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Ising spin glass with arbitrary spin beyond the mean field theory
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We consider the Ising spin glass for the arbitrary spivith the short-ranged interaction using the Bethe-
Peierls approximation previously formulated by Serva and Palgeliys. Rev. E54, 4637 (1996)] for the
same system but limited t8=1/2. Results obtained by us for arbitraBare not a simple generalization of
those forS=1/2. In this paper we mainly concentrate our studies on the calculation of the critical temperature
and the linear susceptibility in the paramagnetic phase as functions of the dimension of the system and spin
numberS. These dependences are illustrated by corresponding pEit863-651X99)16605-4

PACS numbsgs): 05.50+q, 75.10.Nr, 75.50.Lk

I. INTRODUCTION system as it does on the spin number. In addition, linear
usceptibility, even in the paramagnetic phase, is a nontrivial

The study of glasses is today one of the most relevant an nction of the temperature.

actual problems in _condensed_ mfdtfter p_hysics_. In particular, The paper is organized as follows. In Sec. Il we briefly

research around spin glasses in finite dimensions is very agesent the idea of the Bethe-Peierls approach for the the

tive, since it is still unclear if they share some the qughtauve,sing spin glasg7] and give equations for the critical tem-

features of the mean-field theory of the Sherrington-perature and linear susceptibility in the paramagnetic phase

Kirkpatrick (SK) model [1-3] However, there are recent when the spin numbe8 is arbitrary. Section Il contains

studies[4—6] that indicate difficulties in extending the mo- plots showing the dependence of the critical temperature on

lecular field approximatioiMFA) scenario to realistic spin the dimension and the value of the spin number. Finally in

glasses with short-range interaction and decidingriori Sec. IV some conclusions are drawn.

which properties survive and which must be appropriately

modified. Recently, in an interesting pap&i, an approach

beyond the MFA has been achieved fordalimensional

Ising spin glas$SG) model (S=1/2) with short-range inter- Our starting point is the Hamiltonian of the Ising model

actions on a real lattice using an extension of the Bethewith arbitrary spin:

Peierls approximatioiBPA) [8] to the spin glass problem

via the replica trick. This approach seems to be very prom- 1

ising for establishing a direct contact with the results ob- H=- 52 JiiSS, (&N

tained by different authors for the infinite-ranged version and h

for controlling possible deviations for short-ranged glasses

from the well acquired MFA scenario. Quite recerfi®y the ~ whereS =5/ is the z component of the spin. As usual, ei-

Parisi[3] ansatz has been investigated for the Ising spin glasgenvalues of5; run from —S to S, whereSis arbitrary. In

with S=1/2, using the generalized form of the Bethe-PeierlsEq. (1) the summation ovdr,j comprises only nearest neigh-

method called by the authors “a variational approach,”bors. Interaction parameteds; are variables obeying ran-

where finite clusters of spins interact and the sample averagtom distribution; that is, dichotomic, Gaussian, etc. For sim-

ing is properly taken into account. The result is qualitativelyplicity, in order not to complicate the main idea, we will

similar to that obtained in the frame of the MFA with some assume thag; ; is a random variable witll; ;= *+J, with

guantitative-modifications due to short-range order interacequal probability for a+ or — sign.

tions. Using the replica trick the free energy can be written as
All studies mentioned above have been performed for théollows:

standard Ising model witls=1/2. Therefore it seems to be

II. BETHE-PEIERLS METHOD FOR SPIN GLASSES

quite interesting to extend the methods applied to the Ising 1
spin glass, where the number of spin is arbitrary. In spite of — BF=lim ST ex;{ -B> Ha} : (2
numerous works on the Ising modsk 1/2, little attention n—0 “ av

has been devoted to the same system with arbitBaty the
spin glasses solutions for the arbitré@yhere is not a simple where[ ],, denotes a sample averaging aHg is the
generalization such as that for the Ising model v8th1/2.  replicated Hamiltoniarg1).

The reason is that for higher spin§"# S; or const, which Working directly on the real lattice, the basic idea of the
leads to parameters that are diagonal in replica indices. ThiBPA for spin glasse$7] is to take into account the correct
considerably affects the results for tBe- 1/2 Ising SG. interactions inside replicated clustefsl), consisting of a

We will use the Bethe-Peierls approximatidBPA) [7]  central spinS, and its A nearest neighbors; ,{i=1,
with some necessary modifications. As we will see the criti-- - - ,2d}, and to describe the interactions of the cluster bor-
cal temperature depends as well on the dimension of thders with the remnant of the system by means of effective
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couplings among replicas to be determined self-consistentlywherea# o’ and
Therefore the free energy in this approximation can be writ-

ten as follows:

1
—BF=Ilim ﬁln Zn,

n—0

)

where

i=1l,a

2d
zn=K<B>Tr[ exp( B> Jo,iso,asﬁ,a”

232 2d
XeXF(BT’“i-El ; Sﬁa)

232 2d
xexp( 32 >
|

=1

E Iu‘a,a’S,aSi,a’)]- (4)

ata’

In Eq. (4) =1, - -,n denotes the replica indiceky(B) is a

2.2 2d

2d 23
Tr exp( ,82,1 J0iSeS + T,uz,l S,z) e

()= 2d 5232 2d
Tr exp( ,821 J0iSeSi+ TMZ::L SIZ)

2d 2d
) Hl Dx;Tr exr{ ,B_Zl (J0;So+Iunt) S

o 2d 2d '
[I DxTr exr{ﬁZl (Jo,isouﬂl’zxi)s}

—oj=1
(10
with

Dx;=—=exp( —x2/2)dx; .

N

11

multiplicative constant that depends on the temperature but

not on the lateral spins of the cluster; apd, .. and u

Thus due to the translational symmetry for averaged over

=Ma,q, according to the Bethe-Peierls ansatz, describe thgisorder correlation functions the equation for the critical
interaction between the “external world” and the lateral temperature takes the form

spins of the replicated cluster. The difference between Eq.

(4) and the corresponding formula of R€7] is that in Eq.
(4) we have the additional parametgr. This is a conse-
guence of the fact that for an arbitrary spﬁﬁﬁt 1/4.

Effective couplingsu,, ,» and u are calculated from the
following equations:

<Si,aS,a’>:<SO,aSO,a’>! (5)
withi=1,---,2d, where
Trexp —BHex) - -
()= Trexp(—BHe) ©)
with
-1 JZ 5
Her=—5-In eXP(ﬁ% Jo,iso,asﬁ,a” -5 nX S
J2 2d
- BT Z, I:El lu“oz,a’si,asi,a’ . (7)

aFa

Above and at the critical point the spin glass parameters

(SkaSk.a’)=0a,o' =0 for a#a’ (but not fora=a’). It is
easy to calculate that the effective couplings. .. obey the

same conditions. If we are interested in the calculation of the

critical temperature it is sufficient to formulate E§) to the

[(SD)§lavt (2= D[(SS)5lav=2d[(SoS)5lav, (12)

wherei#j numbers of arbitrary lateral spins of the cluster.
Additionally we must to take into account the equation

[<S|2>g]av= [<Sé>g]av

With Egs. (9) and (10), after detailed calculations we can
formulate the equation for the critical temperature in terms of
functions F, to F,, which depend on the temperature, di-
mension of the system, and the spin number. The sample
averaged correlation function wiik# ] has the form

(13

lowest order inu,, . After some straightforward algebra gpq

we get fora# ' the following result:
2d

(.08 ) =B Vbtgw 2 [(SS)olae @

with i,j=1, - -,2d and
2d

(SoaSoa )~ B paw 2 [(SoSolavs (O

2
[<ssj>é]av=F—§, (14)

0

whereas

., F3
[(SoS)olav= = (15)

0

FZ
[<32>S]av=F—§, (16)

0

F2
[<SS>S]aV=F—“. (17)

2
0
The form of functions=(1=0,- - -,4) is the following:

d

S w 2
Fo= 3 { |” oxodpasmenm1”, a9
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S
Fi=%% > H DxB4 BISIM + %) 1Qs
M=-S —®
2
mestwl’zx)]]

o0 2d—2
x{ J DxQ4 BISM +M1’2x>]j : (19

S
Fo=S > ( f Dx{BY BIS(M + uV%)]
M=-S8 —
+B§[BJS(M+M1’2X)]}Qs[BJS(M+M1’2X)]>

o 2d—-1
><U DxQS[ﬂJS(M+M1’2x)]} , (20)

(Ml f DxBJ BISIM+ %) 1Qs
X[BJS(M+M”2X)]}

0 2d—-1
x[ | Dsz[ﬁJamwl’zx)]] | e

and

In Egs.(16)—(20)

S 0 2d
F4=MZSM2{ fxDsz[,BJS(MJer’Zx)]] . (22
1
1+ ==

Sm{y 23}

Qs(y)= T (23
Sin

2S

where

Bs(y)=(1+ Zis) cot}{

1 1 1 y

+2—S y _Z_SCOt 2—S s
(24)

is the Brillouin function, and

!

dBg(y)
dy -

Bs(y)= (25

Taking into account Eq912) and (13) together with Egs.
(14)—(17) we can write equations for the critical temperature

as follows:
(2d—1)F2+F2=2dF3 (26)
and

F,=F,. (27)
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FIG. 1. Variation of the critical temperatufe rescaled by the
factor (2d) ~*2 with the dimensiord of the system for spin num-
bersS=1/2,1,3/2,2, and 3 . The larger the spin, the higher the
corresponding line. Heré=1.

Obviously the solution of Eq$26) and(27) needs numerical
calculations.

As concerns the linear susceptibility in zero magnetic
field, we define it as follows:

(d<§ir>1T,h

N

1
X=7y >

: (28)

[h=014y

where( )7, denotes the thermal averaging with the Hamil-
tonian(1), when the term- h=]S; is added. A first step is to
calculate the susceptibility in the paramagnetic phase with
local magnetizationgS;)7=0, where(S)t=(S)tn-o. In
that case

ﬂ N
x= 2 (SS)lav (29

It is easy to show that fdn=0 and the symmetric probabil-
ity distribution forJ; ;,
[{SiSj)rlav= 51 j[{S))7]av- (30)

After some calculatior{see, for example, Ref10]) we get
that

X:B[<S§>O]aw (31
with k=0, - -,2d.

Ill. RESULTS

Our results are illustrated by plots in Figs. 1-4. In Fig. 1
the dependence of the critical temperat@ige(in units of the
constant]) scaled byy2d of the dimension of the systeth
for a few values of spirs=1/2, 1, 3/2, 2, and 3 is given. The
larger the spin, the higher the corresponding line. In Fig. 2
variations of theTc/\/ﬁ with spin number ford=2 (the
lower line) andd=3 (the upper ling are plotted. It is seen
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FIG. 2. Rescaling critical temperatufie,/(2d) Y2 versus the

spinSfor d=2 andd=3 marked by lower and upper lines, respec-
tively. HereJ=1.

FIG. 4. Linear susceptibilityy in the paramagnetic state as a
that the critical temperature, in general, increases with thénction of the temperature in units dfor d=3 andS=1, 3/2, and
increasing of the spin number, but this dependence cannot fe The larger the spin, the higher the corresponding line.
represented in an explicit form and is more nontrivial com-
pared to simple magnetic systems, such as, for example, &€n in the paramagnetic phase, is a nontrivial function of
ferromagnet wherd@ .~ S. The reason for the scaling of the the temperature for spins higher th&r-1/2. From plots in
crtitical temperature by/2d will be explained in Sec. V. In  Figs. 3 anl 4 a tendency fo to increase with increasing of
Figs. 3 and 4 we show the dependence of the linear suscef-is seen.
tibility in the paramagnetic phase of the temperatude (
=1) for d=2 andd=3, respectively. The values & are
1,3/2, and 2. The larger the spin, the higher the correspond-
ing line. Obviously the lines in Figs. 3 and 4 terminate at the Studies of the spin glasses with short-ranged interaction
critical temperature, since to calculaiebelow T, we must  are undoubtedly a difficult problem among the theories of
enter into theory the spin glass order parameters. At preseaimorphous systems, since the complicated nature of the ran-
our purpose is only to show that the linear susceptibility,domness interplays spatial correlations of spins. At present

there is practically no developed systematic method to inves-

3.00 tigate such systems, as in the case of the long-rafigede
strictly, infinite-rangedl Sherrington-Kirkpatrick type models
where MFA is valid[1,2]. It is expected that the BPA will be
able to give a more accurate estimation of the critical tem-
perature for the spin glass systems with short-range interac-
tion than the MFA. As concerns our problem, a natural ques-
2.00 [ tion arises about what will result when the dimension of the
system is infinite. It can be easily shown thadif>o, one
obtains the Sherrington-Kirkpatrick theory for the Ising spin
X g glass with an arbitrary spin. After rescalidg;— J; ; /y/2d,
J—J/\/2d and changingu, . =2dq,. . ,u=2dp with p
=0q,«, Proceeding in a line similar to that in RdfZ], one
obtains

IV. FINAL REMARKS

1.00

qa:#a’:<SaSa’> (32)

and

0.00 " ] " 3 " 1
0.00 2.00 4.00 6.00

| R . p=(S%). (33
FIG. 3. Linear susceptibilityy in the paramagnetic state as a

function of the temperature in units dfor d=2 andS=1, 3/2, and
2. The larger the spin, the higher the corresponding line. where
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a#ta’ a

,82\]2
Trexp( > > QuaS.Se TP § i) o

<>: BZJZ
Trex;{ 5 > GuawSeSatp Si)

aFa

+0(d™Y?), (34)

whereS, is thez component of the spin operator referred to

our consideration is a first step toward recognizing some
properties of the Ising SG with an arbitrary spin. It would be
interesting to obtain the properties of the system in the SG
phase, at least in a replica symmetric theory. This is a com-
plicated task even fa®= 1/2; therefore, further work will be
necessary to elucidate this problem.
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