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Binary data corruption due to a Brownian agent
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We introduce a model of binary data corruption induced by a Brownian dgetive random walkgron a
d-dimensional lattice. A continuum formulation allows the exact calculation of several quantities related to the
density of corrupted bitg, for example, the mean @f and the density-density correlation function. Excellent
agreement is found with the results from numerical simulations. We also calculate the probability distribution
of p in d=1, which is found to be log normal, indicating that the system is governed by extreme fluctuations.
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I. INTRODUCTION elements is log normal. Thus, typical and average events are
. L . quite distinct, and become ever more so as time proceeds.
Brownian motion is one of the fundamental processes in S .

Before giving an outline of the paper we shall say a few

nature. Originally observed in the irregular motion of pollen : .
rains by the botanist Browfi], and cast into the language words about the potential relevance of this system to data
9 ! corruption. With the advent of semiconductor memotfies

of the diffusion equation by Einsteif2], it has now been . . ) ;
applied, in the mathematical framework of random walksdynamlc random access memon@&RAM s) and various

' . . . types of read-only memorieROM’s)], there has been a
[3], to an enormous variety of processes in the physical sc

. . fremendous drive within the semiconductor industry to pro-
ences and beyond. A very rich field of research has beeHuce ever-smaller memory devicgL,17. There are many

built up around the behavior of a random walk coupled t0 gyoperties(e.qg., stability, power consumption, volatility, and
disordered environmenf4], a good example being the ¢osy which must be balanced in the design of such devices.
anomalous diffusion of electrons in a disordered mediin  These factors determine the type of material used, and the
Also, one can consider a random walkesingthe disorder-  geometry, dimension, and architecture of the devi€ar

ing agent in its environment. Applications of the latter in- instance, three-dimensional arrays have a very efficient ad-
clude the tagged diffusion of atoms in a crysfé-8] or  dress structure, and are stable against interference from bom-
magnetic disordering due to a wandering vacafly bardinga particles, but are very expensive to prod{it#].)

In this paper we will introduce a particularly simple ex- One of the main issues is the stability, or reliability, of the
ample of an active random walkéor Brownian agentdis-  device. In semiconductor memories, there are many physical
ordering its environment. Although the model is interestingeffects which can create hard errddestruction or corrup-
in its own right, we believe it will have a useful application tion of the device itseJfor soft errors(corruption of the data
to the study of data corruption in ultrasmall storage devicesstored in the devide In the latter category, the most com-
Before pursuing this connection, we shall briefly describe theanon problems originate from electron clouds causedaby
model(which will be more carefully defined in the next sec- particles, but soft errors may also arise from electromigration
tion). The two main features of the model are, first, that theand charge diffusiorf13]. The key point is that different
Brownian agentBA) performs a pure random walk—it is corruption mechanisms operate on different time scales
not affected by the environment in any way. Second, thgleading to the famous bathtub curve of device reliability
environment is bistable. That is to say, it is composed of12]). It is therefore important to know on what time scales
elements which may only exist in one of two possible statesne should expect significant corruption from a given pro-
(see Ref[10] for a loosely related random walk procgss cess. The model we propose hémamely, data corruption
Thus we can consider the environment to be composed afia a BA) is probably not relevant for today’s semiconductor
binary dataour favored realization magnetic spins, chemi- devices, since there are so many “mesoscopic” processes
cal specieA andB, and so on. As the BA wanders through occurring on the level of a flip-flop that subtle correlations
the environment it has a certain probability to switch thedue to a BA will be washed out. However, we can look
value of an element in its immediate vicinity. Thus, if we ahead to the new generation(gluantun) storage devices, in
start with a system in which all elements exist in the samewvhich a single electrorfcontrolled in a gate via Coulomb
state(“up,” say), and introduce the BA at the origin, then blockade can store one bit of data. In this case, a micro-
after some time, there will be a region around the origin inscopic BA may indeed play an important role in data corrup-
which the elements will be found in a mixture of “up” and tion, and it will be necessary to understand its time scales
“down” states. Naturally, the linear size of the region will and efficacy of operation, so that we can minimize its influ-
grow on average agt. A more subtle question concerns ence. This paper constitutes a first step towards gaining such
the degree of disordering which exists for elements withinan understanding.
this region and, also, their spatial correlations. As we shall The outline of this paper is as follows. In the next section
see, the statistics of the disordered elements is very rich. Thige shall carefully define the modeising discrete space and
is most convincingly demonstrated by the dominance of extime) within the master equation formulation of stochastic
treme fluctuations; for instance, the distribution of disorderegrocesses. We shall derive some general statistical properties
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of the process, but we shall not enter into any explicit calcu-

lations. This is deferred to Secs. llI-V in which we introduce 1]1j1]1]1/1 1]1]1 2__0 1
a very simple continuum theory for the process, which is 1j1(1]1]1]1 109 |6 0
motivated by viewing the process as a stochastic cellular dal1/111]11 0 o
automaton. In Sec. lll we derive this continuum theory and, 1 - h
using the complementary descriptions of quantum mechanics Lj1j1j1j1/1 60| 6

(i.e., the Schrdinger equation and the Feynman path inte- 111|111 111]1]6wb]1
gral), we shall demonstrate its equivalence to the master 1l1l1l1l1l1 1111711

equation formulation of Sec. Il. We then examine the case of
one spatial dimension in Sec. IV. The model is tractable, and
a great deal of information may be derived concerning the
mean density of disordered elements, their spatial correlag
tions, and finally their entire distribution function. In Sec. V, ; T I
we briefly study higher dimensions, and derive some genera‘{}""TIk of ~20 steps. The BA flips a spin with each visit; so those

statistical properties for the process, for an arbitrary Spatiasfpms visited an even number of times are restored to their original

coupling between the BA and its environment. We also deyalue'

rive an expression for the mean density of disordered elegheref|} represent the @ orthogonal lattice vectorévhich
ments in two dimensions. In Sec. VI we present results fromy, 5o magnitudé).

extensive numerical simulations of the discrete process. In The natural quantities to extract from the distributiBn

all cases, we find goqd agreement b_etween the simulatio re marginal averages. The simplest is the mean value of the
results and the predictions of the continuum theory. We end__: - : ; . o
pin at positiorr; at timet, given the BA is at positiorR.

]tcnteurpeagﬁjrd\;v.nh a summary of the work and some ideas fo his is defined via

FIG. 1. lllustration of the data corruption process &+ 2 and
=1. The initial uncorrupted state is shown on the left, with the
A represented by the solid circle. On the right we show a typical

Il. DISCRETE FORMULATION OF THE MODEL O(rL,RO=Tr, Urlp(R'{Ur}’t)' &

We consider binary data bits ondedimensional hypercu- Higher-order marginal averages may be defined accordingly.
bic lattice. For convenience we shall represent each bit by aRerforming the spin trace over the master equation with a
Ising spino, , where the index represents a discrete lattice weight of o, yields
vector. The spin takes the valuel (—1) for a data bit

which is uncorruptedcorrupted. Thus, the initial configu- O(,Rt+6t)—0(r,R,1)
ration is a lattice of spins, all of which take the valuel.
[We prefer to describe the system almost exclusively in z%z [O(r,R+1,t)—O(r,R,t)]

terms of the spin variables. Thus we shall use phrases such as
“magnetization density” or “global magnetization.” The
translation of these quantities to the corresponding properties _ ﬂ@(r oS s &)
for corrupted data bits is immediate, as one only need replace d o gt CrRED
o, by (1-2n,), wheren, denotes the presencwith value
unity) or absencéwith value zer9 of a corrupted bit. Simi- The above equation has a physically appealing form. The
larly, we shall often refer to the average magnetization denrate of change o® has two contributions. The first is lattice
sity m, which is related to the average density of corrupteddiffusion, as given by the first sum on the right-hand side
bits;via mzl_zz] We denote the position of the BA by (RHS) The second contribution vanishes unless the spin in
the lattice vectoR. At each time step, the BA has a prob- question is in the immediate vicinity of the BA, in which
ability p of making a jump to one of its (@ nearest neigh- case it acts as a sink.
bors. For the sake of generality, we will not insist that the At this point in the discussion it is worthwhile to consider
BA always flip a spin(i.e., change a data bias it moves. the continuum limit. Namely, we take the time scateand
Thus, on a given jump, we allow the BA to flip the spin at the lattice scalé to zero, and define a diffusion constdnt
the site it is leaving, with a probability. We illustrate the =2|2p/st. We also introduce a coupling<pql% ét. Then
process in Fig. 1, for the case=2 andg=1. In this section  replacing the Kroneckeé function in Eq.(3) by a Diracé
we shall describe the process via a master equdtldh  fynction we find
Namely, we shall define the dynamics through the evolution
of the distributionP(R,{c},t), which is the probability that
at timet the BA is at positiorR and the spins have configu-
ration{o,}. Given the above rules, the master equation takes
the form It is important to note that this continuum equation is not
strictly derived from Eq(3), as we have not proved that the
P(R{o7},t+80)=(1-p)P(R,{o:},) continuum limit exists. In fact, we shall find that foe=2,
p(1—q) the lattice scaléis crucial, and consequently we must soften
o > P(R+1{o}) the Dirac & function to a functionA,(r) which is sharply
! peaked(over a linear scalé) with unit integral overr Y.
pq One actually expects this to be the case, as (Bpis the
+ EZ P(R+I, ... ,=0Ry1y - 1), imaginary-time Schidinger equation for a particle under the
influence of a repulsivé-function potential.(Note that the
(1) independent spatial variable in this quantum systerR,is

D 2
at(r,R,t)=§VR®(r,R,t)—)\(E)(r,r,t)éd(r—R). 4
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with the variabler simply labeling the position of the poten-

tial.) It is well known [16] that the repulsives-function po- M(t+6t)— M(t)=2pq; O(0,R,t)=2pgmy(t).

tential is “invisible” to the particle ford=2, and one usu- (10)

ally cures this by smearing the potential just as described

above. The quantum mechanics analogy will prove useful idn other words, the rate of change of the mean global mag-
the next section when we construct an alternative continuurnetization is proportional to the mean magnetization density

model. at the origin. This is a nontrivial relation between a global
Before leaving this section we shall indicate the deriva-and a local quantity.
tion of a nontrivial statistical relation hidden inside E). In principle, one can obtain exact results for many inter-

First, we must define the initial condition. As mentioned be-esting quantitieglike the mean magnetization density or cor-
fore, given that up spins denote uncorrupted data, the initialelation functiong by directly solving for the marginal aver-
value of each spin is-1. There is a slight subtlety of defi- ages, as illustrated in Appendix A. However, we prefer to
nition regarding the value of the spin at the site where thedbtain results from a continuum theory, partly because the
BA is initially planted.(This position shall be taken to be the calculations are a little easier, but more importantly because
origin, without any loss of generalilyWe shall take this we can access more sophisticated properties of the system,
spin to be initially— 1 so that immediately after the BA has such as the probability distribution of the coarse-grained
moved away the spin at the origin has valtd . Thus we magnetization density.

have
Ill. CONTINUUM THEORY

P(R,{Ur},0)=5R,o5ao,—1H 8y 1 (5) In this section we shall introduce a particularly simple
70 continuum description of the data corruption process and
show its equivalence to the discrete theory of the previous

and, consequently, section.
There is an alternative method of characterizing the evo-
0(r,R,0)=0r,o(1-26 o). (6) lution of the system other than using the evolution of the

probability distributionP(R,{c},t) via the master equation.
We may obtain the following two averages from This method consists of writing the local rules for the pro-
0(r,R,t). The first is the average value of the spin at thecess in the spirit of a stochastic cellular automa(8cA)
origin. This is simply given bymy(t)==g®(0,R,t). The [17]. Let us focus on the case in which at each time step the
second average is the quantBg®(R,R,t), which corre- BA makes a random jump to one of its nearest neighbors,
sponds to averaging the value of the spin at the site wherand in which the spin at the site it leaves behind definitely
the BA happens to be at tinte One can prove that flips. This corresponds to setting=q=1. The local rules
for such a process are easily written down. Let us denote the
time-dependent position of the BA [®(t), a randomly cho-
ER: WO,RJ)ZER: O(R,R,1), () sen unit lattice vector bi(t), and the time-dependent value
of the spin at site by o (t). Then we have

for all t. We arrive at the above result by essentially solving R(t+ 8t)=R(t)+ (1), (12)
the partial difference equatiai3) using discrete Fourier and
Laplace transforms. The details can be found in Appendix A. o (t+ 8= o (1) (1~ 28, ry)- (12)

One may also understand this result by considering time-
reversed pathgl5], although the form above is special to our ~ We are interested in a continuum limit of these two rules.
chosen initial conditior(6). The first is nothing more than a random walk. We take the
This result is useful for proving a more physically rel- lattice vectorR(t) to be a continuum vectdi.e., each of the
evant relation. Let us denote the average global magnetizg components is a real numbeand we replace the random
tion by unit lattice vectol(t) by a continuum vectog(t), each com-
ponent of which is a uncorrelated Gaussian random variable

with zero mean(i.e., &(t) is a white noise processThe
M(t):; Er: [6(r,R,0)-06(r,R,1)], (8)  correlator of¢ is given by

N . o (&(D§(t"))=D"g jo(t—t"), (13
where we have defined it relative to tfigfinite) initial mag- o
netization. This quantity essentially measures the average gfhere here and henceforth angular brackets indicate an av-
the total number of corrupted bitap to a factor of 2 Sum-  erage over the noiger, equivalently, the paths of the BA

ming Eq.(3) overr andR gives Then, on takingst—0, Eq.(11) assumes the form
dR
M(t+80)~M(D)=2pq3, O(r,r,0). © a8 19
r

which is the familiar equation for a continuum random
Then using Eq(7) we can rewrite the above relation in the walker whereD’ is the diffusion constartl4]. The second
form SCA rule is more complicated to generalize to the con-
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tinuum. As a first step let us define a coarse-grained magnave can be confident that the most important configurations
tization density(r,t) in the following way. We imagine have been retained in the continuum theory. Ultimately, one
defining a large region around the lattice sitand summing must justify such an approximatianposterioriby compari-

all the spins in that region. Their sufauitably normalizefl ~ son with either results from the discrete theory or from nu-
constitutesg(r,t), with the labelr denoting a point in the merical simulations. As we shall see, both of these support
R Y continuum. An entirely analogous procedure is used irthe current continuum model and the approximations con-
motivating the Landau-Wilson free energy functional fromtained therein.

the Ising model of ferromagnetisf8]. The difficulty in our We shall now connect the continuum theory as given by
case is that we cannot derive a closed equationgfdrom Eq. (16) and the continuum limif4) of the discrete theory as
the discrete rulé12). We therefore make the following ap- given by Eq.(3). The mean magnetization density in the
proximation. Splitting the RHS of Eq12) into two pieces, discrete theory is given by

we see that the first may be taken over to the LHS which

may then be taken to be a time derivative in the limitsof m,(t)= >, O(r,R,t) —>f dRO(r,R,t), (17
—0. The second piece resembles a decay term centered at R ct

r=R. So we postulate that the coarse-grained magnetizatioqpvhere’ in the continuum limit, we have replaced the sum

density satisfies over BA positions by an integral, and the fig#dsatisfies the
imaginary-time Schidinger equation as given in E¢g). In
the alternative continuum theory, we can find the mean mag-

. . . . netization density by averaging the coarse-grained densit
where\’ is a phenomenological parameter which describes y by ging 9 y

how strongly the magnetization density is coupled to the BA'g(arL;;)s,i:r\ﬁ;c?(l)lr pathsR(t). Each path is weighted by a
We stress that the field(r,t) is a function of the continuous
space and time variablesandt, and afunctionalof the path

R(t) of the BA. Nexp[ — iJtdt’g(t’)z}
2D'Jo

ap(r,t)=—N\"(r, 1) 8%r—R(1)), (15)

Now, the above heuristic derivation of the continuum
theory was based on a SCA for the case in which the BA 2
always moves§=1), and for which the spin located at the =Nexp{ _ iftdt’(d—R> } (18)
previous BA position is always flippedj&1). In generap 2D’ Jo dt’ ’
andqg are both less than unity. Intuitively we expect a very
simple renormalization of our phenomenological parametersvhere N is a normalization factor. Therefore, we can write
asp andq are changed. The diffusion constdéht should be the average of as a functional integral:
proportional top, and the strength of the spin-BA coupling
\' should be proportional to bofhand, more importantlyg. m(r,t)=((r,t))

Thus we see a very close correspondence bet@éeandX’ 2
in the current continuum theory, and the parameieesad\ :NJ DR(t’)exp| . iftdt'<d—R ]¢(r t)
which were introduced in the continuum lin{#) of the dis- 2D’ Jo dt’ o
crete equationi3). In fact they are identical, as will emerge

in the following discussion. t
One of the positive features of the continuum theory as :NJ DR(t’)exp{ - jodt'

described by Eq(15) is that one may immediately integrate

the equation to find the magnetization density as an explicit

functional of the path of the BA. As an initial condition we +N' 8 (r— R(t’))“ ,

take ¢(r,0)=1 for all r. The subtlety encountered in the

discrete theory concerning the initial value of the spin at the & .

origin disappears here since the coarse-grained funeien ZNJ ddej f’DR(t’)exp{ _J dt’

not sensitive to the value of one inverted spin. Straightfor- 0

ward integration of Eq(15) yields

1 2

2D’

dR
dt’

2

1 (dR
2D’ \ dt’

+N 8 (r—R(t")) ] (19

¢(r,t)=exp[—A’f;dt’ad(r—R(t')) ) (16)

where we have used E¢L6) in going from the first line to
It is important to note at this stage that the magnetizatiorthe second, and we have introduced the final position of the
density¢ is clearly positive for alk andt. Therefore, within ~ BA [i.e., R(t)] as a free integration variabR; in rewriting
our continuum formulation, we have ignored paths of the BAthe second line as the third. The reason for this cosmetic
which create large patches containing a majority of dowrnchange is to make explicit the fact th@gp(r,t)) can be ex-
spins(i.e., corrupted bits Such patches will occur, but their pressed as a spatial integral over the final BA position, where
frequency of occurrence is certainly very small since the systhe integrand is itself a path integral over BA trajectories.
tem starts in a completely uncorrupted state. For instance, thehis path integral is nothing more than a reexpression of the
probability for the BA to create a purely negative domain ofsolution of an imaginary-time Schidinger equation(using
N spins is of the ordee ™ N. Therefore, as long as we coarse- the well-known Feynman path integral formulation of quan-
grain the original spin model over a sufficiently large scaletum mechanic$19]) for a particle in a repulsivé-function
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potential. We can now see the connection: Equati®) is  recovered from the latter approach.

an exact restatement of Eqg) and (17), with the identifi- Our starting point is the integrated solution of the con-

cationD’ =D and\’=\. (So, henceforth, we shall drop the tinuum formulation as given in Eq16). First, we shall de-

primes in the material parameter$o summarize, by utiliz- rive an expression for the magnetization densif,t). Per-

ing the complementary formulations of quantum mechanicgorming a direct average of Eq16) and expanding in

via the Schrdinger equation and the Feynman path integralpowers ofA(=\"), we have

we have shown that the continuum limit of the master equa-

tion is identical to the continuum theory constructed at the il

beginning of this section. M(x,1)={d(x,1))= > (=N)"xn(X,1), (21)
Two final points are in order. First, as noted in the previ- n=0

ous section, theS-function potential must be replaced by a

smeared functiom\(r) for d=2; thus in our continuum

theory encapsulated in Eq15), we shall make a similar

replacement when studying two or higher dimensions. Sec- Ya(X, )= i|<

n!

where yq(x,t)=1, and forn>0,

ftdn?(x— R(7))
0

ond, we have established a connection between the master
equation and Eq.15) only at the level of the first moment. It

is straightforward to extend each formulation to higher-ordenye refer the reader to Appendix B in which the above aver-
correlation functions, and indeed one finds an exact correage is explicitly calculated. The result is

spondence. For instance, we can define the marginal spin-
spin correlation function within the discrete theory:

n> . (22

t 1 Th—1

Xn(X,t):J dTlJ de"'j d7g(0,71—73) - -
O(ry. 12, R)=Tr, 0, 0 P(R {0} 1). (20) o 0 0

Xg(0,7h-1= 1) 9(X, 7y), (23
Using the master equation one can show that in the con-
tinuum limit this function satisfies the Schfioger equation whereg(x,t)=(27Dt) 2 exp(—x%/2Dt) is the probability
for a particle under the influence of two repulsi®#dunction  density of the BA.
potentials located at; andr,. Similarly, we can construct The structure of Eq(23) is that of ann-fold convolution;
the coarse-grained two-point correlation function from Eg.so we may utilize a Laplace transform to good effect. We
(16) by evaluating{ ¢(r,t) d(r,,t)). It is easy to see that have(for n>0)
this quantity is given by an integral over the analogous path
integral for two repulsives-function potentials. . % 1. -

Having completed our formulation of a simple continuum Xn(X,8)= fo dte*yn(x,t)= gg(oys)"flg(X,S),

theory, and shown its equivalence to the continuum limit of (24)
the master equation, we shall proceed to the next section in

which we present a comprehensive solution of the model ir\]/vhere
one dimension.
- 1 25\ 12
IV. RESULTS IN ONE DIMENSION (X,8)= —exp{ - (—) X[ . (25

In this section we restrict ourselves to one dimension.
This does not necessarily mean a single chain of siteoerforming the sum over these functions as dictated by Eq.
Rather, we shall exclusively study the continuum theory of(21) we find
the last section, and in this case, for large enough tides,

=1 refers to any system which has an infinite longitudinal 1 \G(X,S)
dimension and finite transverse dimensidfs instance, an m(x,s)=—|1— ————|. (26)
infinitely long strip. This is the case, since as time proceeds S 1+1g(0s)

the correlation length will eventually become greater than

the transverse size of the system, thereby only allowing th&/e note in passing that a similar result is easily derived for
longitudinal fluctuations to continue growing, as is the caseanyde (0,2). The case ofl=2 is more complicated as the
in a strictly one-dimensional system. functiong(0;t) is no longer integrable.

The continuum model described in the preceding section This expression for the Laplace transformrofis exact.
can be viewed as a “nonconserved” version of the con-This will prove to be important when we come to evaluate
tinuum theory of vacancy-mediated diffusidi@ process the distribution function of(m). The inverse of the Laplace
which in spin language conserves magnetizatiotroduced transform is given by
recently[8]. An exact analysis of the latter theory was pos-
sible using infinite-order perturbation theory in the spin-BA || Mx| A%
coupling\. We shall use the same technique here, as it leads m(x,t)=er — +ex;{T + ﬁ)
rather directly to a full solution. Alternatively, one may solve (2DY)

the Schrdinger equation for the marginal averages. How- NIRRT N
ever, there are some important quantitie the distribu- % erf )\(_> +L , (27)
tion of the magnetization densjtwhich cannot be easily 2D (2Dt)Y2
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where erfg) and erfcg) are error function$20]. Consider- the discrete framewotk Similar results are easily obtained
ing the long-time behavior of the above expression, we havepr all de(0,2). In Sec. V we shall derive a slightly more
for x=0, complicated form of Eq(35) (involving the smearing func-
2 tion A;) which is appropriate for higher-dimensional sys-
2D D tems. Directly from Egs(28) and (35 we note thatM (t)
m(O,t)=(m\2t) 1+O(E) ' (28) ~t; thus, the average number of corrupted bitsdia 1
increases as the square root of time and is independeat of
One can also retrieve the spatial behavior with little effort. We now turn to spatial correlations in the system. These
For smallx we have are most easily probed via the two-point correlation function
2\1/2 —
Lo x<(DH® (29 Cx,t)=(a(x,1)p(0}1))

7Dt

m(x,t)=m(0;t) +
t
= < exp( —AJOdt’[ﬁ(X— R(t"))+ 5(R(t'))]) > .

(36)

The largex behavior has two regimes

N1 2Dt | x? D)2
=1—| — _ |+ < . . . .
mx.t) X2 ex » (DYT<x where we have used the solutiti®) in the second line. This
average can be calculated using infinite-order perturbation

<\t, (30 theory in\, just as was used to evaluatéx,t). We write
At

1/2 X2

m(x,t)=1—(m)(—wx2 ex;{——ZDt
o ] _with cg=1. Forn>0, a given termc,, can be explicitly
It is interesting to note that apart from the natural diffusioneyajuated by making integral representations ofrtiéfunc-

system, beyond which the disordering efficacy of the BA isgescribed in Appendix B Thus one has

much reduced, since it makes so few visits to these distant
sites. There is no simplg.e., single lengthscaling form for t m Tho1 dk,
m(x,t). cn(x,t)=f dnf dry- - f dry| 5=
. . 0 0 0 2
Next we consider the continuum analogues of E@s-

+..., x>\t C(x,t):Zo (—N\)"ca(x,1), (37)
(31

(10). We define the average global magnetizafi@tative to , dk, ,
its initial value) as X (1+e k). .. f ﬁ(lJr g~ k)
M= | d ,0))— OV, 32 D& [
v fﬁw a0 2 Xexr{_ imE:l <|_1 klz)(Tm_ Tm+1) |, (38)

which may be compared to the discrete version in @.

Integrating and averaging the continuum modi) yields ~ With the notationr,, ,=0. This 2n-fold integral can be re-
duced using Laplace transform in time, such that the inte-

dM(t) grals over{k;} may be performed, as described in Appendix
ac - MeR(1),1), (33 C. Theresultis
which is to be compared with Eq9). This last equation - 2s\¥2 "
indicates that we may explicitly find an expression for cn(x,s)=s(28D)n/2 texp—|g] X (39

(p(R(t),t)) by calculating the time derivative of the spatial

integral ofm(x,t) =(¢(x,t)). This may be done at the level g,mming over these functions with a weight of X)" and
of the perturbation serie@21), from which one may show jyyerting the Laplace transform using a Bromwich integral

that the following relation holds exactly, for all times: [21], we have
m O,t = R(t ;t ’ 34 1
(01)=((R(1),1)) (34 [ ds exp(st)
which is the continuum analogue of E(f). Finally, com- Cxt)= L 2mi sy 1+sY2+exp —s¥3x|)]’ 40

bining Egs.(33) and(34) we have
where, as usual, the contogris parallel to the imaginary
dM(t) : . \ "
=Am(0y). (35  axis and to the right of any singularities. We have rescaled
dt space and time as=x\/D andt=t\%/2D.
Thus, the nontrivial relation between the rate of change of This integral may be evaluated for largén the following
the global magnetization and the mean of the magnetizatioway. We reexpress the integral as an expansion in powers of

density at the origin is seen to be exact within the continuurrexp(—sl’2|7<|) (which is not the same as our original expan-
model[which complements the exact relation (10) found insion in powers of\). So we have
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* L of our continuum model which we should certainly exploit.
C(x,t)= E (=DM 4(x,1), (41)  The second property is less obvious. One might imagine that,
n=0 assuming we know all density moments via the first, even the
asymptotic form for the mean density would be sufficient to

with calculate the probability distributiofior large times. This is
ds  est-ns"x not the case as we shall see—the complete analytic structure
= P T T N qf m(Xx,t;\) is required in order to reconstruct the distribu-
Y s (1+s7) tion P.
. efuhf e*inul’%il einul/z&l We defineP via
27 )o 0 | 1y (1—iu1/2>n] (42 P(gx0)=( 8= b)), (45

where the second line is the explicit form of the integral afterwhere ¢g(x,t) is the stochastic field solution given in Eq.
integrating around the only singularity—a branch point lo-(16). We can reexpress thé& function using a frequency
cated ats=0. The integral oveu may be simplified fort integral, and expand in powers of the field as follows:

>1 to give

» dw .
~ — R 1Y) H
nU1/2|X| B 1 n2i2 ,P(d),X,t) J;oc 2’7Te <equw¢R(Xat)]>
In= tl/2f du 1/2 vz | (W"t')l/zex 4l
43 =
“3 f—:x: 277'
In these rescaled units, we have, from Eg8), m(0it)
=(mt) Y2 (for larget). Thus, we may resum the functions — Jm (46)
{1} to find 2m
Cxt) < nzi the last line following from propertyi) above.
m(0D) Nﬂz (—1)"%x v So the Laplace transforrtover tim@ of P is given in
terms of the Laplace transform of(x,t;n\). From Eq.(26)
1 we have
= §[1+ 60,4(0,exg —x2/2Dt))], (44)
o nAg(x,s)
whered,(z,q) is a Jacobi theta functiofwith normaq) [20]. m(x,S;n\) = < T 1+mg(0s)
Note, that we have written the last line in unscaled variables, ’
and we see that the ratio of the coryelation functiom(@,t) g(0,s)—g(x,s) g(x,s)
does not depend on for large times. The behavior of = = = = ;
C(x,t) in the limits of large and sma# are as follows. For sg(0s) $g(0s)[1+nrg(0s)]
largex, the fields at the origin and atwill be uncorrelated, (47

so thatC(x,t)=m(0,t)m(x,t)=m(0,t), the latter result fol-

lowing sincem(x,t)=1 for x> \'t. At the other extreme, as Where the second line follows from some algebraic manipu-
x—0, C(x,t)—(4(01t)?). Referring to the exact solution of lations. The first term is easily handled as it is independent of
the continuum model, Eq16), one can see that the second n. Thus the sum oven for this term[as is required in Eq.
moment of the magnetization density is actually given ex-(46)] yields a factor of expf) which finally yields a factor
actly bym(0;t;2)\) [where the lastoptiona) argument indi- of 6(1—¢) when integrated ovetw. The second term is
cates the parametric dependence on the spin-BA couplingmore interesting. Details of how to perform the sum omer
So for long times we take the expression fiof0,t;\) given  and the frequency integral may be found in Appendix D. The
in Eg. (28) and replacex by 2. Therefore<¢(0,t)2> final result for75(¢,x,s) reads

=m(0t;\)/2 for t>1. Thus, the limits of the function

C(x,t)/m(0;t) are 1/2(for smallx) and unity(for largex), . 9(0,5)—g(x,s) g(x,s) 1

which is naturally consistent with the analytic form given Plg,x,8)=——=———6(1-¢)+ = 2 ﬂ

above in terms of the Jacobi theta function. In Sec. VI we s9(0s) 9(0:)

shall compare this expression with results from a numerical ;{ 1 1

simulation of the discrete model described earlier. Xpg — —= In (—) 1 (49
To complete our study of the properties of this system in Ag(0s) ¢

one dimension, we shall consider the complete probability

distribution’])(¢'x’t) of the magnetization density_ We shall This form for the Laplace transform of the prObab”lty distri-
be able to calculate this exactly, sinti¢ we can see from bution may be easily generalized for ady (0,2). Finally
Eq. (16) that thenth moment of the density is related to the We must invert the Laplace transform. To this end we require
mean density with a replacement-n\ and(ii) we have an the explicit form forg(x,s) as given in Eq(25). Inserting
exactexpression for the mean densiiglbeit in the Laplace this into Eqg.(48) and inverting the transform, we have our
transform variables). The first point is a fortuitous property final result
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0.7 T T T T T T T T T

0.1 | - 0 1 1 1 1 H
0 0.2 0.4 0.6 08 q) 1 1.2

0 1 1 1 1
0 0.2 04 0.6 08 1 1.2 FIG. 3. P(¢,0t) versus¢, as given in Eq(50), for three dif-

¢ ferent times.
FIG. 2. P(¢,x,t) versuse, as given in Eq(49), with x=1, X

=2, for three different times,=0.5, 1.0, 1.5. The thick vertical This ends a rather long section on the analytic properties
line represents thé function at¢=1. of the continuum model id=1. In the next section we shall
briefly study the case of higher dimensions, and then in Sec.
N 1 1 VI we shall compare our re_sqlts wi_th some numerical simu-
P(p,x,t)= 5(1— ¢)erf + — lations performed on the original discrete model.
(2Dt)1/2 (7Tt)1/2 )\(b
|X| In() V. RESULTS IN HIGHER DIMENSIONS

2
] ' (49 As we mentioned several times in the preceding two sec-
tions, the continuum theory requires some regularization for
d=2. This can be most easil@gnd physically accomplished
by smearing thes-function interaction between the BA and
the spins. Thus, our continuum model takes the form

xexr{ -

where erf) is the error functiorf20], and we have defined
A=M\/(2D)Y2 This is illustrated in Fig. 2 fox=1 (andD
=1Xx=4/2), and three different times correspondingx

>2Dt, x>~ 2Dt, andx?><2Dt. _
, d dip(r,t)=—No(r,t)A(r—R(1)), 51
In particular, the probability distribution for the magneti- () HrHA( (®) ®D

zation density at the origin takes the form

(2Dt)1/2_27\t1’2

where A((r) is a normalized function which is sharply

) peaked over a region of linear dimensibaround the point

iex _[In(¢)] 50 [A good choice would be\,~1~9exp(—r?1?).]

()2 N N2 | In this section we shall analyze some basic properties of
Eq. (51) for generald,. Then we will use a somewhat more

which is a pure log-normal distribution. This result is very crude approach to estimate the mean magnetization density

revealing, as it shows that the fluctuations in this system aréat the origin as a function of time id=2.

extreme. For instance, we have already seen thatiden Although we have generalized our continuum theory

value of the densityat the origin decays asn(0;)~ 1/\k. _somewhat, we can spll make s_ubstantlal head\./vay. by _f|rst

However, if one asks how thigpical (or most likely value  intégrating the_equatlon of motion and then using infinite-

decays, one can see from Eq50) that ((0f))yp order perturbation theory. The first step yields

~exp(=2X%). Thus, as time proceeds, the typical valuepof .
decays to zero gxponentlglly fast, while the mean decgys ¢(r,t)=exp{—)\f dt’ A (r—R(t"))
slowly as 14t. This is possible because the log-normal dis- 0

tribution has a long tail, extending out to the extreme value

of ¢=1. In fact the end point of the distributiofi.e.,  while the second consists of expanding this equation in pow-
P(1,01)] also decays as {f which is consistent with the ers of\ and averaging term by term:

known persistence properties of a random walkedinl

(namely, the probability of a walkereverhaving returned to *

the origin after timet decays as 4/t). In Fig. 3 we illustrate m(r,t)=(a(r,t))= 2 (=N)"xn(r,1), (53
P(¢,0,t) for three different times. As a final remark, we n=0
note that if we erroneously use the asymptotic f¢&8) for
m(0,t;n\) to build the distribution function, we find that
34 P(¢,04) is equal to7,5(¢) — S(1— B)/\\t, thus empha- L
sizing the fact that we need the entire analytic form of Xn(r1t):_<
m(0,t;n\) to successfully construct the distributiGh n!

P(¢,0,t)=

: (52

where xq(r,t)=1 and, forn>0,

fthA|(r— R(7))
0

n> . (54
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By making a Fourier representation of the interaction func-Performing the integral ovét, immediately yields

tion A, performing the average over patfsee Appendix
B), and finally Laplace transforming in time, we arrive at

n

ddkm ZI(km_kmfl)
11 f(an')d (s+k2)

}exp[ikn~r],
(55)

. 1
xn(r,s)=g[

m=1

with the conventiorky=0.

We shall be concerned with two quantities. The first is a
smeared mean magnetization density near the origin, and the

second is the global magnetization. These are given by

ms(o,t)zf dirA,(rym(r,t) (56)
and
M= [ dH(or0) (o)) 6D
respectively. We shall prove that
dM(t)
T =amy0,t), (59

which is the smeared analog of the global vergstsictly)
local relation(35) we proved ford<2. Comparing Eq953)
and(56), we see that

ms<o,t>=n§o (—N)"7(1),

(59
where, in Laplace transform space,
7n(8)= J dr Ay (r) xn(s)
1 & d%m A\ (Km—Km-1) | ~
=— A(kp).
s[nl;ll J 2ms sk |
(60)
Similarly, we have
dM(t -
di Rt (62)
n=0
with
d
gn(t)zaj dern(rvt)- (62
Forn>0, x,(r,0)=0, so that
Zo(s)=s J drxn(r,s). (63)

Using Eqg.(55) we may evaluate the above integral to give

ddkm Zl(km_ kmfl)
(2m)9  (s+k3)

m=1

7:n<s>={ I | ] (k). (64

{n(8)="n_1(8). (65)

Thus, comparing Eq$59), (61), and(65) we see the validity
of relation (58).

As a corollary, by integrating the averaged equation of
motion (51) over space, we have

dM(t)

—5 =\ f dr (A (r—RM)S(r,D).  (66)

When compared with E(q58), the above relation gives us

ms(t):j ddrA|(r)<¢>(r,t)>=J d?r (A (r=R(®)B(r,1)),

(67)
which is the smeared version of the local relatit3¥)
proved in Sec. Ill. We note that, although we have been

concerned with a sharply peaked interaction function, rela-
tions (58) and (67) hold for any function A(r).

This ends the more rigorous part of the present section. In
the remainder we shall just mention some explicit results for
the mean local magnetization dens{gt the origir), which
are obtained with a cruder regularization.

The difficulty with making headway using the smoothing
function is that then-fold integrals over the\,’s are intrac-
table (unless one can find a particularly “friendly” form for
A, .) As an alternative approach, we return to the sharp Dirac
6 function as used in Sec. IV. We remarked that thld
convolution integrals were divergent due to the nonintegra-
bility of g(0,t) for d=2. To evade this difficulty we can
simply impose a cutoff to the integration limits. This is
closely connected to introducing a microscopic time scale
into the temporal correlations of the BA. Such an regulariza-
tion procedure was used in R¢8], and the results so ob-
tained were shown to be equivalent to previously known
exact result§7]. So we shall use the same procedure here,
but with due caution.

First, we consided=2. In a precisely analogous way to
the calculation in Sec. IV, we expand the field solut{d6)
in powers of\ and average term by term. Thus, we hisle
Egs.(2)—-(23)]

m(o,t)=<¢(o,t)>=r§0<—x>“xn(o,t), (69)
where xo(0,t)=1 and forn>0,
t=tg 71—t T-1"1to
Xn(O,t)=f drlf d7'2-~~f d7r.g
to to to
X (0, 71— TZ) <+ g(0, 71— Tn)g(Q Tn)-
(69)

In this case, the probability distribution of the BA at the
origin has the formg(0,t)=(27Dt) 1. Note that we have
inserted the microscopic time regulatgrin the limits of the
time integrals. Our strategy is to evaluate the time integrals
one by one, keeping only the most singular term at each step.
We shall use the general res(ior t>t;)
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f Clog, INCTIT_ (m+2) [InWo) ™2 01 P
| .

0 (t—7m7 (m+1) t m(0.)

Therefore, we have the dominant contribution

_[In(t/te)]"

Xn(oyt) (27TD)n .

(71)

Inserting this result into Eq(68) and summing oven we
have the asymptotic form

,1 oot b v e
(O~ t” 100

\ .
1+5— In(t— (72) t
0 FIG. 4. Log-log plot of my(t) (diamond$ and =g0(R,R,t)

Thus the magnetization at the origin does decay to zero fOQpIuses versus time frond=1 numerical simulation. The solid line

large times, but logarithmically slowly. From relatidb8) '

is the asymptotic theoretical predicti¢p8).
VI\\;Ie(t)SS(ta/IEESt the mean global magnetization increases e step, since the BA has moved away from the origin and

flipped the down spin.
In Fig. 4 we show the measured mean magnetization den-

The same kind of analysis can be repeateddfer2, and

one finds thatn(0,t) saturates to a constant for large times, _. g, . ;
S N : sity at the origin, along with the quantiz® (R,R,t) [cf.
which implies thatM (t) ~t for large times. These results are Eq. (2)]. They are seen to be identical, thus confirming rela-

easily understood from the recurrent properties of the B'Aiion (7) and its continuum counterpa@4). The solid line is

(i.e., a random walker returns to its starting point with prob-the asymptotic predictiof28) from the continuum theory. It

2b|rli|\t/y %h orzjl?/ t];(i)l; (iigf)'fltthwozid l:r)1e tsotrienlnéerr?sif[m%btro is seen to be in good agreement with the data, as the line has
erive he distribution of the magnetization density slope of -1/2). From the fit of this log-log plot we can

=2, but this requires the more careful regularization methocfead off the effective value of, since from Eq.(28) the
involving the smoothing function(r) and thus lies beyond prefactor of 14t is given by (Zh)'\z)l’z. (The diffu.sion con-

the[licgp:ezogahee ga:ﬁsceggi\t,;(l)irzlz on the slightly crude resultstant for the lattice random walk is unifyjW/e have fitted the
(72) obtained using the cutotf,, combined with the exact data toc/t with ¢=0.4(1), which yields\ =1.991). In
Fig. 5 we plot the smalk/\t dependence ofn(x,t) on a

property{ $(0,t;\)")=m(0,t;n\) to derive a form for the , L .
distribution function P(¢,0,t). Such an approach yields log-log scale. The data are well fitted by the prediction given

P(,0,t) = B(t) 01, with B=2mD/\In(t/ty). However, in Eq. (29). In Fig. 6 we plot -m(x,t) versusx/\ﬁ. Note

this result is not to be taken too seriously, since we need th#1at good data collapse is found for intermediate values of
whole analytic structure ai(0,t:n\) in order to deriveP, x/\t. We have been unable to numerically probe the ballistic
as evidenced in the previous sectipn. scale\t. (Note, that the theoretical curves shown in the last

two figures are plotted with no free parametgrs.

In Fig. 7 we plot the discrete time derivative of the total
number of down spind\(t) [which is M(t)/2], along with

We have performed extensive numerical simulations ofm(0,t). The two curves are indistinguishable within the nu-
the discrete model, as defined in Sec. Il, in order to test théerical noise, thus confirming the global/local relatidg).
results obtained in the last two sections from the continuun¥his also provides secondary confirmation of the continuum
theory. In all of the simulations for which we present results,form of this relation(35) with A=2.
we have set the hopping rafeof the BA, along with the
flipping probability g, to unity. We have experimented with
decreasing the flipping probability, and have found that its
only effect is to renormalize the effective spin-BA coupling
\, such thatncq, as expected.

Most of our results are obtained from a one-dimensional
chain of sites. The chain length is unimportant, as long as
one ensures that the BA has never touched the edges in any
of its realizations up to the latest time at which data are
extracted. Generally we average over betweeh drtil 16 °
realizations(or rung depending on the desired quality of the 5o
data. Such simulations required a few days on a DEC Alpha i 194
233 MHz workstation. In a given run, at each time step the '
BA is moved left or right with equal probability and the spin ° , . e
it leaves behind is flipped. Each run starts with the same 0.1 x 1
initial configuration, namely, all spins up, except the spin at
the origin (which is the starting site of the BAwhich is FIG. 5. Log-log plot ofm,(t) —mq(t) versusx/yt for a time of
pointed down.(This means that all spins are up after one10® in d=1. The solid line is the theoretical predicti¢®9).

VI. NUMERICAL SIMULATION

m(x,t)-m(0,t)

(=]
-
1
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T T T T T T ¥ T T i %
Cx,b 0.9 -
m(0,t)
0.8 B
= 0.7 T
%
g 05 ]
0. 0.5 T
1 1 1 1 1 1
0 05 1 15 2 25 3 35 4
x Mt
1 1 L 1 1 [ | 1 L
1 12 14 16 18 2 22 24 26 28 3 FIG. 8. The ratioC,(t)/m(t) plotted againsk/yt for times of
X//f 100 (pluseg and 500(diamond$ in d=1. The solid line is the

. theoretical predictiori44).
FIG. 6. Log-log plot of 1-m(t) versusx/\/t for times 1§ and

10* in d=1. Also shown is the theoretical predicti¢B0) for the

intermediate regime. since the oddever) moments are equal tmg(t) (unity).

Therefore, we define a coarse-grained magnetization over a
) ) . patch of spins. If the patch is taken too small, the coarse
In Fig. 8 we plot the ratio of the measured two-point g aining will be ineffective, while if the patch is taken too
correlation functiondivided by m(01)] versusx/\t. Note  |arge, the BA will take a long time to leave the patch, and the
that it varies from 1/2at smallx) to unity (at largex) as  asymptotic behavior will be numerically inaccessible. So we
expected. The data from two different times are shown, anflave compromised and have used a patch containing 21
one sees excellent agreement with the theoretical predictiogbins_ We have binned the patch magnetization frofi 10
(44), which is plotted withno free parameters. This agree- jndependent runs and generated the histograms shown in Fig.
ment provides very strong evidence for the validity of ourjg, Note that because the patch size is modest, the histo-
whole continuum approach. _ _ . grams have nonzero weight in the negativeegion, in con-
Briefly, we mention simulations ind=2. Higher- {rast to the strict continuum limit. However, we do see that
dimensional simulations are not too difficult as one is onlysg, ¢ near unity, the histograms have a robust tail, which is

ever moving the single BA at each time step. In Fig. 9, Weyhe signature that extreme fluctuations are important.
show my(t) and 2z0(R,R,t). The data for the two func-

tions are identical, verifying the discrete relati6f) in two
dimensions, as well as confirming the continuum reify.

We have plotted the inverse of these functions again$t In(|n this paper we have introduced and analyzed a simple
in order to compare with the theoretical predictiéi2).  model of data corruption due to a Brownian agent. In Sec. I
Again, good agreement is found, thereby confirming the lesge introduced a discrete version of the model, which con-
rigorous method by which the two-dimensional result wassists of a BA flipping bitor spin3 on a lattice. The model
obtained. is nontrivial since the value of a given spin depends very
Finally, we mention our attempt to measure the probabilsensitively on the path of the BA.e., whether the spin has
ity distribution of the coarse-grained magnetization densityyeen visited an odd or even number of tima&e presented
at the origin(in d=1), which was found from the continuum 5 master equation formulation of the model and derived an
theory to be a log-normal distribution. Clearly, it does notequation of motion for the marginal average of the magneti-
make sense to measure moments of the spin at the origiBation density. In the continuum limit, this quantity was seen
to satisfy an imaginary-time Schiimger equatiorfl TSE) for

VII. CONCLUSIONS

(&I 4 TorrTTY
dt - 4.4
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FIG. 7. Log-log plot of the time derivative of the total number
of minus sping(diamond$ and ofmy(t) (pluse$ versus time ind FIG. 9. Linear-log plot of Ithy(t) versus time ford=2. The
=1. The solid line is the theoretical predicti¢?8). solid line is the theoretical predictiair2).
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T T T T T T T T Jacobi theta function as shown in Ed4). The correlation
function has an asymptotic scaling form; namely, the ratio
C(x,t)/m(0;t) depends only on//t. Finally, in Sec. IV, we
examined the probability densify of the magnetization den-
sity. Using a fortuitous property of the original continuum
theory which enables us to represent tie moment of the
magnetization density in terms @h(x,t), along with our
exact expression for this latter quantity, we were able to
derive an exact expression f@(¢,x,t) as shown in Eq.
(49). In particular, settingc=0 reveals thatP(¢,0¢) is a
pure log-normal distribution. This last result emphasizes the
importance of extreme fluctuations in this system. For in-
stancem(0t) decays as 1/t, while the typical value of the
magnetization density at the origine., the mode of°) de-
cays as exp{\2/D).

In Sec. V we briefly examined higher dimensions. BEor
=2 it is necessary to regularize the continuum theory, most

FIG. 10. Probability distribution of patct?1 spin$ magnetiza-  appropriately with a smeared interaction between the BA and
tion for times of 18, 10°, and 10 in d=1. Note the robust tail for the spins. Using an arbitrary interaction functidx(r)
values of patch magnetization near unity. (which has a linear scald we were able to prove a more

general form of the global/local relation, as shown in Eq.

a particle in a repulsiveS-function potential. Higher-order (58). We then concentrated od=2, and using a cruder
marginal averages also satisfy ITSE’s with an additional reregularization(namely, introducing a microscopic correla-
pulsive §-function potential for each spin being averaged.tion time t,), we were able to derive an expression for the
We also proved that there is an exact proportionality betweeasymptotic decay ai(0,t). This decaycf. Eq.(72)] is seen
the rate of change of the mean global magnetizaliid) [as  to be logarithmically slow.
defined in Eq(8)] and the mean magnetization density atthe In Sec. VI we presented our results from extensive nu-
origin, thus revealing a nontrivial statistical relation betweenmerical simulations of the original lattice model. Most of our
a global and a local quantity. numerical work examines the case @f1. We measured

In Sec. Il we recast the discrete model as a stochastighe spatial and temporal variation of the mean magnetization
cellular automaton. From the local rules of the SCA, wedensity, the mean global magnetization, and the two-point
postulated a particularly simple continuum theory written incorrelation functionC,(t). In all cases we found excellent
terms of a coarse-grained magnetization densjifr,t)  agreement between our data and the theoretical predictions
[which is a functional of the walkR(t) of the BA]. We  arising from the continuum model. In particular, the agree-
showed that averages of this stochastic field may be recast agent between the theoretical form f@(x,t) and the nu-
integrals over the final BA position, the integrands of whichmerical data is very satisfying, as there are no free param-
are imaginary-time path integraldTPI's). These ITPI's eters to adjust. We also measureg(t) in two-dimensional
were shown to describe quantum systems of repulsivgimulations, and found good agreement with the predicted
S-function potentials identical to those revealed through thQQQarithmic decay. Finally we attempted to measure the
ITSE formulation of the master equation. In this way we probability distribution of the magnetization density, by bin-
have confirmed that the continuum theory is a good reprening the magnetization of a spin pat@tontaining 21 spins
sentation of the underlying discrete modél.is worth men-  from 1 realizations. The results are not of high enough
tioning that averages of @/correspond to the quantum me- quality to directly compare with the derived log-normal dis-
chanics of anattractive S-function potential. In this case tribution; however, we do see clear evidence of a |ong robust
there is the possibility of a sharp transition in behavior fortail of the histogram for values ap near unity, which is a
d>2 as one varies,, since bound states only exist for a clear signature of the importance of extreme fluctuations.
sufficiently attractive wel). In conclusion, we have introduced and solved a model in

In Sec. IV we thoroughly examined the properties of thewhich a BA interacts with a bimodal environmefite., a
continuum theory ford=1. First, we derived an exact ex- medium containing two types of particles, spins, bits,)etc.
pression for the evolution of the magnetization densityOur primary application has been an environment composed
m(x,t), and found its spatial variation for small and lange  of bits of data, which the BA steadily corrupts. We have
In particular we foundm(0,t)~1/x\t for large times, and been interested in the statistical correlations and fluctuations
also the existence of both a diffusive and a ballistic scale irof the disordered medium, and our exact res{atssing from
m(x,t). Using the exact result fon(x,t) enabled us to prove a simple continuum modgteveal the correlations to be non-
that the rate of change &l (t) is proportional tom(0t) for  trivial and the fluctuations to be extreme in nature. These
all times(with proportionality constank) which is the con- statements are made quantitative by the form of the two-
tinuum analog of the global/local relation that was proved inpoint correlation function and the probability distribution of
Sec. Il. We then studied the two-point correlation functionthe density of corrupted bits. There are many directions for
C(x,t). An exact expression was found for the Laplacefuture work, foremost among which af@ calculating the
transform of this quantity, from which we were able to ex- distribution in d=2 and determining its sensitivity to the
tract its long-time behavior, which is expressed in terms of amearing functiord,, (ii) investigating autocorrelation ef-
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fects in one dimension, angii) refining the model to take
into account relevant factordike a backcoupling between

the environment and the BA or an asymmetry in the flipping
probability) which will arise if one tries to make a stronger

connection to real processes.

The model may also be seen to be a very simplified ver-
sion of other systems. For instance the bistable medium ¢

be taken to be composed of two chemical spedieend B

(with vanishingly low mobility and the BA to be a high-
mobility catalyst, inducing a reversible reaction between
andB (and vice versp Alternatively we can think of the BA
as a wandering impurity in an ionic cryst@uch as an anion
or cation vacancy in NaClor a semiconductor compound
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E(k,z)= 1—z+g—;2| [1-exp—ik-)]} . (A3)

Similarly one can find an explicit expression for
2RL[O(0,R,1)]. The expressions can be shown to be

%qual, thus proving relatiofv) as given in the main text.

APPENDIX B

In this appendix we outine the procedure for averaging
the expression in Eq22). First, we time order the integrals,
thereby absorbing the factor ofril/ Then, making an inte-

- C B gral representation of each Diradfunction, we have

(such as Zn in GaAswhich has a small probability of reor-

dering the local biatomic structure as it passes through a t m Tne1 ‘

given unit cell[22]. Xn(X.t)Zj drlj drz...f dTnj dk,ekx. ..
The data corruption process appears to us the most inter- 0 0 0

esting application, as well has being the most potentially ,

relevant. This is especially true given the enormous efforts Xf dkqe*r(ex] —ik;R(7y)— - - - =ik R(7y)]).
dedicated to creating memory storage devices of ever-

decreasing size. Such miniaturization will lead to new causes (B1)

of soft error productiofi12], among which will inevitably be

found the Brownian agent. Using the solution of Eq.14), we may rewrite the average in

Eq. (B1) as
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—---—i(k1+-"+kn)f07nd75(7) > (B2)

The Gaussian average over the noise may now be performed,

APPENDIX A and the above expression reduces to

In this appendix we outline the solution to the discrete
equation (3) for the marginal averag® (r,R,t). This is
achieved by use of discrete Fourier and Laplace transforms
defined via

D
EXP{ - ?[ki(Tl_TZ)—i_(kl"" kp)?(r—7g)+ - -

+(k1+-~+kn)27n]]. (B3)

We now insert this expression back into EB1), and make
the change of variablek;=ky k;=k;+k,, ... ki=k;
+---+k,. The integrals ovefk;} are easily performed and
(with t=nét). By self-consistently determining the function we arrive at Eq(23) in the main text.

O(r,r,t), one can explicitly solve for the double transform
of ®. Inverting the discrete Fourier transform and summing
over R one findg[with the particular choice of initial condi-
tion (6)]

fk|R[£Z|t[®(r,R,t)]]=r§0 z”; O(r,R,ndt)expik-R)
(A1)

APPENDIX C

In this appendix we outline the evaluation of the-@ld
integral forc,(x,t) given in Eq.(38). We note first that the
time integrals have the form of mfold convolution. Thus,
; Lu[O(R,R,1)] we can Laplace transform the expression to find

dk,
2

6n(x,s)=§f ;—l;l(l%-e“klx)“-f (1+e kX

) n

_ _ d
) 1-2(1 z)fBzd KE(K,2)

(1-2)

1
an;ll [s+(D/2)(ky+ - - +km)?]

1+(zq/d)JBdekE(k,z)El e k! (C1

(A2)
We make the change of variablek;j=ky,k;=k;

where [ g7 indicates integration over the first Brillouin zone, +k;, ... ky=Kk;+---+k,, and rearrange the integrals to
and give
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dk;,
2

. dk;
Cn(X,8)= %J 2—;[S+(D/2)k12]‘1. . f

X[s+(D/2)k/ 2]t

x [T {1+exd —i(kih—kn-1)x]},  (C2)
m=1

with the understanding th&f,=0. We now multiply out the
product which gives us2terms. These are grouped into
+1 sets, themth set containingCp, terms which are equal
after integration. Thus each term in th@h set(within the
integral$ may be taken to contaim factors ofe’i* (where
j=1,... m) and (h—m) factors of unity. Using the integral

= dk glkx 1 2s\ 172
— = exg — =1 [¥|,
f—w 27 [s+(D/2)k?] (2sD)Y? F{ (D) X
(C3
we can reduce EqC2) to the form
. 12 " 2s\ 12
— n_____ _ _
CalX,9)= ¢ mE:O cn ey ex;{ m( D) Ix||.
(CH

Performing the binomial sum gives E@9) in the main text.

APPENDIX D

In this appendix we outline the derivation of E@8)
from Egs.(46) and (47). The only nontrivial aspect of the
derivation is the frequency integral and saver n) of the
second term in Eq(47). Ignoring the prefactor of that term

BINARY DATA CORRUPTION DUE TO A BROWNIAN AGENT
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[namely, g(x,s)/sg(0,s)] we must evaluate a quantity
Q(s,¢), which has the form

oo o (io)" 1
1+nig(0s)
(DY)

= d
Aso=| 5

=0 n!

In order to perform the sum, we introduce the integral rep-
resentation

1

MIL du exp{—u[1+nAg(0,s)]}. (D2)

The sum ovem now reconstitutes an exponential function,
and we have

]

Q(s,¢)=f:du e*”Lc g—i

e 9? expiwe™"9).

(D3)
The integral ovemw is easily done to give
Q(S.¢)=f du e U5(p—e ). (D4)
0

Finally, changing variables to=e"""9 we have
Q(s,¢) = - I ) (D3

S, =—F——"6Xp — —= n{—

\g(0s)¢ \g(0s) |\ ¢

Using this result foQ in conjunction with Eqs(46) and(47)
we have Eq(48) in the main text.
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