this case the
emerged9-11]. Other methods have more recently been putsignatures of encounters with UPOs. The simplest surrogates
forth [12,13 but the questions we address here relate to thare obtained by randomly shufflif®9 the locations of the
former two. They both operate on time series in the form ofdata points in the original file. The amplitude adjusted, Fou-
sequences of time interval$;,T,, ...T,,Ths1, - ... The rier transformed AAFT) surrogates developed by Theiler
particular signature which they both search for is, in the firstal. [14] are another commonly used algorithm. Below we
instance, evidence afrossingsof the line of periodicities, have developed a third type that can be called the attractor
Th+p=Tn. We confine this discussion to cases of three-surrogate(AS).
dimensional motion projected onto a two-dimensional sur- Each of these surrogates preserves some property of the
face of section. Such crossings may be representedspga original data set, while more-or-less effectively randomizing
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the signature being sought. The SS surrogates preserve theents, the data are sets of interspike time intervals obtained
time interval histogram, but increase the disorder as indifrom extracellular recordings of the activity of sensory neu-
cated by an increase of the bandwidth of the power spectrumons. However, any set of time intervals or any sequence of
AAFT surrogates preserve short time correlations which mayoints from an embedding of a continuous dynamics are ap-
exist within the data; that is, they preserve the power specpropriately analyzed with this algorithm. An example data
trum. This surrogate was designed to protect analyses fromet, from the rat facial cold receptp], is shown in Fig.
being deceived by the presence of exponential correlations ifyg) where we have plotted the first return map of the attrac-
otherwise random data sets; that is, fooled by “coloredtor, T.., versusT,. The signatureof an encounter of the

r)Oise." Final!y, our new surrogate, AS, preserves both ShorE]eneral trajectory with the period-1 UPO is defined as fol-
time correlations and thshapeof the attractor in the phase lows: any set of three points that approach the line of peri-

space; that is, the shape of the cloud of time intervals plotte dicities (45° line) with sequentially decreasing perpendicu-

Isne;rr]fhxg? givﬁzﬂfgg‘ b%lzgg' Oﬁ'nﬁiszoéh aaclgct)gtr;rlrgs:m]th at I%r distances, followed by a set of three points that depart
9 P P poogy, rém it with sequentially increasing perpendicular distances

sequences of time intervals which trace a specific shape i le sianat btained f the data set is sh i
dicating the presence of an unstable periodic fixed point, th&" €xample signature obtained from the data setis shown in

AS surrogate is appropriate for testing the null hypothesig 19 1(C). One point, number 3, is common to the approach-

when using these two methods from this point of view. ing and departing sequences. The specific set of interspike
The purpose of this paper is to test the effectiveness ofime intervals that makes this example is given by

these three surrogate types and their immunity to the effects _

of colored noise when used with the simple recurrence [Tn.Tn+e]=[50,108,72,87,73,131 ms. @)

method[3-3]. It is important to perform these tests, since Since the signature has been defined, we can now state the

many research groups are now using the simple recurrengg,, " hesisRandom files, including those with temporal

method for analyzing a wide variety of biological and medi- correlations, contain encounters with the defined signature
cal data. These include findings of UPOs in thermally sensi: b Lo llv indistinguishable h fg di
tive sensory neuron$6,7,15 and hypothalamic neurons in numbers statistically indistinguishable from those found in

[7,8], immature hippocampal networks from rabbit brain data files containing the signatures of UPQO%e statistical
slices[16], human epilepti¢17] and cardiad18] activities, significance is assessed with a well-known measure:
synaptic discharges from a central neufd8], and human N—(Ng)

coordinated movemen{20]. In all of these experiments the K= ——
simple recurrence method was adopted. Moreover, finding o

UPOs and estimating their eigenvalues rapidly in real time is ) , ' .
critical to applications involving the control of, for example, WhereN is the number of encounters with the defined signa-

pathological cardiac or epileptic dynamics. Thus the simplesture found in the original data filgNs) is the mean number
algorithm which consumes the least CPU time, but remain§nsemble averaged over the surrogate files sargcthe stan-
effective and accurate, will be advantageous. We concludéard deviation. Assuming Gaussian statisti¢s; 3 indicates
below that the SS surrogates in conjunction with the simpléhat the finding is significant with greater than 99% confi-
recurrence method best fulfill this requirement. dence; that is, the probabilifythat the finding in the original
This paper is organized as follows. In Sec. Il, we definedata set is a random resultis<0.01[22].
the signature of an encounter of the general trajectory with a
period-1 UPO. We show an example encounter taken from 1. ORNSTEIN-UHLENBECK NOISE
rat facial cold receptor daf@®]. Having defined the encoun-
ter, only then is it possible to state the null hypothesis. In  We now test the susceptibility of the three surrogates to
Secs. lll and 1V, we test the three surrogates against one- ardeception by linearly correlated, colored noise as well as
two-dimensional Ornstein-UhlenbeckOU), or colored, their effectiveness in detecting the signatures of known
noise and, in Sec. V, against a noise driven FitzHughtUPOs. First, we generate this noise using the one-
Nagumo(FN) dynamics[21]. Except for the FN dynamics, dimensional Ornstein-Uhlenbeck procgg8],
these data files were of a length typically found in biology.
We test the null hypothesis using a known number of en-
counters inserted into the random data sets. In Sec. VI, we
outline the algorithm for generating the new AS surrogates.
Finally, in Sec. VII, we summarize our findings and con-where 7 is the correlation time, and(t) is a Gaussian,
clude with a brief discussion. Our results indicate that alls-correlated, random process with zero mean and intensity
three surrogates are equally effective and that the methoD. Having generated(t), we then “threshold” it by tabu-
used with any one of the three surrogates is not deceived bigting the sequence of time intervals between its positive
colored noise or by noisgtableperiodic orbitsS(SPO$. Only  going zero crossingE24,25. There is a problem with this
the SS surrogate used with the simple recurrence algorithiprocess in the case of one-dimensional OU noise in that the
is, however, effective in distinguishing SPOs in low noisethreshold crossing rate is theoretically divergent as has been
data sets. pointed out by Jung26]. This is related to the fact that the

variance of the derivativie(t) is unbounded. The correlation
function ofx(t) is exponential and is given by

2

X

—%x+ %Jﬁsm, 3

Il. THE SIGNATURE, THE NULL HYPOTHESIS,
AND STATISTICAL SIGNIFICANCE TESTING

: 4

All the data with which we are concerned are in the form (X(H)X(s))= Eex _ |t—s|
of sets of time intervals. In the case of our previous experi- T
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FIG. 1. (a) Interspike time intervals from the rat facial cold
receptor[6]. Data are plotted as a return map,(versusT,, ).
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TABLE |I. Linear, exponentially correlated noise: one-
dimensional Ornstein-Uhlenbeck process.
T= 25 ms 50 ms 75 ms 100 ms
(a) Noise alone
N 96 85 92 87
(Ng) 95 98 98 100
o 11.3 9.5 9.2 8.7
K(SS) 0.09 -1.37 —0.65 —-1.49
K(AAFT) -0.17 -1.10 -0.55 -1.12
K(AS) -0.12 —0.96 —-0.48 -1.27
(b) Noise plus added encounte(k)

N+E,(E) 166 (70) 150 (65) 157 (65) 152 (65)
(Ng) 107 111 111 113
o 11.7 10.3 13.9 12.9
K(SS) 5.02 3.78 3.30 3.02
K(AAFT) 4.78 3.12 5.28 3.12
K(AS) 4.16 2.66 2.65 3.28

The correlation function of the generated train of zero cross-
ings has a rather complicated struct{i&]: for small time

lag it shows an algebraic decay, whereas for large times the
decay becomes exponential. Algebraic decay of correlations
indicates the existence of self-similarity in the process. For
this reason the stochastic sequence generated by the one-
dimensional(1D) OU process passed through a threshold is
representative of so-called fractal no[{&6]. The pathology

of x(t) generated in this way is evidenced by the time inter-
val distribution of the thresholded proceg®t shown here
which is very sharply peaked for time intervals near zero. In
spite of this difficulty, we include this process, since it is
widely used to generate one-dimensional colored noise.

We have generated data sets of 3000 time intervals in
length for four correlation times, spanning the biologically
relevant range, witld = 1. The number of encountekéwas
obtained for each data set. In this case, these encounters rep-
resent “false positives”; that is, the number of times the
signature definition is satisfied simply by chance. We then
calculatedK using the three surrogate types. In all cases, 100
surrogate files were made from whi¢Ng) and o were ob-
tained. The results are shown in Tab{a)! We note that in
no case does th& value indicate statistical significance
(|K|>2). The algorithm is therefore not deceived by colored
noise nor by fractal noise for the correlation times shown,
and this is true for all three surrogates.

But are these surrogates effective in detecting statistically
significant numbers of encounters with UPOs? In order to
explore this question, we inserted the encounter signature
specified by Eq(1) into the noise files used in Tabl&). An
encounter signature was inserted midway between every pair
of “false positive” encounters previously found which

Note the asymmetric shape of the data, indicating short term corrd2racketed at least ten time intervals. The six existing time
lations. (b) Surrogate data from above figure, using AS algorithm.intervals were overwritten by those of E€l) in order to
The shape of the return map is nearly identical to that of the originamaintain the file length constant at 3000 intervals. In this
data, whereas the SS and AAFT surrogates destroy the return majay, N was significantly increased in comparison to the
distribution. (c) A typical UPO encounter from the rat facial cold original data file. The results are displayed in Tab(e),|
receptor data. Three points converge towards the line of periodicityvhere the new numbeX + E, together with the number of

(circles followed by three diverging pointériangles.

encounters inserted;, (in parenthesgsare shown in the first
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TABLE II. Linear, exponentially correlated noise: two- TABLE lll. Harmonic noise.
dimensional Ornstein-Uhlenbeck process.
w= 251 rad/s 126 rad/s 84 rad/s 63 rad/s
T= 25 ms 50 ms 75 ms 100 ms -
(a) Noise alone
(a) Noise alone N 163 164 196 171
N 180 187 185 190 (Ng) 161 179 182 184
(Ng) 174 174 175 174 o 20.1 20.1 20.5 21.0
o 15.6 15.3 17.5 15.2 K(SS) 0.10 -0.75 0.68 —0.62
K(SS) 0.39 0.85 0.57 1.05 K(AAFT) 0.46 -0.50 1.21 —0.55
K(AAFT) 0.22 1.01 0.55 0.96 K(AS) 0.86 —0.56 0.90 —0.42
K(AS) 0.15 0.56 0.69 0.82
(b) Noise plus added encounte(k)

(b) Noise plus added encounte(E) N+E,(E) 234 (71 226 (62 253(57) 226 (55)
N+E,(E) 275(95 287(100 292(107  290(100 (Ng) 167 179 183 185
(Ng) 172 173 177 175 o 16.8 19.0 20.3 12.2
o 13.9 18.8 14.8 16.5 K(SS) 3.98 2.48 3.44 3.36
K(SS) 7.38 6.07 7.75 6.99 K(AAFT) 3.32 3.33 3.64 3.12
K(AAFT) 6.44 12.35 9.72 12.32 K(AS) 3.99 3.44 3.28 2.79
K(AS) 5.89 8.77 6.03 6.06

o ties of shorter time intervalsowing to the indeterminate
row. Now theK values all indicate the presence of UPOsthreshold crossing ratevhich theoretically approaches infin-
with statistical significance at the 99% level or greater excepfty). Thus the null hypothesis can be rejected with high con-

for the values oK (AS) for the middle two correlation times,  fidence levels for all three surrogates for the noise generated
for which the confidence levels are somewhat better thalby both one- and two-dimensional OU processes.

95%.
Next we repeat these tests using two-dimensional OU

noise[26] with a single correlation time generated by IV. HARMONIC NOISE
1 Another kind of OU noise which possesses a narrow-band
y=——(y—Xx), spectrum is the so-called harmonic noise. We generate a se-
7 quence of zero crossing times from a damped linear har-

(5) monic oscillator driven by additive white noi$28] accord-

. 1 1 i
X:—;X'F ;\IZD f(t), Ing to
LT 2, BPpT
where the solutiong(t) are thresholded, and all other con- X+ Ix+ wox=y2DT £(1), @)
ditions are the same as described above. The power spectrum _ . .
and correlation function of(t) are given by wherel is the damping, is the natural frequency arg{t)
is Gaussiang-correlated, zero mean noise with unit standard
2D deviation. The power spectrum of harmonic noise is
W)= —
R .
© Sl @)= ®

t—s 0T+ (0T

D
<Y(t))’(5)>=§(7+|t—s|)exp{—

Again, we thresholdes(t) to make 3000 point time interval
wherey(t) was thresholded in the same way as describediles. We generated data files for four natural frequencies
above. The correlation function of the train of zero crossingsorresponding to periods that equal the four correlation times
generated by this process has no algebraic decay, because tielables | and Il. In order to maintain the same width of the
additional differential equation in E@5) destroys the fractal maximum in the power spectrum aft) for these different
properties of the thresholded procg26]. frequencies, we set the dampihig= wy/2 in each case. The

The results are given in Tablg# for the noise alone and results are given in Table IIl. Table (H) for harmonic noise
in Table Il(b) for the same noise files but with inserted en- alone shows that the algorithm is not deceived by the pres-
counters. We note that as in the one-dimensional case, nomsce of SPOs in the data and that all three surrogates are
of the surrogates are deceived by colored noigg<€2), equally immune. Again we inserted UPOs as described
and they all are equally effective in detecting UPQ¢ ( above. Table Iilb) shows that the algorithm continues to
>3). The detection confidence levels are, however, somedetect UPOs within the harmonic noise with statistical sig-
what higher in this case than for the one-dimensional noisenificance and that again there is nothing to choose among the
This is likely due to the fact that the noise files in the one-surrogates. We can conclude that the null hypothesis can be
dimensional case are more disordefbdving larger densi- rejected also in the case of harmonic noise.
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TABLE IV. FitzHugh-Nagumo neuron model. spectrum, but that are randomized with respect to all other
properties. The set of the several realizations of such a pro-
D= 0.01 0.05 cess is called the set of surrogate data. The original data and

the sets of surrogate data are compared using test statistics,

(&) Limit cycle (2=0.5) such as the Savit-Green statisf®0], the nonlinear predic-

N 3631 3817 tion error[31,32, or the Brock-Dechert-Scheinkrann statistic

(Ng) 3875 3824 [33].

7 99.0 94.9 In this paper surrogate data are constructed for distin-

K(SS) —246 -0.07 guishing purely noisy processes from processes that are

K(AAFT) —1.48 0.89 noisy but have a dynamical origin. In addition to the well-

K(AS) 185 0.66 known SS and AAFT type surrogates, we have designed a
new surrogate that preserves short-scale temporal correla-

(b) Noise induced oscillationsat= 1.05) tions and also maintains the attractosBape(AS) in two

N 3793 3785 dimensions. Since we assume that the large majority of en-

(Ng) 3801 3793 counters can be caused only by an underlying nonlinear dy-

o 82.2 56.36 namics that contains an UPO, we expect the humber of en-

K(SS) —0.58 -0.14 counters of the trajectories with that UPO to be a powerful

K(AAFT) —0.49 -0.16 test statistic.

K(AS) —-0.90 -0.16 The new surrogates are obtained by approximating the

experimental data with a second order Markov model. Data

sets produced by such processes are completely character-
V. NOISY LIMIT CYCLE ized by their first return map. An example map, taken from

Since biological data can also contain stable limit cycles,aCtual b|qlog|cal data, is shown in Fig(al. :

it is necessary to test the algorithm and surrogates with thi Techn|cally, the AS surrogates are pFOd‘%Ced in the fc_>|—

object as well. For this purpose we use a stochasticoWing way. Uncorrelated data, WhICh maintain the proba.\b'n-

FitzHugh-Nagumo neuron modi21] governed by ity distribution, are created by simple shuffling of the origi-

nal data. Data which appear to result from a second order

) x3 Markov process are then generated as follows.
€X=X— g—y, (1) The amplitudes are adjusted in order to conform to a
uniformly distributed process.
: ©) (2) A desired binning is introduced, meaning that the
y=xtat V2D &(v), phase space is tiled by squares with a fixed side length.

(3) The transition matrixT;; is estimated from the relative
frequencies that the data visit the squares identified by the
coarse-grainedbin) coordinatesi(,j).

(4) Symbol sequences, corresponding to the coarse-

where €=0.01, a is the control parameter, ang(t) is
Gaussian white noise. Fax 1 this model possesses a stable
limit cycle, while for a>1 the spikes appear due to noise

only [29]. We study interspike intervals generated by thISgrained dynamics, are produced by “iterating” the transition

r:(())d5e)l g\név(vt?) g:ﬂiﬁg;gﬁ%‘ n;eisliz) Séizlgti“on:]lt d?édt% ioisematrix: The number of symbols is related to the number of
- . PIKE g . _bins. Initially an arbitrary symbas; is chosen. The succeed-
(a—l.(}5). We,;c uhnderllr(;e Ithar'z in thls;I case the thresr(ljold is gﬁng symbol.s,, ;, of the symbols, is set to a realization of
integral part of the model. The results are presented in Ta 2o di el .

e discrete dlstr|but|orﬁ>(st+1=|)=TS[,i IEiTSt,i .

IV where we have tested the surrogates in these two regimes ) e e
for two noise levels. Note that all surrogates resulKiwal- (5) A small uniformly distributed noise is added, so that

ues indistinguishable from zero. The sole exception occurs if'€ backwards adjusted amplitudes can be performed.

the case of SS surrogates for the low noise, suprathreshold (6) The ar_nplltude s adjustegd backwards. _
regime[Table IM@]. The negative value, wheré(SS)= The amphtud(_e adjust_ment is a purely technlpal element
—2.46, indicates the existence of a stable limit cycle. Thes&equired for having equiprobable bittsymbols. Since the

surrogates are thus not confused by the presence of noig\}hole procedure is sensitive to the number of bins chosen,
limit cycles, and one of therfSS can indicate the presence several such numbers must be tested in order to ensure that

of limit cycles in the low noise case. the bin number does not influence the main result of the test.
One surrogate calculated following this procedure using the
original data shown in Fig. (&) is shown in Fig. 1b). The
shape of the attractors in the two figures can be compared.
The method of surrogate data has been developed withifihe effectiveness of the AS surrogate is demonstrated in the
the frame of dimensional analydi85,14). It is important to ~ preceding sections.
emphasize that surrogate testing is designed to distinguish
whether a measured observable reflects some characteristic
of a low-dimensional, nonlinear dynamical process rather
than that of a linear or nonlinear transformation of a purely In this work we have tested the simple topological recur-
random process. The main idea is to construct surrogate daségon method for detecting and counting UPOs in noisy data
that coincide with the given observable with respect to somdiles against the possibility that it can be deceived by tempo-
special properties, e.g., the probability density or the powerally correlated, or colored, noise. In addition, we have tested

VI. A NEW SURROGATE

VIl. SUMMARY AND DISCUSSION



5240 DOLAN, WITT, SPANO, NEIMAN, AND MOSS PRE 59

three different surrogates both for their immunity to decep-gate is the only one of the three which does this. Surrogates
tion by colored noise and for their effectiveness in rejectingwhich preserve correlations without regard to sequential or-
the null hypothesis using noise files with known numbers ofder, such as the AAFT and AS used here, might preserve
UPOs inserted. We have performed these tests using threéreie encounters.
different generators of colored noise including two systems The AAFT put forth by Theileret al [14] is the most
which produce noisy SPOs. Our findings can be summarizedelebrated of the correlation preserving surrogates. However,
as follows. we must remember that it was designed to test the results of
(1) The three surrogates are equally immune to deceptionorrelation dimension algorithms and their variants. Such al-
by colored noise in data sets generated by the one- and twgorithms search for nonlinear correlations and can be de-
dimensional OU process, by the noise driven linear harmoniceived by the presence of linear correlations in the data. The
oscillator, and by the noisy FN system, that is, by all theAAFT surrogate was never designed to test sequentially or-
dynamical systems used in the tests. dered events as represented here by the defined signatures of
(2) The simple topological recursion algorithm is equally UPOs. It was designed, among other things, to preserve the
effective in detecting known numbers of UPOs inserted intgoower spectrum of the original data, thus avoiding the intro-

the noise data using any of the three surrogates. duction of more disorder, or “whitening” of the power spec-
(3) The algorithm and the three surrogates are immune térum. But the “whitening” of the power spectrum in surro-
deception by the presence of SPOs in the data. gates has a certain advantage. As we have shown previously

It is therefore safe to use the topological recursion algo-[34], the SS surrogate has the added advantage in this appli-
rithm together with SS surrogatebr many diagnostic and cation of being able to distinguish stable limit cycles from
possible therapeutic applications, for example those requitdPOs if the noise is not too large. It does so by detecting the
ing dynamical control, computational speed is essentialabsenceof topological signatures of instability in the data
therefore the simpler algorithm is advantageous. It is imporfiles compared to the surrogates. For data files which are not
tant that this be established satisfactorily within the commu+ioo noisy, SS surrogates are more disordered than the origi-
nity [36]. nal data, that is, SS surrogates “whiten” the power spectra.

It is worth commenting further on the SS surrogate.One can then find more “false positives” in the surrogate
Simple shuffling offers the advantage that it realizes a directompared with the data where, for purely stable periodicities,
replacement of the sequential order, which defines an ersne often finds zero or insignificantly small numbers of en-
counter, with a randomly chosen sequence. We can therefomunters. Thudl<(Ny), leading to negative values &fthat
be certain thatrue encounters with UPOs are not preservedare the signal of the presence of stable orbits. However, for
in the SS surrogates. Thus all encounters found in the SSPOs accompanied by large inherent noise intensities, it is
surrogates must bialseones. The key to understanding this always true thak—0 as is the case here in Sec. V.
assertion is the definition of the signature sought in the data
files. As defin_ed, the signatu_r_e is a sequence of tim_e intervals ACKNOWLEDGMENTS
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