
PHYSICAL REVIEW E MAY 1999VOLUME 59, NUMBER 5
Spiral drift and core properties
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2Physics Department, Syracuse University, Syracuse, New York 13244-1130
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We consider the drift of a stable, nonmeandering rotating spiral wave in a singly diffusive FitzHugh-
Nagumo medium with generic reaction functions; the drift is assumed to be caused by a weak time-
independent diffusivity gradient or convection term in the fast-variable equation. We address, to first order in
the perturbation, the standard problem whose statement reads, ‘‘Given the unperturbed solution, as well as the
model’s parameters, predict the speed and direction of the drift in terms of the strength and direction of the
perturbation.’’ Our main results are as follows: First, we establish a mathematical equivalence between true
gradients and convective perturbations; second, a variety of numerical examples, taken from computer simu-
lations, are presented as a reference base for testing drift theories; and third, we propose a semiempirical
solution to the drift problem, requiring only two quantities to be measured off the unperturbed spiral, namely,
its period of rotation and the value of the fast variable at its center; good agreement with numerical simulations
is found for moderately sparse spirals.@S1063-651X~99!16705-9#
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I. INTRODUCTION

Excitable media derive much of their interest from t
varied and sometimes unexpected spatiotemporal wave
terns that they support, owing to their nonlinearity. Ma
such patterns have eluded analytical understanding. A
dium that is obstacle-free, uniform, and isotropic can nev
theless exhibit robust spiral waves~in two dimensions! and
scroll waves~in three dimensions!. These phenomena form
the subject of an extensive and still-growing literature; a
review, see@1,2#. Cardiac tissue is an important and we
recognized example of an excitable medium; it frequen
displays spirals in pathological cases@3,4#. Here we single
out a peculiar feature of spiral waves, namely, their beha
under a time-independent gradient in the medium’s prop
ties, or under the application of a time-independent field
some sort. Under these conditions it is well known@5–7#
that, simultaneously with its rotation, the spiral has a drifti
motion that can be uniform in speed and direction. Sp
drift is found in heart tissue@3–5#; sometimes it may be
spontaneous~due to meandering@8,9#!, and sometimes it
may be gradient-induced@5#. Predictability of the drift could
some day provide an avenue towards termination of the
ral wave.

One aim of this paper is to present, for theory-buildi
purposes, some numerical examples of drift. We use a c
putationally simple model, amounting to a pair of gene
FitzHugh-Nagumo~FHN! equations with single diffusivity.
By varying its parameters we obtain a fair variety of beha
iors, which we can hope are in some sense representa
and which to our knowledge do not substantially over
with what exists in the literature.

Another aim is to propose a semiempirical rule for p
dicting the drift on the basis of the unperturbed spiral;
latter is assumed to be free of meandering. The problem
address is: Given an isotropic uniform medium, given
small constant vectorG to represent the external perturb
tion, and given the unperturbed spiral solution~i.e., corre-
PRE 591063-651X/99/59~5!/5192~13!/$15.00
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sponding toG50), we want to predict the velocity of drif
in magnitude and direction. This we may consider to be
standard drift problem, for which no practical solution h
been available so far. We shall attempt to supply a par
answer.

If drift predictions are ever to become useful, it is esse
tial that they should need minimal data from the unperturb
case. In our method only the value of the fast variable~de-
fined below! at the center of rotation, as well as the period
rotation, are needed besides the strength of the perturba
and the parameters of the model. The proposed rule is b
on representing the variables in the core by linear functi
of the distance from the center of rotation. Such a point
view appears to be applicable when the core is neither
large ~for example, with a totally unexcited area at the ce
ter! nor too small~with the action potential’s nonlinear re
gime starting practically at the center!; and indeed we shal
demonstrate its serviceability in that range. Such modera
sparse spirals are encountered in cardiac tissue~see Fig. 8 in
Ref. @4#!, although some caution needs to be exercised
judging whether a spiral’s sparsity is real or apparent~cf.
Sec. IV further on!.

Why should the behavior at the origin be relevant to sp
dynamics? The spiral’s tip is generally considered to b
more plausible region in which to look for an explanation
reentrant activity. However, if the core is not too large, t
oscillations close to the center are themselves due to tip
havior, and therefore, they may extract from the tip so
information relevant to the drift. Because of the simplicity
such an approach, it will be worthwhile to look for any reg
larities in a comparison of the unperturbed center with d
features under perturbation.

Some earlier work done for the purpose of elucidating
mechanism of nonmeandering drift under a time-independ
perturbation may be found in@10–13#. The present method
does not overlap much with those studies. On the other h
recent theoretical motivation for the core-based approac
to be found in the work of Biktashev and collaborato
5192 ©1999 The American Physical Society
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PRE 59 5193SPIRAL DRIFT AND CORE PROPERTIES
@14,15#. They introduce spatial ‘‘response functions’’ who
knowledge allows one to determine the effect of a pertur
tion on a spiral; these functions depend only on the unp
turbed spiral, and rotate together with it. To our knowled
it seems that no simple method has been developed so f
calculate the response functions. For our purpose, howe
their important feature is that they can decay rapidly
space, a fact verified in@15# for Ginzburg-Landau spirals
Thus, one may expect that some characteristics of the un
turbed core, and in some cases even its center, will be
dictive of the perturbation-induced drift.

Unless otherwise noted, our discussion is based on
following equations for the propagating variablesu ~the fast
variable! and v ~the slow variable! in spacer5(x,y) and
time t:

] tu2Du1F~u,v !50, ~1!

] tv1C~u,v !50, ~2!

where spatial propagation is entirely due to the differen
operator,

D5a¹21G•“. ~3!

In these equationsF and C are the reaction functions; in
Appendix A we specialize them to produce our illustratio
@16#. The diffusivitya.0 and the vectorG are fixed param-
eters. The problem of drift may now be stated as follows
the reaction functionsF andC are given in detail, and if the
unperturbed spiral solution is known, as well as the per
bationG, one must predict the drift velocity vectorV.

Several remarks are in order about Eqs.~1!–~3!. The form
of D, Eq. ~3!, corresponds to the external application of
constant uniform fieldG, of undetermined physical natur
but with well-defined effect on the waves. We also note t
G has dimensions of velocity. For this reason it may
called a convection field; another reason is that if2G•“v is
added to the left side of Eq.~2! just as2G•“u is already
included in Eq.~1!, thenG correspond to a true convectio
~motion of the medium as a whole! in direction2G, and the
drift is a trivial one with velocity2G. Even in the presen
paper, where convection occurs only in the first equation,
find some preponderance of drifting in the2G direction.

Any solution to the drift problem, as stated above, app
more generally than might appear from Eqs.~1!–~3!. First
suppose that Eqs.~1! and ~2! contain the termsG•“u and
G8•“v,respectively. Then, as was pointed out in@12#, an
equivalent replacement for these two convection vector
G→G2G8, G8→0, implemented by transforming to a co
ordinate system with velocity2G8. Thus the two-
convection case is reduced to the single-convection c
studied here.

Next, and more interesting in practice, consider a prob
where the medium’s diffusivity exhibits a spatial gradie
Without a gradient, a convectionGÞ0 will only break the
isotropy of the medium but not its uniformity; this is a
important simplicity feature. If, however, the convectiv
term is replaced by a gradientG in the diffusivity, the term
Du should be the divergence of a current,

Dgru5“•@~a1G•r !“u# ~4!
-
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or, equivalently,

Dgru5~a1G•r !¹2u1G•“u, ~5!

a nonuniform situation, which therefore seems more com
cated. Fortunately, as we demonstrate in Sec. II, gradient
convection are equivalent up to a conformal space mapp
at least to first order in the perturbation. Accordingly, in th
paper we only need to postulate Eq.~1! with D given by Eq.
~3!.

A more general remark~also within the first-order pertur
bation context! is called for at this stage. The perturbin
gradients discussed in the literature typically do not aff
the diffusivity, but rather some other property of the mediu
such as the excitability or, indirectly, the spiral period.
those situations the spiral has been observed@20# to drift
towards regions of longer period. If, on the their hand,
just have a gradient in the diffusivity, then there is zero g
dient in the period, since the diffusivity controls the spat
but not the temporal scale. This is consistent with the f
that here the drift problem can be reduced to a convec
problem where the medium is uniform. However, ev
though the period no longer depends on location, a nonz
drift still exists. Therefore, some agency in addition to t
period gradient must be a cause of drift.

We should also mention some applications to cardiac
citation waves. These are affected by the following instan
of diffusivity gradients:~a! Infarcted heart tissue has a re
duced speed of wave propagation@17# and, in terms of mod-
els such as Eqs.~1!–~3!, probably involve a reduced diffu
sivity. Thus, some regions of the heart would have
diffusivity that varies in space.~b! Healthy heart tissue dis
plays a preferential direction of wave propagation, name
the direction of greatest speed. That direction varies ra
gradually across the heart wall, following the local orien
tion of the muscle fibers. This so-called twisted anisotro
causes a class of scroll waves to drift in a predictable w
@18#. The analysis is carried out on the spiral resulting fro
a two-dimensional cross-section; the rotational anisotro
turns into a diffusivity gradient.

Induced spiral drift, although two dimensional, is releva
to three-dimensional problems. In particular, it is direc
relevant to the shrinking and drifting of scroll rings@19–21#,
patterns in which the scrolls rotate around a quiescent r
shaped filament. Here, the drift arises from a purely geom
ric effect, namely, the filament’s curvature, which cause
convectivelike term to appear in the Laplacian of Eq.~1!.
@This term is nothing more than the (1/r )]/]r introduced by
cylindrical coordinates.# Any curved filaments, as are be
lieved to occur in the heart under pathological conditio
will show a similar behavior. An adequate theory of dr
would make that behavior quantitatively predictable, at le
for filaments that are not excessively curved.

II. GRADIENT VERSUS CONVECTION

We first take care of the gradient problem by demonst
ing its equivalence to the convection problem. Let the p
turbationG be in thex direction for convenience. The claim
is that, to first order inG, the differential operators of Eqs
~3! and ~5!,

D5a¹21G]x , ~6!



im
to
e

i

ve
a

er

.
ion

No

on-
t
ce,
re-
nt

rm
ift.
is
s.

se
u-
for-
ft

int.
tail

d to
l
l
a

.
rs
pa-
is
-
ter
und

ur-
s,

f
les
h
A.

w a
b-

of

s
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Dgr5~a1Gx!¹21G]x , ~7!

are equivalent under a conformal space mapping. It is s
plest to exhibit the results and verify its validity. In order
eliminate the term inx, we apply a quadratic coordinat
transformation (x,y)→(X,Y) as follows:

X5x1
G

4a
~2x21y2!, ~8!

Y5y2
G

2a
xy. ~9!

Figure 1 shows that, relative to the origin, any pattern
enlarged or reduced in regions of positive or negativex, re-
spectively. To first order inG we have,

]x5]X2
G

2a
~X]X1Y]Y!, ~10!

]y5]Y1
G

2a
~Y]X2X]Y!, ~11!

¹25S 12
G

a
XD¹82, ~12!

where

¹85~]X ,]Y!. ~13!

Hence, in Eq.~7!, and noting thatx5X1o(G2), we have

~a1Gx!¹25aS 11
G

a
XD S 12

G

a
XD¹821o~G2!

5a¹821o~G2!. ~14!

To first order inG, there is no term inX, and thus uniformity
has been restored. Equations~8! and ~9! represent the only
quadratic transformation~up to a space translation! that will
achieve this result. Indeed, they can be obtained deducti
by trying the most general quadratic coordinate transform
tion, and requiring a result of the form~6!. The remaining
anisotropyG]xu will suffer only corrections ofo(G2), and
thus remains unaffected in the present treatment. This t
is, of course, the essential part of the perturbation.

FIG. 1. An originally distorted pattern~fine lines! is made un-
distorted~thick lines! by the transformation of Eqs.~8! and ~9!. In
this example we haveG/2a50.25; the small undistorted square
have unit side.
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The transformation~8!, ~9! turns out to be conformal
This is most easily seen from a complex linear combinat
of Eqs.~8! and ~9!:

X1 iY5~x1 iy !2
G

4a
~x1 iy !2, ~15!

an analytic mapping of one complex plane into another.
analyticity of u or v is implied or assumed.

To summarize this section: We have shown that the n
uniform scaling effect of a small uniform diffusivity gradien
can be removed by a purely spatial transformation; hen
the gradient can be reduced to its convective part. With
gard to drifting mechanisms, we are led to the importa
conclusion that, to first order in the perturbation, nonunifo
scaling without convection does not cause spiral dr
~Highly nonuniform situations can be very different in th
respect, however, as in cases of boundaries or interface!

III. OBSERVED DRIFT VELOCITIES

We have simulated the drifting spiral in a model who
reaction functions are specified in Appendix A. In all sim
lations, we have chosen clockwise rotating spirals, in con
mity with much of the existing literature. The resulting dri
velocity is a constant vectorV pointing at a counterclock-
wise ~i.e., positive! angleG to the perturbationG. Making
the rotation counterclockwise changes the sign ofG. We
have varied three parameters, denoted byK2 , e, and S1 .
Here,K2 ,the slope of the middle~unstable! segment of the
piecewise linearF nullcline, controls the excitability of the
medium;e, which occurs as a factor inC, controls the ratio
of the main time constants ofu and v; and S1 controls the
speed of recovery when the system is near its resting po
Our exploration of the parameter space is described in de
in Appendix A; the selected values have been subjecte
the following criteria:~a! a sufficient amount of the spira
should fit inside the space lattice;~b! the unperturbed spira
should not meander;~c! each parameter should go through
set of approximately equidistant values;~d! a good variety of
spiral features should be sampled; and~e! the conditions
needed to initiate the spiral should be reasonably robust

Figure 2 displays the normalized drift velocity vecto
V/G in a range of parameter values. Each of the three
rameters produces its own ‘‘fan’’ of such vectors as it
being varied; only theK2 fan is being shown as an illustra
tion. In order not to crowd the picture we draw only the ou
vectors of the fan. In this and all other cases we have fo
the drift vector to lie in the upper half plane (0,G,p), or,
in more general terms, the drift angle relative to the pert
bation is opposite to the spiral’s direction of rotation. Thu
with our chirality convention,V is always in the upper hal
plane. More specifically, the smallest observed drift ang
approach 60°~Fig. 2!, while the largest seem to approac
180°. For a numerical synopsis see Table II of Appendix
The velocity’s magnitude has not been seen to dip belo
factor of roughly 0.4 of the perturbation strength. The o
served drift velocities are listed numerically in Table II
Appendix A.
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IV. RELATION BETWEEN DRIFT AND DENSITY

The density of a spiral turns out to be relevant to o
study in two different ways. First, dense spirals tend to d
against the perturbation (V•G,0), while the opposite tend
to be the case for sparse spirals; this agrees with an ea
observation by Krinsky and collaborators@12#. Second, as
discussed in Sec. VII further on, the accuracy of our o
formulas requires a moderate density. In Fig. 3~a! we test the
qualitative density-drift relation by plotting all observed de
sities s against the normalized drift-velocity compone
Vx /G in the direction of perturbation. The dependence
nearly monotonic, even in the intermediate density range
addressed by Ref.@12#.

In the above, we define the density in terms of the ou
turns of the spiral as follows:

s5
~total width of an isolated pulse!

~cycle wavelength!
. ~16!

The total pulse width is measured between cutoff amplitu
chosen very close to the resting point. Here we choos
cutoff uc5(0.1)A1 , where A1 is the minimum of the
nullcline for u, see Appendix A. The cutoff forv can then be
defined without too much arbitrariness in terms of the ot
nullcline, C(uc)50. Thus, numerically, we haveuc5vc
50.0018. Keeping in mind that here the resting point is
u5v50, we begin the pulse where its magnitude rises
uuu5uc or uvu5vc , whichever comes first, and we end
correspondingly; see the first inset of Fig. 3~a!. When the
pulses are close together, we measure the total width
pacing frequency lower than that of the spiral, so as to det
the pulses from one another.~Once they are well separate
the precise value of the pacing frequency does not af
their width.! Densities measured in this way are listed
Table I for all simulations considered here. The density

FIG. 2. Normalized drift velocity vectorsV/G corresponding to
the variation of a model parameter,K2 . Each range gives rise to
fan. Here only the outer vectors are drawn in full; the values ofK2

are indicated. This fan appears bounded by a 60° asymptote a
120° tangent. Nowhere have we observed any drift angle less
60°. The inset magnifies the crowded region. All vectors in t
article’s survey lie in the upper half plane, and their magnitudes
comparable to unity.
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greater than one for crowded pulses, which can therefore
thought of as ‘‘overlapping’’; it is equal to one for barel
colliding pulses, and less than one for detached pulses.
more often seen definition of pulse width, in terms of t
half-maximal amplitude of the variableu only, does not
work very well in the density-drift relation. To display tha
fact we show in Fig. 3~b! that those two definitions are in
versely correlated in theS series of simulations, where th
recovery period is long.~In these simulations it would mak
little practical difference to ignore the cutoff ofv and only
compareuuu to uc50.0018.) Further on in this paper w
discuss the predictive inaccuracy that occurs under extr
densities.

In order to confirm the appropriateness of our definition
the S series, we ask whethers correctly reflects the interac
tion between successive turns of the spiral: a pulse’s spec

d a
an
s
re

FIG. 3. ~a! Drift velocity to the right is inversely correlated with
the densitys. From left to right, the extreme values ofK2 are 0.725
and 1, the extremes ofe are 2 and 0.5, and the extremes ofS1 are
0.5 and 12.5; see Table II for this figure’s data. The insets
examples of sparse~top! and dense~bottom! radial dependences o
the spiral arms; the wave forms areu ~solid! and v ~dashed!. ~b!
This panel illustrates the importance of a careful definition of d
sity. In theS series of simulations, an alternative densitysu , ob-
tained from the half-amplitude points of theu pulse, is inversely
correlated with our definition; on the other hand, the more fun
mental, dispersion-based definitionsd of Eq. ~17! correlates excel-
lently with s.
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is less when its front feels the preceding pulse’s tail. Th
for denser waves,c becomes more sensitive to the cyc
wavelength, and hence to the periodt. On the basis of this
dispersion property, it is natural to set

sd5
c`2c

c2ccr
, ~17!

wherec` , c, and ccr are the plane-wave speeds at infin
period, spiral period, and minimum sustainable~critical! pe-
riod, respectively. This model-independent criterion, wh
furthermore does not require inspection of the slow varia
v, correlates very well withs; see Fig. 3~b!.

V. UNPERTURBED CORE CENTER

As a possible strategy for predicting drift behavior, w
begin by observing the nonmeandering unperturbed spira
the location where it is simplest to describe, namely,
center of its core, i.e., the center of rotation. At that poi
which we take as the origin of space coordinates, both pro
gating variables are constant in time and, in this paper, e
to each other as pointed out below. We assume the co
not too large; more specifically, it does not possess a res
area, whereu5u0 , v5v0 , overlapping the origin. On the
basis of only two measurements taken off the spiral, nam
the fast variableu0 at the center and the spiral’s rotatio
period t, we now determine, near the origin, the relati
phases of several oscillating quantities,u, v, ] tu, ] tv, 2Du,
F, andC, which occur in the FHN equations; some of the
phases are nontrivial.

In the following we use Cartesian and polar coordina
(x,y) and (r ,u). There is not loss of generality in takin
Gx5G, Gy50. We assume thatu and v have a double
power series expansion inx andy within at least a small disc
around the origin. In polar coordinates, and with rigid ro
tion at angular velocityv around the origin, this leads to

u5u01u1r cos~u1vt !1o~r 2!, ~18!

v5v01v1r cos~u2c1vt !1o~r 2!, ~19!

where u1.0 and v1.0 are constants; we choose a ze
phase foru at t50 andu50, andc is the phase lag ofv
relative to u. ~The use of complex amplitudes appears
have no advantages in the trigonometry that will be need!
If u0 andu1 are measured, as well asv, thenv0 , v1 , andc
are found analytically from the FHN Eqs.~1! and ~2! by
solving

C~u0 ,v0!50, ~20!

and by inserting Eqs.~18! and ~19! into Eq. ~2!, requiring
validity at all times. The result isu05v0 for our class of
models, and

u1]uC cosc1v1]vC50, ~21!

u1]uC sinc1v1v50. ~22!

Compatibility of Eqs.~21! and ~22! means

tanc5v/]vC. ~23!
,
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We note that, in Eqs.~21! and ~22!, we have]uC,0, ]vC
,0 @cf. Appendix A, Eq.~A2!#, and thus we have obtaine
the exact phase relation betweenu and v near the origin,
with

0,c,p/2. ~24!

It should always be understood that]uF, ]vF, ]uC, and
]vC are evaluated at the origin, i.e., atu5u0 , v5v0 . Ac-
tually, in our family of simulations the value ofu0 is not
very critical, owing to the piecewise linearity or piecewis
constancy of the reaction functions. In our attempts to p
dict the drift we only deal with cases whereu1,u0,u2 ,
B1,u0,B2 , so that we have@cf. Appendix A#

]uF52K2 , ]vF51, ]uC52e/S2 , ]vC5e/S2 .

~25!

In the remaining part of this section we linearize the FH
equations themselves near the origin forG50. @From here
on we omit the mention ‘‘1o(r 2)’ ’ unless needed for clar-
ity.# Consider first the left side of Eq.~1!. Similarly to the
linearization ofu and v, shown above, we introduce a pa
rametrization,

] tu5Ar cos~u2xA1vt !, ~26!

2Du5~2Du!01Br cos~u2xB1vt !, ~27!

F~u,v !5F~u0 ,v0!1Cr cos~u2xc1vt !. ~28!

Applying “ to Eq. ~1! yields the three real vectorsA(t)
5¹] tu, B(t)5“(2Du), andC(t)5¹F, evaluated at the
origin. They have constant magnitudesA, B, andC, and ro-
tate clockwise with angular velocityv; their phases att50
arexA , xB , andxC .The o(r ) term of the unperturbed Eq
~1! now amounts to

A1B1C50. ~29!

Equation~29! says that vectorsA, B, andC form a ~ro-
tating! triangle. That triangle, shown further on in Fig. 4, is
visual representation of the activity at the center of a spi
and we next determine its shape, starting from a knowle
of the unperturbed quantitiesu0 andv.

Vector A: Comparison of Eqs.~18! and ~26! gives

xA52p/2, A5vu1 . ~30!

Vector C: Eq. ~28!, after expansion of the left side, give
for the coefficients ofr:

]uFu1 cos~u1vt !1]vFv1 cos~u2c1vt !

5C cos~u2xC1vt !. ~31!

With the special valueu1vt5xC1p/2, and using Eq.
~21!, the above yieldsxC :

cotxC5cotc2
]uF]vC

]vF]uC sinc cosc
; ~32!

the quadrant ofxC is subject toC.0, see the next equation
Taking u1vt5p/2, we have from Eq.~31!,
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PRE 59 5197SPIRAL DRIFT AND CORE PROPERTIES
C52
]vF]uC sinc cosc

]vC sinxC
u1 . ~33!

VectorB: From Eq.~29!, with u1vt5xB1p/2, we have

tanxB5F11
~]vC!2

]vF]uC cos2 c
G tanxC , ~34!

in which the quadrant ofxB is subject toB.0 in the expres-
sion below. Withu1vt5xC1p/2, we have

B5
v cosxC

sin~xB2xC!
u1 . ~35!

The following identity will be of some use in Appendix C

]vF]uC52
v2 cosxB sinxC

sin~xC2xB!
; ~36!

it follows from combining the sine rule forC/A with Eqs.
~33! and ~22!. The internal angles of triangleABC, modulo
2p, are

/AB5p1xA2xB and cyclic permutations, ~37!

all positive if the sequenceABC is counterclockwise, all
negative in the opposite case; see Fig. 4 further on for
example.

Having expanded Eq.~1! at the origin, we now treat Eq
~2! similarly:

] tv5Pr cos~u2xP1vt !, ~38!

C~u,v !5C~u0 ,v0!2Pr cos~u2xP1vt !. ~39!

This involves a vectorP5“] tv52“C with magnitudeP
and phasexP at t50, where

P5vv1, xP5c2p/2; ~40!

FIG. 4. The lower triangleabc is the ‘‘drift triangle,’’ illustrated
for simulation (e1). For example, vectora connects the perturbe
rotation centers, in space, of the amplitude termsB andC shown in
the upper triangle; similarly for the other vectors, see Eq.~63!.
Triangleabc does not rotate, while triangleABC rotates clockwise
and is shown here in itst50 orientation. We observe a roug
equality between anglesab andAB ~inset!; this is a useful rule for
most simulations.~The isosceles nature of the present triangleabc
is fortuitous.! Another useful rule results from observing that ang
j andh add up to roughlyp/2.
n

see Eq.~19!.
Summarizing this section: We have obtained the ph

shift c that exists between the propagating variables near
center of the unperturbed spiral. We have also construc
the rotating amplitude triangleABC involving the individual
terms of the first FHN equation, and the rotating amplitu
vectorsP, 2P for the terms of the second FHN equation.

VI. PERTURBED CORE CENTER

We next rewrite the perturbed FHN Eqs.~1!, ~2!, and~3!
in the codrifting system, which is postulated to have unifo
velocity V. The time derivative now acquires a convecti
term, ] t→] t2V•“, and the equations read

] tu2~V1G!•“u2a¹2u1F~u,v !50, ~41!

] tv2V•“v1C~u,v !50. ~42!

The codrifting system may be said to defineV, rather than
vice-versa. The definition amounts to the following requir
ment: In the codrifting system, the perturbed spiral m
have a unique fundamental frequencyvpert, independent of
space and time.

It will be of considerable use to note that the perturb
frequency vpert(G) is unchanged from the unperturbe
value, at least too(G); this is readily seen from symmetry
Indeed, consider, in general, a perturbed frequencyvpert
5vpert(G). We express the vectorG asG5Gnx , wherenx
is the unit vector in thex direction, and make the transfor
mationG→2G, equivalent to

G→2G. ~43!

Another way to implement Eq.~43! is to rotate coordinates
by 180°. This ~passive! rotation cannot affect the physic
and, therefore, cannot affect any permanent scalar featur
the spiral, such as its frequency. Thus we havevpert(G)
5vpert(2G), leading to

vpert5v1o~G2!. ~44!

Transformation~43! will of course reverseV and change the
spiral’s phase by 180°.

The present section leads to the following geometri
result concerning the perturbed versions of the rotating a
plitude vectors in the codrifting system: The centers of ro
tion of u andv become distinct; the same can be said of
centers about which the other amplitudesA, B, C, and P
rotate. In that system, the centers form a static cluster,o(G)
in extent; the origin of codrifting coordinates will be chose
within that cluster, i.e., at ano(G) distance of any of these
points. We shall pay special attention to a triangle,abc,
formed by the rotation center of the termsA, B, andC in Eq.
~1!. A special case of that triangle will be shown in Fig. 4

As an illustration, we find a centerru for u by considering
its fundamental frequency componentuv and definingru as
the point where that component has zero amplitude. T
o(G) correction term foru at r50 can be denoted withou
loss of generality by

du52u1r u cos~vt1uu!. ~45!
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To o(G), there are no harmonics~frequencies 2v,
3v, . . . ) at the origin, nor is there any zero-frequency c
rection at that point. Appendix B demonstrates the validity
these statements, as well as the geometrical meaning o
constant parameters (r u ,uu): they are the polar coordinate
of ru . A similar parametrization can be used forr v . Return-
ing to Eqs.~41! and ~42!, and keeping in mind the notatio
of Eqs.~26!–~28!, as well as Eqs.~38! and~39!, we similarly
have the corrections,

d~] tu!52ArA cos~vt2xA1uA!52A•rA , ~46!

d~2a¹2u!52BrB cos~vt2xB1uB!52B•rB , ~47!

dF52CrC cos~vt2xC1uC!52C•rC , ~48!

d~] tv !52PrP cos~vt2xP1uP!52P•r P , ~49!

dC51PrQ cos~vt2xP1uQ!51P•rQ , ~50!

where the fixed vectorsrA , rB , rC , r P , andrQ , with phases
uA , uB , uC , uP , anduQ represent the individually shifted
rotation centers of these five terms. We also need theV and
G terms in Eqs.~41! and ~42!, keeping in mind that they
require the unperturbed values of“u,“v taken from Eqs.
~18! and ~19!. We have

~V1G!•“u5u1@V cos~vt1G!1G cosvt#5~V1G!•u1 ,

~51!

V•“v5v1V cos~vt1G!5V•v1 , ~52!

whereu1 has magnitudeu1 and phase zero att50; v1 has
magnitudev1 and phasec at t50; both vectors rotate clock
wise at angular frequencyv. The o(G) correction to the
FHN equations~41! and ~42! now reads

A•rA1B•rB1C•rC52~V1G!•u1 , ~53!

P•~r P2rQ!5V•v1 , ~54!

with fixed r P ,rQ . Two moreo(G) constraints can be ob
tained from the details of the reaction functionsF, C. Ex-
pansion of these functions at the origin yields

C•rC2~]uF!u1•rA2~]vF!v1•r P50, ~55!

P•rQ1~]uC!u1•rA2~]vC!v1•r P50, ~56!

where

u1•rA5u1r A cos~vt1uA!, ~57!

v1•r P5v1r P cos~vt1uP2c!. ~58!

The set of Eqs.~53!–~56! should be invariant under spac
translation. Indeed, the origin of coordinates is unspeci
except for the fact that is near~or in! the cluster of shifted
rotation centers. The right sides of Eqs.~53! and~54! do not
depend on the origin. Owing to Eq.~29!, the left side of Eq.
~53! is invariant under any translations: rA→rA1s, rB
→rB1s, and rC→rC1s.The left side of Eq.~54! is mani-
festly invariant. To test Eq.~55! for translation invariance
we ask whether
-
f
the

d

@C2~]uF!u12~]vF!v1#•s50 ~59!

for arbitrarys, or

C2~]uF!u12~]vF!v150. ~60!

Equation~59! is nothing but Eq.~31! with a phasevt1u for
s. Similarly, invariance of Eq.~56! requires

@P2~]uC!u12~]vC!v1#•s50 ~61!

for arbitrarys, or

P2~]uC!u12~]vC!v150. ~62!

Equation~61! is just Eq.~39! with the left side expanded.
We now consider that perturbed quantities need to

computed. Ultimately, we want to predictV. Equations
~53!–~56! involve the unknownsrA , rB , rC , r P , rQ , andV.
Translation invariance allows us to set one of ther vectors to
zero, for example,rA50. Thus, we have four vector equa
tions for five vector unknowns — insufficient informatio
for a deductive determination ofV. Nevertheless, whenV is
supplied by an actual drift measurement, then the locati
of all the shifted rotation centers can be found up to an ov
all translation. In particular, we can find the shape and o
entation of the ‘‘drift triangle,’’

a5rC2rB , b5rA2rC , c5rB2rA . ~63!

Its formal correspondence with the ‘‘amplitude triangle
ABC suggests that we look for some kind of similarity
transformation between the two. This we undertake in
next section.

We conclude the present section with a calculation of
drift triangle. The shifted centersr P , rQ , and rC , with rA
50, are obtained rather simply from Eqs.~54!–~56! as fol-
lows:

uP5G2c1p, r P5
V sinc

v
, ~64!

uQ5G2c2p/2, r Q5
V cosc

v
, ~65!

uC5G1xC22c2p, r C5
VP]vF sinc

v2C
; ~66!

after applying some trigonometry to Eq.~53! and setting

k52
]vF]uC sin2 c

v2
, ~67!

we find uB from

tan~uB2xB!5
sinG2k sin~G22c!

cosG2k cos~G22c!1G/V
, ~68!

subject tor B.0 below; we findr B from

r B

G
5

~u1 /B!@sin~G22c!2~V/G!sin 2c#

sin~uB2xB2G12c!
. ~69!



le
.
n
th
pe
t
rs

de
o

a
-

a-
li

us
ru
th
s

e

,
er

ar

m

th

e
ta-

ill

tion
d

t, as
all

for
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As an example we draw in Fig. 4 the drift triangleabc for
simulation ~e1!, corresponding to the amplitude triang
ABC calculated according to Sec. V and shown above it

The results obtained in the present section have bee
follows: the propagating variables, as well as the terms of
FHN equations, have been corrected to first order in the
turbation; each of these corrected quantities rotates abou
own displaced center; the three centers involving the fi
FHN equation from a triangleabc, which is stationary and
nonrotating in the codrifting coordinate system; we have
termined the shape of this triangle on the basis of the
served spiral drift.

VII. SEMIEMPIRICAL RULES FOR THE DRIFT
VELOCITY

The deductive results obtained so far do not in any w
constrain the vectorV. In order to supply the necessary in
formation we study the drift triangle obtained from simul
tions, and as a result, we propose three constraints. We
to call them semiempirical rather than empirical, beca
they do not contain any adjustable parameters. The first
deals with chirality, the second deals with the shape of
drift triangle, while the third involves information about it
orientation.

A chirality rule. Comparing triangles in Fig. 4, we notic
that both sequencesABC and abc occur with the same
chirality ~here counterclockwise!. We adopt this as a rule
and shall use it in Appendix C to choose between sev
possible predictions.

A shape rule. Next, we can look for approximate angul
equalities. Some, like that between anglesCA and bc, are
fortuitous — a fact borne out by surveying other cases. Si
larly, the near equality/ab5/bc ~or a5c) appears coin-
cidental. However, we do postulate an equality between
angles marked in both figures by a double arc,

/ab5/AB, ~70!

a natural observation in view of the mappingA→a, B→b,
and C→c. We turn Eq.~70! into a usable formula through
the sine law,@sin(/ab)#/c5@sin(/ca)#/b, or

sin~/ab!

r B
5

sin~/ab2uB1uC!

r C
; ~71!
as
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Eq. ~70! reads

/ab5p1xA2xB5p/22xB . ~72!

Combining Eqs.~71! an ~72!, we have

cosxB

r B
5

cos~uB2uC1xB!

r C
. ~73!

This is our formulation of the shape rule.
An orientation rule. We recall that triangleABC rotates.

However, abc is fixed in the codrifting system, and w
search Fig. 3 for an approximate rule involving its orien
tion. In that figure, anglesj and h add up to aboutp/2, a
feature also found in a number of other simulations~not
shown!. We, therefore, postulate

j1h5p/2. ~74!

In Fig. 4, we havej5p1uB and /ca5j2h, and, there-
fore, Eq.~74! amounts to

/ca52uB13p/2. ~75!

It must be noted that Eqs.~74! and~75! make no reference to
triangleABC, whereas the shape rule does. However, it w

FIG. 5. Simultaneous requirement of the shape and orienta
rules~cf. caption of Fig. 4! results in the intersection of a circle an
a rectangular hyperbola in theV/G plane. Of the four available
intersection points, we must choose the one on the upper righ
explained in Appendix C. The observed drift is shown as a sm
black circle. The square marks the origin. The illustration is
simulation~e1!.
FIG. 6. Observed~points! and predicted~curves! values of the normalized componentsVx /G, Vy /G. Panels~a!, ~b!, and~c! illustrate the
K, e, andS series of simulations, respectively. In~a!, there is no prediction corresponding to the first two values ofK2 because the spirals
are supersparse or nearly so; see Fig. 8.
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be found advantageous to combine Eq.~75! with the shape
rule expressed as Eq.~72!. Summing the three internal angle
to p gives

uB1uC5xB2p. ~76!

This formula is a usable combination of the shape and
entation rules.

Combining the three rules results in a prediction ofV. We
display that vector in a coordinate plane (V cosG,V sinG). In
this V plane, Eq.~73! can be shown to represent a circul
locus, while Eq.~76! is a rectangular hyperbolic locus. W
then find V as one intersection of these two curves. T
algebra is sketched in Appendix C, which also discusses
choice of intersection among four possibilities. In our illu
trative case, simulation (e1), the intersecting loci are dis
played in Fig. 5. The observed drift vector, shown here
well, is in this case close to the appropriate intersection. P
dictions and observations are displayed in detail in Figs
and 7. In most cases the agreement is good; the poor c
can be empirically related to the extreme density or spar
of the spiral, as documented in Table II of Appendix A.

Finally, we consider the effect of extreme densities on
validity of the our semiempirical drift prediction. Figures
and 7 show that all densitiess.1 ~to be found in theS
series! give us poor predictions forVx , getting worse ass
gets larger. These extreme points are outside the small bo
Fig. 7. For very low densities, represented here by simu
tions (K.725) and (K.75), we cannot expect any predictio
based on the core’s center. Its near inactivity is indicated
Fig. 8.

VIII. SUMMARY

We have considered the drift of a stable, nonmeande
rotating spiral wave in a singly-diffusive FitzHugh-Nagum
medium with generic reaction functions; the drift was a
sumed to be caused by a weak time-independent diffusi
gradientG or equivalent convection term in the fast-variab
equation. We have addressed, to first order in the pertu
tion, the standard problem whose statement reads, ‘‘Gi
the unperturbed solution, as well as the model’s parame
predict the speed and direction the drift in terms of t
strength and direction of the perturbation.’’ Our results are
follows: ~a! We have presented a numerical survey of
spiral drift V under a perturbationG for a variety of model

FIG. 7. Quality of the predictions. We plot@V ~observed!
2V ~predicted!#/G. The small rectangle around the origin co
tains 18 points; the four others correspond to densitiess.1.28. See
Sec. IV for the definition ofs.
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parameters. This part of the study is intended to serve
reference base for testing drift theories.~b! We have estab-
lished the equivalence, under a conformal space transfor
tion, between true gradients and convective perturbations~c!
We have extended to intermediate spiral densities the ob
vation that density is correlated with direction of drift: high
densities opposite toG, lower densities less so.~d! We have
studied the simplest features of the unperturbed core in o
to see how they might apply to the drifting core; amo
others, we have found the relative phase angle between
slow and fast variable at the center of rotation.~e! We have
demonstrated that, under perturbation, that center splits
into a rigidly drifting cluster of rotation centers; also that th
codrifting period of rotation is unchanged from the unpe
turbed one.~f! We have proposed a semiempirical solution
the drift problem, requiring only two quantities to be me
sured off the unperturbed spiral, namely, its period of ro
tion and the value of the fast variable at its center. The f
that only two easily measured unperturbed parameters
required makes the method a practical one. Good agreem
with numerical simulations was found for spirals of interm
diate densities. This range of validity is unusual for an a
proximate formula, in that it is not asymptotic. It can b
understood qualitatively to some extent: at sufficiently lo
density the core is unexcited at the center, while at h
density the spiral’s outer turns might be expected to pla
larger role.
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APPENDIX A: DETAILS OF THE UNPERTURBED
MODEL

The reaction functions@16# and parameters used in th
numerical simulations are as follows. Referring to Eqs.~1!

FIG. 8. Central value ofu for the variousK2 values. Note the
cases of vanishingu0 , combined with proximity to discontinuities
at u5A1 or u5B1 ,which hinder our predictions in the shade
zone.
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and ~2!, we takea51; the functionsF, C are

F~u,v !52f~u!1v, ~A1!

C~u,v !5~2u1v !e/S~u!, ~A2!

with a constant parametere.1. Figure 9 illustrates the reac
tion functionsF andC by way of their nullclines.

The functionf is piecewise linear according to

f~u!5H 2K1u for u,A1

K2~u2E! for A1<u<A2

2K3~u21! for u.A2 .

~A3!

The functionS is piecewise constant according to

S~u!5H S1 for u,B1

S2 for B1<u<B2

S3 for u.B2 .

~A4!

The ratiosS1 /S2 and S3 /S2 serve to regulate, more or les
independently of the other features, the amounts of t
needed by the wave’s recovery and plateau, respectively.
parametersA2 andE are determined by demanding contin
ity of the function f(u): A25@(K11K2)A11K3#/(K2
1K3), E5A2(K11K2)/K2 . In all simulations the following
parameter values have been used:K154, K3515, A1
50.018, B150.01, B250.95, S2516.5, andS353.5. The
other parameters were varied as shown in Table I; the
rived parameters are headed in brackets. The shorthan
bels, such as (K.725), are not numerical quantities but sta
for the simulations. The labels (e1), (K.95), and (S.5) are
equivalent as they denote a simulation that correspond
the intersection of three families of points in parame
space.

In Table II we list some simple characteristics of the u
perturbed spirals (G50), as well as our measurements a
predictions for the drift velocity. Each simulation label refe

FIG. 9. The nullclines of Eqs.~A1! and~A2!. The shaded band
indicate where the time scales forC are shortened according to Eq
~A4!. This illustration is for simulation~e1!. The small circle dis-
plays the~constant! values ofu and v at the center of the unper
turbed spiral.
e
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to the input parameters of Table I. For each simulation
list the unperturbed period of revolutiont; the plane-wave
speed of propagationc with the spiral’s period, the~time-
independent! valueu0 at the center of rotation, the densitys
of the unperturbed spiral, as defined in Sec. IV, the obser
magnitudeV5uVu in units of G5uGu, the observed angle
G5/GV of drift, defined as positive when countercloc
wise from G to V, and the corresponding predicted valu
Vpred, Gpred. We also note that in each simulation the cent
values ofu andv are equal,

u05v0 . ~A5!

This is due to our arbitrary relative normalization ofu andv,
see Eq.~A2!, and to the fact that, in Eq.~2!, we have] tv
50 at that point. The value ofu0 is not very critical in the
present paper, owing to the piecewise linear feature of
nullcline in Eq. ~A1!, Appendix A. In all but two of the
spirals of which we were able to study the drift, we findu0 to
be located in the nullcline’s middle section. In two ‘‘supe
sparse’’ spirals, namely, (K.725) and (K.75), the core cente
is totally or almost inactive, andu is extremely close to the
discontinuities in the reaction functions; we are, therefo
not able to predict the corresponding two drift vectors.

All measured drifts, except in simulation (K.725), are due
to the choice of convection parameterG50.04; by compari-
son withc'1, G is a small perturbation. In (K.725) we used
G50.01 in order to bring down the drift velocity and thu
maintain accuracy in the measurement. The drifting spir
were produced by cross stimulation with two plane pulses@4#
in a square of 1283128 lattice sites, with space step50.4

TABLE I. Simulation parameters.

Simulation label K2 @A2# @E# S1 e

(K.725) 0.725 0.959 0.1173 0.5 1
(K.75) 0.75 0.958 0.1140 0.5 1
(K.775) 0.775 0.956 0.1109 0.5 1
(K.8) 0.80 0.955 0.1080 0.5 1
(K.825) 0.825 0.953 0.1053 0.5 1
(K.85) 0.85 0.952 0.1027 0.5 1
(K.875) 0.875 0.950 0.1003 0.5 1
(K.9) 0.90 0.949 0.0980 0.5 1
(K.925) 0.925 0.947 0.0958 0.5 1
(K.975) 0.975 0.945 0.0918 0.5 1
(K1) 1.00 0.943 0.0900 0.5 1
(e.5) 0.95 0.946 0.0938 0.5 0.5
(e.75) 0.95 0.946 0.0938 0.5 0.7
(e1),(K.95),(S.5) 0.95 0.946 0.0938 0.5 1
(e1.25) 0.95 0.946 0.0938 0.5 1.2
(e1.5) 0.95 0.946 0.0938 0.5 1.5
(e1.75) 0.95 0.946 0.0938 0.5 1.7
~e2! 0.95 0.946 0.0938 0.5 2
(S2.5) 0.95 0.946 0.0938 2.5 1
(S4.5) 0.95 0.946 0.0938 4.5 1
(S6.5) 0.95 0.946 0.0938 6.5 1
(S8.5) 0.95 0.946 0.0938 8.5 1
(S10.5) 0.95 0.946 0.0938 10.5 1
(S12.5) 0.95 0.946 0.0938 12.5 1
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TABLE II. Unperturbed and drift data.

Simulation labela t c u0 s V/G G ~deg! Vpred/G Gpred ~deg!

(K.725) 85.56 0.92 0.000 0.16 1.789 61.7 c c

(K.75) 59.18 0.89 0.009 0.23 1.263 63.0 c c

(K.775) 45.10 0.93 0.067 0.30 0.836 69.6 0.766 76.2
(K.8) 37.33 0.93 0.120b 0.37 0.585 83.7 0.624 86.8
(K.825) 32.54 0.96 0.175 0.42 0.485 96.8 0.564 84.6
(K.85) 29.25 0.99 0.215b 0.47 0.446 105.6 0.534 101.7
(K.875) 26.88 1.02 0.252 0.51 0.433 111.5 0.515 106.4
(K.9) 25.06 1.04 0.285b 0.54 0.431 115.3 0.500 110.0
(K.925) 23.68 1.08 0.315 0.58 0.433 117.9 0.493 113.4
(K.975) 21.63 1.12 0.376b 0.66 0.450 118.6 0.486 117.5
(K1) 20.98 1.14 0.410 0.71 0.462 116.7 0.483 118.6
~e.5! 23.28 1.12 0.465 0.87 0.509 133.0 0.494 130.6
~e.75! 22.27 1.10 0.401 0.73 0.445 122.2 0.482 124.2
(e1),(K.95),(S.5) 22.53 1.09 0.346 0.63 0.443 118.3 0.491 115.8
~e1.25! 23.39 1.08 0.299 0.55 0.445 110.9 0.514 106.0
~e1.5! 24.90 1.05 0.251 0.48 0.486 102.6 0.565 94.6
~e1.75! 27.44 1.04 0.195 0.41 0.561 87.5 0.681 80.5
~e2! 31.94 1.03 0.122 0.35 0.770 69.4 0.985 63.3
(S2.5) 23.31 1.05 0.328 0.97 0.476 120.1 0.496 114.1
(S4.5) 26.28 1.02 0.280 1.28 0.548 123.0 0.509 107.0
(S6.5) 29.29 0.99 0.239 1.56 0.635 127.8 0.537 100.2
(S8.5) 32.18 0.96 0.205 1.81 0.815 137.5 0.561 94.3
(S10.5) 34.95 0.92 0.177 1.99 0.950 148.0 0.594 89.2
(S12.5) 37.61 0.89 0.154 2.26 1.000 166.0 0.625 84.6

aFor parameter specification, see Table I.
bInterpolated value.
cNo prediction~core nearly inactive!.
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and Neumann boundary conditions foru. For the unper-
turbed spirals the figures were 2563256 sites and a 0.2 spac
step. We used a first-order Euler algorithm with time s
50.0125 in the perturbed case and 0.003 13 in the un
turbed case. The drift velocity was obtained from the traj
tory of the core. The points of that trajectory were record
one period apart in time, as follows: Theu variable was
averaged over one period at every space point; as a resul
core was displayed as a low-amplitude disc, whose ce
defined the required trajectory point.

APPENDIX B: SHIFTED CENTERS OF ROTATION

Here we consider, in the codrifting system, theo(G) cor-
rection tou(r ,u,t), which at r 50 can be said without los
of generality to have the component of frequencyv @also
contained in Eq.~45!#:

~du!v52u1r u cos~vt1uu!. ~B1!

We demonstrate that the fixed vectorru , or (r u ,uu), marks
the rotation center for that frequency component. As a st
ing point, the most general nonsingular expansion ofuv

aboutr50 can be written,

uv5m cos~vt2m!1r @m1 cos~vt1u2m1!

1m2 cos~2vt1u2m2!#1o~r 2!, ~B2!
p
r-
-
d

the
er

t-

for some constantsm, m1 , m2 , m, m1 , and m2 , to all
orders inG; we note the unperturbed values,

~m,m1 ,m2 ,m1!→~0,u1,0,0! as G→0. ~B3!

Next, without looking at Eq.~B1!, we defineru as the
rotation center foruv . Requiringuv5const (50) at some
point ru , we have from Eq.~B2!,

m cos~vt2m!1r u@m1 cos~vt1uu2m1!

1m2 cos~2vt1uu2m2!#1o~r u
2!50. ~B4!

In connection with Eq.~45! we have noted that the origin
r50 ~i.e., the center of the unperturbed spiral!, is chosen
within an o(G) distance fromru ; this implies r u5o(G),
o(r u

2)5o(G2). Keeping only theo(G) terms in Eq.~B4!, we
have

m cos~vt2m!52u1r u cos~vt1uu2m1!. ~B5!

But at r50, Eq. ~B2! gives

uv~5duv!5m cos~vt2m!. ~B6!

Together with Eq.~B5!, this leads to Eq.~B1!.
An entirely similar argument wherev is replaced by its

integer multiples, leads to vanishing harmonics in theo(G)
corrections:
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~du!2v5~du!3v5 . . . 50. ~B7!

Here again we make use of the unperturbed spiral, wh
nonsingularity at the center, combined with rigid rotatio
leads to the components of frequencies 2v, 3v, . . . being
of orderr 2, r 3, . . . in ther expansion. Thus, in Eq.~B3! we
have unperturbed values,

~m,m1 ,m2!→~0,0,0! as G→0, ~B8!

leading to Eq.~B7!. @Each harmonic has its own shifted ro
tation center, but this does not affect the argument.#

Finally, we derive for the zero-frequency component,
time average, atr50:

^du~0!&5o~G2!. ~B9!

We start from the fact that̂du(ru)&5o(G2), by the argu-
ment that yielded Eq.~44!. But we have

u~0!5u~ru!2ru•“u~ru!1o~r u
2! ~B10!

or, sincer u5o(G),

du~0!5du~ru!2ru•“@u~0!#G501o~G2!. ~B11!

Using ^“u(0)&G5050, we have

^du~0!&5^du~ru!&1o~G2!, ~B12!

or Eq. ~B9! as claimed.
In conclusion, the present appendix makes the follow

statements:~a! Theo(G) correction tou at r50 is given by
its fundamental-frequency term only,

du5~du!v ; ~B13!

~b! furthermore, its time behavior at that point merely e
presses a spatial shift in the rotation center ofuv .

These results are applicable to any other spiral-wave v
ables as well, such asdv or any of the variables~46!–~50!.
We note that the system is translationally invariant. The
fore, one of these variables, for exampledu itself, can al-
ways be chosen to have an unshifted center; but ifru50 then
in general one must haver vÞ0, etc.

APPENDIX C: CIRCULAR AND RECTANGULAR-
HYPERBOLIC LOCI

Here we convert Eq.~73! into a circular locus in theV
plane and Eq.~76! into a rectangular-hyperbolic locus. W
also determine which of the intersections of these two cur
is the ‘‘physical’’ one.

Equation (73). Eliminating rC with the help of Eq.~66!,
we obtain from Eq.~73!,

r B cos~xB2xC12c1uB2G!52~V/v!sinxC cosxB .

~C1!

On the other hand, Eq.~53!, with rA50 andrC eliminated as
above, gives
re
,

r

g

-

ri-

-

s

r B cos~vt2xB1uB!2
VP]vF sinc

Bv2
cos~vt1G22c!

52
u1

B
@V cos~vt1G!1G cosvt#. ~C2!

Taking vt52xB2xC12c2G and subtracting Eq.~C1!
gives

V

G F B

u1v
sinxC cosxB1

P]vF sinc

u1v2
cos~2xB2xC!

2cos~2xB2xC12c!G
5cos~2xB2xC12c2G!. ~C3!

We next use Eqs.~40! and~22! for P/u1 , Eq. ~35! for B/u1 ,
and Eq.~36! to eliminate the reaction functions. Equatio
~C3! eventually reduces to

V

G
~sin 2xB sinxC1cosG0!52cos~G2G0!, ~C4!

where

G052xB2xC12c2p. ~C5!

In the V plane, Eq.~C4! represents a circle that pass
through the origin, and whose center has angular coordin
G0 .

Equation (76). Taking vt5uC1p/2 in Eq. ~C2! makes
its first term vanish by Eq.~76!; Eq. ~C2! now reads

V

G F P]vF sinc

u1v2
sin~uC1G22c!2sin~uC1G!G5sinuC .

~C6!

Using Eq.~66! for uC , and successively eliminatingP and
the reaction functions by means of Eqs.~40!, ~22!, and~36!,
we reduce Eq.~C6! to

V

G
@H sin~2G1xC24c!2sin~2G1xC22c!#

5sin~G1xC22c!, ~C7!

whereH is a known constant,

H5
cosxB sinxC

sin~xC2xB!
. ~C8!

In the V plane, Eq.~C7! represents a rectangular hyperbo
that passes through the origin.

Selecting the intersection.Between the circle and the hy
perbola we have, in general, four intersections, one of wh
is at V50. We are unable to exclude the later by a rigoro
argument. However, by continuityV50 is extremely im-
plausible. Indeed, that intersection never moves as the m
el’s parameters are being varied, which would imply ze
drift in a finite volume of parameter space. Of the three
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maining intersections we exclude two by inequalities t
originate from the unperturbed data, as follows.

From Eq.~73!, and using cosxB.0, we have

cos~uB2uC1xB!.0, ~C9!

or, eliminatinguB anduC by using Eqs.~66! and ~76!,

cos@2~G1xC2xB22c!#,0. ~C10!

A second inequality results from the observation that b
er

er

.

t

h

sequencesABC andabc have the same chirality. This resul
in sin(uC2uB).0, or eliminatinguB anduC as above,

sin@2~G1xC2xB/222c!#,0. ~C11!

The pair of restrictions expressed by Eqs.~C10! and ~C11!
always leave us with a single predicted drift in the cas
considered. To sum up this appendix: the pair of Eqs.~C4!
and~C7!, together with inequalities~C10! and~C11! consti-
tute our prediction for the normalized drift velocit
(V/G,G).
s.

er.

e

@1# Waves and Patterns in Chemical and Biological Media, edited
by H. L. Swinney and V. I. Krinsky~Elsevier, Amsterdam,
1991!, Chaps. 1–3.

@2# Chaos8 ~1! ~1998!.
@3# J. M. Davidenko, A. M. Pertsov, R. Salomonsz, W. Baxt

and J. Jalife, Nature~London! 355, 349 ~1992!.
@4# A. M. Pertsov, J. M. Davidenko, R. Salomonsz, W. T. Baxt

and J. Jalife, Circ. Res.72, 631 ~1993!.
@5# V. G. Fast and A. M. Pertsov, J. Cardiovasc. Electrophysiol3,

255 ~1992!.
@6# K. I. Agladze and P. DeKepper, J. Phys. Chem.96, 5239

~1992!.
@7# O. Steinbock, J. Schu¨tze, and S. C. Mu¨ller, Phys. Rev. Lett.68,

248 ~1992!.
@8# G. S. Skinner and H. L. Swinney, Physica D48, 1 ~1990!.
@9# A. T. Winfree, Chaos1, 303 ~1991!.

@10# A. M. Pertsov and Ye. A. Yermakova, Biofizika33, 338
~1988! @Biophysics~Engl. Trans.! 33, 364 ~1988!#.
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