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Temperature dependence of facet ridges in crystal surfaces
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The equilibrium crystal shape of a body-centered solid-on-&@SOS model on a honeycomb lattice is
studied numerically. We focus on the facet ridge end pofRRE’s). These points are equivalent to one-
dimensional Kardar-Parisi-Zhang—type growth in the exactly soluble square lattice BCSOS model. In our more
general context the transfer matrix is not stochastic at the FRE points, and a more complex structure develops.
We observe ridge lines sticking into the rough phase where the surface orientation jumps inside the rounded
part of the crystal. Moreover, the rough-to-faceted edges become first order with a jump in surface orientation,
between the FRE point and Pokrovsky-Talag®1) type critical endpoints. The latter display anisotropic
scaling with exponent=3 instead of familiar PT value=2.[S1063-651X99)08905-9

PACS numbg(s): 64.60.Fr, 68.35.Bs, 64.60.Ht, 68.35.Rh

[. INTRODUCTION PT-type smooth connection. The critical end point between
such first-order and PT-type segments provides an example
Equilibrium crystal shapes typically consist of various flat of a quantum field theory with a dynamic exponert3. To
facets connected by rounded surfaces. The way this structumr knowledge an explicit example of such a PT critical end
changes with temperature has been studied for many yeapwint (PTE) has not been reported before. We will do so in
[1-10. Most aspects are well established. For examplethis paper.
rounded parts are associated with crystal orientations where Our current interest in these issues stems from the discov-
the surface is rough, and flat facets can disappear from thery that the scaling properties at facet ridge end points
equilibrium shape at the roughening temperature of thoséRE’s) are related to KPZ-type growfl8]. FRE points are
specific facets. Roughening transitions belong to thehe end points of ridges where two facets connect directly.
Kosterlitz-ThoulesgKT) universality clas§11]. Many de- The ridge splits into two PT or two first-order transitions
tails follow from the scaling properties of the KT transition, with a rounded rough surface in between. The exactly
e.g., that the facet diameter vanishes exponentially with resoluble body-centered solid-on-sol{@CSOS model on a
duced temperature, and that the curvature of the surface &juare lattic6with only next-nearest-neighbor interactions
universal just above the KT transition at that facet orienta<ontains such a FRE poiff#]. Moreover, the transfer matrix
tion. of this model becomes stochastic at the FRE point, and maps
Flat facets typically connect smoothly to rounded roughexactly onto the master equation time evolution operator for
surface areas. The surface orientation in the rounded patthe so-called brick model in one dimension lowW8r15,18§.
varies continuously and connects without a jump in angleThe latter describes a growing one-dimensiqdd) crystal.
onto the flat facet. Such phase boundaries are described e 1D growing interface is rough, and its scaling properties
Pokrovsky-TalapovPT) transitions[12—14]. The angle dif- belong to the KPZ universality class. Thedirection repre-
ference vanishes with & power. The most salient feature of sents the spatial direction, and thdirection represents time,
PT transitions is their anisotropic scaling. The rounded surjust as in mapping of the PT transtion to 1D fermions men-
face on the rough side of the PT transition can be interpretetioned above. The dynamic exponent is equakto3. The
as a stepped surface from the perspective of the flat facetharacteristic time needed to reach the stationary growing
The characteristic lengths along;, and perpendicular to state diverges ag§~N?, with N the size of the 1D lattice.
these stepst, , scale a§”~§i , With z=2. This translates into nontrivial scaling properties of KPZ-
Two-dimensional equilibrium statistical mechanical sys-type FRE point$8—10. When approached from the rounded
tems are mathematically equivalent to one-dimensionaphase in the direction parallel to the facet ridgee Fig. 1,
guantum systems at zero temperature. The transfer matrike surface orientation jumps. Moreover, at the rough side
formalism of the first is the path integral representation ofthe characteristic length scale in the direction along the facet
the second. PT transitions are equivalent to metal-insulataidge, &, scales ang~gj with z=32.
transitions in one-dimensional fermion systems. The steps This exact mathematical mapping between the scaling
represent the world lines of fermions, and the lattice direcproperties of equilibrium phase transitions to those of dy-
tion parallel to the steps plays the role of time. In the roughnamic nonequilibrium transitions in one lower dimension is
phase(the metal phagethe fermions behave relativistically, intriguing. But it leaves us with an important question. The
i.e., time & scales compared to spage, with dynamic above BCSOS model satisfies a special symmetry at its FRE
exponentz=1, §~¢, . At the PT metal-insulator transition point. The transfer matrix is “accidentally” stochastic. It has
the fermions behave nonrelativistically, with a dynamic ex-full rotational symmetry in the spif- operators(the step
ponentz=2 instead ofz=1 [13,14. variableg. A stochastic transfer matrix must preserve prob-
The rough-to-facet interface can also be first order, with ability. This implies that the sum of the elements in each
discontinuity in the surface orientation angle instead of thecolumn add up to 1, and that the disordered Stite sum of
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display anisotropic scaling with exponent 3. The conclu-
sions are presented in Sec. VII.

1. MODEL

Our model emerges naturally at a coarse grained level in a
study of spontaneous low angle faceting in(fickl) facets.
This will be described elsewhefé&7]. For clarity it is more
appropriate to introduce the model from a different perspec-
tive. Consider thg001) facet of a hexagonal-close-packed
(HCP) type crystal, withABAB Atype stacking of triangular
slices. The solid-on-solid model description of such surfaces

FIG. 1. Crystal structure with facet ridge end point as realized inleads to a BCSOS model on a honeycomb lattice. The sur-
the BCSOS model on a square lattice with only next-nearestface heights on thé-type triangular sublattice are even in-
neighbor interactions. tegershpy=0,£2,+4, ... , andthose on théB-type triangu-
lar sublattice are odd integereg=+1,+3,=£5,... . The
simplest Hamiltonian for such a surface is

all microstates, all with the same weiglis$ the left ground
state eigenvector. Transfer matrices in statistical mechanics 1
and quantum field theory rarely obey this constraint. It re- H= ZLZ (hi—h))?, 1)
quires a high symmetry, such as the spin rotation symmetry )
in the six-vertex model. This specific rotational symmetrywith (i,j) the summation over next-nearest-neighbor col-
also implies the complete degeneracy of the free energy witbmns.
respect to all surface orientations. The disordered state nature We break the symmetry between the and B-type col-
of the left eigenvector, however, is the essence of the stadmns, such that two distin¢d01) facets can be cut from this
chasticity. crystal, those withA’s or those withB’s on top.A and B

FRE points are a more general phenomenon, not limitegould be different type of molecules, but that is not what we
to KPZ-type stochastic transfer matrices. We need to inveshave in mind. The interactions between the next-nearest-
tigate whether the KPZ-type Sca”ng exponam% is ge- neighbor COlUmnSLA and LB’ would then be different. In-
neric. Maybe stochasticity is restored at large length scale$téad, assume thatandB are identical types of atoms, but
asymptotically close to the FRE point, with nonstochasticitythat for some reason the bulk structure is reconstructed such
an irrelevant operator. More likely, the FRE point changes itghat theA’s move downward from the positions exactly in
character. In this paper we present such an investigation, B6tween theB layers. In that case the bonds between Ahe

numerical study of a model with a complex crystal shape. atoms with theB’s in the layer beneath them are stronger
We define this model in Sec. II. It originates from our than with theB’s in the layer above them. We can model this

earlier study of possible spontaneous low-angle faceting ilti)y adding a nearest-neighbor coupling in the BCSOS model

fcc(11D)-type facetd17]. This model has the required prop- 1

erty that its crystal shape is complex and that accidental sym- H=KX (hi—h)) 7 LY (hi—h)Z. 2
metries are unlikely. Section Il contains an overview of the (D) @n

phase diagram and crystal shapes. In Sec. IV we describe oThe first sum is over nearest neighbdisj), wherei (j)
numerical method. always refers to thé (B) sublattice.

The crystal structure is actually much richer than we an- An alternative more generic scenario is the one realized in
ticipated. Entire facets vanish as functions of the couplinghaphthalen¢?7] (for a different crystal symmetry, however
constants. FRE points become triple points. We also find # involves only a surface reconstruction, no bulk reconstruc-
more exotic feature, a first-ordéFOR) line inside the rough tion. Consider a crystal where ti#és andB's are identical
phase emerging from the FRE poi@ec. \J. At this line the  molecules, but with an orientation degree of freedom point-
surface orientation angle inside the rough phase jumps. FORg in two different directions. Inside the bulk these two
lines have been seen before only in the context of mean fieldrientations can be equivalent kg slide-mirror-plane type
theory [4,5]. Bukman and Shor€10] speculated about the symmetry, but the presence of the surface typically breaks
possible generalizations of Fig. 1 in their paper about théhat equivalence. The surface molecules rotate due to surface
exact solution of the FRE point in the square lattice BCSOSelaxation. Typically they do so differently for ths or the
model. The FOR line structure corresponds to their so-calle®’s on top. This breaks th& B symmetry locally close to the
ridge scenario. However, they doubted that it would be realsurface and creates an energy differeri€e;0. The next-
ized. In our model, FOR lines are clearly present althoughmearest-neighbor interactions remain virtually equial,

they remain very short. =Lg=L, if the orientational aspects of the interactions de-
In a nearby section of the phase diagram, the FOR linesay rapidly with distance.
disappear. The rough-to-faceted ridge becomes sharp with a We introduce tilt energiek;, i=1, 2, and 3, to study the

jump in the surface orientation angle. These first-order linegrystal structure at and nearby the centfil) facet orien-
terminate further away from the FRE point in PTE pointstation. The functional dependence of the free energy with
and the edge continues as a second order PT line. In Sec. Yéspect to thesg; yields the crystal shape by means of the
we study the scaling properties at these PTE points. TheWulff construction[3].
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FIG. 2. Lattice of the triangular BCSOS model defined in Eqg.
).

1
H= ZLE (hj—h;)?
(.j)

+(K+El)<§ (hi—h)) ZyZx
i1
FIG. 3. All possible local configurations around each vertex, and

their Boltzmann weights.
+<K+E2><§ (hi—hj>+<K+E3><§ (hi—h). 3 J
i,i)2 1,173

Ill. PHASE DIAGRAM

The summations run over nearest-neighbor columns in the

X R . o The phase diagram of our model at zero tilt fieHg
three different directions; see Fig. 2. This figure shows three_ E,=0 [Eq. (2)] is shown in Fig. 4. The(001) facet is

representations of the surface configuration simultaneouslyé.table at all temperatures inside the quadrant wheaad L

The first is in terms Of. the height .vanables assom_atgd W'thare both positive. The step excitations do not create sufficient
the plaquettes of the triangular lattice. The second is in termgntro to roughen this surface evenTat= (i.e., pointK
of the arrows along the bonds of the dual lattice. These de- by 9 €. P

note whether nearest-neighb&@B columns differ in height :L:O)' Thv?/ ro(;Jghenlng I]nell|es _msu;le thhe other tr_lreel
by +1 or — 1. When looking along an arrow, the site to the quadrants. We determine its location in the conventiona

left is higher than the site to the right. Finally, the third manner for transfer matrix finite size scaling calculations

representation is in terms of the thifat) lines along the
same bonds. They denote whether ikhbonds are in the low
(high) energy states. The three tilt fielf& are related as

E,=—E,— 5 E4, 4

Ex and E, are conjugate to the tilt angles in theandy SS faceted
directions, i.e., parallel and perpendicular to one of the three , , , ,
main axes of the honeycomb lattice. 06 o4 o \ 1 o2

We simplify the model further by not allowing step exci- =
tations to touch each other. This breaks ikhe — K symme-

try of the model. Figure 3 shows all the remaining local 02T\ flat
configurations in this ten-vertex model, in terms of the thin- T
fat line representation. The Boltzmann weight contributions 04

are shown in Fig. 3 below each vertex configuration, with
Z.= g 2K-2L z=e" 2K-4L z,—e" Ex/4, and z,=e" V3Ey/4
The coupling constants are made dimensionless by absorbing FIG. 4. Phase diagram of the triangular BCSOS model at zero
the factorkgT. tilt, fields Ex=E,=0.
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FIG. 5. Surface configurations in tli@) straight-stedSS -type
facets,(b) zigzag(ZZ) -type facets, andc) reconstructed triangle
ground state.

[18]. The step free energy in semi-infinite strips of widtiN
is equal to the difference in free energy for periodic and

stepped boundary conditions in the finite direction. The KT . L
roughening line is obtained by extrapolating the lines where I \
N#= % for increasing strip widths. 02" I

At low temperatures fot. <0 the surface spontaneously \
facets into three coexisting orientations. We refer to these as :
straight-step(SS facets, shown in Fig. @to distinguish 04T A
them from the three zigza{ZzZ) structures, shown in Fig. \
5(b), that appear elsewhere in the phase diagram at nonzero
tilt fields E; . The transition from the rough phase into the SS

FIG. 6. Regions in the phase diagram where the various crystal

hase with three coexisting facets is first order. The surfacShapeS' Regions |-V as described in the text are realized. The
P 9 : Sashed line shows the location of the roughening line in the zero

orientation angle jumps. The location of this transition line iSfieId model
determined by the methods described in Sec. IV. Its location '
is not trivial, unlike the square lattice BCSOS modél,
where it is simply the meeting poirf;=0 of severalE;
#0 PT transition lines. e

An additional ground state appears in the quadrant witr}i

K<0 andL>0, the triangle state shown in Fig(ch. This must be equal. This happenslia}:(4/\/§)L. However, the

state represents a highly degenerate surface reconstructi yeam
Unfortunately this ground state is unstable against thermg%k and SS facets roughen before this line is reached. Con-

fluctuations immediately aT>0 in this particular model. sider the zero temperature limit of tig;;=Ess line. Line

The surface reconstruction and preroughening phenomendaefGCtS such as the one shown in Fig. 8 have the same energy

associated with this type of ground state could have beefS the two faceted configurations. The facets are unstable
quite interesting with respect to these defects, because at nonzero tempera-

We determine the crystal shape at each valuk ahdL
by introducing the tilt fieldsE;, see Eq.3). The technical 77
details of these calculations are described in Sec. IV. In this facet
section we summarize the crystal shape development witt
temperature. We identified at least 5 distinct crystal struc-
tures, labeled | through V in Fig. 6, which shows at which
values ofK and L they are realized, as an overlay of the
zero-tilt phase diagrartFig. 4).

In region |, located at. >0, the crystal structure consists
of a nontilted flat facet surrounded by a rough, rounded cen- SS facet
tral region, and fully tilted facets of both types, SS and ZZ, at
the edgeseach repeated three time¥his structure is shown
in Fig. 7. All facets are separated from the rough region by -4 3
PT lines. Their exact location can be calculated easily for the ' '
SS facets. Compare the free energy density of the facete
phase with that of a state with one line defect, e.g., as showr
in Fig. 8. The PT transition occurs when the free energy of
the faceted phase becomes equal to the free energy with th
defect. The calculation is straightforward, but leads to a ZZ facet
somewhat complex formula.

The PT lines in region | never touch or join. There are no
FRE points between the SS and ZZ facets. The following FIG. 7. Global crystal shape at poikt=—0.24 andL=0.29 in
analysis explains why. Suppose facet ridges between the Z#gion |I.

and SS facets exist. Both faceted structures are frozen, with-
out any fluctuationgin our mode), and therefore the free
nergy in both is equal to the enerdy;;=2K+2L—3E,

nd Ess=2K+4L—3E,—3V3E,. At a facet ridge these

SS face!
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lines shrink. It seems that their length decreases until it fi-
nally goes to zero whebh=0. The FOR lines also disappear
at the boundary between regions Il and Ill. This boundary
looks sharp in Fig. 6, but in reality it must be a smooth type
of crossover. We discuss this in Sec. VI.

In region lll (see Fig. 6 the FOR line vanishes. The
border between the SS facets and the rough phase changes as
well. Close to the FRE point the SS-rough boundaries are
now first order. They continue as PT lines beyond PTE-type
critical end points. Figure (®) shows this local structure.

The PTE points move closer to the FRE point as region |
is approached. They disappear completely &t0. The first-
order segments become longer toward region IV. At the
llI-1V phase boundary, two PTE points from opposite FRE
sides meet, and, in region IV, the entire SS-rough phase
FIG. 8. SS facet with defect lin@lashed ling boundary is first order. In the mean time, the central rough
region has been shrinking, and it disappears completely at

tures they gain entropy while the facets remain frozen. Twgpe |v-v phase boundary. Region V coincides with the SS
PT lines emerge from zero temperature and preempt the facg{ceted phase shown in Fig. 4.

ridge.
As L decreases, the ZZ facets shrink and disappeéar at
=0. At L=<0, the only remaining fully tilted facets are the IV. NUMERICAL METHODS

three SS ones. Along=0, they are still completely sepa-  \ye determine the crystal shape by means of the transfer
rated from each other, with rough rounded orientations innatrix method. This means that we calculate the exact free
between them, and PT transitions as bordersF00, facet  energies for semi-infinite lattices in terms of the largest and
ridges appear between the three SS facets. These facet ridggs, hy eigenvalues of the transfer matrix. This is a standard
are capped by FRE points. The local structure at these FRRathod. Therefore we only need to comment here on the
points changes with temperature in an exotic manner, agetajls concerning the surface tilt fiel&, the amount of
shown in Fig. 9. The global crystal shape structure is lesg f5ce tiltsQ, they create, and the Wulff constructioeg-
interesting. Initially it contains the central flat facet but this gnqre transformatiorbetween these two types of quantities.
shrinks and vanishes across the roughening line. There are two natural choices for the directions in which
Figure 9a) shows the local structure around the FRE e |atiice is infinite.T can be aligned with thg axis or the
point in region Il. Two PT lines emerge from the FRE point, , axis; see Fig. 2. We refer to these g and T,-type
and form the borders between the SS facets and the roughy hqter matrices. IfT,, the infinite lattice direction coin-
phase. Moreover, a FOR line emerges from the FRE pointijes with they axis, and the finite direction with theaxis.
inside the rough phase. At this line the crystal orientation, it is the other way around. Notice that for each choice
angle jumps. The skipped unstable surface orientations a‘[ﬂer(ya are three rotationally equivalent ones. For we are

associated with local ZZ facet type zigzag step configuraz o (o find the lar . :
. gest eigenvalues foe <18, whereN is
tions. Those are unfavorable fbr<0 and largeK. The FOR v\ ober of vertices in the time slice. Fo;, we can

line is definitely resolved in our numerical dqta, put remainscalculate the largest eigenvalues for RI<10.
extremely shorf{Sec. . At its longest extension, |t_reaches Consider the free energy as a function of tilt angles
only about 2% of the distance from the FRE point to thef(Qx,Qy). This is the free energy of a facet at a given ori-

center. In some parts of region_ll itis so short that it can Onlyentation Q..Q,). Some orientation ranges are thermody-
barely be d|st|ngU|sheq numgncally, if at all. namically unstable. These angles are not represented in the
As the boundary with region | is approached, the FORcrystal shape. They are skipped, and result in sharp edges in
the surface. To obtain the crystal shape one needs to mini-
mize f(Q,,Qy) under the constraint that the volume of the
crystal(the amount of matteiis conserved. This leads to the
famous Wulff constructiof1], which is in essence a geo-
metric construction for the Legendre transformation of
SS facet SS facet f(Qx,Qy). The tilt fieldsE; are the conjugate variables to
PTE PTE the tilt anglex; . The crystal shape is a direct representation
of the free energy functioh(E, ,E,) at a certain temperature
(at specific values oK and L) [3]. The shape functions
, , } Qx(Ex,Ey) and Qy(E,,E,) tell us which surface orienta-
004 0 0.04 tions are represented in the crystal.
® The transfer matrix provides us with a mixed version of
FIG. 9. Local crystal shape near the FRE pdmtat pointsk  this. It leads tof (E;,Q,) and Q|(E;,Q.). We control the
=1.43 andL=—0.63 in region I, andb) at pointsk=1.18 and tilt angle in the finite lattice directio®, , and the tilt field in
L=—0.58 in region IIl. Bold lines represent first-order transitions, the infinite directionE;. Q; sets itself.Q, is set by the
and thin lines continuous ones. boundary condition in the finite lattice directioh(x;,x,

=

0941

093+

0.92+

091+
rough

035+
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1 - . . . the free energy. This corresponds to the lowest point in Fig.
10(a). There is no need to repeat the calculation for other
values E, #0. They are related byf(E|,E,,Q,)
=f(E),0Q,)+E, Q, becaus®), is conserved by the trans-
fer matrix. In other words, the crystal shapee, ,Ej) and
the shape functiorQ, (E, ,E)) follow from the Legendre
transform off(E,Q,) with respect taQ), .

It is easy to see from graphs like Fig.(@how Q, varies
with E; . Simply rotate the page slowly and watch the mini-
mum shift, and sometimes skip certain orientations. In Fig.
10(a) such skips do not take place. We follow thg axis at
Ej=Ey=0 in Fig. 7 along which there are no orientational
discontinuities. Notice that(E;=0,Q,) develops a cusp at
Q,=0 with system size. This means that the cen(fll)
1 facet is stable at smalt, . The (00D)facet boundary is a PT
transition because the cusp is convexQat=0 and no ori-
entations are being skipped for increasiBg (rotate the
page. The KT roughening transition takes place at valdes
and L where the cusp disappears. In the rough phase,
f(E;,Q,) has a quadratic minimum &, =0. Its curvature
1 represents the roundness of the crystal shape at that orienta-
tion.

Next, consider the stability of the SS fully tilted facet. At
maximum tilt angle the free enerdyE;,Q,) in Fig. 10a)
has a definite slope. This means that the SS facet is stable for
a specific range of, =E,. Curvature would imply that the
SS facet is thermodynamically unstable, and would be absent
in the crystal shape. The SS-rough phase boundary is a PT
transition becausé(E|,Q, ) is convex atQ, near its maxi-

~06 mum, and no values o, are being skipped by the Leg-
endre transformation.
_08 . . . . . . . . . The above analysis is still incomplete because we did not
0 0.2 04 0.6 0.8 1 check how Q) is shifting simultaneously. The function

Q, Q|(E;,Q,) is contained in the right and left eigenvectors of
. the transfer matrix associated with the largest eigenvalue. In
_ FIG. 10. (a) Free energyf(E,,Q,) and(b) the vertical surface e interpretation off as a quantum mechanical time evolu-
t"to gi(fy'(?xz)g ?: r;“r;gﬁolr‘%g hg”j;rr‘]ta'trfg$xtr2tnS‘Z'P:n;:riX tion operatorQ is a velocity type off-diagonal expectation
setl.Jp,,wher.eQX takei only disycrete valges. Dxata are shown forvalue' Figure 1) showsQ,(E, 'Qi-):QY(Ey’QX) atour
system sizes 6N=<18. exgmplt_a point. It shows that the orientation of the step exci-
tations in the surface rotates as expected, from vertical just
outside theQ, =Q=0 flat facet to the correct slope just
+N)=h(x,x,)+a. The total tilt of the surface can take the outside the SS fully tilted facet.
valuesa=0,=2,... up toN, when the transfer matrix is In the above example, we used thg transfer matrix
aligned with they axis. This means that an average slopesetup to investigate the crystal shape in the horizontal direc-
Q,= V3a/2N is frozen into the surface in thedirection. In  tion. In this setup Q, takes only discrete valuesQ,
the opposite setup, witf,, where the lattice is infinite in = ./3a/2N. The opposite setup witffy, would have been
the x direction, a tiltQ,=a/2N is frozen into the surface in better, since thel®, would have been continuous a
they direction. would have been rational. Figure 11 illustrates this. We still
Consider the transfer matrix at zero tilt fiel) =0 and a  useT,, but now determine the crystal structure along Eye
specific value of . We determine the largest eigenvalug  axis. The free energy curve lacks mirror symmetry. It shows
of T for each value of, . The free energy density is equal the SS facet at th& <0 side and the ZZ facet at tHe,
to f(E|,0Q,) = —In(Ag)/N. Figure 1@a) shows a typical ex- >0 side. It also shows the central facet aroufje=0. The
ample, atk=—-0.24,L=0.29, andE;=0. Only theQ, >0  facet edges are smooth since they are PT-like.
side is shown, because the curve is mirror symmetric. The From the above example it must be clear how we deter-
discrete set of possible tilt angl€s increases with the strip mined the development of the crystal shape vitland L,
width N, and we need to perform a finite size scalif$S  described in Sec. lIl. It required numerous graphs of the type
analysis to obtain the infinite-by-infinite lattice result. Fortu- shown in Figs. 10 and 11. The results are quantitively repre-
nately these FSS corrections are reasonably small, and typsented in Figs. 6, 7, and 9. The latter two show the crystal
cally converge smoothly. shapes at actual values éfand L as specified in the figure
The tilt angleQ, that is realized is the one that minimizes captions. In Secs. V and VI we limit the discussion to the
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0 T T T T 1.7 T T T
(a)
-05 f . 16 ¢ -
(b)
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-5 1 1.4+ 1
-2 13 . . )
0 0.05 0.1 0.15 0.2
1/N
FIG. 11. Free energ§(E,,Q,) as a function of the surface tilt FIG. 12. Finite size scaling behavior of the mass gap scaling

field E, at pointsK=—0.24 andL=0.29 in region | forQ,=0 exponentz, at the end point of the FOR line, at two points in the

using theT, transfer matrix setup, whei®, is a continuous vari-  phase diagram(a) K=1.43 andL=—0.63, and(b) K=0.51 and

able. Data are shown for system sizesg=<18. L=—0.42. The curves converge to values close to the KPZ dy-
namic exponentz= 3.

most interesting features of the crystal shapes: the FOR lines

and the PTE pointésee Fig. 9 The existence of the FOR lines is much more likely, how-

ever. Figure 13 shows the variation of the free endi@y,)
atK=1.43 andL= —0.63 for variousk, close to the FRE
In region Il the crystal shape contains only SS-type, fullyPoint in Fig. 9a). We need to use thg, setup, the one with
tilted facets, with facet ridges in between them, capped b)r,he infinite lattice direction aligned with the FOR line. The
FRE points. The only structural difference with the KPz-rational values ofQ, in the T, setup skip across the FOR
type FRE points in the square lattice BCSOS model is thdine, and make it invisible altogethésince it is so shojt In
presence of the FOR lines sticking into the rough phasethe Ty setup theQ, are rational. In Fig. 13 we show only the
compare Fig. @) with Fig. 1. data forN=18; otherwise the graph becomes too crowded.
To our knowledge, such first-order ridges inside the rough Figure 14 shows the correspondi(Q,) behavior at
phase have never been realized theoretically or experime®ne value ofE, (the curves for the other values Bf, along
tally before. Unfortunately, they remain very short in our the FOR line lie almost on top of this cunvéNell inside the
model and are difficult to resolve numerically. Figui@ds  rough phasgbelow the FOR line in Fig. @], the f(Q,)
drawn on scale for point =1.43 andL = —0.63 where the curves are convex. The minimum is @,=0, and it shifts
FOR line is at its longest, but remains very short compared
to the distance of the FRE point to the cent®E/E=0.02. ~0.095
In the following we provide numerical evidence that FOR
lines in our model are for real and not a fancy, transient,
finite size scaling phenomenon. This is an important issue. 0.903
Suppose the FOR lines vanish in the thermodynamic limit.

Region 1l then represent a realization of the same type of 04 F 0.90 _
FRE points as the ones in the square lattice BCSOS mode! \__M
except that the transfer matrix is not stochastic anymore. We

determined the anistropic scaling exponeritom the lead- * \093/

ing, \g, and next leading\,, eigenvalues of the transfer 0.923

matrix in the sector with zero tilQ, =0. The mass gam ~0.105 \/ .
=In(\y/\,) represents the inverse of the timelike correlation m
length, §‘|zm*1~Nz. We do this at our best estimates for

the end point of the FOR line at several valueskoandL, 0.933

and findz=1.6+0.1 (see Fig. 12 This is close to the KPZ
exponeniz= . The assumption that the FOR lines vanish in -0.11 : : : :
the thermodynamic limit would confirm that KPZ scaling is 0 02 04 Q 06 08 !
valid beyond the stochastic subspace. However, in that inter-

pretation, it remains unclear how far we are from the sto- FIG. 13. Free energy as a function of the perpendicula@Xtjlat

chastic subspace. Crossover corrections to scaling mighstem sizeN=18 along the FOR line at pointé=1.43 andL=
mask the “true” nonstochastic exponent —0.63 in region II. The value oE, is shown above each curve.

V. REGION II: THE FOR LINES

X
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FIG. 14. The tilt angleQ,(Qy) at system sizél= 18 for points FIG. 15. Finite size scaling approximations for the location of
K=1.43 andL=—0.63 in region Il wherE,=0.918. the end point of the FOR line &=1.43 andL=—0.63. The

curves show the value d, where\y(Q,) =Ao(Qx+ J3/2N) for
smoothly withE, (rotate the page Moreover, the curve re- (@ Q=0 (b) Q= y3/2N, and(c) Q,=2+3/2N. The dot shows the
mains convex all the way into the wings, implying PT-type location of the FRE point.
boundaries with the SS facets. In the opposite limit, well
above the FRE point, the curves are concave. The two S§Q,) curves become concave in the wings, and therefore
facets are coexisting &,=0, the entiref (Q,) curve except that the PT transitions become first order; see Fig). on-
for its boundary values in the wings represent thermody+rast this with thew shapes in region I(Fig. 13, where the
namically unstable orientations. curvature of the central part 6{Q,) changes sign before its

The intermediate behavior of tH€Q,) curve determines wings come down, and thus creates the FOR line.

the crystal shape close the FRE point. In the square lattice Tpe phase boundary between regions Il and IlI, does not
BCSOS model, it flips at once from completely convex t0geem to be sharp. It looks abrupt in Fig. 6, but that is an
completely concav@hkez changing the sign o& in a poly-  artifact of the shortness of the FOR lines. This changeover
nomial like f(Q,)=aQ;]. At that FRE point the transfer could take many forms. It could be that first the FOR line
matrix is stochastic, and all surface orientations have thghrinks to zero length, and that only after that the PTE lines
same free energy. In generdl(Q,) has more structure. emerge from the FRE point. At the phase boundary the trans-
There are many possible structures, but we observe the simer matrix would not be stochastic, but the FRE point could

plest ones in our model. In Fig. 13, the curvature of thestjll resemble the stochastic one in the six-vertex model.
central part of thef(Q,) curve changes before its SS facet

wings come down. This creat®g-type shapes, and therefore
gives rise to the FOR line. All of this happens in a very
narrow E, interval. In Fig. 15 we show the location &,

where the curvature at the central part becomes zero, as 08 | _
function of N for K=1.43 andL=—0.63. To be more pre- 0.557

cise, we show the location ofy(Q,)=\g(Qx+ J3/2N) for

Q,=0, Q,=3/2N, andQ,=2+/3/2N. The curves pass the 0.603

FRE point at smalN, but then bend backward. Still, they do
not converge to the FRE poifits location is known exactly, ™ M
and is shown in the figure for referenc@he curve forQ,

-0.64 .
=0 straightens out for system sizes<IR<18, and con- 0.697

verges to a point below the FRE point&j=0.910+ 0.005. .

We conclude from this that the FOR lines are likely real.

0.745
VI. REGION IlI: SCALING AT PTE POINTS
—0.68 L L L I
In region Ill thef(Q,) curves near the FRE point aké 0 0.2 04 Q 06 08 1
shaped(inverted W’'s). This is shown in Fig. 16 forK x

=0.37 andL=—0.26. Figure 17 shows the corresponding F|G. 16. Free energy as function of the perpendiculacjifor
Qy(Q,) plots. The SS wings of th&(Q,) curve bend down  system sizeN=18 between the FRE and PTE pointskat 0.37
and cross the central minimum before the curvatur®at andL=—0.26 in region Ill. The value oE, is shown above each
=0 is able to change sign. This behavior implies that thecurve.
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-0.5 . . . . before, and their scaling properties have not been confirmed
numerically before.

It is advantageous to align the transfer matrix along the
: preferred direction of the steps. Therefore, we switch our
attention to the SS-rough phase boundaries where, inside the
SS facet, the steps run parallel to thaxis. Inside this SS
] facet, the tilt vector is equal Q= (Qx,Qy)=(0,1). We use
the T, setup, such tha®, is continuous.

Consider the crystal shape close to the PTE point. Define
— dy=Qy—Q,=0 andg,=Q,— Qx=Q, as the deviations of
the tilt with respect to the SS faceQ(=1 andQ;=0). Let
e,=E,—EJ ande,=E; —E, be the distances from the PTE
] point The crystal is rougffaceted whene,>0(e,<0). The
rough-to-faceted edge is PT typdirst ordey when e,
>0(ex<0). The free energy(qy,qy) as a function of the
tilt angles is an analytic function near PT transitions. This is
a direct result of the dilutefree fermion nature of the
“gas” of defects[13,14. Therefore we can expand it in

FIG. 17. The tilt angleQ,(Q,) at the points in the previous terms of a polynomial im, andq, . Our presumption is that
figure. The topmost curve correspondsBp=0.557. this remains true also at the PTE point:

However, it seems that the transition has more structure. 1 1
The FOR lines require the development of a concave segf(qx,qy)=a1|qx|+bley|qy|+§bgex|qy|3+zb4|qy|4+ -
ment in the center of(Q,), while the PTE points require the )
development of concave segments in the wings. These two
phenomena could be independent, and that would result in
both a FOR line and first-order SS-rough segments, as showNotice the absence of the quadratic term. This is a well
in Fig. 18a). The FRE points become first order as well. known property of the entropic hardcore repulsion of mean-
This means that subtle developments in the central part willering defect linesthe missing steps in the SS structuse
be skipped and not be expressed in the crystal shape if thdQw densities13,14. Equation(5) reproduces the usual PT
take place after the abrupt crossover from the central miniscaling behavior. The crystal shape follows from minimizing
mum to the wing minima. Our FOR lines are very short, andf(dx.dy) with respect toq, and gy at constante,>0 and
move rapidly into the thermodynamically unstable region to€,>0. This gives gq,=0 and b;e,+bze,q;+b,q3=0.
vanish from the crystal shape. But this is only one of theAlong a path of constart, >0 the tilt angle vanishes with a
possible scenarios. square root powerqy~|ey|1’2, and the free energy has the

We cannot resolve accurately how the structure evolvefamous PT power law singularity~|ey|3’2. This is the
from regions Il to Ill. It happens too fast, and the FOR linespower with which the surface orientation connects to the SS
are too short. We find some evidence that two concavéacet. The anisotropic scaling exponert2, I,~1%, follows
bubbles move rapidly along tH€Q,) curves from the center from thef~q§ power with which the free energy scales at
to the wings in opposite directions. In that case the FOR linghe PT points. This implies that the free energy of one single
splits into two first-order lines, as shown in Fig.(b8 Each  defect scales per unit length as~1,[ f(27/1,) — f(0)]~12,
line is still inside the rough phase, and each merges with thjith |, a finite lattice length in the direction perpendicular to
PT lines to form first-order SS-rough segments. ~ the defect.m is inversely proportional to the correlation

The scaling behavior at the PTE critical endpoints in re-jangth in they direction,m~ly’l. Our numerical results are

gion Il deserves attention. The existence of such points hagot shown here, since they are in complete agreement with
been anticipatef4] but not realized in solid-on-solid models ;g

At the PTE pointe,=0, the same quantities scale accord-
ing to Eq. (5) asay~|e,|"3 f~qy, andz=3. Along the
first-order line,e,<0, the jump in the orientation angle van-
ishes linearly,Aq,~|e,|. qx develops a jump as well, but
with a weaker power, because the rotation of the surface
orientation inside the rough phase is an higher-order effect.

It is not certain tha’qf, is the lowest surviving power in
the free energy at the PTE point. It could be tiyg|> term
instead. For example, in the conventional free fermion analy-
sis for PT transitions the free energy is an odd function in
la,|. In that case the critical exponents change dp
~le,|¥ f~qy, andz=4.

FIG. 18. Two possible scenarios for the crossover between re- In Fig. 19 we show the free energy as a functiorqéfat
gions Il and Ill. the PTE point forK =0.37 andL=—0.26 in region Il for

(a) (b)
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0.02

0.01

FIG. 19. Free energy as a function gf at PTE pointK
=0.37 andL=—0.26 as measured by, for system sizes 4N
=<10.

system sizes €N=<10. The curves are straight lines. This
confirms that the free energy is going to zerofasq‘y1 and
therefore thaz=3.

The scaling behaviag,~ |,|® across the PTE point and
the powerAq,~|e,| with which the jump ing, along the

DOUGLAS DAVIDSON AND MARCELL den NIJS
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would imply that the critical exponents at the merging point,
c=0, are the same as at the PTE poirts;3 and 8=1,
except that the jump in angle vanishes nowgas |,|%. We
find numerically that the free energy scales fati=>q‘y1 and,
therefore, that indeed=3.

VII. CONCLUSIONS

In this paper we obtained the crystal shape for a BCSOS
model on a honeycomb lattice. This shape is quite complex.
It contains two types of fully tilted facets, the SS and z2Z
facets. The latter disappear for negative nearest-neighbor in-
teractions. In region Il in that part of the phase diagram, we
find that the rough-to-SS facet boundary becomes partially
first order with sharp edges where the surface orientation
jumps. These first-order segments connect at PTE critical
end points to conventional PT-type segments where the
rough phase connects to the facet without a jump in orienta-
tion. The scaling properties at these PTE points follow a
simple higher-order polynomial free energy generalization of
PT transitions, with anisotropic scaling with exponent3
instead ofz=2.

In region Il of the phase diagram the rough-SS phase
boundary is PT type everywhere, but a first-order line sticks
out of the FRE point into the rough phase. These FOR lines
remain very small in this model, but we resolved them nu-
merically sufficiently to be quite confident they exist.

The main object of this study is to establish how general
‘and universal the KPZ scaling properties of the FRE point in
; . the square lattice BCSOS model are. Our conclusion is that
that _the jump scales linearly, but the results are somewhafq siochastic nature of their transfer matrix makes KPZ-type
ambiguous. FRE points special and unstable. In general, the local crystal

At the llI-1V phase boundary, the PT segment along thegn e around FRE points is more complex than simply one

first-order boundary vanishes are difficult to resolve numeri
cally because of the discrete natureqgf We find evidence

rough-SS facet boundary shrinks to zero and the two PT

points merge. This can be described by a polynomial of th(ﬁ

form

f(ax 1qy) = al|Qx| + b16y|qy|

1 1
+30a(c—€))lay|*+ 7 bglay*+ . (6)

cet ridge splitting into two PT lines. Instead there are FOR

nes sticking into the rough phase and/or the rough-facet
phase boundaries become first order. Even more complex
structuresnot observed in our modehre possible as well.

We are unable to resolve the scaling properties of the the
critical point at the end of the FOR linepposite to the FRE
point). The FOR lines remain too short. This aspect needs
further study.
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