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Stochastic multiplicative processes with reset events
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We study a stochastic multiplicative process with reset events. It is shown that the model develops a
stationary power-law probability distribution for the relevant variable, whose exponent depends on the model
parameters. Two qualitatively different regimes are observed, corresponding to intermittent and regular behav-
ior. In the boundary between them, the mean value of the relevant variable is time independent, and the
exponent of the stationary distribution equal®. The addition of diffusion to the system modifies in a
nontrivial way the profile of the stationary distribution. Numerical and analytical results are presented.
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The occurrence of power-law distributiofBLDs) is a  ena, therefore, SMPs have to be combined with additional
common feature in the description of natural phenomenamechanisms. It has been shown that transport procé8es
These distributions appear in a wide class of nonequilibriunsourceq 10], and boundary constrainfd1] are able to in-
systems, ranging from physical processes such as dielectrauce a SMP to generate power laws. The aim of the present
breakdown, percolation, and ruptufg], to biological pro- paper is to discuss an alternative additional mechanism,
cesses such as dendritic growth and large-scale evolijpn namely, randomly reseting of the relevant variable to a given
to sociological phenomena such as urban developiignt reference value. In a real system, this would represent cata-
Power laws have been associated with the effect of the constrophic annihilation or death events, seemingly originated
plex driving mechanisms inherent to these systems and withutside the system.
their intricate dynamical structure. Criticality, fractals, and We consider a discrete-time stochastic multiplicative pro-
chaotic dynamics are known to be intimately related to PLD<essn(t), added with reset events in the following way. At
[4]. each time stepn is reset with probabilityg to a new value

In view of the ubiquity of PLDs in the mathematical de- ng, drawn from a probability distributio®(ny). If the reset
scription of Nature, much work has been recently devoted t@vent does not occun is multiplied by a random positive
detecting universal mechanisms able to give rise to such digactor . with probability distributionP(x). Namely,
tributions. There is a class of systems where PLDs are a

mathematical artifact originating from standard distributions no(t+1) with probabilityq,
through a mere change of variablgg. On the other hand, n(t+1)= . . 2
many other instances are known where PLDs arise as a genu- p(O)N(Y)  with probability 1-q.

ine and characteristic feature of the involved phenomena. In

the frame of equilibrium processes, for instance, power law$etween two consecutive reset eventd,) thus behaves as a
have been shown to derive from generalized maximumpure multiplicative process. When one of such events occurs,
entropy formulations[6]. For nonequilibrium phenomena, the multiplicative sequence starts again.

self-organized criticalitf SOCQ and stochastic multiplicative In order to gain insight into the dynamics of procé2s
processe$SMPS$ have been identified as sources of PLDs.we first consider the simplest case whaggét) and w(t) are
According to the SOC conjectufd], some nonequilibrium constant for alt. Since an arbitrary factor in the initial value
systems are continuously driven by their own internal dy-of n is irrelevant to its subsequent evolution, we takg
namics to a critical state where, as for equilibrium phase=1 without loss of generality. We have thus

transitions, power laws are omnipresent. On the other hand,

SMPs[8] provide a(more flexible mechanism for generat- 1 with probabilityq,
) . . -~ o 1 1)= . "
g\\/gerils_Ds, based in the presence of underlying replication n(t+1) un(t)  with probability 1—g. (©)

It is, however, well known that a pure SMP, . ) . ) .
This stochastic recursive equation can be readily solved to

n(t+1)=u(t)n(t), 1 9ive

K i T k
with x a random variable, does not generate a stationary B w*  with probability py=q(1—q)“ (Oskst-1),
PLD for n(t). Rather, it gives rise to a time-dependent log- w'  with probabilityp,=(1—q)".

normal distribution. To model the abovementioned phenom- 4
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Note that the possible values of(t), n,=ux" (k  which produces the same value®fas in Eq.(5) [13]. Note

=0,1,...1), lie in the interval[x',1] for <1 and in that Eq.(7) does not hold fon=1, where the contributions

[1,ut] for u>1. Except for the extreme valug=u', the to the probability come from reset events.

associated probabilities are time independent. As time The above argument provides a method for dealing with

elapses, the probability of each possible valuen¢f) is  the general multiplicative process with reset events, (2g.

therefore quenched far# ', and the corresponding prob- when bothu andng are drawn from prescribed probability

ability distribution evolves at this extreme value only. Thus,distributionsP(x) and Pg(ng). We assume thaPy(ng) is

the distribution sequentially builds up in zones that lie in-appreciably different from zero in a bounded region, where

creasingly further from=1. the contributions from reset events are relevant. Outside this
For large times, when the number of possible values ofegion the evolution of (n) can be written as

n(t) becomes also large, it is convenient to define a prob-

ability distribution f(n) for ne(u!,1] for <1 andn o
Yy oy i) for nelund] for a fua(mAn=(1-a) | du PG (VAL ©
F(n)= P _ 9 o (5)  Which generalizes Eq7). Under the assumption of station-
|An[ |Inpl arity, this equation is solved bf(n)=An"¢, where the ex-

. o o ponenta must verify
whereAn is the variation inn whenk is increased by one

unit, and a=1-In(1—q)/In w. In order to account for the %
contribution atn= !, f(n) should be added with &like (1-q) f dp u® P(u)=1. (10
term fo(t) S(n— u'), where the factorf, can be obtained 0
from the normalization of (n).

According to Eq.(5), the stochastic proce$8) gives rise
to a stationary power-lawdistribution f(n) in an increas-
ingly large interval of values ofi. Fort—o, f(n) is a sta-
tionary power-law distribution in (OJLfor x<<1, and in

[100) for w>1. In contrast with multiplicative processes here between the evolution of the averagét)) and the

with boundary constraintgl1], there are no conditions on exponent of the power-law distribution. In particulén(t))
the parameters to obtain a stationary power-law distributioni.S 1F’)oun d 1o rema?n stationary alon thé thc))Ie rocéss when
For 1-g<u<1, the exponent of this distribution is positive y 9 P

(«<0), andf(n) grows withn. In this situation, however, a=|2. Aga'ﬂ' thﬁs,k;[he e(;(ponekm=h2 'S ass(;)matgd with the
the distribution is defined for €n<1 and exhibits a cutoff explosion threshold, and marks the boundary between regu-

lar and intermittent evolution. This can be seen, for instance
atn=1. On the other hand, fqe<<1—q or u>1 the expo- L : . ' N
nent is negative ¢>0). For w1, i.e., whemn(t) € [120), from Eq. (9). Multiplication of this equation byr and inte

the momentan, = [f(n)n'dn diverge fori>a—1, indicat- gration ovem yields

ing the presence of intermittent amplificatiof,12]. For -

n<1l-—q, m; diverges fori<a—1. (n(t+1)>=(1—q)[f du uP(u)
It is interesting to relate the exponent of the power-law 0

distribution with the evolution of the mean valya(t)).

For regular forms ofP(u) this equation has at least one
solution for @. When the probability is mainly concentrated
in values ofu larger than unity the solution is expected to be
positive (¢>0) and vice versa.

As in the case of constapt andng, a close relation exists

(n(t)). @11y

From Eq.(4), this mean value can be written as Comparing with Eq(10), we readily note that the multipli-
cative constant (3 q)fdu wP(u) that governs the evolu-

q (1-(1-pw) tion of (n(t)) in Eq. (11) equals unity fora=2.
(n(t))= T—(-qu 1-(1-gg p(1=q)'. (6 In summary, depending amandP(u) the system can be

in a regular regime whergn(t)) converges to a finite value,

For u(1—q)<1, the mean value of(t) converges to a ©F in an intermittence regime,.whe(e(t)) diverges. At the
finite value (n)=q/[1—(1—-q)ux], whereas foru(1—q) boundary, ie., at the explosion threshp{dw,(t)) remains
>1 it “explodes.” In the boundary between both regimes, Constant and, independently of the specific valug ahd of
where u=1/(1—q), the exponent of the distribution is the particular form oP (), the probability distributiorf (n)
=2 andf(n)~n~2. This exponent is therefore to be associ- exh|b|ts_g\ power-law tail with a characteristic exponent
ated with the explosion threshold. n~n - _

The power-law distribution in Eq(5) can also be inferred ~ We have numerically checked that the exponent of the
from a description of the evolution d{n). In fact, since at Stationary profile off(n) does not depend on the particular
each time step where no reset occurs the probability contrfform of the distribution of reset valugy(no). In Fig. 1 we

bution tof(n) comes fromn’ =n/u, we can write present the functiof(n) obtained with constant andq, for
three different choices d?y(ng): A uniform distribution be-
foo(MAn=(1—q)f(n/u)An/u. (7)  tweenny=0 andny=1 (circles, an exponential distribution,

Po(ng) ={(Nng) "t exp(=ny/{ng), with (ng)=100 (squarey
Assuming now that this distribution is stationafy,,=f,, a and a discrete distributionPq(ng)=[&(ny—1)+ (ng
solution to Eq.(7) is given byf(n)=An"¢, with —100)]/2. The particular form oP, sets a lower boundary
for the region wherd(n) behaves as a power law, but does
(1-quet=1, (8) not affect the corresponding exponent. Solid lines in the log-
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FIG. 3. Dependence of the exponenton the diffusion coeffi-
cient D for u=4/3 and three values af corresponding to the in-
termittence regimed=0.23), the regular phasej€0.3), and the
explosion thresholdg=0.25). The error bars stand for the error of
a in a least square fit to the numerical data.

FIG. 1. Stationary distributiorf(n) for x=1.1 andq=0.01,
and for different distributions of reset valué%(ny) (see text
Straight lines have the theoretical slope-1.2195-- .

log plot of Fig. 1 have the theoretical slope=1.1054-- .
Figure 2 shows our simulation results for three different
forms of P(u): An exponential distribution P(w)
=(u) texpulw)) with (u)=2, a uniform distribution
P(u)=5/2 with u €[9/10,13/1Q, and a discrete distribution

_v3 ; _ _
P(u) =2 18(p—md/3 V\.”th, #1=1, pp=6/5 gnd K3 wherei labels the elements in the array, with periodic bound-
=7/5. The slope of the solid lines has been obtained numeri- o , .

: S ary conditions. Them, is used as the input state for the next
cally for various values of] from Eq. (10). This yields «

—1.4965-- for the exponential distribution witg=0.2, a step. In this deterministic, time-discrete version of diffusive

=1.2195-- for the uniform distribution withq=0.02, and transport,D plays the_ role of a d|ffus_|or|1 consltant. he eff
a=1.8965-- for the discrete distribution witly=0.15. In F!gurg 3 summarizes our numerical results on the efiect
) : : S |of diffusion on the SMR(3), displaying the dependence of
all cases, our numerical and analytical results are in ful : PP
. . ! the power-law exponent with the diffusion constant. We
agreement within six to nine decades in the power-law re; )
gion have chosen values af and u such that the different re-
We have also investigated the effects of diffusive trans9'MeS of the process have been explored. The value of the

port on the proces§3). With this aim, we have considered a Tzl;tépllfnat;xg rceonusl';n:ehie:rs]@b:en (fz(fd )IQ f]hlsdi?%?;éﬁo
one-dimensional array of elements whose individual dynam- ™'~ 9 9 T M 9 '

ics is given by Eq(3) and, at each time step, we have incor- produces a decrease ofin the _power-law distributio_n. This _
porated an interaction mechanism that mimics diffusion. Af.can be understood if we consider that the role of diffusion is

ter the multiplicative process with reset events has beeﬁo deplete dense areas, transporting material to less occupied

: : cells. The multiplicative process is not fast enough in this
I h f h el further ch ; " )
applied, the state of each element is further changed to regime to balance the joint effect of reset events and diffu-

sion. As a result, underpopulation occurs in the high-density

D
n{(t)=(1-D)n(t)+ E[ni-%—l(t)"_ni—l(t)]a (12

N ] region, andx decreasesq= 0.3 in Fig. 3. In the intermittent
, ¢ I, ® Exponential regime[q=0.23, i.e.,u(1—q)>1], diffusion favors the op-

100 4 e N, :gi‘:cf;’;: 7 posite effect. Remarkably, diffusion does not have any effect
10 N on the value ofx when the system is evolving at the explo-
2 sion threshold. Within numerical errors, in faet=2 irre-

2 107 spectively of the value db. It is also worth to point out that
T the qualitative behavior of the process dependswoandq
3 107 only. ChangingD does not allow the system to switch be-
= tween the intermittent and the regular regimes.
10 Summing up, in this paper we have studied a stochastic
10° multiplicative process with reset events. The combination of

this random reseting with the replication events driven by the
10™° : : ‘ , ‘ ‘ ‘ ‘ , stochastic process allows for the development of a stationary
distribution in the system, both when the mean value of the
relevant variable converges to a finite valuegular regimg

FIG. 2. Stationary distributiong(n) for different forms of ~and when it divergegintermittent regime with persistence
P(w) and different values off (see text The slope of the straight [14]). The regime at the boundary between regular and inter-
lines has been obtained through numerical solution of(EQ). mittent behavior is of particular interest. At this point, where




4948 SUSANNA C. MANRUBIA AND DAMIA N H. ZANETTE PRE 59

the overall effects of the multiplicative process are exactlyincreasing the parameter, it is on the other hand to be
balanced by the random resets, the mean value of the reéxpected that external constrains are going to operate in or-
evant variable remains constant in time. We have shown thater to avoid divergencies by increasigglt is not unlikely

this property is closely related with the fact that the exponenthat the competition between these two processes could lead
of the power-law stationary distribution equats2. This  real systems to this boundary between regular behavior and
value is to be related with Zipf law, which predicts the samedeveloped intermittency.

exponent of power-law distributions in a series of seemingly

disparate natural systenjg,3]. Thus, the SMP with reset

events offers an alternative explanation of this ubiquitous Financial support from the Fundacid\ntorchas, Argen-
exponent. In fact, whereas a general trend of biological antina, and from the Alexander von Humboldt Foundation,
social systems could be to improve their growth rates byGermany(SCM) is gratefully acknowledged.
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