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Monte Carlo simulation of an antiferromagnetic Ising model at two competing temperatures
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We consider a two-dimensional antiferromagnet Ising system interacting with a heat bath at temferature
The dynamics of the system is simulated by two competing stochastic processes: the two-spin-exchange
Kawasaki kinetics at temperatufe>0 and the one-spin-flip Glauber dynamicslat— 0~ , which mimics the
increase of the energy of the system. These two processes have probabitifesntl p, respectively. Monte
Carlo simulations were employed to determine the phase diagram for the stationary states of the model and the
corresponding critical exponents. Contrary to the ferromagnetic case, the phase diagram obtained does not
exhibit the phenomenon of self-organization: for any nonzero value of the competing parpnasteérfor any
value of T, the only stationary phase which remains is the ferromagnetic one. At the phase transition between
the antiferromagnetic and paramagnetic phasgs:=dt, the values found for the critical exponents agree with
those of the corresponding equilibrium Ising mod&1063-651X99)07205-0

PACS numbd(s): 64.60.Ht

When an Ising system is in contact with two heat baths atvasaki kinetics accounts for the relaxation of the spin system
different temperaturegl,2], it is possible to find it in non- towards its equilibrium states, at temperatr@stablished
equilibrium steady states. The methods which were emby the other heat bath. That is, pi=0, the Kawasaki dy-
ployed to deal with this nonequilibrium problem were the namics would drive the magnetic system to its equilibrium
Monte Carlo simulation$1,3], the dynamical pair approxi- state, with a constant value of the ferromagnetic order pa-
mation[1,4] and the mean-field renormalization grdi. In rameter. On the other hand, the system goes to nonequilib-
all of these analyses, the stochastic single spin-flip Glaubaiium stationary states when the Glauber process is present,
process was used to drive the spin system towards its nonvhich occurs for any value gf different from zero. Unlike
equilibrium stationary states. In the work of Toreeal.[4],  the work of Tomeet al.[4], where the self-organization phe-
an interesting behavior was observed when the temperatureomenon appeared for the ferromagnetic Ising model with
of one of the heat baths is allowed to become negative: thisvo competing Glauber processes, we do not observe it in
heat bath works like a source of energy to the spin systenour simulations: for any value gi#0 and for any value of
Although the exchange interaction between neighboringemperaturel the only stationary state is the ferromagnetic
spins is ferromagnetic, an antiferromagnetic state appears fane. Forp=0, the system exhibits an order-disorder transi-
high values of the flux of energy into the system. This kindtion between the antiferromagnetic and paramagnetic phases.
of self-organization phenomenon was also observed for th&he relaxation of the order parameter for the antiferromag-
ferromagnetic Ising model when subject to two competingnetic Ising model subject to the Kawasaki dynamics is ex-
Glauber and Kawasaki dynamic procespggls pected to be similar to that of the kinetic Ising ferromagnetic

In this work, we used Monte Carlo simulations and finite- model under Glauber dynamics, where the order parameter is
size scaling relationf7,8] to determine the phase transition not a conserved quantifyl 2].
and the critical exponents of the antiferromagnetic two- We consider an antiferromagnetic Ising model on a square
dimensional2D) Ising model in contact with two heat baths lattice with N lattice sites. The energy of the system in the
at distinct temperatures. The system evolves in time accordstateo= (04,05, . . . ,0n), Where the spin variable assumes
ing to two independent competing stochastic processes: thtee valuess;= +1, is given by
one-spin-flip Glauber dynamid®], with probability p, and
the two-spin-exchange Kawasaki dynamit€], with prob-
ability (1—p). The role of these two dynamics concerning
the symmetries of the system is quite different: the Glauber E(0)=32, oioj. 1)
kinetics always changes the order parameter, while the Ka- D
wasaki one conserves the ferromagnetic order parameter but

not the antiferromagnetic order parameter. We take for bothy, 1,6 symmation, only spins that are nearest neighbors are
dynamic processes the transition probability rates given b%onsidered and>0. Let P(,t) be the probability of find-

the Metropolis prescriptiofil1]. In order to simulate an in- ; g the system in the state at timet. The evolution of

put of energy into the system, we choose the temperature 1) is qi by the followi ter equation:
one of the heat baths as beifigz—0~. In this way, the (1) is given by the following master eq '

increase of energy of the system is due to the single spin-flip

Glauber process. On the other hand, the spin-exchange Ka- dP(at)
dt

*Electronic address: wagner@fisica.ufsc.br 2

=> [P(¢' )W(o',0)—P(a,t)W(a,a')],
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whereW(o',o) gives the probability, per unit time, for the
transition from the stater’ to states. We assume that the
two competing processes can be written as

W(o',0)=pWg(o',0)+(1-p)W(c',0). (3
In this equation,
N
WG(U',U):;l 8t 18y Ot~ Bl Wi(T)
4)

is the single-spin-flip Glauber process, which simulates an
input of energy into the system by the heat bath at tempera-

tureTg—0, and
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FIG. 1. Ferromagnetic and antiferromagnetic order parameters

is the two-spin exchange Kawasaki process, which simulate®s & function of, measured in Monte Carlo steflCS). We used

the contact of the system with the heat bath at temperatur’%:O

.5, T=2.0, in units ofJ/kg, andL=64.

T>0. In the above summation, only pairs of nearest-

neighbor spins are considered.

In these equationsy;(o) is the transition probability of
flipping spini, while w;;(o) is the transition probability of
exchanging two nearest-neighbor spinandj. We use the
following prescriptions fow;(o) andw;;(o):

0 forAE;=<0,
Wil =11 foraE,>0, ©
because the temperatufg—0~, and
(o) p( AE”) @
Wii(o)=exp — .
1 KeT

AE; is the change in energy after flipping spiandAE;; is

spin trials. To estimate the quantities of interest, we used 5
X 10* Monte Carlo steps to calculate the averages for any
lattice size.

In order to find the transition point, we have plotted, for
each value of, the reduced fourth-order cumulant

(M%)

U=1-——
L 3<M2>2

®

as a function of temperatuig for several values df. Once
this value is independent of lattice size at the critical tem-
peratureT,, the crossing point of these ling8] givesT...

For any values of #0 andp+ 0, we found, for all values of

L, that the ferromagnetic order paramel#g is equal to 1,
and that the antiferromagnetic order paramfgg is equal

the change in energy after exchanging the nearest-neighbas 0. Then, the cumulants never cross themselves. That is,

spinsi andj.

the Monte Carlo simulations showed that the only stationary

We have performed Monte Carlo simulations, with peri-state of the system is the ferromagnetic one, exceptpfor

odic boundary conditions, on a square lattice witb L
=N sites, with values ofL ranging fromL=4 up toL

=0. In Fig. 1 we show the behavior of the ferromagnetic and
the antiferromagnetic order parameters as a function of the

=128. We have started the simulations with different initialnumber of Monte Carlo steps. We chose the vallies
states to guarantee that the final stationary states we use #1128, p=0.5, andT=2.0 to exhibit the time evolution of
our calculations are the correct ones. For a given temperatuthe order parameters. We have also performed analytical cal-

T and a selected value of the probabilipy we choose at
random a spin, from a given initial configuration. Then, we
generate a random numbéy between zero and unity. §;

culations employing the dynamical pair approximatjas]:
we have also seen that the only stationary phase which ap-
pears is the saturated ferromagnetic phase With=1 for

<p, we choose to perform the Glauber process: we deterany value ofp#0 and for all values of.

mine the value oA E; and the corresponding; according to
the prescription of Eq(6). If &,>p, we go over the Ka-

We also present the results we obtained for the particular
casep=0, when the Ising system is only under the spin-

wasaki process: we again generate another random numbexchange Kawasaki dynamics. In this case the antiferromag-
&, in order to select one of the four nearest neighbors of th@etic order parameter relaxes towards its equilibrium value

spini, sayj. Then we find the value oAE;; and the corre-
spondingw;; ; after generating a random numbgy, we ex-
change the selected spins only §§<w;;. We have dis-

carded the first 1IN Monte Carlo steps in order to achieve

like the nonconservative order parameter of the similar ki-
netic ferromagnetic Ising mod¢12]. In this way the model
studied here exhibits an order-disorder transition.

We show in Fig 2 a plot of the antiferromagnetic order

the stationary regime, for all lattice sizes we consider. Ong@arameteM 5 as a function of 1/ for different values of

Monte Carlo step equald single-spin flips or exchange of

temperature. From this plot it is easy to see that the critical
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FIG. 2. Antiferromagnetic order parametdng as a function of FIG. 4. Log-log plot ofU| (T) versusL. The straight line is the

1/L for several values of andp=0. From top to bottom the values best fit to the data, which gives=1.00=0.03.
of Tare 1.8, 1.9, 2.0, 2.1, 2.2, and 2.3. The transition appears in the

range 2.2T<2.3.T is in units of J/kg.. exponenty by taking the derivative otJ, (T) with respect

. . ) the temperature at the critical point. This derivatiyg(T,)
temperaturdl; is between 2.20 and 2.30, in units&kg. I ¢51es as . From the best fit of the log-log plot & (T,)

order to find a more accurate value for the critical temperay o g ;s L, which can be seen in Fig. 4, we found that

ture, we plot in Fig. 3 the corresponding redu.ced fourth'zl.OOt0.0S. In Fig. 5 we exhibit the log-log plot of the
order cumulants), (T) as a function off for L ranging from antiferromagnetic order parameter,-, at the critical tem-

4 to 128. From the crossing of these curves, we estimate t —Blv
o . o ; eratureT ., versusL. As Me(T.) scales as , the best
critical temperature as beinf,=(2.24+0.02), in units of b ¢ ar(Te)

fit to the data points of this figure gives =0.124
J/Kkg . This value is very close to the well known exact value P J g e

- o ) X +0.002. We show in Fig. 6 the log-log plot of the suscepti-
To=2/In(1+2). From the finite-size scaling relatiori6] bility per spiny, (T) versusL, atT.. This quantity scales as

obeyed byU, (T), we can compute the correlation length | »/v 5 the critical temperature, and from the best fit to the
data points we obtain the valug v=1.75+0.05. As to be

08 expected, this set of critical exponents agrees with the exact
0.0
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FIG. 3. Reduced fourth-order cumulady (T), for p=0, as a 10 15 D20 25 30 35 40 45 50 55

function of temperaturd for several values of the lattice size

Circles correspond th =4, up triangles td.=8, down triangles to
L=16, crosses th =32, plus signals td.=64, and diamonds to FIG. 5. Log-log plot of the antiferromagnetic order parameter
L=128. The broken lines serve as a guide to the eye. The criticaM 5=(T.) versusL. From the slope of the straight line, which is the

temperature i§ .= (2.24+0.02) in units ofJ/kg . best fit to the data points, we fing/ »=0.124+0.002.

InL
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FIG. 6. Log-log plot of the susceptibilitya(T.) versusL. The
straight line is the best fit to the data points. From this slope we find FIG. 7. Log-log plot of the antiferromagnetic order parameter
vlv=1.75+0.05. versus time, measured in Monte Carlo stépECS), at the deter-

mined critical temperaturé.=2.24. Measurements were made ev-

ery 10 MCS, between 20 and 150 MCS. The lattice sizes are
values of the two-dimensional Ising model, thatis; 1, 8 (160x160), triangles; and (320320), squares. The value of the
=1/8, andy=7/4. dynamical critical exponent ig=1.98+0.02.

Finally, we present our results concerning the dynamical
critical exponentz of this model. Following SuzuKil4], the
dynamic finite-size scaling theory asserts that the magnetiz
tion of a system of linear sizk, at its critical point, evolves
in time according to the following scaling relation:

Jhe initial points of the simulation because we want to put the
system into the second regime, where a power-law decay of
the order parameter is expecidd]. The value we found for
zmust be compared with the best estimates for this exponent
obtained through intensive use of large scale simulations: for

_| —Blvf(| -2 instance, Stauffdrl7] foundz=2.18 for a square lattice with
Mar(t,L) =L 7L ). © L =496 640 and Linket al.[18] found z=2.16 for a square
lattice with L=10P. This result also confirms that the relax-
H@ion of the antiferromagnetic order parameter for this spin-
xchange Kawasaki process is rather similar to that of the
inetic Ising model under Glauber dynamics, where the fer-

romagnetic order parameter is not constant.
In conclusion, we have studied an antiferromagnetic Ising

_ pAt—Blvz model subject to two competing dynamical processes: a
Mar(t,L)=At ’ (10 single-spin flip Glauber dynamics &;—0~, which simu-
lates the pumping of energy into the system, and the spin-
exchange Kawasaki process at finite temperature. We have
shown that this model does not exhibit the self-organization
Qhenomenon for any value of the competition parampter
and for any value of temperature. The only stationary state
fixed value ofL, once we know the value of the ratje/v. we found was the full saturated ferromagnetic state for all

After we prepared the system to be in its antiferromagnetié/alues ofp#0. At p=0, when.only the Kawasaki Process IS
ground state, we left it to evolve in time, measured in MontePresent, and the ferromagnetic order parameter is conserved,

Carlo stepgMCS) per spin, and we recorded the magnetiza-"€ have found an order-disorder transition from the antifer-

tion at each 10 MCS. In F’ig. 7 we show the log-log plot of romagnetic to the paramagnetic phase. By using Monte Carlo

M o(t) versust, for L= 160 andL =320, at the critical tem simulations and finite-size scaling relations in this case, we
AF ' - - ' -

perature, which we have determined previously. We can sefé)und the cr_|t|cal exponents of the model. The values we
that the decay oM e(t) is almost independent df, which have determined for these exponents agree with those found

allow us to use Eq(10) to evaluate the dynamical critical for the corresponding two-dimensional ferromagnetic Ising

exponeniz. We have considered the decay of the magnetiza[mdel’ for which the order parameter does not conserve.

tion between 20 and 150 MCS. By fitting the data points to a  This work was partially supported by the Brazilian agen-
straight line we obtained=1.98+0.02. We have discarded cies CNPqg and FINEP.

It is expected that the magnetization does not depend on t
lattice size for very large lattices. Then it is easy to see thaE
[15] M ag(t,L) can be written as

where A is a constant that does not dependlonThe last
equation is valid only for very large values bf Therefore,

exponentz, after a log-log plot ofM 5e(t,L) versust, for a
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