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Temperature dependence of facet ridges in crystal surfaces

Douglas Davidson and Marcel den Nijs
Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560

~Received 30 October 1998!

The equilibrium crystal shape of a body-centered solid-on-solid~BCSOS! model on a honeycomb lattice is
studied numerically. We focus on the facet ridge end points~FRE’s!. These points are equivalent to one-
dimensional Kardar-Parisi-Zhang–type growth in the exactly soluble square lattice BCSOS model. In our more
general context the transfer matrix is not stochastic at the FRE points, and a more complex structure develops.
We observe ridge lines sticking into the rough phase where the surface orientation jumps inside the rounded
part of the crystal. Moreover, the rough-to-faceted edges become first order with a jump in surface orientation,
between the FRE point and Pokrovsky-Talapov~PT! type critical endpoints. The latter display anisotropic
scaling with exponentz53 instead of familiar PT valuez52. @S1063-651X~99!08905-9#

PACS number~s!: 64.60.Fr, 68.35.Bs, 64.60.Ht, 68.35.Rh
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I. INTRODUCTION

Equilibrium crystal shapes typically consist of various fl
facets connected by rounded surfaces. The way this struc
changes with temperature has been studied for many y
@1–10#. Most aspects are well established. For examp
rounded parts are associated with crystal orientations w
the surface is rough, and flat facets can disappear from
equilibrium shape at the roughening temperature of th
specific facets. Roughening transitions belong to
Kosterlitz-Thouless~KT! universality class@11#. Many de-
tails follow from the scaling properties of the KT transitio
e.g., that the facet diameter vanishes exponentially with
duced temperature, and that the curvature of the surfac
universal just above the KT transition at that facet orien
tion.

Flat facets typically connect smoothly to rounded rou
surface areas. The surface orientation in the rounded
varies continuously and connects without a jump in an
onto the flat facet. Such phase boundaries are describe
Pokrovsky-Talapov~PT! transitions@12–14#. The angle dif-
ference vanishes with a32 power. The most salient feature o
PT transitions is their anisotropic scaling. The rounded s
face on the rough side of the PT transition can be interpre
as a stepped surface from the perspective of the flat fa
The characteristic lengths along,j i , and perpendicular to
these steps,j' , scale asj i;j'

z , with z52.
Two-dimensional equilibrium statistical mechanical sy

tems are mathematically equivalent to one-dimensio
quantum systems at zero temperature. The transfer m
formalism of the first is the path integral representation
the second. PT transitions are equivalent to metal-insul
transitions in one-dimensional fermion systems. The st
represent the world lines of fermions, and the lattice dir
tion parallel to the steps plays the role of time. In the rou
phase~the metal phase! the fermions behave relativistically
i.e., time j i scales compared to spacej' , with dynamic
exponentz51, j i;j' . At the PT metal-insulator transition
the fermions behave nonrelativistically, with a dynamic e
ponentz52 instead ofz51 @13,14#.

The rough-to-facet interface can also be first order, wit
discontinuity in the surface orientation angle instead of
PRE 591063-651X/99/59~5!/5029~11!/$15.00
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PT-type smooth connection. The critical end point betwe
such first-order and PT-type segments provides an exam
of a quantum field theory with a dynamic exponentz53. To
our knowledge an explicit example of such a PT critical e
point ~PTE! has not been reported before. We will do so
this paper.

Our current interest in these issues stems from the disc
ery that the scaling properties at facet ridge end po
~FRE’s! are related to KPZ-type growth@8#. FRE points are
the end points of ridges where two facets connect direc
The ridge splits into two PT or two first-order transition
with a rounded rough surface in between. The exac
soluble body-centered solid-on-solid~BCSOS! model on a
square lattice~with only next-nearest-neighbor interaction!
contains such a FRE point@9#. Moreover, the transfer matrix
of this model becomes stochastic at the FRE point, and m
exactly onto the master equation time evolution operator
the so-called brick model in one dimension lower@8,15,16#.
The latter describes a growing one-dimensional~1D! crystal.
The 1D growing interface is rough, and its scaling propert
belong to the KPZ universality class. The' direction repre-
sents the spatial direction, and thei direction represents time
just as in mapping of the PT transtion to 1D fermions me
tioned above. The dynamic exponent is equal toz5 3

2 . The
characteristic time needed to reach the stationary grow
state diverges asj i;Nz, with N the size of the 1D lattice.

This translates into nontrivial scaling properties of KP
type FRE points@8–10#. When approached from the rounde
phase in the direction parallel to the facet ridge~see Fig. 1!,
the surface orientation jumps. Moreover, at the rough s
the characteristic length scale in the direction along the fa
ridge, j i , scales asj i;j'

z with z5 3
2 .

This exact mathematical mapping between the sca
properties of equilibrium phase transitions to those of d
namic nonequilibrium transitions in one lower dimension
intriguing. But it leaves us with an important question. T
above BCSOS model satisfies a special symmetry at its F
point. The transfer matrix is ‘‘accidentally’’ stochastic. It ha
full rotational symmetry in the spin-1

2 operators~the step
variables!. A stochastic transfer matrix must preserve pro
ability. This implies that the sum of the elements in ea
column add up to 1, and that the disordered state~the sum of
5029 ©1999 The American Physical Society
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all microstates, all with the same weight! is the left ground
state eigenvector. Transfer matrices in statistical mecha
and quantum field theory rarely obey this constraint. It
quires a high symmetry, such as the spin rotation symm
in the six-vertex model. This specific rotational symme
also implies the complete degeneracy of the free energy
respect to all surface orientations. The disordered state na
of the left eigenvector, however, is the essence of the
chasticity.

FRE points are a more general phenomenon, not lim
to KPZ-type stochastic transfer matrices. We need to inv
tigate whether the KPZ-type scaling exponentz5 3

2 is ge-
neric. Maybe stochasticity is restored at large length sca
asymptotically close to the FRE point, with nonstochastic
an irrelevant operator. More likely, the FRE point changes
character. In this paper we present such an investigatio
numerical study of a model with a complex crystal shape

We define this model in Sec. II. It originates from o
earlier study of possible spontaneous low-angle faceting
fcc~111!-type facets@17#. This model has the required prop
erty that its crystal shape is complex and that accidental s
metries are unlikely. Section III contains an overview of t
phase diagram and crystal shapes. In Sec. IV we describe
numerical method.

The crystal structure is actually much richer than we
ticipated. Entire facets vanish as functions of the coupl
constants. FRE points become triple points. We also fin
more exotic feature, a first-order~FOR! line inside the rough
phase emerging from the FRE point~Sec. V!. At this line the
surface orientation angle inside the rough phase jumps. F
lines have been seen before only in the context of mean
theory @4,5#. Bukman and Shore@10# speculated about th
possible generalizations of Fig. 1 in their paper about
exact solution of the FRE point in the square lattice BCS
model. The FOR line structure corresponds to their so-ca
ridge scenario. However, they doubted that it would be re
ized. In our model, FOR lines are clearly present althou
they remain very short.

In a nearby section of the phase diagram, the FOR li
disappear. The rough-to-faceted ridge becomes sharp w
jump in the surface orientation angle. These first-order li
terminate further away from the FRE point in PTE poin
and the edge continues as a second order PT line. In Se
we study the scaling properties at these PTE points. T

FIG. 1. Crystal structure with facet ridge end point as realized
the BCSOS model on a square lattice with only next-near
neighbor interactions.
cs
-
ry

th
re

o-

d
s-

s,
y
s
, a

in

-

ur

-
g
a

R
ld

e
S
d
l-
h

s
a

s

VI
y

display anisotropic scaling with exponentz53. The conclu-
sions are presented in Sec. VII.

II. MODEL

Our model emerges naturally at a coarse grained level
study of spontaneous low angle faceting in fcc~111! facets.
This will be described elsewhere@17#. For clarity it is more
appropriate to introduce the model from a different persp
tive. Consider the~001! facet of a hexagonal-close-packe
~HCP! type crystal, withABABA-type stacking of triangular
slices. The solid-on-solid model description of such surfa
leads to a BCSOS model on a honeycomb lattice. The
face heights on theA-type triangular sublattice are even in
tegers,hA50,62,64, . . . , andthose on theB-type triangu-
lar sublattice are odd integers,hB561,63,65, . . . . The
simplest Hamiltonian for such a surface is

H5
1

4
L(

~ i , j !
~hi2hj !

2, ~1!

with ( i , j ) the summation over next-nearest-neighbor c
umns.

We break the symmetry between theA- and B-type col-
umns, such that two distinct~001! facets can be cut from this
crystal, those withA’s or those withB’s on top. A and B
could be different type of molecules, but that is not what
have in mind. The interactions between the next-near
neighbor columns,LA andLB , would then be different. In-
stead, assume thatA andB are identical types of atoms, bu
that for some reason the bulk structure is reconstructed s
that theA’s move downward from the positions exactly
between theB layers. In that case the bonds between theA
atoms with theB’s in the layer beneath them are strong
than with theB’s in the layer above them. We can model th
by adding a nearest-neighbor coupling in the BCSOS mo

H5K(
^ i , j &

~hi2hj !1
1

4
L(

~ i , j !
~hi2hj !

2. ~2!

The first sum is over nearest neighbors^ i , j &, where i ~j!
always refers to theA ~B! sublattice.

An alternative more generic scenario is the one realize
naphthalene@7# ~for a different crystal symmetry, however!.
It involves only a surface reconstruction, no bulk reconstr
tion. Consider a crystal where theA’s andB8s are identical
molecules, but with an orientation degree of freedom po
ing in two different directions. Inside the bulk these tw
orientations can be equivalent by~a slide-mirror-plane type!
symmetry, but the presence of the surface typically bre
that equivalence. The surface molecules rotate due to sur
relaxation. Typically they do so differently for theA’s or the
B’s on top. This breaks theA B symmetry locally close to the
surface and creates an energy difference,KÞ0. The next-
nearest-neighbor interactions remain virtually equal,LA
.LB5L, if the orientational aspects of the interactions d
cay rapidly with distance.

We introduce tilt energiesEi , i 51, 2, and 3, to study the
crystal structure at and nearby the central~001! facet orien-
tation. The functional dependence of the free energy w
respect to theseEi yields the crystal shape by means of t
Wulff construction@3#.
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H5
1

4
L(

~ i , j !
~hi2hj !

2

1~K1E1! (
^ i , j &1

~hi2hj !

1~K1E2! (
^ i , j &2

~hi2hj !1~K1E3! (
^ i , j &3

~hi2hj !. ~3!

The summations run over nearest-neighbor columns in
three different directions; see Fig. 2. This figure shows th
representations of the surface configuration simultaneou
The first is in terms of the height variables associated w
the plaquettes of the triangular lattice. The second is in te
of the arrows along the bonds of the dual lattice. These
note whether nearest-neighborAB columns differ in height
by 11 or 21. When looking along an arrow, the site to th
left is higher than the site to the right. Finally, the thi
representation is in terms of the thin~fat! lines along the
same bonds. They denote whether theK bonds are in the low
~high! energy states. The three tilt fieldsEi are related as

E15Ex ,

E25
A3

2
Ey2

1

2
Ex , ~4!

E352
A3

2
Ey2

1

2
Ex .

Ex and Ey are conjugate to the tilt angles in thex and y
directions, i.e., parallel and perpendicular to one of the th
main axes of the honeycomb lattice.

We simplify the model further by not allowing step exc
tations to touch each other. This breaks theK→2K symme-
try of the model. Figure 3 shows all the remaining loc
configurations in this ten-vertex model, in terms of the th
fat line representation. The Boltzmann weight contributio
are shown in Fig. 3 below each vertex configuration, w
zc5e22K22L, zs5e22K24L, zx5e2Ex/4, and zy5e2A3Ey/4.
The coupling constants are made dimensionless by absor
the factorkBT.

FIG. 2. Lattice of the triangular BCSOS model defined in E
~3!.
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III. PHASE DIAGRAM

The phase diagram of our model at zero tilt fieldsEx
5Ey50 @Eq. ~2!# is shown in Fig. 4. The~001! facet is
stable at all temperatures inside the quadrant whereK andL
are both positive. The step excitations do not create suffic
entropy to roughen this surface even atT5` ~i.e., pointK
5L50). The roughening line lies inside the other thr
quadrants. We determine its location in the conventio
manner for transfer matrix finite size scaling calculatio

.

FIG. 3. All possible local configurations around each vertex, a
their Boltzmann weights.

FIG. 4. Phase diagram of the triangular BCSOS model at z
tilt, fields Ex5Ey50.
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@18#. The step free energyh in semi-infinite strips of widthN
is equal to the difference in free energy for periodic a
stepped boundary conditions in the finite direction. The
roughening line is obtained by extrapolating the lines wh
Nh5 1

4 p for increasing strip widths.
At low temperatures forL,0 the surface spontaneous

facets into three coexisting orientations. We refer to thes
straight-step~SS! facets, shown in Fig. 5~a!to distinguish
them from the three zigzag~ZZ! structures, shown in Fig
5~b!, that appear elsewhere in the phase diagram at non
tilt fields Ei . The transition from the rough phase into the S
phase with three coexisting facets is first order. The surf
orientation angle jumps. The location of this transition line
determined by the methods described in Sec. IV. Its loca
is not trivial, unlike the square lattice BCSOS model@6#,
where it is simply the meeting pointEi50 of severalEi
Þ0 PT transition lines.

An additional ground state appears in the quadrant w
K,0 andL.0, the triangle state shown in Fig. 5~c!. This
state represents a highly degenerate surface reconstruc
Unfortunately this ground state is unstable against ther
fluctuations immediately atT.0 in this particular model.
The surface reconstruction and preroughening phenom
associated with this type of ground state could have b
quite interesting.

We determine the crystal shape at each value ofK andL
by introducing the tilt fieldsEi , see Eq.~3!. The technical
details of these calculations are described in Sec. IV. In
section we summarize the crystal shape development
temperature. We identified at least 5 distinct crystal str
tures, labeled I through V in Fig. 6, which shows at whi
values ofK and L they are realized, as an overlay of th
zero-tilt phase diagram~Fig. 4!.

In region I, located atL.0, the crystal structure consis
of a nontilted flat facet surrounded by a rough, rounded c
tral region, and fully tilted facets of both types, SS and ZZ
the edges~each repeated three times!. This structure is shown
in Fig. 7. All facets are separated from the rough region
PT lines. Their exact location can be calculated easily for
SS facets. Compare the free energy density of the fac
phase with that of a state with one line defect, e.g., as sh
in Fig. 8. The PT transition occurs when the free energy
the faceted phase becomes equal to the free energy with
defect. The calculation is straightforward, but leads to
somewhat complex formula.

The PT lines in region I never touch or join. There are
FRE points between the SS and ZZ facets. The follow
analysis explains why. Suppose facet ridges between the

FIG. 5. Surface configurations in the~a! straight-step~SS! -type
facets,~b! zigzag ~ZZ! -type facets, and~c! reconstructed triangle
ground state.
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and SS facets exist. Both faceted structures are frozen, w
out any fluctuations~in our model!, and therefore the free
energy in both is equal to the energy,EZZ52K12L2 1

2 Ex

and ESS52K14L2 1
2 Ex2 1

2 A3Ey . At a facet ridge these
must be equal. This happens atEy5(4/A3)L. However, the
ZZ and SS facets roughen before this line is reached. C
sider the zero temperature limit of theEZZ5ESS line. Line
defects such as the one shown in Fig. 8 have the same en
as the two faceted configurations. The facets are unst
with respect to these defects, because at nonzero temp

FIG. 6. Regions in the phase diagram where the various cry
shapes. Regions I–V as described in the text are realized.
dashed line shows the location of the roughening line in the z
field model.

FIG. 7. Global crystal shape at pointK520.24 andL50.29 in
region I.
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tures they gain entropy while the facets remain frozen. T
PT lines emerge from zero temperature and preempt the f
ridge.

As L decreases, the ZZ facets shrink and disappearL
50. At L<0, the only remaining fully tilted facets are th
three SS ones. AlongL50, they are still completely sepa
rated from each other, with rough rounded orientations
between them, and PT transitions as borders. ForL,0, facet
ridges appear between the three SS facets. These facet r
are capped by FRE points. The local structure at these F
points changes with temperature in an exotic manner
shown in Fig. 9. The global crystal shape structure is l
interesting. Initially it contains the central flat facet but th
shrinks and vanishes across the roughening line.

Figure 9~a! shows the local structure around the FR
point in region II. Two PT lines emerge from the FRE poin
and form the borders between the SS facets and the ro
phase. Moreover, a FOR line emerges from the FRE p
inside the rough phase. At this line the crystal orientat
angle jumps. The skipped unstable surface orientations
associated with local ZZ facet type zigzag step configu
tions. Those are unfavorable forL,0 and largeK. The FOR
line is definitely resolved in our numerical data, but rema
extremely short~Sec. V!. At its longest extension, it reache
only about 2% of the distance from the FRE point to t
center. In some parts of region II it is so short that it can o
barely be distinguished numerically, if at all.

As the boundary with region I is approached, the FO

FIG. 8. SS facet with defect line~dashed line!.

FIG. 9. Local crystal shape near the FRE point~a! at pointsK
51.43 andL520.63 in region II, and~b! at pointsK51.18 and
L520.58 in region III. Bold lines represent first-order transition
and thin lines continuous ones.
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lines shrink. It seems that their length decreases until it
nally goes to zero whenL50. The FOR lines also disappea
at the boundary between regions II and III. This bounda
looks sharp in Fig. 6, but in reality it must be a smooth ty
of crossover. We discuss this in Sec. VI.

In region III ~see Fig. 6!, the FOR line vanishes. Th
border between the SS facets and the rough phase chang
well. Close to the FRE point the SS-rough boundaries
now first order. They continue as PT lines beyond PTE-ty
critical end points. Figure 9~b! shows this local structure.

The PTE points move closer to the FRE point as regio
is approached. They disappear completely atL50. The first-
order segments become longer toward region IV. At
III-IV phase boundary, two PTE points from opposite FR
sides meet, and, in region IV, the entire SS-rough ph
boundary is first order. In the mean time, the central rou
region has been shrinking, and it disappears completel
the IV-V phase boundary. Region V coincides with the S
faceted phase shown in Fig. 4.

IV. NUMERICAL METHODS

We determine the crystal shape by means of the tran
matrix method. This means that we calculate the exact
energies for semi-infinite lattices in terms of the largest a
nearby eigenvalues of the transfer matrix. This is a stand
method. Therefore we only need to comment here on
details concerning the surface tilt fieldsEi , the amount of
surface tiltsQi they create, and the Wulff construction~Leg-
endre transformation! between these two types of quantitie

There are two natural choices for the directions in wh
the lattice is infinite.T can be aligned with they axis or the
x axis; see Fig. 2. We refer to these asTx- and Ty-type
transfer matrices. InTx , the infinite lattice direction coin-
cides with they axis, and the finite direction with thex axis.
In Ty it is the other way around. Notice that for each choi
there are three rotationally equivalent ones. ForTx , we are
able to find the largest eigenvalues for 4<N<18, whereN is
the number of vertices in the time slice. ForTy , we can
calculate the largest eigenvalues for 2<N<10.

Consider the free energy as a function of tilt ang
f (Qx ,Qy). This is the free energy of a facet at a given o
entation (Qx ,Qy). Some orientation ranges are thermod
namically unstable. These angles are not represented in
crystal shape. They are skipped, and result in sharp edge
the surface. To obtain the crystal shape one needs to m
mize f (Qx ,Qy) under the constraint that the volume of th
crystal~the amount of matter! is conserved. This leads to th
famous Wulff construction@1#, which is in essence a geo
metric construction for the Legendre transformation
f (Qx ,Qy). The tilt fields Ei are the conjugate variables t
the tilt anglesQi . The crystal shape is a direct representat
of the free energy functionf (Ex ,Ey) at a certain temperatur
~at specific values ofK and L) @3#. The shape functions
Qx(Ex ,Ey) and Qy(Ex ,Ey) tell us which surface orienta
tions are represented in the crystal.

The transfer matrix provides us with a mixed version
this. It leads tof (Ei ,Q') and Qi(Ei ,Q'). We control the
tilt angle in the finite lattice directionQ' , and the tilt field in
the infinite directionEi . Qi sets itself.Q' is set by the
boundary condition in the finite lattice direction,h(xi ,x'

,
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1N)5h(xi ,x')1a. The total tilt of the surface can take th
valuesa50,62, . . . up toN, when the transfer matrix is
aligned with they axis. This means that an average slo
Qx5A3a/2N is frozen into the surface in thex direction. In
the opposite setup, withTy , where the lattice is infinite in
the x direction, a tiltQy5a/2N is frozen into the surface in
the y direction.

Consider the transfer matrix at zero tilt fieldE'50 and a
specific value ofEi . We determine the largest eigenvaluel0
of T for each value ofQ' . The free energy density is equ
to f (Ei,0,Q')52 ln(l0)/N. Figure 10~a! shows a typical ex-
ample, atK520.24, L50.29, andEi50. Only theQ'.0
side is shown, because the curve is mirror symmetric.
discrete set of possible tilt anglesQ' increases with the strip
width N, and we need to perform a finite size scaling~FSS!
analysis to obtain the infinite-by-infinite lattice result. Fort
nately these FSS corrections are reasonably small, and
cally converge smoothly.

The tilt angleQ' that is realized is the one that minimize

FIG. 10. ~a! Free energyf (Ey ,Qx) and ~b! the vertical surface
tilt Qy(Ey ,Qx) as functions of horizontal tiltQx at point K5
20.24,L50.29 in region I forEy50 using theTx transfer matrix
setup, whereQx takes only discrete values. Data are shown
system sizes 6<N<18.
e

e

pi-

the free energy. This corresponds to the lowest point in F
10~a!. There is no need to repeat the calculation for oth
values E'Þ0. They are related by f (Ei ,E' ,Q')
5 f (Ei,0,Q')1E'Q' becauseQ' is conserved by the trans
fer matrix. In other words, the crystal shapef (E' ,Ei) and
the shape functionQ'(E' ,Ei) follow from the Legendre
transform off (Ei ,Q') with respect toQ'.

It is easy to see from graphs like Fig. 10~a! how Q' varies
with E' . Simply rotate the page slowly and watch the min
mum shift, and sometimes skip certain orientations. In F
10~a! such skips do not take place. We follow theEx axis at
Ei5Ey50 in Fig. 7 along which there are no orientation
discontinuities. Notice thatf (Ei50,Q') develops a cusp a
Qx50 with system size. This means that the central~001!
facet is stable at smallE' . The ~001!facet boundary is a PT
transition because the cusp is convex atQ'50 and no ori-
entations are being skipped for increasingE' ~rotate the
page!. The KT roughening transition takes place at valuesK
and L where the cusp disappears. In the rough pha
f (Ei ,Q') has a quadratic minimum atQ'50. Its curvature
represents the roundness of the crystal shape at that ori
tion.

Next, consider the stability of the SS fully tilted facet. A
maximum tilt angle the free energyf (Ei ,Q') in Fig. 10~a!
has a definite slope. This means that the SS facet is stabl
a specific range ofE'5Ex . Curvature would imply that the
SS facet is thermodynamically unstable, and would be ab
in the crystal shape. The SS-rough phase boundary is a
transition becausef (Ei ,Q') is convex atQ' near its maxi-
mum, and no values ofQ' are being skipped by the Leg
endre transformation.

The above analysis is still incomplete because we did
check how Qi is shifting simultaneously. The function
Qi(Ei ,Q') is contained in the right and left eigenvectors
the transfer matrix associated with the largest eigenvalue
the interpretation ofT as a quantum mechanical time evol
tion operator,Qi is a velocity type off-diagonal expectatio
value. Figure 10~b! showsQi(Ei ,Q')5Qy(Ey ,Qx) at our
example point. It shows that the orientation of the step ex
tations in the surface rotates as expected, from vertical
outside theQ'5Qi50 flat facet to the correct slope jus
outside the SS fully tilted facet.

In the above example, we used theTx transfer matrix
setup to investigate the crystal shape in the horizontal di
tion. In this setup Qx takes only discrete values,Qx

5A3a/2N. The opposite setup withTy would have been
better, since thenQx would have been continuous andQy
would have been rational. Figure 11 illustrates this. We s
useTx, but now determine the crystal structure along theEy
axis. The free energy curve lacks mirror symmetry. It sho
the SS facet at theEi,0 side and the ZZ facet at theEi
.0 side. It also shows the central facet aroundEi50. The
facet edges are smooth since they are PT-like.

From the above example it must be clear how we de
mined the development of the crystal shape withK and L,
described in Sec. III. It required numerous graphs of the t
shown in Figs. 10 and 11. The results are quantitively rep
sented in Figs. 6, 7, and 9. The latter two show the cry
shapes at actual values ofK andL as specified in the figure
captions. In Secs. V and VI we limit the discussion to t

r



in

lly
b

Z-
th
s

g
e

ur

re

R
n
u
i
o

d
W

r

on
or

in
is
te
to
ig

w-

e

e
d.

t ling
e

dy-

PRE 59 5035TEMPERATURE DEPENDENCE OF FACET RIDGES IN . . .
most interesting features of the crystal shapes: the FOR l
and the PTE points~see Fig. 9!.

V. REGION II: THE FOR LINES

In region II the crystal shape contains only SS-type, fu
tilted facets, with facet ridges in between them, capped
FRE points. The only structural difference with the KP
type FRE points in the square lattice BCSOS model is
presence of the FOR lines sticking into the rough pha
compare Fig. 9~a! with Fig. 1.

To our knowledge, such first-order ridges inside the rou
phase have never been realized theoretically or experim
tally before. Unfortunately, they remain very short in o
model and are difficult to resolve numerically. Figure 9~a! is
drawn on scale for pointsK51.43 andL520.63 where the
FOR line is at its longest, but remains very short compa
to the distance of the FRE point to the center,DE/E.0.02.

In the following we provide numerical evidence that FO
lines in our model are for real and not a fancy, transie
finite size scaling phenomenon. This is an important iss
Suppose the FOR lines vanish in the thermodynamic lim
Region II then represent a realization of the same type
FRE points as the ones in the square lattice BCSOS mo
except that the transfer matrix is not stochastic anymore.
determined the anistropic scaling exponentz from the lead-
ing, l0, and next leading,l1, eigenvalues of the transfe
matrix in the sector with zero tiltQ'50. The mass gapm
5 ln(l0 /l1) represents the inverse of the timelike correlati
length, j i.m21;Nz. We do this at our best estimates f
the end point of the FOR line at several values ofK andL,
and findz.1.660.1 ~see Fig. 12!. This is close to the KPZ
exponentz5 3

2 . The assumption that the FOR lines vanish
the thermodynamic limit would confirm that KPZ scaling
valid beyond the stochastic subspace. However, in that in
pretation, it remains unclear how far we are from the s
chastic subspace. Crossover corrections to scaling m
mask the ‘‘true’’ nonstochastic exponentz.

FIG. 11. Free energyf (Ey ,Qx) as a function of the surface til
field Ey at pointsK520.24 andL50.29 in region I forQx50
using theTx transfer matrix setup, whereQy is a continuous vari-
able. Data are shown for system sizes 6<N<18.
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The existence of the FOR lines is much more likely, ho
ever. Figure 13 shows the variation of the free energyf (Qx)
at K51.43 andL520.63 for variousEy close to the FRE
point in Fig. 9~a!. We need to use theTx setup, the one with
the infinite lattice direction aligned with the FOR line. Th
rational values ofQy in the Ty setup skip across the FOR
line, and make it invisible altogether~since it is so short!. In
theTx setup theQx are rational. In Fig. 13 we show only th
data forN518; otherwise the graph becomes too crowde

Figure 14 shows the correspondingQy(Qx) behavior at
one value ofEy ~the curves for the other values ofEy along
the FOR line lie almost on top of this curve!. Well inside the
rough phase@below the FOR line in Fig. 9~a!#, the f (Qx)
curves are convex. The minimum is atQx50, and it shifts

FIG. 12. Finite size scaling behavior of the mass gap sca
exponentz, at the end point of the FOR line, at two points in th
phase diagram:~a! K51.43 andL520.63, and~b! K50.51 and
L520.42. The curves converge to values close to the KPZ
namic exponentz5

3
2 .

FIG. 13. Free energy as a function of the perpendicular tiltQx at
system sizeN518 along the FOR line at pointsK51.43 andL5
20.63 in region II. The value ofEy is shown above each curve.
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smoothly withEx ~rotate the page!. Moreover, the curve re
mains convex all the way into the wings, implying PT-typ
boundaries with the SS facets. In the opposite limit, w
above the FRE point, the curves are concave. The two
facets are coexisting atEx50, the entiref (Qx) curve except
for its boundary values in the wings represent thermo
namically unstable orientations.

The intermediate behavior of thef (Qx) curve determines
the crystal shape close the FRE point. In the square la
BCSOS model, it flips at once from completely convex
completely concave@like changing the sign ofa in a poly-
nomial like f (Qx)5aQx

2#. At that FRE point the transfe
matrix is stochastic, and all surface orientations have
same free energy. In general,f (Qx) has more structure
There are many possible structures, but we observe the
plest ones in our model. In Fig. 13, the curvature of t
central part of thef (Qx) curve changes before its SS fac
wings come down. This createsW-type shapes, and therefor
gives rise to the FOR line. All of this happens in a ve
narrow Ey interval. In Fig. 15 we show the location ofEy
where the curvature at the central part becomes zero,
function of N for K51.43 andL520.63. To be more pre
cise, we show the location ofl0(Qx)5l0(Qx1A3/2N) for
Qx50, Qx5A3/2N, andQx52A3/2N. The curves pass th
FRE point at smallN, but then bend backward. Still, they d
not converge to the FRE point~its location is known exactly,
and is shown in the figure for reference!. The curve forQx
50 straightens out for system sizes 12<N<18, and con-
verges to a point below the FRE point atEy50.91060.005.
We conclude from this that the FOR lines are likely real.

VI. REGION III: SCALING AT PTE POINTS

In region III the f (Qx) curves near the FRE point areM
shaped~inverted W’s!. This is shown in Fig. 16 forK
50.37 andL520.26. Figure 17 shows the correspondi
Qy(Qx) plots. The SS wings of thef (Qx) curve bend down
and cross the central minimum before the curvature atQx
50 is able to change sign. This behavior implies that

FIG. 14. The tilt angleQy(Qx) at system sizeN518 for points
K51.43 andL520.63 in region II whenEy50.918.
ll
S

-

ce

e

m-
e
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e

f (Qx) curves become concave in the wings, and theref
that the PT transitions become first order; see Fig. 9~b!. Con-
trast this with theW shapes in region II~Fig. 13!, where the
curvature of the central part off (Qx) changes sign before it
wings come down, and thus creates the FOR line.

The phase boundary between regions II and III, does
seem to be sharp. It looks abrupt in Fig. 6, but that is
artifact of the shortness of the FOR lines. This changeo
could take many forms. It could be that first the FOR li
shrinks to zero length, and that only after that the PTE lin
emerge from the FRE point. At the phase boundary the tra
fer matrix would not be stochastic, but the FRE point cou
still resemble the stochastic one in the six-vertex model.

FIG. 15. Finite size scaling approximations for the location
the end point of the FOR line atK51.43 andL520.63. The
curves show the value ofEy wherel0(Qx)5l0(Qx1A3/2N) for
~a! Qx50 ~b! Qx5A3/2N, and~c! Qx52A3/2N. The dot shows the
location of the FRE point.

FIG. 16. Free energy as function of the perpendicular tiltQx for
system sizeN518 between the FRE and PTE points atK50.37
andL520.26 in region III. The value ofEy is shown above each
curve.
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However, it seems that the transition has more struct
The FOR lines require the development of a concave s
ment in the center off (Qx), while the PTE points require th
development of concave segments in the wings. These
phenomena could be independent, and that would resu
both a FOR line and first-order SS-rough segments, as sh
in Fig. 18~a!. The FRE points become first order as we
This means that subtle developments in the central part
be skipped and not be expressed in the crystal shape if
take place after the abrupt crossover from the central m
mum to the wing minima. Our FOR lines are very short, a
move rapidly into the thermodynamically unstable region
vanish from the crystal shape. But this is only one of t
possible scenarios.

We cannot resolve accurately how the structure evol
from regions II to III. It happens too fast, and the FOR lin
are too short. We find some evidence that two conc
bubbles move rapidly along thef (Qx) curves from the cente
to the wings in opposite directions. In that case the FOR
splits into two first-order lines, as shown in Fig. 18~b!. Each
line is still inside the rough phase, and each merges with
PT lines to form first-order SS-rough segments.

The scaling behavior at the PTE critical endpoints in
gion III deserves attention. The existence of such points
been anticipated@4# but not realized in solid-on-solid mode

FIG. 17. The tilt angleQy(Qx) at the points in the previous
figure. The topmost curve corresponds toEy50.557.

FIG. 18. Two possible scenarios for the crossover between
gions II and III.
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before, and their scaling properties have not been confirm
numerically before.

It is advantageous to align the transfer matrix along
preferred direction of the steps. Therefore, we switch
attention to the SS-rough phase boundaries where, inside
SS facet, the steps run parallel to thex axis. Inside this SS
facet, the tilt vector is equal toQW 5(Qx ,Qy)5(0,1). We use
the Ty setup, such thatQx is continuous.

Consider the crystal shape close to the PTE point. De
qy5Qy

!2Qy>0 andqx5Qx2Qx
!5Qx as the deviations of

the tilt with respect to the SS facet (Qy
!51 andQx

!50). Let
ey5Ey2Ey

! andex5Ex
!2Ex be the distances from the PT

point The crystal is rough~faceted! wheney.0(ey,0). The
rough-to-faceted edge is PT type~first order! when ex
.0(ex,0). The free energyf (qx ,qy) as a function of the
tilt angles is an analytic function near PT transitions. This
a direct result of the dilute~free fermion! nature of the
‘‘gas’’ of defects @13,14#. Therefore we can expand it in
terms of a polynomial inqx andqy . Our presumption is tha
this remains true also at the PTE point:

f ~qx ,qy!5a1uqxu1b1eyuqyu1
1

3
b3exuqyu31

1

4
b4uqyu41•••.

~5!

Notice the absence of the quadratic term. This is a w
known property of the entropic hardcore repulsion of me
dering defect lines~the missing steps in the SS structure! at
low densities@13,14#. Equation~5! reproduces the usual P
scaling behavior. The crystal shape follows from minimizi
f (qx ,qy) with respect toqx and qy at constantex.0 and
ey.0. This gives qx50 and b1ey1b3exqy

21b4qy
350.

Along a path of constantex.0 the tilt angle vanishes with a
square root power,qy;ueyu1/2, and the free energy has th
famous PT power law singularityf ;ueyu3/2. This is the
power with which the surface orientation connects to the
facet. The anisotropic scaling exponentz52, l y; l x

z , follows
from the f ;qy

3 power with which the free energy scales
the PT points. This implies that the free energy of one sin
defect scales per unit length asm; l x@ f (2p/ l x)2 f (0)#; l x

2 ,
with l x a finite lattice length in the direction perpendicular
the defect.m is inversely proportional to the correlatio
length in they direction,m; l y

21 . Our numerical results are
not shown here, since they are in complete agreement
this.

At the PTE pointex50, the same quantities scale accor
ing to Eq. ~5! as qy;ueyu1/3, f ;qy

4 , and z53. Along the
first-order line,ex,0, the jump in the orientation angle van
ishes linearly,Dqy;uexu. qx develops a jump as well, bu
with a weaker power, because the rotation of the surf
orientation inside the rough phase is an higher-order effe

It is not certain thatqy
4 is the lowest surviving power in

the free energy at the PTE point. It could be theuqyu5 term
instead. For example, in the conventional free fermion ana
sis for PT transitions the free energy is an odd function
uqyu. In that case the critical exponents change toqy

;ueyu1/4, f ;qy
5 , andz54.

In Fig. 19 we show the free energy as a function ofqy
4 at

the PTE point forK50.37 andL520.26 in region III for
e-
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system sizes 4<N<10. The curves are straight lines. Th
confirms that the free energy is going to zero asf ;qy

4 and
therefore thatz53.

The scaling behaviorqy;ueyu1/3 across the PTE point an
the powerDqy;uexu with which the jump inqy along the
first-order boundary vanishes are difficult to resolve num
cally because of the discrete nature ofqy . We find evidence
that the jump scales linearly, but the results are somew
ambiguous.

At the III–IV phase boundary, the PT segment along
rough-SS facet boundary shrinks to zero and the two P
points merge. This can be described by a polynomial of
form

f ~qx ,qy!5a1uqxu1b1eyuqyu

1
1

3
b3~c2ex

2!uqyu31
1

4
b4uqyu41•••. ~6!

ex is now the distance along the rough SS ridge from
point in the middle between the two PTE points, andc
.0(c,0) in region III ~IV !. This polynomial, if correct,

FIG. 19. Free energy as a function ofq4 at PTE point K
50.37 andL520.26 as measured byTy for system sizes 4<N
<10.
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would imply that the critical exponents at the merging poi
c50, are the same as at the PTE points,z53 and b5 1

3 ,
except that the jump in angle vanishes now asqy;uexu2. We
find numerically that the free energy scales asf ;qy

4 and,
therefore, that indeedz53.

VII. CONCLUSIONS

In this paper we obtained the crystal shape for a BCS
model on a honeycomb lattice. This shape is quite comp
It contains two types of fully tilted facets, the SS and Z
facets. The latter disappear for negative nearest-neighbo
teractions. In region III in that part of the phase diagram,
find that the rough-to-SS facet boundary becomes parti
first order with sharp edges where the surface orienta
jumps. These first-order segments connect at PTE crit
end points to conventional PT-type segments where
rough phase connects to the facet without a jump in orien
tion. The scaling properties at these PTE points follow
simple higher-order polynomial free energy generalization
PT transitions, with anisotropic scaling with exponentz53
instead ofz52.

In region II of the phase diagram the rough-SS pha
boundary is PT type everywhere, but a first-order line stic
out of the FRE point into the rough phase. These FOR li
remain very small in this model, but we resolved them n
merically sufficiently to be quite confident they exist.

The main object of this study is to establish how gene
and universal the KPZ scaling properties of the FRE poin
the square lattice BCSOS model are. Our conclusion is
the stochastic nature of their transfer matrix makes KPZ-t
FRE points special and unstable. In general, the local cry
shape around FRE points is more complex than simply
facet ridge splitting into two PT lines. Instead there are FO
lines sticking into the rough phase and/or the rough-fa
phase boundaries become first order. Even more com
structures~not observed in our model! are possible as well.

We are unable to resolve the scaling properties of the
critical point at the end of the FOR line~opposite to the FRE
point!. The FOR lines remain too short. This aspect ne
further study.
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