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Cluster-approximation mean-field theory of a class of cellular automaton models

Bo-tao Zhang and Cheng-hong Liu
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A cluster-approximation mean-field scheme, which may be used to describe some cellular automaton~CA!
models, is introduced based on analyzing the evolution of cluster states. In this scheme the description of
microscopic processes is exact within a cluster, and approximate for the interaction between clusters and the
environment. The approach to building the theory is illustrated by a surface-reaction-like CA model very
similar to the model of Ziff, Gulari, and Barshad. A set of equations of motion concerning the evolution of
microscopic cluster states is derived, and some results from these equations are given.
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Nonequilibrium dynamical systems may exhibit comp
cated behavior, including the formation of dissipative stru
tures, oscillations, and kinetic phase transitions@1#. Because
of the lack of a general theory, one has to adopt sim
models~which take into account the essential features of
phenomena! to investigate such systems. Cellular autom
~CA! serve as such simple models and have been use
investigate a variety of physical, chemical, and biologi
systems@2#. CA models describe a universe consisting
many discrete ‘‘cells’’~lattice sites!. Each site is endowed
with a finite number of states, and all the sites update th
states simultaneously at one time step according to a unif
local rule. Since spatial correlation is usually introduced
CA models, one would not expect the traditional mean-fi
theory to describe them correctly. In this paper we describ
cluster-approximation mean-field theory for a class of C
models. The steps to building the theory are outlined as
lows. ~a! For a general lattice with freedom parameterN,
take a cluster withN11 ~or more! sites as an elementar
unit, and make clear all its possible states.~b! Write down
the cluster evolution rules according to a given CA local r
~the key step!. ~c! Write down the evolution equations con
cerning the probabilities of cluster states according to
cluster evolution rules and derive the corresponding ma
equations.~d! Perform calculations and analyses using th
equations. We will illustrate our approaches by using
surface-reaction-like CA model. This model, though simp
may exhibit both first- and second-order kinetic phase tr
sitions and thus is of interest in physics.

The model we use is very similar to that proposed by Z
Gulari, and Barshad~ZGB! @3#. The ZGB model has bee
proposed to mimic a monomer-dimer (A-B2) reaction on a
proper catalyst surface. The surface is modeled as a sq
lattice, and reactions proceed according to the follow
scheme:

A~gas!1E→A~ads! with probability XA ,

*Mailing address.
PRE 591063-651X/99/59~5!/4939~6!/$15.00
-

le
e
a
to
l
f

ir
m

d
a

l-

e
er
e
a
,
-

,

are
g

B2~gas!12E→2B~ads! for nearest-neighborE,

with probability 12XA ,

A~ads!1B~ads!→AB~gas!12E for nearest neighbors,

where~gas! denotes the gas-phase species,~ads! denotes the
adsorbed species, and an empty site on the lattice is den
by E. This model has been thoroughly investigated by Mo
Carlo ~MC! simulations@3,4#, and interesting behaviors ar
observed including the first- and second-order phase tra
tions between the steady reactive phase andA- and
B-saturated phases. Noted that such a simple model ca
represent the complex physical and chemical processes
curring in even the most simple catalyst systems studied
the laboratory. It interests us because it provides a sim
example of kinetic phase transitions of both first and sec
order, and such behaviors are of importance in many of a
@5#.

In the following sections, we first give a CA version o
ZGB model reaction on a general lattice, and then apply
cluster-approximation mean-field theory to this model. Af
the corresponding master equations are derived, we cons
the average coverage fractions of the surface reactant
functions ofXA , and we give the phase diagrams for a t
angular, square, and hexagonal lattice. Finally, some rem
are made.

CA VERSION OF THE ZGB MODEL

The present version is similar to that proposed by Ch
ard and Droz@6# but in a more general way. We consider
general lattice on which each site hasN nearest neighbors
For a regular lattice,N has values of 2, 3, 4, or 6 for a linea
hexagonal, square, or triangular lattice, respectively~here we
define the hexagonal and triangular lattice as the struct
shown in Fig. 1!. Above the lattice are the mixture gas pha
moleculesA and B2 with concentrationsXA and XB51
2XA , respectively. Each lattice site may be in one of t
following three states:A, B, and E ~here we call them site
states!, meaningA-occupied,B-occupied, and empty state
respectively. All the site states update themselves simu
neously at one evolution step according to the following
cal rules.~i! An E transforms intoA with probability XA ,
or a conditional occupied stateC with 12XA . This C
immediately becomesB in the case of anotherC being
4939 ©1999 The American Physical Society



s
e
r

-

te

n

ed

te

-

cur-

f its
y

ron-
es

re,
ter
ted

n

-
-

t
f

e

ster

4940 PRE 59BO-TAO ZHANG AND CHENG-HONG LIU
found at its nearest-neighbor sites, otherwise it becomeE.
~ii ! An A ~or B! transforms intoE when there is at least on
B ~or A! at its nearest neighbors, otherwise it remains inva
able. Note that in this modelC is a fictitious state describing
the impingement ofB2 on the lattice, and the reaction pro
cesses are assumed to be Langmuir-Hinshelwood-type.

CLUSTER STATES

We now take an (N11) site ~a center site withN
nearest neighbors! cluster as an elementary unit. Each clus
on the lattice may be in one of 3N11 configurations~here
3 represents the number of different site states!. We assume
that the processes involved are equivalent in all directio
Thus these configurations degenerate toM ~its value is
given below! different cluster states, each distinguish
from the others by its central site~denoted byX, here X
5E, A, or B! and by the occupation numberi, j , and k of
E, A , andB states on its nearest-neighbor sites~denoted by
$ iE, jA,kB%, here i 50,1, . . . ,N, j 50,1, . . . ,N2 i , and k
5N2 i 2 j !. It is easy to see that the number of cluster sta
has the value

M53(
i 50

N

~N112 i !5 3
2 ~N11!~N12! ~1!

and a cluster state, which is denoted byX-$ iE, jA,kB%, con-
tainsN!/ i ! j !k! different, but equivalent, configurations. Fig
ure 2 shows an example of degeneration forN54, i 53, j
50, andk51.

FIG. 1. The structures of hexagonal~a! and triangular~b! lattice
defined in this paper.
i-

r

s.

s

CLUSTER EVOLUTION RULES

It is necessary to distinguish two sorts of processes oc
ring in the evolution of a cluster.~i! The first are the pro-
cesses inside a cluster, including the adsorption in anE clus-
ter and the reaction between the central site and one o
nearest neighbors in anA or B cluster. Such processes ma
be completely followed and described exactly.~ii ! The sec-
ond are the interactions between a cluster and the envi
ment, including the reactions of a cluster with the sit
around it and the adsorption in anA or B cluster, which may
be treated in a mean-field way. In the following we igno
for simplicity, the later processes in formulating the clus
evolution rules, i.e., the clusters are regarded as isola
ones.

~i! Adsorption. Adsorption processes only occur in a
E-$ iE, jA,kB% state. The centralE transforms into A
with probability XA and intoC with 12XA while m of the
i nearest-neighborE’s transform into A’s together with
the remainingi 2m E’s transforming intoC’s with probabil-
ity

P~m,i 2m!5
i !

m! ~ i 2m!!
XA

m~12XA! i 2m, ~2!

where m50,1, . . . ,i and the normalization condition
(m50

i P(m,i 2m)51 is maintained. If the transformed cen
tral site isA, its nearest-neighborC sites immediately trans
form back intoE’s, while if the transformed central site isC,
it becomesE for m5 i ~no C site being found in its neares
neighbors!, or becomesB for m, i . In the latter case one o
the nearest-neighborC’s also becomesB and the remaining
i 2m21 C’s becomeE’s. The rule described above may b
summarized as follows:

FIG. 2. Example of degeneration: for a square lattice, a clu
stateA-$3E,0A,1B% contains four configurations.
~3a!
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~ii ! Reaction. Reaction processes occur inA ~and B!
clusters in cases in which at least one nearest-neigh
B ~and A! is found. In each of the reaction events, t
centralA ~or B! together with one of its nearest-neighborB
~or A! becomesE states. The rules may be formulated as

A-$ iE, jA,kB% ——→
k.0

E-$~ i 11!E, jA,~k21!B%, ~3b!

B-$ iE, jA,kB% ——→
j .0

E-$~ i 11!E,~ j 21!A,kB%. ~3c!

EQUATIONS OF MOTION: EVOLUTION
OF CLUSTER STATES

Let x( i , j ,k) denote the probability of finding a cluste
stateX-$ iE, jA,kB% on the lattice, and letx6( i , j ,k) denote
the variances~wherex5a, b, ande corresponds toX5A, B,
and E, and 1/2 denotes the increase/decrease!. From the
evolution rules~3a!–~3c!, one can easily write out the evo
lution equations in terms of probabilities at one evoluti
step:

a1~ i 2m, j 1m,k!5XAP~m,i 2m!e~ i , j ,k!, ~4a!

b1~ i 2m21,j 1m,k11!5~12XA!P~m,i 2m!e~ i , j ,k!,
~4b!

e1~0,i 1 j ,k!5~12XA!P~ i ,0!e~ i , j ,k!, ~4c!

e2~ i , j ,k!52e~ i , j ,k!, ~4d!

e1~ i 11,j ,k21!5a~ i , j ,k!, ~4e!

e1~ i 11,j 21,k!5b~ i , j ,k!, ~4f!

a2~ i , j ,k!52a~ i , j ,k!, ~4g!

b2~ i , j ,k!52b~ i , j ,k!, ~4h!

where the functionsa( i , j ,k) and b( i , j ,k) are defined, ac-
cording to Eqs.~3b! and ~3c!, as

a~ i , j ,k!5 Ha~ i , j ,k!

0
for k.0,
for k50, ~5a!

b~ i , j ,k!5 Hb~ i , j ,k!

0
for j .0,
for j 50. ~5b!

After some operations of parameters rearranging and u
ing the terms, Eqs.~4a!–~4h! may be systematized as fo
lows:

a1~ i , j ,k!5 (
m50

j

XAP~m,i !e~ i 1m, j 2m,k!, ~6a!

b1~ i , j ,k!5 (
m50

j

~12XA!P~m,i 11!

3e~ i 1m11,j 2m,k21!, ~6b!

e1~0,j ,k!5 (
m50

j

~12XA!P~m,0!e~m, j 2m,k!, ~6c!
or

it-

e1~ i , j ,k!5a~ i 21,j ,k11!1b~ i 21,j 11,k!, ~6d!

e2~ i , j ,k!52e~ i , j ,k!, ~6e!

a2~ i , j ,k!52a~ i , j ,k!, ~6f!

b2~ i , j ,k!52b~ i , j ,k!, ~6g!

where P(m,i )5@(m1 i )!/m! i ! #XA
m(12XA) i , P(m,i 11)

5@(m1 i 11)!/m!( i 11)!#XA
m(12XA) i 11, and P(m,0)

5XA
m . From the above equations one can easily construct

equations of motion concerning the evolution of clus
states as follows:

d

dt
a~ i , j ,k!5 (

m50

j

XAP~m,i !e~ i 1m, j 2m,k!2a~ i , j ,k!,

~7a!

d

dt
b~ i , j ,k!5 (

m50

j

~12XA!P~m,i 11!

3e~ i 1m11,j 2m,k21!2b~ i , j ,k!,

~7b!

d

dt
e~ i , j ,k!5 (

m50

j

~12XA!P~m,0!e~m, j 2m,k!

1a~ i 21,j ,k11!1b~ i 21,j 11,k!2e~ i , j ,k!,

~7c!

which are known as master equations@7#. Note that Eqs.
~7a!–~7c! containM5 3

2 (N11)(N12) equations for differ-
ent i and j, and onlyM21 of them are independent, consid
ering the normalization condition

(
i 50

N

(
j 50

N2 i

@a~ i , j ,k!1b~ i , j ,k!1e~ i , j ,k!#51. ~7d!

Defining a state vectorS(t), which may be represented a
a matrix ofM dimension in probability space, and an evol
tion operatorW, a matrix of M3M dimension, Eqs.~7a!–
~7c! may be formed as

d

dt
S~ t !5WS~ t ! ~8a!

or in a recursive form as

S~ t !5TS~ t21!5T2S~ t22!5¯5TtS~0!, ~8b!

where T5I1W ~here I represents an identity matrix!,
known as the transition matrix. In principle this matrix ma
give all the information about the evolution of cluster sta
for a given CA model. In the following sections we on
consider the average coverage fractions of surface react
which may be obtained by performing the average over
the cluster states.
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EQUATIONS OF MOTION: EVOLUTION OF AVERAGE
COVERAGES

Let uX denote the average coverage ofX states on
the lattice anduXY denote that of nearest-neighborXY
pairs. The normalization conditions(XuX51 and (X(uXX
1 1

2 (YÞXuXY)51 give the relation between site and pa
coverage as

uX5uXX1 1
2 (

YÞX
uXY , ~9!

thus in anX cluster the probability of finding anXX pair is

xX5
uXX

uX
~10a!

while that of finding anXY pair (XÞY) is

xY5
uXY

2uX
, ~10b!

wherex5e, a, andb, corresponding toE, A , andB clusters,
and such quantities are normalized:xX1(Y(ÞX)xY51.

Defining quantities as above, the probability of finding
cluster stateX-$ iE, jA,kB% on the lattice in terms of site an
pair probabilities may be formulated as

x~ i , j ,k!5
N!

i ! j !k!
uXxE

i xA
j xB

k ~11!

with the condition( i 50
N ( j 50

N2 ix( i , j ,k)5uX .
Starting from the cluster evolution equations~4a!–~4h!,

and summing up the variances of each pair coverage ove
cluster states, it is not difficult to deduce the equations
motion concerning the evolution of each pair average cov
age. For example, the increase ofuAA may be obtained from
Eq. ~4a!:

uAA
1 5(

i 50

N

(
j 50

N2 i

(
m50

i
j 1m

N
a1~ i 2m, j 1m,k!

5 1
2 uAEXA1uEEXA

2,

while its decrease from Eq.~4g! is

uAA
2 5(

i 50

N

(
j 50

N2 i
j

N
a2~ i , j ,k!52uAA@12~12aB!N21#

and thus

duAA

dt
5uAA

1 1uAA
2 5 1

2 uAEXA1uEEXA
2

2uAA@12~12aB!N21#. ~12a!

Constructed in the similar way, and definingu[12eE(1
2XA), v[12aB , and w[12bA , the other equations ar
obtained as follows:
all
f
r-

duBB

dt
5 1

2 uBE~12XA!~12uN21!

1
1

N
uE~12XA!~12uN!2uBB~12wN21!,

~12b!

duEE

dt
5 1

2 uAE~12vN21!1 1
2 uBE~12wN21!

1
1

N
uA~12vN!1

1

N
uB~12wN!2uEE , ~12c!

FIG. 3. Phase diagrams of theAB2 model surface reaction
on ~a! triangular,~b! square, and~c! hexagonal lattices. The averag
coveragesuA ~ !, uB ~ !, and uE ~——! as functions
of XA .
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TABLE I. The transition values and the dimer coverage atXA50 for different lattice freedomN.

Freedom
number

Second-order
transition value

First-order
transition value

uB at XA50
~case 1!

uB at XA50
~case 2!

6 0.13860.002 0.525160.0001 0.5833 0.8582
4 0.24260.002 0.406860.0001 0.6250 0.8535
3 0.31260.002 0.323960.0001 0.6667 0.8519
2 0.7500 0.8125
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duAB

dt
5 1

2 uBEXA1~ 1
2 uAE1uEEXA!

3~12XA!~12uN21!2uAB , ~12d!

duAE

dt
5uEEXA~12XA!~12uN21!1 1

2 uAE~12XA!uN21

1 1
2 uAB1~uAA1 1

2 uAE!~12vN21!

2
1

N
uB~12wN!2 1

2 uAE , ~12e!

uBE512uAA2uBB2uEE2uAB2uAE , ~12f!

whereuX ~X5A, B, or E!, eE , aB , andbA are determined
by Eqs.~9!, ~10a!, and~10b!, respectively.

PHASE DIAGRAMS

The stable solutions of Eqs.~12a!–~12f! may be obtained
by carrying out the numerical integration of these equatio
Given values ofN and XA , the integration will lead to a
steady state of a macrocosm in which the average cover
uA , uB , anduE never change. Figure 3 shows the covera
uA , uB , anduE as functions ofXA for differentN, and Table
I presents the transition values and the values ofuB at the
point XA50, in which all the integrations start from the in
tial values:uEE51 anduAA5uBB5uAB5uAE5uBE50.

For N56 ~triangular lattice!, 4 ~square!, and 3~hexago-
nal!, there are three phases which are theB-saturated,
A-saturated, and steady reactive phase. The transition
tweenB-saturated and reactive phase is of second order~con-
tinuous!, while that between the reactive andA-saturated
phase is of first order~discontinuous!, just as observed in
MC @3,4# and CA @6,8# simulations. The reactive window
decreases its width withN taking a lower value, in agreemen
with that observed in MC simulations for square and tria
gular lattices@4#. The transition values~the bounds of the
reactive window! for different N are given in Table I.

It is a natural conclusion from Fig. 3 and Table I that f
N52 ~linear lattice! the width of the reactive window de
crease to zero~and to at least less than 0.012 forN53!. This
conclusion is confirmed by our integration in whichuE al-
ways vanishes for any value ofXA but zero.

RANDOM DIMER FILLING PROBLEM

The behavior at the pointXA50 deserves further com
ment. In this case the model corresponds to the rand
dimer filling problem@9#. In the CA version of a surface
s.

es
s

e-

-

m

reaction-like model, all processes will stop after one evo
tion step. Starting from the blank lattice@e(N,0,0)51#, the
evolution rule may be formulated as

E-$NE,0A,0B%→C-$NC,0A,0B%→B-$~N21!C,0A,1B%.

In the case of ignoring the interaction betwe
clusters ~case 1!, as in the above text, all the neares
neighbor C’s become E @B-$(N21)C,0A,1B%→B-$(N
21)E,0A,1B%#, and the coverageuB may be obtained as

uB5uBB1 1
2 uBE5

1

N
1

N21

2N
5

N11

2N
. ~13!

The values ofuB for different N are given in Table I.
Better results may be obtained by considering the inter

tion of a cluster with the environment~case 2!. In this case
each nearest-neighborC has a probabilitypc for transform-
ing into B, dependent upon the states of the outerlayer s
around it. Thusm of N21 nearest-neighborC’s transform-
ing into B together with the remaining ones becomin
E @B-$(N21)C,0A,1B%→B-$(N212m)E,0A,(m11)B%#
has a probability

q~m,N212m!5
~N21!!

m! ~N212m!!
pc

m~12pc!
N212m, ~14!

where pc is dependent on the dimension of lattice. For
linear lattice (N52), each cluster hasN ~52! outerlayer
nearest-neighbor sites around it, and thuspc5uC , while for
a two-dimensional lattice (N.2), each (N11)-site cluster
has 2N outerlayer nearest neighbors around it, and thuspc
512(12uC)2. HereuC5 1

2 uBC5(N21)/2N.
By the same argument given in the preceding paragra

uB may be constructed as

uB5H 12 1
8 S 12

1

ND S 11
1

ND 2

for N.2,

0.8125 for N52.

~15!

The values are also given in Table I.

REMARKS

~i! The Mean-field theory.The simplest and most fre
quently used tool is the site-approximation approach, wh
ignores all the spatial correlations and local fluctuations, a
thus is usually used to get a quick impression of the beh
iors in a system, or to give an outlining explanation of som
computer-simulated results. To describe a system more
curately, we need the cluster-approximation approach. D
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man has described a pair-approximation mean-field sch
@10# for the ZGB model surface reaction on a square latti
based on analyzing the ‘‘processes’’ of the reaction. O
approach belongs to another type which is based on ana
ing the evolution of ‘‘lattice states.’’

~ii ! The present scheme.~a! The scheme consists of
general lattice upon which a CA model is formulated. T
lattice freedom parameterN enters into the theory. This al
lows us to analyze the effect of geometric factors on
kinetics in a model dynamical system, when necessary.~b!
As presented in the text, it is an easy-to-operate sche
Once the cluster evolution rules are formulated according
a given CA model, the remaining derivations are quite d
tinct and simple. In particular, there is no difficulty whe
hy

s.
.

e
,
r
z-

e

e.
to
-

considering different types of lattices.~c! Because the
scheme involves the evolution of lattice states rather than
special processes of dynamics, it has the advantage of b
able to turn from one model to another without special d
ficulties. We will present further studies elsewhere.
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