PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999

Spiral drift and core properties

M. Wellner}? A. M. Pertsov! and J. Jalifé
IDepartment of Pharmacology, SUNY Health Science Center at Syracuse, Syracuse, New York 13210
2Physics Department, Syracuse University, Syracuse, New York 13244-1130
(Received 9 November 1998

We consider the drift of a stable, nonmeandering rotating spiral wave in a singly diffusive FitzHugh-
Nagumo medium with generic reaction functions; the drift is assumed to be caused by a weak time-
independent diffusivity gradient or convection term in the fast-variable equation. We address, to first order in
the perturbation, the standard problem whose statement reads, “Given the unperturbed solution, as well as the
model's parameters, predict the speed and direction of the drift in terms of the strength and direction of the
perturbation.” Our main results are as follows: First, we establish a mathematical equivalence between true
gradients and convective perturbations; second, a variety of numerical examples, taken from computer simu-
lations, are presented as a reference base for testing drift theories; and third, we propose a semiempirical
solution to the drift problem, requiring only two quantities to be measured off the unperturbed spiral, namely,
its period of rotation and the value of the fast variable at its center; good agreement with numerical simulations
is found for moderately sparse spirdlS1063-651X99)16705-9

PACS numbe(s): 82.40.Ck

. INTRODUCTION sponding toG=0), we want to predict the velocity of drift
in magnitude and direction. This we may consider to be the

Excitable media derive much of their interest from thestandard drift problem, for which no practical solution has
varied and sometimes unexpected spatiotemporal wave paieen available so far. We shall attempt to supply a partial
terns that they support, owing to their nonlinearity. Manyanswer.
such patterns have eluded analytical understanding. A me- If drift predictions are ever to become useful, it is essen-
dium that is obstacle-free, uniform, and isotropic can nevertial that they should need minimal data from the unperturbed
theless exhibit robust spiral wavéis two dimensionsand  case. In our method only the value of the fast varigble-
scroll waves(in three dimensions These phenomena form fined below at the center of rotation, as well as the period of
the subject of an extensive and still-growing literature; as aotation, are needed besides the strength of the perturbation
review, se€1,2]. Cardiac tissue is an important and well- and the parameters of the model. The proposed rule is based
recognized example of an excitable medium; it frequentlyon representing the variables in the core by linear functions
displays spirals in pathological casgx4]. Here we single of the distance from the center of rotation. Such a point of
out a peculiar feature of spiral waves, namely, their behavioview appears to be applicable when the core is neither too
under a time-independent gradient in the medium’s propertarge (for example, with a totally unexcited area at the cen-
ties, or under the application of a time-independent field ofter) nor too small(with the action potential’s nonlinear re-
some sort. Under these conditions it is well knoj#+-7]  gime starting practically at the centeand indeed we shall
that, simultaneously with its rotation, the spiral has a driftingdemonstrate its serviceability in that range. Such moderately
motion that can be uniform in speed and direction. Spiralsparse spirals are encountered in cardiac ti¢see Fig. 8 in
drift is found in heart tissu¢3-5]; sometimes it may be Ref.[4]), although some caution needs to be exercised in
spontaneougdue to meandering8,9]), and sometimes it judging whether a spiral's sparsity is real or apparérit
may be gradient-inducgd]. Predictability of the drift could Sec. IV further on
some day provide an avenue towards termination of the spi- Why should the behavior at the origin be relevant to spiral
ral wave. dynamics? The spiral’s tip is generally considered to be a

One aim of this paper is to present, for theory-buildingmore plausible region in which to look for an explanation of
purposes, some numerical examples of drift. We use a conreentrant activity. However, if the core is not too large, the
putationally simple model, amounting to a pair of genericoscillations close to the center are themselves due to tip be-
FitzHugh-Nagumao(FHN) equations with single diffusivity. havior, and therefore, they may extract from the tip some
By varying its parameters we obtain a fair variety of behav-information relevant to the drift. Because of the simplicity of
iors, which we can hope are in some sense representativeych an approach, it will be worthwhile to look for any regu-
and which to our knowledge do not substantially overlaplarities in a comparison of the unperturbed center with drift
with what exists in the literature. features under perturbation.

Another aim is to propose a semiempirical rule for pre- Some earlier work done for the purpose of elucidating the
dicting the drift on the basis of the unperturbed spiral; themechanism of nonmeandering drift under a time-independent
latter is assumed to be free of meandering. The problem wperturbation may be found ifL0—13. The present method
address is: Given an isotropic uniform medium, given adoes not overlap much with those studies. On the other hand,
small constant vecto6 to represent the external perturba- recent theoretical motivation for the core-based approach is
tion, and given the unperturbed spiral solutiore., corre- to be found in the work of Biktashev and collaborators
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[14,15. They introduce spatial “response functions” whose or, equivalently,
knowledge allows one to determine the effect of a perturba- _ )
tion on a spiral; these functions depend only on the unper- Dgu=(a+G-1)Vu+G-Vu, ®)

turbed spiral, and rotate together with it. To our knowledge 4 yonyniform situation, which therefore seems more compli-
it seems that no simple method has been developed so far {104, Fortunately, as we demonstrate in Sec. I, gradient and
calculate the response functions. For our purpose, NOWever,nection are equivalent up to a conformal space mapping,
their important feature is that they can decay rapidly ing; east to first order in the perturbation. Accordingly, in this
space, a fact verified ifl15] for Glnzburg-L.ar!dau spirals. paper we only need to postulate Ej) with D given by Eq.
Thus, one may expect that some characteristics of the unpefg)
tu_rb_ed core, and in SOME cases even its center, will be pre- A more general remartalso within the first-order pertur-
dictive of the perturbation-induced drift. bation context is called for at this stage. The perturbing
Unless otherwise noted, our discussion is based on thgagients discussed in the literature typically do not affect
following equations for the propagating variablesthe fast ¢ gitfusivity, but rather some other property of the medium
v_arlable) andv (the slow variablg in spacer=(x,y) and  ¢,ch as the excitability or, indirectly, the spiral period. In
time t: those situations the spiral has been obsef&d] to drift
towards regions of longer period. If, on the their hand, we
du=Dute(u,0)=0, @ just have aggradient in ?he giffusivity, then there is zero gra-
dient in the period, since the diffusivity controls the spatial
but not the temporal scale. This is consistent with the fact
where spatial propagation is entirely due to the differentiahat here the drift problem can be reduced to a convection
operator, problem Where_z the medium is uniform. Ho_wever, even
though the period no longer depends on location, a nonzero
D=aV3+G-V. 3) drift still exists. Therefore, some agency in addition to the
period gradient must be a cause of drift.
In these equationd and ¥ are the reaction functions; in We should also mention some applications to cardiac ex-
Appendix A we specialize them to produce our illustrationscitation waves. These are affected by the following instances
[16]. The diffusivity >0 and the vecto6 are fixed param- of diffusivity gradients:(a) Infarcted heart tissue has a re-
eters. The problem of drift may now be stated as follows: Ifduced speed of wave propagatidr] and, in terms of mod-
the reaction function® and¥ are given in detail, and if the els such as Eqg1)—(3), probably involve a reduced diffu-
unperturbed spiral solution is known, as well as the pertursivity. Thus, some regions of the heart would have a
bation G, one must predict the drift velocity vectdf. diffusivity that varies in spacgb) Healthy heart tissue dis-
Several remarks are in order about Ed3—(3). The form  plays a preferential direction of wave propagation, namely,
of D, Eg. (3), corresponds to the external application of athe direction of greatest speed. That direction varies rather
constant uniform fieldG, of undetermined physical nature gradually across the heart wall, following the local orienta-
but with well-defined effect on the waves. We also note thation of the muscle fibers. This so-called twisted anisotropy
G has dimensions of velocity. For this reason it may becauses a class of scroll waves to drift in a predictable way
called a convection field; another reason is that{®- Vv is  [18]. The analysis is carried out on the spiral resulting from
added to the left side of Eq2) just as—G-Vu is already a two-dimensional cross-section; the rotational anisotropy
included in Eq.(1), thenG correspond to a true convection turns into a diffusivity gradient.
(motion of the medium as a whol@ direction— G, and the Induced spiral drift, although two dimensional, is relevant
drift is a trivial one with velocity—G. Even in the present to three-dimensional problems. In particular, it is directly
paper, where convection occurs only in the first equation, weéelevant to the shrinking and drifting of scroll ringB9—-21],
find some preponderance of drifting in theG direction. patterns in which the scrolls rotate around a quiescent ring-
Any solution to the drift problem, as stated above, appliesshaped filament. Here, the drift arises from a purely geomet-
more generally than might appear from E@s)—(3). First  ric effect, namely, the filament's curvature, which causes a
suppose that Eqg1) and (2) contain the terms-Vu and  convectivelike term to appear in the Laplacian of Eg).
G'-Vu,respectively. Then, as was pointed out[k?], an [This term is nothing more than the ¢}4/Jr introduced by
equivalent replacement for these two convection vectors i§ylindrical coordinateg. Any curved filaments, as are be-
G—G—G’, G'—0, implemented by transforming to a co- lieved to occur in the heart under pathological conditions,
ordinate system with velocity—G’. Thus the two- Will show a similar behavior. An adequate theory of drift
convection case is reduced to the single-convection cas&ould make that behavior quantitatively predictable, at least
studied here. for filaments that are not excessively curved.
Next, and more interesting in practice, consider a problem
where the medium’s diffusivity exhibits a spatial gradient.

Without a gradient, a convectio#0 will only break the We first take care of the gradient problem by demonstrat-
isotropy of the medium but not its uniformity; this is an g jts equivalence to the convection problem. Let the per-
important simplicity feature. If, however, the convective y,ihationG be in thex direction for convenience. The claim

term is replaced by a gradief® in the diffusivity, the term 5 that, to first order inG, the differential operators of Egs.
Du should be the divergence of a current, (3) and (5),

v +¥(u,v)=0, 2

II. GRADIENT VERSUS CONVECTION

Dgu=V-[(a+G-r)Vu] (4) D=aV2+Gd,, (6)
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The transformation(8), (9) turns out to be conformal.
This is most easily seen from a complex linear combination
TY of Egs.(8) and (9):

X

. . G .
X+|Y=(x+|y)—E(x+|y)2, (15)

an analytic mapping of one complex plane into another. No
analyticity ofu or v is implied or assumed.

FIG. 1. An originally distorted pattertfine lines is made un- To summarize this section: We have shown that the non-
distorted(thick lineg by the transformation of Eq$8) and(9). In  uniform scaling effect of a small uniform diffusivity gradient
this example we hav&/2a=0.25; the small undistorted squares can be removed by a purely spatial transformation; hence,
have unit side. the gradient can be reduced to its convective part. With re-

gard to drifting mechanisms, we are led to the important
Dg,=(a+Gx)V2+ Gay, (7) conclusion that, to first order in the perturbation, nonuniform
. ) ~ scaling without convection does not cause spiral drift.
are equivalent under a conformal space mapping. It is sim¢ighly nonuniform situations can be very different in this

plest to exhibit the results and verify its validity. In order to respect, however, as in cases of boundaries or interfaces.
eliminate the term inx, we apply a quadratic coordinate

transformation X,y) —(X,Y) as follows:
lll. OBSERVED DRIFT VELOCITIES

X=x+ E(_Xz*‘yz)’ ) We have simulated the drifting spiral in a model whose
reaction functions are specified in Appendix A. In all simu-

G lations, we have chosen clockwise rotating spirals, in confor-
Y=y— 23XV (99  mity with much of the existing literature. The resulting drift

velocity is a constant vectov pointing at a counterclock-
Jwise (i.e., positive angleI” to the perturbatiorG. Making
the rotation counterclockwise changes the signl'ofWe
have varied three parameters, denotedKy €, and S;.
Here,K,,the slope of the middléunstable segment of the
G piecewise lineard nullcline, controls the excitability of the
Ix=Ix= 5 (Xdx+Ydy), (100 medium;e, which occurs as a factor ifir, controls the ratio
of the main time constants af andv; and S; controls the
G speed of recovery when the system is near its resting point.
dy=dy+ Z(Yax—an), (11 Our exploration of the parameter space is described in detail
in Appendix A; the selected values have been subjected to

Figure 1 shows that, relative to the origin, any pattern i
enlarged or reduced in regions of positive or negativee-
spectively. To first order i we have,

G the following criteria: (a) a sufficient amount of the spiral
V2= ( 1— —X)V’Z, (12)  should fit inside the space latticé) the unperturbed spiral

o should not meandefgr) each parameter should go through a
set of approximately equidistant valuéd) a good variety of
where spiral features should be sampled; af@l the conditions
V' = (x.0v) 13 needed to initiate the spiral should be reasonably robust.

Xa ¥ Figure 2 displays the normalized drift velocity vectors

V/G in a range of parameter values. Each of the three pa-

Hence, in Eq(7), and noting thak= X+ 0(G?), we have : o .
rameters produces its own “fan” of such vectors as it is

G G being varied; only th&, fan is being shown as an illustra-
(a+Gx)V2= a( 1+—X (1——X V'2+0(G?) tion. In order not to crowd the picture we draw only the outer
a o .
vectors of the fan. In this and all other cases we have found
=aV'?+0(G?). (14)  the drift vector to lie in the upper half plane 0" <), or,

in more general terms, the drift angle relative to the pertur-
To first order inG, there is no term irX, and thus uniformity  bation is opposite to the spiral’s direction of rotation. Thus,
has been restored. Equatiof® and (9) represent the only with our chirality conventiony is always in the upper half
guadratic transformatiofup to a space translatipthat will plane. More specifically, the smallest observed drift angles
achieve this result. Indeed, they can be obtained deductivelgpproach 609Fig. 2), while the largest seem to approach
by trying the most general quadratic coordinate transformal80°. For a numerical synopsis see Table Il of Appendix A.
tion, and requiring a result of the forii6). The remaining The velocity’s magnitude has not been seen to dip below a
anisotropyGa,u will suffer only corrections o©(G?), and  factor of roughly 0.4 of the perturbation strength. The ob-
thus remains unaffected in the present treatment. This termserved drift velocities are listed numerically in Table Il of
is, of course, the essential part of the perturbation. Appendix A.
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FIG. 2. Normalized drift velocity vectorg/G corresponding to (a) spiral density O

the variation of a model parametdt,. Each range gives rise to a
fan. Here only the outer vectors are drawn in full; the valuek pf

are indicated. This fan appears bounded by a 60° asymptote and a
120° tangent. Nowhere have we observed any drift angle less than
60°. The inset magnifies the crowded region. All vectors in this
article’s survey lie in the upper half plane, and their magnitudes are
comparable to unity.

IV. RELATION BETWEEN DRIFT AND DENSITY

The density of a spiral turns out to be relevant to our
study in two different ways. First, dense spirals tend to drift
against the perturbation/( G<0), while the opposite tends
to be the case for sparse spirals; this agrees with an earlier
observation by Krinsky and collaboratof$2]. Second, as
discussed in Sec. VII further on, the accuracy of our own
formulas requires a moderate density. In Fig) 3ve test the FIG. 3. (a) Drift velocity to the right is inversely correlated with
gualitative density-drift relation by plotting all observed den- the densitys. From left to right, the extreme values kif are 0.725
sities o against the normalized drift-velocity component and 1, the extremes efare 2 and 0.5, and the extremesSifare
V, /G in the direction of perturbation. The dependence is0-5 and 12.5; see Table Il for this figure’s data. The insets are
nearly monotonic, even in the intermediate density range ndtxamples of sparsgop) and densebottom radial dependences of

addressed by Ref12]. the spiral arms; the wave forms awe(solid) andv (dashedl (b)
In the above, we define the density in terms of the outeffhis panel illustrates the importance of a careful definition of den-
turns of the spir,al as follows: sity. In the S series of simulations, an alternative density, ob-

tained from the half-amplitude points of thepulse, is inversely
. : correlated with our definition; on the other hand, the more funda-
= (total width of an isolated pu|$.e (16) mental, dispersion-based definitioy of Eq. (17) correlates excel-
(cycle wavelength lently with o.

The total pulse width is measured between cutoff amplitudegreater than one for crowded pulses, which can therefore be
chosen very close to the resting point. Here we choose thought of as “overlapping”; it is equal to one for barely
cutoff u,=(0.1)A;, where A; is the minimum of the colliding pulses, and less than one for detached pulses. The
nullcline foru, see Appendix A. The cutoff far can then be  more often seen definition of pulse width, in terms of the
defined without too much arbitrariness in terms of the othehalf-maximal amplitude of the variabla only, does not
nullicline, ¥ (u,)=0. Thus, numerically, we have.=v.  work very well in the density-drift relation. To display that
=0.0018. Keeping in mind that here the resting point is atfact we show in Fig. @) that those two definitions are in-
u=v=0, we begin the pulse where its magnitude rises toversely correlated in th& series of simulations, where the
|u|=u, or |v|=v., whichever comes first, and we end it recovery period is longlIn these simulations it would make
correspondingly; see the first inset of FigaB When the little practical difference to ignore the cutoff of and only
pulses are close together, we measure the total width at @mpare|u| to u,=0.0018.) Further on in this paper we
pacing frequency lower than that of the spiral, so as to detacliscuss the predictive inaccuracy that occurs under extreme
the pulses from one anothd©Once they are well separated densities.

the precise value of the pacing frequency does not affect In order to confirm the appropriateness of our definition in
their width) Densities measured in this way are listed inthe S series, we ask whether correctly reflects the interac-
Table | for all simulations considered here. The density istion between successive turns of the spiral: a pulse’s speed
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is less when its front feels the preceding pulse’s tail. ThusWe note that, in Eq921) and(22), we haved, ¥ <0, J,¥
for denser waves¢ becomes more sensitive to the cycle <0 [cf. Appendix A, Eg.(A2)], and thus we have obtained
wavelength, and hence to the periadOn the basis of this the exact phase relation betweanand v near the origin,

dispersion property, it is natural to set with
C,—C 0<y<ml2. (29
(o c—c.' (17)
cr

It should always be understood thai®, 4,P, ¢, ¥, and

wherec.., ¢, andc, are the plane-wave speeds at infinite ¢,'¥ are evaluated at the origin, i.e., @t Ug, v=vo. Ac-

period, spiral period, and minimum sustainatgdtical) pe-  tually, in our family of simulations the value of, is not

riod, respectively. This model-independent criterion, whichVvery critical, owing to the piecewise linearity or piecewise

furthermore does not require inspection of the slow variabl€onstancy of the reaction functions. In our attempts to pre-

v, correlates very well withr; see Fig. &). dict the drift we only deal with cases whetg<uy<<u,,
B, <uy<B,, so that we havécf. Appendix AJ

V. UNPERTURBED CORE CENTER P=—K,, 9,0=1, 9, ¥=—elS,, ,V=€lS,.

As a possible strategy for predicting drift behavior, we (25)

begin by observing the nonmeandering unperturbed spiral at - . . . .
the location where it is simplest to describe, namely, the In the remaining part of this section we linearize the FHN

center of its core, i.e., the center of rotation. At that point,equ""t'onS themselves near the origin @r-0. [From here

H H Ll 2 iRl
which we take as the origin of space coordinates, both propaQn we omit the mention *+o(r")” unless needed for clar-

gating variables are constant in time and, in this paper, equ tiy'] Cpngder Prst tge Ief;l side Otf) Ed1). S'T“"aréy to the
to each other as pointed out below. We assume the core earization ofu anduv, shown above, we introduce a pa-
not too large: more specifically, it does not possess a restingimetrization,

area, wherau=ugy, v=uvg, overlapping the origin. On the _ _

basis of only two measurements taken off the spiral, namely, HU=ATCOLO=xat o), 26
the.fast variableu, at the_center and the_spiral’s rotatign —Du=(—Du)y+Br cog — g+ wt), (27)
period 7, we now determine, near the origin, the relative

phases of several oscillating quantitiesy, d;u, d;v, —Du, ®(u,v)=P(ug,vg) +Crcog 6— x .+ wt). (28
&, and¥, which occur in the FHN equations; some of these

phases are nontrivial. Applying V to Eg. (1) yields the three real vectorA(t)

In the following we use Cartesian and polar coordinates=v g,u, B(t)=V(—Du), andC(t)=V®, evaluated at the
(x,y) and (,6). There is not loss of generality in taking origin. They have constant magnitudésB, andC, and ro-
G,=G, Gy=0. We assume thath and v have a double tate clockwise with angular velocity; their phases at=0
power series expansion inandy within at least a small disc  are y,, xg, andyc.Theo(r) term of the unperturbed Eq.
around the origin. In polar coordinates, and with rigid rota-(1) now amounts to
tion at angular velocityw around the origin, this leads to

A+B+C=0. (29
U=Ug+ Uyr cog 6+ wt)+0(r?), (18
Equation(29) says that vectoré, B, andC form a(ro-
v=vgo+vr CO 6— ¢+ wt)+0(r?), (19  tating triangle. That triangle, shown further on in Fig. 4, is a
visual representation of the activity at the center of a spiral,
whereu;>0 andv;>0 are constants; we choose a zeroand we next determine its shape, starting from a knowledge
phase foru att=0 and =0, and ¢ is the phase lag of of the unperturbed quantitieg, and w.

relative tou. (The use of complex amplitudes appears to Vector A: Comparison of Eqs(18) and (26) gives
have no advantages in the trigonometry that will be negded.

If up andu, are measured, as well as thenv,, v4, andy xa=—m2, A=wu;. (30
are found analytically from the FHN Eq$l) and (2) by ) ) )
solving Vector C: Eq. (28), after expansion of the left side, gives

for the coefficients of:
W(ug,vg)=0, (20)
d,®Puq cog 6+ wt)+d,Pv, cog 6— ¢+ wt)
and by inserting Eqs(18) and (19) into Eq. (2), requiring

validity at all times. The result isip=v, for our class of =Ccogf—xctob). (3D

models, and With the special valu&d+ wt= xc+ w/2, and using Eq.
Uy9,¥ cosy+v,9,¥ =0, (21) (21), the above yieldy:
. P, ¥
ud, ¥ sing+v,w=0. (22 - _ ur% .
o ' Cotxc=coty 3,04, siny cosy’ (32)

Compatibility of Egs.(21) and(22) means ) ) )
the quadrant of¢ is subject toC>0, see the next equation.
tany=wld, V. (23 Taking 6+ wt= /2, we have from Eq(31),
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c see Eq(19.
A 86° Summarizing this section: We have obtained the phase
D shift ¢ that exists between the propagating variables near the

center of the unperturbed spiral. We have also constructed
the rotating amplitude triangl&BC involving the individual
terms of the first FHN equation, and the rotating amplitude
vectorsP, —P for the terms of the second FHN equation.

VI. PERTURBED CORE CENTER

We next rewrite the perturbed FHN Ed&), (2), and(3)
in the codrifting system, which is postulated to have uniform
velocity V. The time derivative nhow acquires a convective
FIG. 4. The lower triangl@bcis the “drift triangle,” illustrated ~ term, d;,— d;— V-V, and the equations read
for simulation (€1). For example, vectoa connects the perturbed

rotation centers, in space, of the amplitude teBrendC shown in du—(V+G)-Vu—aV?u+d(u,v)=0, (42
the upper triangle; similarly for the other vectors, see EJ).
Triangleabc does not rotate, while triangleBC rotates clockwise ow—V-Vo+¥(u,v)=0. (42)

and is shown here in its=0 orientation. We observe a rough

equality between anglesb andAB (insed; this is a useful rule for  The codrifting system may be said to defive rather than
most simulations(The isosceles nature of the present triarajde  vice-versa. The definition amounts to the following require-
is fortuitous) Another useful rule results from observing that anglesment: In the codrifting system, the perturbed spiral must
& and » add up to roughly=/2. have a unique fundamental frequensy,, independent of
space and time.

It will be of considerable use to note that the perturbed
frequency wye(G) is unchanged from the unperturbed
value, at least t@(G); this is readily seen from symmetry.
VectorB: From Eq.(29), with 6+ wt=xg+ m/2, we have  Indeed, consider, in general, a perturbed frequengy
= wpe(G). We express the vect@ asG=Gn,, wheren,

d,® 3,V siny cosy
a3,V sinyc

Uy. (33

_ (<”7U‘I’)2 is the unit vector in the direction, and make the transfor-
tanyg=|1+ —————|tanyc, (39 . )
9, 9,¥ co i mationG— — G, equivalent to
in which the quadrant of is subject toB>0 in the expres- G——-G. (43

sion below. Withf+ wt= yc+ 7/2, we have ) . .
Another way to implement Eq43) is to rotate coordinates

® COSY ¢ by 180°. This(passive rotation cannot affect the physics
=S _ us. (35 and, therefore, cannot affect any permanent scalar feature of
sin(xg— xc) . X
the spiral, such as its frequency. Thus we hayg(G)
The following identity will be of some use in Appendix C: = wp{ —G), leading to

w? cosyg SiNxc

Wper= 0+ 0(G?). (44)
sif(xc—xg) ' 38

NOY N e
Transformation43) will of course revers&/ and change the
it follows from combining the sine rule foE/A with Egs.  spiral's phase by 180°.
(33) and (22). The internal angles of triangl&BC, modulo The present section leads to the following geometrical
2, are result concerning the perturbed versions of the rotating am-
plitude vectors in the codrifting system: The centers of rota-
LAB=m+xa—xs and cyclic permutations, (37)  tion of u andv become distinct; the same can be said of the
centers about which the other amplitudés B, C, and P
rotate. In that system, the centers form a static clustgs,)
th extent; the origin of codrifting coordinates will be chosen

all positive if the sequenc@&BC is counterclockwise, all
negative in the opposite case; see Fig. 4 further on for a

example. within that cluster, i.e., at an(G) distance of an
. - , Le, y of these
(Z)Z?n\’llli'ﬁzfrljxpanded Eq3) at the origin, we now treat Eg. points. We shall pay special attention to a triangibg,

formed by the rotation center of the teriasB, andC in Eq.
_ _ (1). A special case of that triangle will be shown in Fig. 4.
G =Preog = yp+ob), 39 As an illustration, we find a centey, for u by considering
W (u,u)=W(Ug,v0)— Prcog §— yp+wt). (39 Its fundamental frequency componenf and definingr, as
the point where that component has zero amplitude. The
This involves a vectoP=V g =—VW¥ with magnitudeP ~ 0(G) correction term fou atr=0 can be denoted without
and phaseyp att=0, where loss of generality by

P=wuv,, xp=¢—ml2; (40 Su=—uqr,cowt+6,). (45)
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... ) at the origin, nor is there any zero-frequency cor-

rection at that point. Appendix B demonstrates the validity offor arbitrarys, or
these statements, as well as the geometrical meaning of the

constant parameters (,6,): they are the polar coordinates
of r,. A similar parametrization can be used fgr. Return-
ing to Egs.(41) and (42), and keeping in mind the notation
of Egs.(26)—(28), as well as Eqg.38) and(39), we similarly
have the corrections,

S(u)y=—Arpcodwt—xp+04)=—A-1p, (46

8(—aV?u)=—Brgcodwt— yg+ 0g)=—B-rg, (47
6®=—-Crccofwt—xc+60c)=—C-rg, (48
8(dw)=—Prpcofwt—xp+0p)=—P-rp, (49
OV =+Prgcogwt—xp+0g)=+P-rq, (50

where the fixed vectons,, rg, rc, rp, andrg, with phases
On, 0, 0c, 0p, and O represent the individually shifted
rotation centers of these five terms. We also needvttzand
G terms in Egs.(41) and (42), keeping in mind that they
require the unperturbed values ¥fu,Vv taken from Egs.
(18) and(19). We have

(V+G)-Vu=uy [Vcodwt+TI')+Gcoswt]=(V+G)-uy,
(52)

V-Vv=v,Vcogwt+I')=V- vy, (52

whereu; has magnitudel, and phase zero at=0; v, has

magnitudev ; and phasey att=0; both vectors rotate clock-
wise at angular frequency. The o(G) correction to the
FHN equationg41) and(42) now reads

Arpa+B-rg+C-re=—(V+G)-uy, (53

P-(rp—rg)=V-vy, (54)
with fixed rp,ro. Two moreo(G) constraints can be ob-
tained from the details of the reaction functiois V. Ex-
pansion of these functions at the origin yields

Crc— (0, P)uy-ra—(9,®)v,-rp=0, (55
P-ro+(d,W)uy-ra—(d,¥)vy-rp=0, (56)

where
Ui Fa=Uqr s COS wt+ 04), (57)
Vi-rp=vrpCOSwt+ 6p—t)). (58

PRE 59
[C=(3yP)u;—(9,P)V,]-5=0 (59
C—(3,®)u;— (3,®)v,=0. (60)

Equation(59) is nothing but Eq(31) with a phasewt+ 6 for
s. Similarly, invariance of Eq(56) requires

[P—(y¥)u;—(9,¥)v1]-5=0 (61)
for arbitrarys, or
P—(d,¥Y)u;—(9,¥)v,;=0. (62

Equation(61) is just Eq.(39) with the left side expanded.

We now consider that perturbed quantities need to be
computed. Ultimately, we want to predidf. Equations
(53)—(56) involve the unknowns,, rg, ¢, Ip, g, andV.
Translation invariance allows us to set one of thectors to
zero, for exampler,=0. Thus, we have four vector equa-
tions for five vector unknowns — insufficient information
for a deductive determination &f. Nevertheless, whe¥ is
supplied by an actual drift measurement, then the locations
of all the shifted rotation centers can be found up to an over-
all translation. In particular, we can find the shape and ori-
entation of the “drift triangle,”

a=rc—rg, b=rap—rc, Cc=rg—ra. (63
Its formal correspondence with the “amplitude triangle”
ABC suggests that we look for some kind of similarity or
transformation between the two. This we undertake in the
next section.

We conclude the present section with a calculation of the
drift triangle. The shifted centens,, ro, andrc, with ry
=0, are obtained rather simply from Eq54)—(56) as fol-
lows:

V siny
Op=T—¢p+m, rp= A (64)
V cosy
VPJ,® siny
Oc=I'txc—2¢—7, rc=—75—; (66)
wC

after applying some trigonometry to E3) and setting

The set of Eqs(53)—(56) should be invariant under space we find 65 from
translation. Indeed, the origin of coordinates is unspecified

except for the fact that is nedor in) the cluster of shifted
rotation centers. The right sides of E4S3) and(54) do not
depend on the origin. Owing to E¢R9), the left side of Eq.
(53 is invariant under any translatiog ry—ra+s, rg
—rg+s, andro—rc+s.The left side of Eq(54) is mani-
festly invariant. To test Eq(55) for translation invariance,
we ask whether

3,9,V sir?
- (67)
w
sin[—ksin(I' —24)
tar(03_’\/'3)_c031“—kcos{l“—zw)JrG/V’ (68)
subject torg>0 below; we findrg from
r uq /B)[sin(I"—2¢)— (V/G)sin 2
s _ (ug/B)[sin( ) —(VIG)sin 2] 69

G Sin(fg— xg— L +2¢)
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As an example we draw in Fig. 4 the drift triangic for !
simulation (€1), corresponding to the amplitude triangle
ABC calculated according to Sec. V and shown above it.
The results obtained in the present section have been as
follows: the propagating variables, as well as the terms of the (\"L e
FHN equations, have been corrected to first order in the per- =
turbation; each of these corrected quantities rotates about its
own displaced center; the three centers involving the first
FHN equation from a trianglabc, which is stationary and !

nonrotating in the codrifting coordinate system; we have de- Vy /G
termined the shape of this triangle on the basis of the ob-
served spiral drift. FIG. 5. Simultaneous requirement of the shape and orientation

rules(cf. caption of Fig. 4 results in the intersection of a circle and

a rectangular hyperbola in thé/G plane. Of the four available
intersection points, we must choose the one on the upper right, as
explained in Appendix C. The observed drift is shown as a small

The deductive results obtained so far do not in any Wa)p_lack c.ircle. The square marks the origin. The illustration is for
constrain the vecto¥. In order to supply the necessary in- Simulation(el).
formation we study the drift triangle obtained from simula-
tions, and as a result, we propose three constraints. We likgd- (70) reads
to call them semiempirical rather than empirical, because
they do not contain any adjustable parameters. The first rule Zab=m+xp— xg= 72— xg. (72
deals with chirality, the second deals with the shape of the
drift triangle, while the third involves information about its Combining Eqs(71) an(72), we have
orientation.

A chirality rule. Comparing triangles in Fig. 4, we notice cosxg €0 6g— Oc+ xg)
that both sequenceABC and abc occur with the same - '
chirality (here counterclockwige We adopt this as a rule,
and shall use it in Appendix C to choose between severafhjs js our formulation of the shape rule.

possible predictions. _ An orientation rule We recall that triangléABC rotates.

A shape ruleNext, we can look for approximate angular However, abc is fixed in the codrifting system, and we
equalities. Some, like that between ang@& andbc, are  search Fig. 3 for an approximate rule involving its orienta-
fortuitous — a fact borne out by surveying other cases. Simixion, |n that figure, angleg and 5 add up to aboutr/2, a

larly, the near equality’ ab=Z bc (or a=c) appears coin- feature also found in a number of other simulatidnst
cidental. However, we do postulate an equality between thgnown. We, therefore, postulate

angles marked in both figures by a double arc,

VII. SEMIEMPIRICAL RULES FOR THE DRIFT
VELOCITY

g lc (73

+ =72, 74
/ ab=/ AB, (70) Gto=m (74

o ) In Fig. 4, we haveé= 7+ 0y and /£ ca=&— 7, and, there-
a natural observation in view of the mappiAg—a, B—Db, fore, Eq.(74) amounts to
and C—c. We turn Eq.(70) into a usable formula through '
the sine law][sin(2ab)]/c=[sin(«ca)]/b, or / ca=20g+37/2. (75)

sin(£ ab) — sin(£ ab— 6+ 0c) ; (71  ltmust be noted that Eqé74) and(75) make no reference to

s f'c triangle ABC, whereas the shape rule does. However, it will
3 1.0
Yy
0.5 1 O__U——OM
21 o
(¢}
o oy y » -0.5 ¢ .
[ ]
0 K‘“—.*H_H 1.0 1 L4
Vx
-1 T T 1.5 T
0.7 0.8 0.9 [ 5 10 15
(@) Ko (b) € © $4

FIG. 6. Observedpoints and predictedcurves values of the normalized componeis/G, V,/G. Panelda), (b), and(c) illustrate the
K, € andS series of simulations, respectively. (@), there is no prediction corresponding to the first two valuek pbecause the spirals
are supersparse or nearly so; see Fig. 8.
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1 0.2 0.5
@ 0 S d . 0.47
= x
z 0.0 . ) :+: o
-1 oKy . L 0.3 8
s o 2
-2 T T -0. - ©
-2 - 0 1 %% 0.0 0.2 £ o021 g
AV, /G
FIG. 7. Quality of the predictions. We pldtV (observed 0.17
—V (predicted]/G. The small rectangle around the origin con- 1
tains 18 points; the four others correspond to densitied.28. See
_ 0.0 \oy T T T T T T
Sec. |V for the definition ofr. 0.7 0.8 0.9 1.0 1.1

K.
be found advantageous to combine EZp) with the shape 2
rule expressed as E72). Summing the three internal angles  FiG. 8. Central value ofi for the variousK, values. Note the
to 7 gives cases of vanishing,, combined with proximity to discontinuities
at u=A,; or u=B;,which hinder our predictions in the shaded
O+ O0c=xp— 7. (76)  zone.

This formula is a usable combination of the shape and oriParameters. This part of the study is intended to serve as a
entation rules. reference base for testing drift theori¢b) We have estab-
Combining the three rules results in a prediction/ofWe lished the equivalence, under a conformal space transforma-
display that vector in a coordinate plané ¢osl’,V sinI’). In tion, between true gradients and convective perturbatiaps.
this V plane, Eq.(73) can be shown to represent a circular We have extended to intermediate spiral densities the obser-

locus, while Eq.(76) is a rectangular hyperbolic locus. We vation that density is correlated with direction of drift: higher

i : : densities opposite t6, lower densities less s¢d) We have
then findV as one intersection of these two curves. Thestudied the simplest features of the unperturbed core in order

alge_bra is_sketchegl in Appendix C, Whi(.:h. _a_lso discuss_es thfé see how they might apply to the drifting core; among
choice of intersection among four possibilities. In our illus- ye o \ve have found the relative phase angle between the
trative case, simulatione(l), the intersecting loci are dis- gy and fast variable at the center of rotatiée). We have
played in Fig. 5. The observed drift vector, shown here agjemonstrated that, under perturbation, that center splits up
well, is in this case close to the appropriate intersection. Prento a rigidly drifting cluster of rotation centers; also that the
dictions and observations are dlsplayed in detail in FlgS Qodnfung period of rotation is unchanged from the unper-
and 7. In most cases the agreement is good; the poor casgfbed one(f) We have proposed a semiempirical solution to
can be empirically related to the extreme density or sparsityhe drift problem, requiring only two quantities to be mea-
of the spiral, as documented in Table Il of Appendix A.  sured off the unperturbed spiral, namely, its period of rota-
Finally, we consider the effect of extreme densities on thaion and the value of the fast variable at its center. The fact
validity of the our semiempirical drift prediction. Figures 6 that only two easily measured unperturbed parameters are
and 7 show that all densities>1 (to be found in theS  required makes the method a practical one. Good agreement
serie$ give us poor predictions fov,, getting worse asr  with numerical simulations was found for spirals of interme-
gets larger. These extreme points are outside the small box uliate densities. This range of validity is unusual for an ap-
Fig. 7. For very low densities, represented here by simulaproximate formula, in that it is not asymptotic. It can be
tions (K.725) and K.75), we cannot expect any prediction understood qualitatively to some extent: at sufficiently low
based on the core’s center. Its near inactivity is indicated inlensity the core is unexcited at the center, while at high
Fig. 8. density the spiral’s outer turns might be expected to play a
larger role.
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1.0 T TABLE |. Simulation parameters.
Simulation label K, [As] [E] S, €
(K.725) 0.725 0.959 0.1173 0.5 1
0.5 | (K.75) 0.75 0.958 0.1140 0.5 1
(K.775) 0.775 0.956 0.1109 0.5 1
> (K.8) 0.80 0.955 0.1080 0.5 1
(K.825) 0.825 0.953  0.1053 05 1
oo | (K.85) 0.85 0.952  0.1027 05 1
/' (K.875) 0.875 0.950 0.1003 05 1
(K.9) 0.90 0.949 0.0980 0.5 1
(K.925) 0.925 0.947 0.0958 0.5 1
| . . . ) . . (K.975) 0.975 0.945 0.0918 0.5 1
032 00 o0z 04 06 08 10 12 (K1) 1.00 0943 00900 05 1
u (e.5) 0.95 0.946 0.0938 0.5 0.5
) (e.75) 0.95 0.946 0.0938 0.5 0.75
_ _FIG. 9. The nuIIc_Ilnes of EqgAl) and(A2). The shadt_ed bands (€1),(K.95),(S.5) 0.95 0.946 0.0938 05 1
indicate where the time scales fétrare shortened according to Eq.
(A4). This illustration is for simulatior{e1l). The small circle dis- (e1.25) 0.95 0.946 0.0938 0.5 1.25
plays the(constank values ofu andv at the center of the unper- (¢1.5) 0.95 0.946 0.0938 05 L5
turbed spiral, (€1.75) 095 0946 00938 05 175
(€2) 0.95 0.946 0.0938 0.5 2
and (2), we takea=1; the functionsb, ¥ are (82.5) 095 0946 00938 25 1
($4.5) 0.95 0.946 0.0938 4.5 1
®(u,v)=—¢(u)+u, (A1)  (S6.5) 0.95 0.946  0.0938 65 1
(S8.5) 0.95 0.946 0.0938 8.5 1
Y(u,v)=(—u+v)e/S(u), (A2)  (s10.5) 0.95 0.946 0.0938 105 1
(S12.5) 0.95 0.946 0.0938 12.5 1
with a constant parameter> 1. Figure 9 illustrates the reac-
tion functions® and¥ by way of their nullclines.
The functiong is piecewise linear according to to the input parameters of Table I. For each simulation we
list the unperturbed period of revolution the plane-wave
—Kyu for u<A, speed of propagation with the spiral’s period, thétime-
d(u)=4 Ky(u—E) for Aj<u=<A, (A3) independentvalueug at the center of rotation, the density

of the unperturbed spiral, as defined in Sec. 1V, the observed
magnitudeV=|V/| in units of G=|G|, the observed angle
I'=2GV of drift, defined as positive when counterclock-
wise from G to V, and the corresponding predicted values
S, for u<B, Vipreds 'prea- We also note that in each simulation the central
values ofu andv are equal,

_K3(U_l) for U>A2.

The functionSis piecewise constant according to

S(u)=4{ S for B;<u<B, (A4)
S5 for u>B,. Ug=Uvg- (A5)

The ratiosS,; /S, and S;/S, serve to regulate, more or less This is due to our arbitrary relative normalizationwéndv,
independently of the other features, the amounts of timeee Eq.(A2), and to the fact that, in Eq2), we haved,v
needed by the wave’s recovery and plateau, respectively. The0Q at that point. The value af; is not very critical in the
parameteré\, andE are determined by demanding continu- present paper, owing to the piecewise linear feature of the
ity of the function ¢(u): A,=[(K;+Ky)A+K3]/(K, nulicline in Eq. (Al), Appendix A. In all but two of the
+Kj3), E=A,(K;+K5)/K,. In all simulations the following  spirals of which we were able to study the drift, we finglto
parameter values have been usdét;=4, K;=15, A;  be located in the nullcline’s middle section. In two “super-
=0.018,B,=0.01, B,=0.95, S,=16.5, andS;=3.5. The sparse” spirals, namelyK(.725) and K.75), the core center
other parameters were varied as shown in Table I; the dés totally or almost inactive, and is extremely close to the
rived parameters are headed in brackets. The shorthand ldiscontinuities in the reaction functions; we are, therefore,
bels, such asK.725), are not numerical quantities but standnot able to predict the corresponding two drift vectors.
for the simulations. The labelsl), (K.95), and §.5) are All measured drifts, except in simulatioi(725), are due
equivalent as they denote a simulation that corresponds to the choice of convection parametér0.04; by compari-
the intersection of three families of points in parameterson withc~1, G is a small perturbation. InK.725) we used
space. G=0.01 in order to bring down the drift velocity and thus
In Table Il we list some simple characteristics of the un-maintain accuracy in the measurement. The drifting spirals
perturbed spirals@=0), as well as our measurements andwere produced by cross stimulation with two plane puldés
predictions for the drift velocity. Each simulation label refersin a square of 128 128 lattice sites, with space step.4
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TABLE II. Unperturbed and drift data.

Simulation labe? T c Ug o VIG I'(deg  VpedG I pyreq (deg
(K.725) 85.56 0.92 0.000 0.16 1.789 61.7 ¢ ¢
(K.75) 59.18 0.89 0.009 0.23 1.263 63.0 ¢ ¢
(K.775) 45.10 0.93 0.067 0.30 0.836 69.6 0.766 76.2
(K.8) 37.33 0.93 0120 0.37 0.585 83.7 0.624 86.8
(K.825) 32.54 0.96 0.175 0.42 0.485 96.8 0.564 84.6
(K.85) 2925 0.99 02F5 047 0446  105.6 0.534 101.7
(K.875) 26.88 1.02 0.252 0.51 0.433 111.5 0.515 106.4
(K.9) 2506 1.04 0285 054 0431 1153 0.500 110.0
(K.925) 23.68 1.08 0.315 0.58 0.433 117.9 0.493 113.4
(K.975) 21.63 1.12 0.3P6 0.66 0.450 118.6 0.486 117.5
(K1) 20.98 1.14 0.410 0.71 0.462 116.7 0.483 118.6
(e.5) 23.28 1.12 0.465 0.87 0.509 133.0 0.494 130.6
(€75 22.27 1.10 0.401 0.73 0.445 122.2 0.482 124.2
(€1),(K.95),(S5) 2253 1.09 0.346 0.63  0.443 118.3 0.491 115.8
(€1.295 23.39 1.08 0.299 0.55 0.445 110.9 0.514 106.0
(€1.5 24.90 1.05 0.251 0.48 0.486 102.6 0.565 94.6
(€1.79 27.44 1.04 0.195 0.41 0.561 87.5 0.681 80.5
(€2) 31.94 1.03 0.122 0.35 0.770 69.4 0.985 63.3
(S2.5) 23.31 1.05 0.328 0.97 0.476 120.1 0.496 114.1
($4.5) 26.28 1.02 0.280 1.28 0.548 123.0 0.509 107.0
(S6.5) 29.29 0.99 0.239 1.56 0.635 127.8 0.537 100.2
(S8.5) 32.18 0.96 0.205 1.81 0.815 137.5 0.561 94.3
(S10.5) 34.95 0.92 0.177 1.99 0.950 148.0 0.594 89.2
(S12.5) 37.61 0.89 0.154 2.26 1.000 166.0 0.625 84.6

8 or parameter specification, see Table I.
®Interpolated value.
°No prediction(core nearly inactive

and Neumann boundary conditions far For the unper- for some constantsn, m,, m_, u, w,, and u_, to all
turbed spirals the figures were 28856 sites and a 0.2 space orders inG; we note the unperturbed values,

step. We used a first-order Euler algorithm with time step

=0.0125 in the perturbed case and 0.00313 in the unper- (mm,,m_,u.)—(0u;,0,00 as G—0. (B3
turbed case. The drift velocity was obtained from the trajec-

tory of the core. The points of that trajectory were recorded Next, without looking at Eq(B1), we definer, as the
one period apart in time, as follows: Thevariable was rotation center fou,, . Requiringu,=const (=0) at some
averaged over one period at every space point; as a result, tRgintr,, we have from Eq(B2),

core was displayed as a low-amplitude disc, whose center

defined the required trajectory point. mcog wt—pu)+r [m, cofwt+0,—u.)

+m_cof —wt+6,—u_)]+0(r2)=0. (B4)
APPENDIX B: SHIFTED CENTERS OF ROTATION

) ) . In connection with Eq(45) we have noted that the origin,
Here we consider, in the codrifting system, #(&) cor-  _q (je., the center of the unperturbed spifas chosen

rection tou(r, #,t), which atr=0 can be said without 0SS \yithin an o(G) distance fromr,; this impliesr,=0(G),

of generality to have the component of frequeneyalso /2= 5(G2). Keeping onlv the(G) terms in Ea(B4). we
contained in Eq(45)]: h;vug (G?). Keeping only theo(G) q(B4),

(0u),=—Usr,cogwt+6,). (B1) mcog wt—u)=—uyr,cofwt+6,—u.). (B5)

We demonstrate that the fixed vectgr, or (r,,6,), marks But atr=0, Eq.(B2) gives
the rotation center for that frequency component. As a start-
ing point, the most general nonsingular expansionugf U,(=du,)=mcogwt—pu). (B6)
aboutr=0 can be written,
Together with Eq(B5), this leads to Eq(B1).
_ _ _ An entirely similar argument where is replaced by its
Uo=meodwt=p)+rim, cogwt+o-p.) integer multiples, leads to vanishing harmonics in t{&)
+m_cog —wt+6—pu_)]+0(r?), (B2)  corrections:
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(8U)2,=(8U)g,= ... =0. (B7) VP, ® siny
rgCojwt—xg+ 6g) — —————codwt+I'—2¢)
Here again we make use of the unperturbed spiral, where Bo
nonsingularity at the center, combined with rigid rotation, U
leads to the components of frequencies, Bw, ... being = —g[v cogwt+1I')+ G coswt]. (C2
of orderr?, r2, ... inther expansion. Thus, in E4B3) we
have unperturbed values, Taking wt=2yg—xc+2¢—I and subtracting Eq(C1)
(mm, ,m_)—(0,00) as G—0, @ IS

. . . . V| B Po,d si
leading to Eq(B7). [Each harmonic has its own shifted ro- — | ——sinyccosyg+ U—Szlmpcos{ZXB—Xc)
tation center, but this does not affect the argunjent. Gluw U

Finally, we derive for the zero-frequency component, or

time average, at=0: —co%2xg— xc+2¢)

(8u(0))=0(G?). (BY)
=cog2xg— xc+2¢4—T). (C3
We start from the fact thatéu(r,))=0(G?), by the argu-
ment that yielded Eq44). But we have We next use Eqg40) and(22) for P/uy, Eq.(35) for B/u,,
and Eq.(36) to eliminate the reaction functions. Equation
u(O)zu(ru)—ru-Vu(ru)+o(r§) (B10) (C3) eventually reduces to
. V
or, sincer,=0(G), G (sin2xg sinc+coslg)= —cogI'~Ty),  (C4)
8u(0)=28u(r,)—ry-V[u(0)]g=o+0(G?). (B11) where
Using(Vu(0))g-0=0, we have To=2x8— Xc+ 20— . (C5)
(8u(0))=(su(ry))+0(G?), (B12  In the V plane, Eq.(C4) represents a circle that passes
through the origin, and whose center has angular coordinate
or Eq.(B9) as claimed. T

O.
In conclusion, the present appendix makes the following Equation (76) Taking wt= 6.+ /2 in Eq. (C2) makes
statements{a) The o(G) correction tou atr=0 is given by  its first term vanish by Eq(76); Eq. (C2) now reads
its fundamental-frequency term only,
V|Pd,dsing _ _
Su=(48u),; (B13) G —ZSIn(0C+F—2¢)—S|n(GC+F) =sinf;.
Ulw
(b) furthermore, its time behavior at that point merely ex- (CH)
presses a spatial shift in the rotation centeugft Using Eq.(66) for 6c, and successively eliminating and

These results are applicable to any other spiral-wave varige reaction functions by means of E¢40), (22), and(36),
ables as well, such a8 or any of the variable$46)—(50). we reduce Eq(C6) to

We note that the system is translationally invariant. There-
fore, one of these variables, for exampla itself, can al- \VJ _ .
ways be chosen to have an unshifted center; byt=0 then GlHsIN2l'+ xc—4¢) —sin(2l' + xc = 2¢) ]
in general one must hawg +# 0, etc.
=sin(I'+ xc—2¢), (C7)
APPENDIX C: CIRCULAR AND RECTANGULAR- .
HYPERBOLIC LOCI whereH is a known constant,

Here we convert Eq(73) into a circular locus in the/ _ cosygsinxc

plane and Eq(76) into a rectangular-hyperbolic locus. We ~ sin(xc—xs) (C8)
also determine which of the intersections of these two curves
is the “physical” one. In the V plane, Eq.(C7) represents a rectangular hyperbola
Equation (73) Eliminating r with the help of Eq.(66), that passes through the origin.
we obtain from Eq(73), Selecting the intersectio®Between the circle and the hy-
perbola we have, in general, four intersections, one of which
rgcoxg— xct2¢+0z—1')=—(V/w)sinyc CoSxg. is atV=0. We are unable to exclude the later by a rigorous

(C1) argument. However, by continuity=0 is extremely im-
plausible. Indeed, that intersection never moves as the mod-
On the other hand, E@453), with r,=0 andr ¢ eliminated as el's parameters are being varied, which would imply zero
above, gives drift in a finite volume of parameter space. Of the three re-
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maining intersections we exclude two by inequalities thatsequenceABC andabc have the same chirality. This results
originate from the unperturbed data, as follows. in sin(6c— 65)>0, or eliminatingdg and 6 as above,

From Eq.(73), and using cogg>0, we have SIT2(T + xo— xa/2—24)]<0. (C11)
cod 0~ fc+ xs)>0, (€9 The pair of restrictions expressed by E¢810 and (C11)
always leave us with a single predicted drift in the cases
considered. To sum up this appendix: the pair of Eqgl)
co$ 2(I' + xe— xg—2¢)1<0. (c10 and(C7), together_ with inequalitie6C10) _and(Cl_l) consti—_
tute our prediction for the normalized drift velocity
A second inequality results from the observation that both(V/G,T").

or, eliminating g and 6. by using Eqs(66) and(76),
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