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Stochastic resonance in extended bistable systems: The role of potential symmetry
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We study the role of potential symmetry in a three-field reaction-diffusion system presenting bistability by
means of a two-state theory for stochastic resonance in general asymmetric systems. By analyzing the influence
of different parameters in the optimization of the signal-to-noise ratio, we observe that this magnitude always
increases with the symmetry of the system’s potential, indicating that it is this feature which governs the
optimization of the system’s response to periodic sigf@4063-651X99)12505-4

PACS numbds): 05.40—-a, 05.10.Gg, 82.40.Ck, 82.20.Fd

I. INTRODUCTION the two-state approadi,4]. In this way we derive general
expressions for the power spectral density and for the SNR

Since its original proposal as a mechanism accounting fofor a general two-state system. After discussing a simple
the periodicity in Earth’s ice agdd], the phenomenon of zero-dimensional example, the results are exploited to ana-
stochastic resonandeas been extensively studied, from both lyze the dependence of the system’s response on the noise
the theoretical and experimental points of vié®3]. Sto-  intensity and on the degree of symmetry in a spatially ex-
chastic resonancéSR) is the name coined for the rather tended reaction-diffusion system. In the last section we con-
Counterintuitive fact that the response Onm“nearsystem Clude with some final remarkS on the inﬂuence Of the differ'
to a periodic signal may benhancedhrough the addition of €nt parameters and the central role played by the potential
an optimal amount of noise. One of the key parameters herdymmetry in the SR of extended systems.
is the signal-to-noise raticf SNR) at the output.

A vast majority of studies on SR have been done analyzdl. THEORETICAL FRAMEWORK: TWO-STATE MODEL
ing a paradigmatic system: a bistable one-dimensional FOR STOCHASTIC RESONANCE
double-well system. Among such kinds of models there is
one that can be singled oukie two-state modé¢l,4]. Such a . X . . }
model has proven to be extremely useful in the understano‘ynamcaI vanqp_lex adopting two POSS'ble values; and
ing of the SR phenomenon, offering also a simple frameworl€2: _W|th probabll_lt_lesnlyz(t), respectively. Such probabllltles
able to provide analytical results. Most of the studies havec'atISfy the cor)dltloml(t)+n?(t)=1. The equation govern-
been carried out in the symmetric potential case. Howevefnd the evolution ofny(t) [with a similar one foma(t) =1
even in the earliest account of the two-state mddg¢lthe —ny(t)]is
possibility of potential asymmetry was introduced, with the dn dn
conclusion that the symmetric case would be the optimal —1=——2=W2(t)n2(t)—Wl(t)nl(t)
one. Other authors have also analyzed different aspects of dt dt
this case(see references ifi3]), for instance considering _ _
equal curvatures of the potential we]], or from the point Wo(t) = [W(t) + Wi (D) ]y, @
of view of residence time§6]. Also higher order resonant \yhere thew, ,(t) are the transition ratesut of the x=c; ,
behavior and dc signal detection in nonlinear asymmetricattates. ' '
devices using a perturbative approach have been stiidled  f the system is subjedthrough one of its parametgr®
However, all those studies correspond to the analysis of zerg; time-dependent signal of the forfacosd), up to first

dimensional or uncoupled systems. order in the amplitudéassumed to be smalthe transition
The occurrence of SR in coupled and extended systemgtes may be expanded as

has been the focus of several recent stuses the citations

We consider a random system described by a discrete

in Ref. [3]). Some of the different aspects that have been W;(t) = uq1— a;A cof wgt),
analyzed are the effect of global coupling in dynamical and )
neuron model§8], enhancement of the SR phenomenon due Wo(t)=up+ arAcog wgt),

to coupling[9], and spatiotemporal SR-like phenomégn@].
The studies in continuous extended systems are more closelyhere the constantg;, and a;, depend on the detailed
related to the present wofd1-15. structure of the system under study. Here we remark that the
In this contribution we analyze the role of the symmetry w;’'s, which are the(time-independentvalues of theW;’s
in the SR phenomenon in extended systems. We start with without signal, are in general different from each other as a
general analysis of SR in asymmetric situations, extendingonsequence of the different stability of the two states, and
the same happens to thg's. These considerations are the
main difference between our treatment and the one in Ref.
*Electronic address: bouzat@cab.cnea.gov.ar [4] where bothu;=u, and a;=a, were assumed. Using
"Electronic address: wio@cab.cnea.gov.ar Eqg. (2) we can integrate Eq.l) with the initial condition

1063-651X/99/56)/51428)/$15.00 PRE 59 5142 ©1999 The American Physical Society



PRE 59 STOCHASTIC RESONANCE IN EXTENDED BISTABE . . . 5143

X(to) =Xo and obtain the conditional probability, (t|Xo,tg).

This result allows us to calculate the autocorrelation func-
tion, the power spectrum, and finally the SNR. The details of
the calculation are shown in the Appendix. When the sym- 2.0+
metrical case is considered all the results reduce to those ir T

[4]. For the SNR, up to the relevafgecond order in the 1.5
signal amplitude?, we find the result given by E¢A10) in o 1
the Appendix. 1.0

The independence of the SNR on the signal frequency for ;
small signal amplitude was well known for symmetric sys- 0.5

tems[4] and here is found to be valid also when the symme- ]
try is broken. Later on, and in order to characterize the SNR 4
independently of both the signal frequency and amplitude we 0.0
will work with R=R/A? instead ofR; however, the results 1
will only be valid for small enough amplitudes. Hence, the
form for SNR we will use is

FIG. 1. SNR as a function of the noise intensity for different
values of the parameters: the solid line corresponds to modulating
2 around the symmetric situatiom€ 0), the dashed and dotted lines
_ m(aap1t a1po) _ 3) correspond, respectively, to the asymmetric cases avitld.1 and
Apapa(pyt po) a=0.2.

For the sake of completeness and in order to gain insighivhereV” is the second derivative &f with respect tal. The
into the role of symmetry in the SR of a bistable system, weparameterg:; and «; result in functions ofa and » that can
briefly analyze here a simple one-dimensional system usinge analytically calculated as
the theory described above. However, similand more

complete analyses have been performed in R&}. In what _w _odaw
follows we will work with nondimensional quantities. p1=Wilsp-0, 1=~ ds(t)|... .’
We consider the following stochastic system: Sm=0 ®)
. dW,
u(t) = — (u2—1)(u+a)+ S(t) + v2 &(t), (4) w2=Wils)=0, 2= 4510 :
S(t)=0

where£(t) is a Gaussian white noise of zero mean and corg
relation{ £(t)&(t"))= nS(t—1t'). The corresponding double-
well potential,

rom Egs.(3) and (8) we can compute the SNIR) as a
function of a and the noise intensity). The parametea
characterizes the symmetry as follows: settaygO corre-
4 3 sponds to modulating around a symmetric situation in which
V(u)= u_+a_u_u__[a+s(t)]u, (5)  both states are equally stable, whie#0 corresponds to
4 3 2 asymmetric situations where the most stable staie, ifor
a>0 andu, for a<0. However, as the system is invariant
is symmetric fora=0 andS(t). Up to first order inS(t),  under the simultaneous transformatioas-—a,u— —u,
V(u) has minima ¢; anduy) and a maximumy,,) located  and S(t)— — S(t), the results forR evaluated a@ are the
at same as those evaluated-aa. Hence, we will only consider
the casea>0.

S(t) _ S(t) In Fig. 1 we depict the results &( 7) for different values
2(1+a)’ Up=—1% 2(1—a)’ of a. Note that each curve shows an optimum noise intensity
(6) where the SNR has a maximum; this is the typical character-

istic of the SR phenomenon. Furthermore, it can be appreci-
ated that the value of the maximum Rfincreases with the
symmetry of the systenti.e., with the proximity ofa to
zerg. Actually, from the complexnot shown analytical ex-

In order to apply the two-state theory described above weression folR as a function ok and %, it can be seen that for
set S(t) =A cosfd) and assume thaiw) ! is large com-  a fixed value ofy, R is maximized by setting=0. Hence
pared to the characteristic relaxation times in both wells. Théhe symmetric situation is the most favorable one for the SR
transition rates between the states are given by the Kramerphenomenon. In Fig. 2 we show the value of the maximum
like formulas of R (regarding ) plotted as a function of, where the

optimization occurring for the symmetric case<0) is ap-
V" (um) |V (u V(Uuy,) —V(u parent.
W, =y YUV V() = V()
1 2 277 n

Ul:l+

S(t)
1-a

Up=—a-—

2

; In the next section we will analyze the SR phenomenon in
a more complicated situation corresponding to a three-field
@) reaction-diffusion system in one spatial dimension. In that
model we will find that symmetry plays the same role of
increasing the SNR as in the one-dimensional system. Fur-

=
[

VIV (um) [V (uy) ex% ~ V(um) —V(up)
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FIG. 2. Maximum ofR (R, as a function of. The maximum FIG. 3. u fields of the stationary patterns. The solid line corre-
. 2. ma . .
of R, occurs fora=0, which corresponds to modulating around a SPONds to the stable pattern, the dashed line to the unstable
symmetric situation. patternu,,, and the dotted line to the stable pattern Results for

a=0.25D=0.3, andS(t) = 0.025.

thermore, we will show that symmetry is the key feature in , ) ) . .
improving the SNR and that its relevance goes, in somé&(X,x’) being the Green function of the third of EdS) in

sense, beyond that of any other relevant characteristic, sudhe indicated limif 18], which depends on the boundary con-
as coupling, for example. ditions considered. In this limit the system of E¢®). can be

reduced to an effective two-component systemand v)

with a nonlocal interaction termby inserting Eq.(10) into

the first of Egs.(9). In this way we have obtained a system
Here, and in order to investigate general trends of the Spvhere the role played by each inhibitor is clearly different:

phenomenon in extended systems, we will consider a threéh€ acts only locally while the other has a nonlocal charac-

field reaction-diffusion system of the activator-inhibitor type t€r- o N

in one spatial dimension. The relevance of activator-inhibitor We will fix Dirichlet boundary conditions on the three

models for the description of pattern formation phenomendields in [—L,L] [u(+xL)=v(*L)=w(+L)=0] for

in chemical and biological systems is very well knof¢]. ~ Which we have

Recently, and in order to describe the experimental results

lIl. STOCHASTIC RESONANCE IN EXTENDED SYSTEMS

obtained in chemical system@elouzov-Zhabotinsky or sinf k(L —x")]sinf{k(L+x)] ,

CIMA reactions, different forms of three-field model(sypi- vk sint 2kL] '

cally reduced to effective two-field systeptsave been stud- G(x,x")= . . ,

ied{m_ ystenis ( sinf{k(L—x)Jsink(L+x)]
We consider a related model given by the equations vk sinf{ 2KL ] ’ an

2
Sueat) _ p? uex.t) +FU(X,0)—v(X,t) —w(x,t), wherek= \y'/v.
ot ax? We will focus our analysis on a region of parameters
where the system has two stationary stable pattestasion-
v (x,t) ary linearly stable solutions of Eq&) for u,v, andw] and
= Bu(x,t)—yv(x,t), one stationary unstable pattestationary linearly unstable
ot - . . . .
solution of Egs.(9)]. The piecewise linear choice for the
© nonlinearityf(u) allows us to calculate these patterns as lin-
aW(x,t)  FPW(X,t) , ) ear combinations of exponentials plus const&h&. In Fig.
T e +B U ) = y'Wx,b), 3 we show theu fields for the three patterns for a particular

choice of the parameters. We chll} the large stable pattern
which has a central activated region>a), U, the small
stable pattern which reduces to the homogeneous null solu-
tion whenSis set equal to zero, and,,, the unstable pattern.

A more complete study of the pattern formation of this sys-
tem, including the analysis of different regions of parameters
and discussions on the different role played by each inhibi-
tor, can be found in Ref18].

In the region of only two stable patterns we are consider-
ing, the deterministic dynamics given by E@8) drives the
system toward one of the pattertselected depending on the
initial condition) which is reached asymptotically. If small
fluctuations are present in the system the fields fluctuate

with f(u)=—u+6(u—a)+S, where (u) is the unit step
function[ 6(u)=1 for u>0 andd(u) =0 for u<0] while a
and S are two additional parameters.

In analogy with the systems studied[it7], the equation
for the first inhibitor @) has no diffusive term. In addition,
we will consider that the second inhibitéw) is a fast one
fixing e=0. Then for the nowemporally slavednhibitor w,
we have

W(X,t)Z,B'f dx' G(x,x")u(x’,1), (10
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around one of the stable patterns and transitions between the It is worth mentioning that the nonequilibrium potential
two patterns become possible. given in Eq.(14) is valid for the system in Eq.12) in arbi-

In order to analyze the phenomenon of stochastic resarary spatial dimension, for an arbitrary nonlinear function
nance between the stable patteths and U, we will now  f(u), and with the parameter region of validity being inde-
consider the presence of fluctuations in the system and algmendent of the choice df u) [18]. The consideration of only
we will introduce a periodic signal. Fluctuations will be in- one spatial dimension and the particular electiori(af) are
troduced in the effective two-equation system equivalent tan order to simplify the calculations, particularly regarding
Egs. (9) as additive Gaussian white noise sources of zergattern formation.
mean by writing The signal will be introduced as éslow) modulation

through the paramete$ by setting S=S(t) =A cos(d).
AU(X,t) F2u(x,t) With this modulation the system becomes nonstationary but
at =D X2 +Hux.D)—v(x.) we make an adiabatic assumption similar to the one we
adopted in the preceding sectidoonsidering small signal
, , ) , " frequenciesthat makes the nonequilibrium potential valid at
-8B f dX'G(x,x")u(x’,t) +g1&1(x,t) each time for the corresponding value of the signal.
We now analyze the SR phenomenon in our spatially ex-
+0262(x,1), tended system using the theory presented in Sec. II. To pro-
ceed with such an analysis we identify the two stable pat-
v (x,t) . . terns U, and U,) with the states of the two-state theory.
ot = Bux,) = yo (X, + 916X, 1) + g8 (X, 1), Hence, the discrete variablewill adopt valuesc, andc,
(12 according to the system being in the statésandU,, re-
spectively, yielding the result for the SNR in E®). The
with the §;’s satisfying same result can be obtained considering the space-time cor-
o , , relation function of the fieldu(x,t) that, similarly to what
(GXDEX ) =7 8;00-t)8(x=x"). (13 a5 discussed ifl3,15, shall give a factorized expression
with a temporal factor that is coincident with the result for
éhe autocorrelation ok(t) obtained in the AppendiXEq.
(A3)], leading to Eq.(3) for the SNR. The other factor,
which includes the space dependence of thepattern, is
not relevant for the present study. However, the changes in-
duced in the patterns by the variation of some model param-
eter will be reflected in changes in the valuesugfand «;
and, accordingly, will affect the results for the SNR.
In what follows we fix L=1,8=8"=1,y=10.026y'
D =»=10g{=1,95=0,97=0.05, andgy=0.01, and leavd®,
=~ (Vu)*>+V(u,v) a, and 7 (the noise intensityas free parameters. Note that
u with the chosen values for tigg*’s, the only relevant noise
term in the systerfiEq. (12)] is g{£&;(t) in the equation fou
that appears added to the sigflaénce it can be considered
as coming together with the sighallhe parameterg) and
where g, are set different from zero to keep the system inside the
2 ru 20, P par_ameter region '\{vhgr@[u,v] as defined in Eq(14) is
V(U,v)=— _f f(u)du’ + 2P 24 lvz_z_ul}’ valid as a nonequilibrium potentlél_8_].
Qu QuQ, Q, Q, In order to evaluate the transition rates between both
(15  states we discretize the space and the fields as

Note that theg! are constants that couple the noises to th
system while the intensity of the fluctuations is determine
by the parametey.

It has been shown in Reff18] that, in a certain region of
parameters(that includes the bistable one on which our
analysis is focusedthe nonequilibrium potentigll9] for the
system of Eqs(12) for Neumann or Dirichlet boundary con-
ditions on the three fields in{L<<x<L) is

(D[U,U]:J' dx

B’ , , ,
+Q_J dx'G(x,x" ) u(x)u(x’) |, (14

— (W2 Uy 2 — (V)2 v\ 2 _ ~U~Y
?u:(?l) +(92)°, Qv___(gl) +(92) ' and Q_UU—glgl_ X=X, (UX),0(X)—=(Ug,Up, ... Un,U1s -« 0N)
0,95 . The nonequilibrium potential has stationary points (17)
(vanishing functional derivativesat the stationary patterns,
minima at the stable patterns, and maxima or generalizegnd use the Kramers-like formu[20]
saddle points at the unstable patterns. It also determines the
stationary solutior? of the Fokker-Planck equation associ- - o7 (D — D))
ated to Eq(12) (in the sense of Itg in the limit of small 7, Wy .y =Wi=-— —'exp{ m_ " } (18
that is given by b 2m N |y

P wherel , is the unstable eigenvalue of the deterministic flux
P=Zexp - 7 at the unstable statg,,, ®” and®’, indicate the determi-
nants of the matrix of second order derivatives of the non-
where Z is a normalization constarjl8]. Hence, the non- equilibrium potential with respect to the discretized fields in
equilibrium potential characterizes the most important stathe statedJ; andU,,, respectively, andb; and ®, are the
tionary properties of the system. values of the nonequilibrium potential evaluated at the sta-

: (16)
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FIG. 4. Nonequilibrium potential evaluated at the stationary pat- o
terns as a function of the activator diffusidh for a=0.25 and 504
S(t)=0. The solid line corresponds to the unstable pattgrnthe
dashed line to the stable pattarp and the dotted line to the stable
patternus,. 01

tionary statedJ; andU,,, i=1,2. Finally, in order to com- n
pute the SNR as indicated in Sec. I, we calculate the param-

etersu; and a; numerically as FIG. 5. (3 SNR as a function of the noise intensity far

=0.25 and different values d. The solid line corresponds to the
symmetric situatiorD =D, the long-dashed line tB =0.35, and
, the short-dashed line ©=0.25.(b) SNR as a function of the noise
S(t)=0 intensity forD =D and different values of. The solid line corre-
(19 sponds to the symmetric situatiar 0.25, the dotted line corre-
sponds toa=0.27, and the dot-dashed line correspondsato
=0.23.

dw,
u1=Wilgp-o, @1=- dsin

dW,
m2=Walst=0, 2= 451

S(t)=0

It is worth noting that the dependence of the Kramers€RVs 7 curve(for fixed values ot andD), which we wil

rates in Eq(18) on the signa(t) comes in two ways: first, call R,y increases with symmetry and reaches its largest

through the explicit dependence of the nonequilibrium potenyaIue for the symmetric situation. In Fig. 6 we sh@¥jay

tial on S(t) that only affects the exponential factor, since theplmted as a function ob for _a=C_).25_, where it is apparent
second derivatives of the potential do not depend explicitiyf1at the optimum value of diffusion i® =D, correspond-
on S(t). Second, there is an implicit dependence that affectd9: as indicated, to the symmetric case. . .
not only &, and®,, but also®! ,®”  and\ , , and comes A fact that arises from these results is that, while kegplng
through the dependence of the stationary patterng(on In all the other parameters of the system fixed, there exists an

obtaininga; anda, we neglected the implicit dependence of optimal value_ Of d|ffu5|on(coup_llng of Fhe dlstnbu_ted sys-
YRy o~ S(1). but kept tlv the d d 1Etem) that maximizes SNR. The interesting aspect is that such

i +Pm, @aNAA . ON (1), butkept exactly the dependence o an optimal value is the one that makes the potential symmet-
the exponential factor.

; _ . ric.

In Fig. 4 we show the nonequilibrium potential evaluated
on the different patterns as a function Df the diffusion
constant of the activator, f@&(t)=0 anda=0.25. It can be
appreciated that the symmetric situatigwhere the two
stable states have equal values of the potenbieturs near
D=0.3(actually atD=D¢=0.2956). FoD <D the pattern 60
U, is more stable thatJ, while for D>D4 we have the
opposite situation. Nedd = 0.5 the stable patterid, and the
unstable pattertJ,, coalesce and they disappear for larger ©
values ofD [18].

In Fig. 5 we show the results for the SNR) as a func-
tion of the noise intensity for different values Bfanda. We
see that while keeping constaat 0.25[Fig. 5a)], the larg-
est values oR are those foD =Dy, which is the symmetric ' ) ' ' ' ' ' '
situation. Also, if we fixD =D [Fig. 5(b)], any departure of ’ ’ '
a from the value 0.25that is, any departure from the sym-
metric situation reduces the values @ Hence, the sym-  FIG. 6. Maximum of SNR Ry, as a function of the activator
metric situation is found to be the most favorable one condiffusion D for a=0.25. The maximum oR,, 0ccurs for the sym-
cerning the improvement of SNR. Note that the maximum ofmetric situationD =D

704

max

504
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It is worth mentioning that these results do not contradictfor the SNR shows that the well known independence of the
but complete those ifil4] where enhancement due to cou- SNR on the signal frequency for a small signal amplitude for
pling was found, since in that work only symmetric situa- symmetric system$4] is also found to be valid when the
tions were analyzed. Roughly speaking, the main result isymmetry is broken, at variance with those [@B]. Sec-
[14] can be summarized saying that, given two differentond|y' if in the system described by E(l2) we adopts’
symmetric situationgeach one r]ecessari_ly having different — o and consider spatial independenBe<{(»=0) it reduces
values of D and a), the one with the higher value @ {5 the same FitzHugh-Nagumo model discussed in [R&l.
produces higher values of SNR. However, we must keep iftq the pistable region of thi@ongradientresulting system,

::)'22 ;[rrll\%l]:?erdaiao?hggjcﬁgiieog' ;‘;?ig;ﬂ%gm]oxma' the nonequilibrium potentidll9] is known for a general way
Here we have studied the dependence of the SNR on tt}(ﬁg Introducing fluctuations, and is given By(u,v), as de-

parametersD and a, however, similar results, leading to hed in Eq.(15) [18]. Hence, the claim 0ER in a nonpo-

identical conclusions, are obtained when the dependence %ﬁgg?rlegslt—leom?/if fi(t)zsﬂ\]/\(/aorstﬁs:gma?lr(]iilyzr?(;jremthzﬁi]elrz are
SNR on other parameters of the system, sucf,as or v, is ' ’ 9

considered R is always enhanced when the parametersSyStemS without a potential that show §R].

are varied in the direction of increasing the potential symme- The main goa'l of our work was Fhe analysis of SR in an
try and diminish when the asymmetry grows. extended three-field reaction-diffusion system. We have fo-

It is worth pointing out here that for too large asymme- cuse_d in the parameter region Wher_e the system is bistable,
tries, some of our approximations will break down. For ex-thatis, where there are only two stationary stable patterns. In
ample, consider an extremely asymmetric situation where th@rder to use the two-state theory of SR, we have evaluated
barrier for, say, the transition from staity, to U, is much the transition rates between the two stable patterns using a
larger than the barrier for the opposite transition. In such a<ramers-like approach exploiting the nonequilibrium poten-

case, the values of the noise intensity leading to reasonabfi®! Presented i18]. The analysis of the results for the SNR
jumping rates fronU; to U, will be far beyond the validity In this extended system shows the central role played by the

of the Kramers-like approximation for the inverse transition. SYMMmetry inimproving the SNR. We studied the behavior of
Rmax, that is, the maximum of the SNR g curve, as the

different model parameters afaot simultaneouslyvaried,
finding thatR,,,, always increases with the symmetry of the
IV. FINAL REMARKS potential. This fact leads us to our main result: the optimal
. ) values of the different model parametéisr instance, diffu-
In this paper we have analyzed the role of potential SYMsivity or threshold, regarding the maximization OR gy,

metry in the SR for a bistable system with spatial extensiongqrresnond to those making the potential more symmetric in
for the case of small signal amplitudes. We started by preg;ch situation.

senting an extension of the two-state theory of stochastic g jngdicated above, the present analysis complements the
resonancel,4] in order to include situations with different results in Ref.[14] where only symmetric situations were

stabilities. consideredalthough in a one-field systenirhe study of the

As a first step in the analysis of the role of the potentialinfence of the potential symmetry in other forms of char-
symmetry, we have used the extended theory to analyze Skerizing SR(for instance, those based on information the-

in a simple example: &space-independentouble-well sys-  ,etical approachésas well as the analysis of SR in ex-
tem. For this case we have found that the symmetric situatioganqed systems with aperiodic signals, are under way.

is the optimal one in order to improve the SNR. It is worth
mentioning that we have obtained essentially the same re-
sults in other different bistable systems: one corresponding
to a cusp-shaped bistable potenfial which the Kramers
approach for the transition rates is different from the one in

Eq. (7) [20]], and also for an activator-inhibitor bistable  The authors thank R. Graham, M. Kuperman, R. Toral,
(two-variablg system. Furthermore, this behavi@gmprove-  and G. Nicolis for useful discussions, and V. Grunfeld for a
ment of SNR with symmetpyseems to be independent of the revision of the manuscript. Partial support from CONICET,
way in which the signal is introduced in the system sincethrough Grant No. PIP Nro.4593/96, ANPCyT, through

similar results have been found when the modulation wagsrant No. 03-00000-00988, and CEB, Bariloche, is also ac-
introduced in other system parametdfer example, the knowledged.

threshold parametex of Eq. (4)].

Besides the analysis of the influence of symmetry on sto-
chastic resonance, it is important to remark that the mere
cor_1$|_derat|0n of asymn_wetnc situations h_as its own releyance. APPENDIX: CALCULATION OF THE
This is because such plstable asymmetric model; _prowde, _for SIGNAL-TO-NOISE RATIO
example, the appropriate framework for describing SR in
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voltage-dependent ion channels, as propos¢@2h In those Here we follow the procedure of Rd#] in order to com-
systems, the conducting state is associated to a higher-energyte the SNR, generalizing that treatment to include the
well than the nonconducting one. asymmetric caseuy(;# u, and a1 # ay). Once Eq.1) is in-

We also remark here that our analysis and results haviegrated we can calculate the correlation functior(t
some differences with those found [ig3]. First, our result  + 7)x(t)|Xo,to) as
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(X(t+ )X(1)] X0, to) C(r)=( lim <x<t+r)x<t>|xO,to>>t, (A2)

tg——

=cf ny(t+7/Cq, Ny (t]Xg,to) +C1Co Ny(t we obtain

+7]C2,1)Na(t|Xg,to) + C1Co Np(t+ 7 Cq,t) Ny (t] X0, to) C(7)=Ry+ Ry exp( — u|7|) + R, exp( — | 7] ) cog w¢7)
2
+¢5 Ny(t+ 7]Cp, t)Ny(t]Xg, to). (A1) + Rz exp(— u| 7])sin(ws7) + Ry cog ws7).  (A3)

For thet-averaged correlation function Here u=u,+ u, and the constant®; are given by

R _(02M1+ Clﬂz)z
0 M1t o

2 2
_(ca—cy)Ppypy N A%(cy—Cp)[ ol azpat araous) — Crlaipp+ aranps)]
=
% 2u(p?+ w?)

A2(cy—cy)(a— ag) VRo(aguy + agjep)

R2:
2u(p?+ 0?)

(Ad)

:AZ(CZ_ c1)(ap— ay) VRo( aops + @y o)
20(u?+ 0?) '

3

_A%(cy1— o) (appy t agp,)?
=
2u*(p?+ w?)

Then, noting thaR, is just the square of the mean value of by the § function centered at the signal frequency and the
x in the absence of signaRg=(x)?|s—o), we compute the broadband noise output, given by the Lorentzian téamich
t-averagedpower spectral densityPSD [(3(w)),] as the i the dominanfo(A°%)] pary plus the two additional terms
Fourier transform ofc(7) — R,. After that, we compute the containing theg; functions.

one-sided-averaged PSPS(w)], defined foro>0, as If, when calculating the PSD, instead 6f7) —R, only
C(7) is considered, an extra terfdmRy5(w)] appears in
S(w)=<§(w)>t+<§( —w));. (A5) Eq. (A6). Note that a nonvanishing value Bf, can be origi-
nated either by an asymmetric choice of the values,;aind
We get ¢, (c1#—c,) or by a difference in the stabilities of both
states fu1# w,) even whernc,= —c, is considered.
_ K If we consider the symmetric casg.{=u,=aq/2 and
S(w)=4R; ————-+ 2Ry () + 2R3 p3(w) = )
a;=a,=a4/2) and also fixc,=-—c;=c, the constants
2 7R, 8 AB Ry,R,, andR; vanish and we recover exactly the result of
2R, 5w = wy), (AB) [4] which is a Lorentzian plus @ function centered at the
where signal frequency
b() 2u(p’+ 0’ + wl) Sto| LR | dae® | wA%e S
2 - ’ w — - = = =
wA+2plw?+ 0+ 2ulwl—2wlwi+ we Sym 2@+ w?) | a2+ w? g+ w?
2ws(,u2— (1)2+ wg) X 5((1)_ ws). (A8)
P3(w)= 2

wi+2plw’+ a)4+2,u2w§—2w2ws+ wgl . ~
(A7)  For the general asymmetric case we deftethe SNR, as

the ratio between the strength of the output signal and the
In the one-sided-averaged PSI)EQ. (A6)], two contribu-  broadband noise output evaluated at the signal frequency,

tions can be distinguished: the signal output which is giverobtaining
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~ 7R, tor in Eqg. (A9) and obtain the following approximation for
R= . (A9) R, which is independent of the signal frequency:
Ri2ua/ (117 + 02) + Rodhy( 09) + Rach( o) P gna Trequenty
2 2
For sufficiently low signal amplitude§.e., smallA) we g ATmlagu T apo) (A10)
can neglect the terms of second ordeAiim the denomina- Apapo(prt+ po)
[1] C. Nicolis, Tellus34, 1 (1982. [13] H.S. Wio, Phys. Rev. B4, R3075(1996.

[2] Proceedings of the NATO Advanced Research Workshop orn14] F. Castelpoggi and H.S. Wio, Europhys. L&8, 91 (1997).
Stochastic Resonance in Physics and Biology, edited by H.15] F. Castelpoggi and H.S. Wio, Phys. Rev5E 5112(1998.
Mosset al. [J. Stat. Phys70, 1/2 (1993]; Proceedings of the [16] M.C. Cross and P.C. Hohenberg, Rev. Mod. PH§5. 851
2nd International Workshop on Fluctuations in Physics and (1993; E. Meron, Phys. Ref218 1 (1992; A. S. Mikhailov,

Biology, edited by A. Bulsarat al. [Nuovo Cimento D17, Foundations of Synergetics($pringer-Verlag, Berlin, 1990
(1999]. J. D. Murray,Mathematical BiologySpringer-Verlag, Berlin,
[3] L. Gammaitoni, P. Haggi, P. Jung, and F. Marchesoni, Rev. 1985.
Mod. Phys.70, 223(1988. [17] 1. Lengyel and I.R. Epstein, Proc. Natl. Acad. Sci. U8BS,
[4] B. McNamara and K. Wiesenfeld, Phys. Rev. 3%, 4854 3977(1992; John E. Pearson, Physical88 178(1992; S.
(1989. Kadar, J. Wang, and K. Showalter, Natufeondon 391, 770
[5] P. Jung and R. Bartussek, ftuctuations and Order: The New (1998.
Synthesisedited by M. Millones(Springer, New York, 1988 [18] S. Bouzat and H.S. Wio, Phys. Lett. 247, 297 (1998.
p. 35. [19] R. Graham, innstabilities and Nonequilibrium Structuresd-
[6] R. Lofstedt and S.N. Coppersmith, Phys. Rev.4E 4821 ited by E. Tirapegui and D. VillaroelReidel, Dordrecht,
(1994. 1987; R. Graham and T. Tel, innstabilities and Non-
[7] A.R. Bulsara, M.E. Inchiosa, and L. Gammaitoni, Phys. Rev. equilibrium Structures Ill edited by E. Tirapegui and W.
Lett. 77, 2162 (1996; M.E. Inchiosa, A.R. Bulsara, and L. Zeller (Kluwer, Dordrecht, 199% M. San Miguel and R.
Gammaitoni Phys. Rev. B5, 4049(1997); M.E. Inchiosa and Toral, inInstabilities and Nonequilibrium Structures \ddited
A.R. Bulsara,ibid. 58, 115(1998. by E. Tirapegui and W. ZellefKluwer, Dordrecht, 1998 H.
[8] A. Bulsara and G. Schmera, Phys. ReWE 3734(1993; P. S. Wio, in Fourth Granada Seminar in Computational Phys-
Jung, U. Behn, E. Pantazelou, and F. Moss, Phys. Red6,A ics, edited by P. Garrido and J. Mar(8pringer-Verlag, Ber-
R1709(1992. lin, 1997, p. 135.
[9] J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, and [20] P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phgg,
A. Bulsara, Phys. Rev. LetZ5, 3 (1999; Phys. Rev. B53, 251(1990.
2081(1996. [21] See, for instance, Sec. IV C of RdB], and the references
[10] P. Jung and G. Mayer-Kress, Phys. Rev. Le#.2130(1995. included therein.
[11] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. ¥8, 2239  [22] S.M. Bezrukov and I. Vodyanoy, Natuf&ondon 378 362
(1985. (1995.

[12] F. Marchesoni, L. Gammaitoni, and A. Bulsara, Phys. Rev.[23] T. Alarcon, A. Paez-Madrid, and J.M. RubPhys. Rev. 57,
Lett. 76, 2609(1996. 4979 (1998.



