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Cluster-approximation mean-field theory of a class of cellular automaton models
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A cluster-approximation mean-field scheme, which may be used to describe some cellular aut@Aaton
models, is introduced based on analyzing the evolution of cluster states. In this scheme the description of
microscopic processes is exact within a cluster, and approximate for the interaction between clusters and the
environment. The approach to building the theory is illustrated by a surface-reaction-like CA model very
similar to the model of Ziff, Gulari, and Barshad. A set of equations of motion concerning the evolution of
microscopic cluster states is derived, and some results from these equations are given.
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Nonequilibrium dynamical systems may exhibit compli- B,(gag + 2E— 2B(ad9 for nearest-neighbok,
cated behavior, including the formation of dissipative struc-

tures, oscillations, and kinetic phase transitiphls Because with probability 1—Xa,

of the lack of a general theory, one has to adopt simple :
models(which take into account the essential features of the A(ad9 +B(ad9—AB(gag+2E for nearest neighbors,
phenomengto investigate such systems. Cellular automatavhere(gag denotes the gas-phase speciasly denotes the
(CA) serve as such simple models and have been used #wisorbed species, and an empty site on the lattice is denoted
investigate a variety of physical, chemical, and biologicalby E. This model has been thoroughly investigated by Monte
systems[2]. CA models describe a universe consisting ofCarlo (MC) simulations[3,4], and interesting behaviors are

many discrete “cells” (lattice sites. Each site is endowed Qbserved including the first- and se_zcond-order phase transi-
ons between the steady reactive phase &kd and

with a finite number of states, and all the sites update theiE3 .

states simultaneously at one time step according to a unifor saturated phases. Noted t.hat such a smple model cannot
: . oo . . rnspresent the complex physical and chemical processes oc-

local rule. Since spatial correlation is usual_ly mtroduced_ Ncurring in even the most simple catalyst systems studied in

CA models, one would not expect the traditional mean-fieldhe |aboratory. It interests us because it provides a simple

theory to describe them correctly. In this paper we describe @xample of kinetic phase transitions of both first and second

cluster-approximation mean-field theory for a class of CAorder, and such behaviors are of importance in many of areas

models. The steps to building the theory are outlined as folf5].

lows. (a) For a general lattice with freedom paramehér In the following sections, we first give a CA version of

take a cluster withiN+1 (or more sites as an elementary ZGB model reaction on a general lattice, and then apply the

unit, and make clear all its possible statds. Write down  cluster-approximation mean-field theory to this model. After

the cluster evolution rules according to a given CA local rulelN€ corresponding master equations are derived, we consider

(the key step (c) Write down the evolution equations con- the average coverage fra_ctlons of the sgrface reactants as
: o . functions ofX,, and we give the phase diagrams for a tri-
cerning the probabilities of cluster states according to th

: . ) ngular, square, and hexagonal lattice. Finally, some remarks
cluster evolution rules and derive the corresponding mastel.o’ 4de.
equations(d) Perform calculations and analyses using these
equations. We will illustrate our approaches by using a CA VERSION OF THE ZGB MODEL
surface-reaction-like CA model. This model, though simple,

may exhibit both first- and second-order kinetic phase tran- The present version is similar to that proposed by Chop-
I . . . : ard and DroZ6] but in a more general way. We consider a
sitions and thus is of interest in physics.

. I ... general lattice on which each site hilsnearest neighbors.
The model we use is very similar to that proposed by Ziff, For g regular latticelN has values of 2, 3, 4, or 6 for a linear,

Gulari, and BarshadZGB) [3]. The ZGB model has been hexagonal, square, or triangular lattice, respectivietyre we
proposed to mimic a monomer-dimeA{B,) reaction on a define the hexagonal and triangular lattice as the structures
proper catalyst surface. The surface is modeled as a squashown in Fig. ). Above the lattice are the mixture gas phase
lattice, and reactions proceed according to the followingmoleculesA and B, with concentrationsX, and Xg=1
scheme: —Xa, respectively. Each lattice site may be in one of the
following three statesA, B, andE (here we call them site
state$, meaningA-occupied,B-occupied, and empty state,
A(gas+E—A(ad9 with probability Xy, respectively. All the site states update themselves simulta-
neously at one evolution step according to the following lo-
cal rules.(i) An E transforms intoA with probability X, ,
or a conditional occupied stat€ with 1—X,. This C
*Mailing address. immediately become® in the case of anothe€ being
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@ ®» FIG. 2. Example of degeneration: for a square lattice, a cluster

stateA-{3E,0A,1B} contains four configurations.
FIG. 1. The structures of hexagor(a) and triangularb) lattice

defined in this paper.
CLUSTER EVOLUTION RULES

) ) ) o It is necessary to distinguish two sorts of processes occur-
found at its nearest-neighbor sites, otherwise it becofes ring in the evolution of a clusteli) The first are the pro-

(i) An A (or B) transforms intcE when there is at least one cesses inside a cluster, including the adsorption iE ahus-
B (or A) at its nearest neighbors, otherwise it remains invariter and the reaction between the central site and one of its
able. Note that in this mod&l is a fictitious state describing nearest neighbors in aorB C|uster' Such processes may
the impingement 0B, on the lattice, and the reaction pro- he completely followed and described exactij) The sec-
cesses are assumed to be Langmuir-Hinshelwood-type.  ond are the interactions between a cluster and the environ-
ment, including the reactions of a cluster with the sites
CLUSTER STATES around it aljd the adsorption in @dnor B cluster,. which may
) ) _ be treated in a mean-field way. In the following we ignore,
We now take an N+1) site (a center site withN  for simplicity, the later processes in formulating the cluster
nearest neighboyeluster as an elementary unit. Each clustereyolution rules, i.e., the clusters are regarded as isolated
on the lattice may be in one of¥3! configurations(here  gnes.
3 represents the number of different site statéée assume (i) Adsorption. Adsorption processes only occur in an
that the processes involved are equivalent in all dlrect|onsE_{iE,jA,kB} state. The centralE transforms into A
Thus these configurations degenerateMo(its value is  with probability X, and intoC with 1— X, while m of the
given beIOV\) different cluster states, each dlStlngUlShEdi nearest_neighboE’s transform into A’s together with

from the others by its central sit@lenoted byX, hereX  the remaining —m Es transforming intoC's with probabil-
=E, A, or B) and by the occupation numbeérj, andk of ity

E, A, andB states on its nearest-neighbor sifdenoted by il

{iE,jAkB}, herei=0,1,... N, j=0,1,... N—i, andk P(m,i—m)=mx2\“(1—xA)i—m, ()
=N—i—j). ltis easy to see that the number of cluster states i '
has the value where m=0,1,...j and the normalization condition
N S—oP(m,i—m)=1 is maintained. If the transformed cen-
M :32 (N+1—-i)=3(N+1)(N+2) (1)  tral site isA, its nearest-neighbdC sites immediately trans-
i=o0

form back intoE'’s, while if the transformed central site

it becomesE for m=i (no C site being found in its nearest
and a cluster state, which is denotedX»{iE,jA,kB}, con-  neighborg, or becomed for m<i. In the latter case one of
tainsN!/i!j!k! different, but equivalent, configurations. Fig- the nearest-neighbdl's also become® and the remaining
ure 2 shows an example of degeneration Nbr 4, i=3, | i—m—1 C's becomeE’s. The rule described above may be
=0, andk=1. summarized as follows:

X P(m,i—m)
— s A{(i—-m)C,(j+m)A,kB} —— A-{(i—m)E,(j+m)A,kB}

m=i
E-{iE,jA,kB}— —— E-{0E,(j+i)A,kB}

(L~X ) P(m.i—m) (33
L C-{(i—m)C,(j+m)A,kB}—

m<i

L B-{(i—m—1)E,(j+m)A,(k+1)B}.
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(i) Reaction. Reaction processes occur & (and B) e(i,j,k)=a(i—1,j,k+1)+b(i—1j+1k), (6d)
clusters in cases in which at least one nearest-neighbor
B (and A) is found. In each of the reaction events, the e (i,j,k)=—e(ij k) (60)

central A (or B) together with one of its nearest-neighti®r
(or A) become<E states. The rules may be formulated as

a (i,j,k)=—a(,j,k), (6f)
k>0
e i+ . _ - .
j>0
B-{iE,jA,kB} —— E-{(i+1)E,(j —1)AkB}. (39 where P(m,i)=[(m+i)1/mlit]XQ(1-Xa)", P(m,i+1)
=[(m+i+1)/mi(i+1)'IX}(1—X)'"E,  and P(m,0)
EQUATIONS OF MOTION: EVOLUTION =Xy . From the above equations one can easily construct the
OF CLUSTER STATES equations of motion concerning the evolution of cluster

Let x(i,j,k) denote the probability of finding a cluster states as follows:

stateX-{iE,jA,kB} on the lattice, and lex*(i,j,k) denote

_ i
the varianceswherex=a, b, angle corresponds tX=A, B, —a(i,j,k)= E X P(m,i)e(i+m,j—m,k)—a(i,j,k),
and E, and +/— denotes the increase/decreaderom the dt m=0

evolution rules(3a—(3c), one can easily write out the evo- (79
lution equations in terms of probabilities at one evolution

step:

q j
—b(i,j.k)= 2 (1-Xa)P(m,i+1
at(i—mj+mk)=XsP(mi-me(i,j.k), (4a o1 0= 2, (1=XP(mi+1)

b*(i—m—1,j+m,k+1)=(1-Xa)P(m,i—m)e(i,j,k), Xe(i+m+1j—mk—1)-B(i,j.k),
(4b) (7b)
e (i,.K)=—e(i.j k), (40 &e(l,],k)=mzzo (1—Xp)P(m,0)e(m,j —m,k)
et (i+1j,k—1)=a(,j,k), (4e) +a(i—1j,k+1)+b(i—1j+1k)—e(i,j,k),
o - (79
et (i+1j—1k) =b(i,j,k), (4f)
o . which are known as master equatiofd. Note that Egs.
a (i,j.k)=—a(ij.k, (49 (7a—(7¢) containM = 2(N+1)(N+2) equations for differ-
N . enti andj, and onlyM —1 of them are independent, consid-
b(i.j.k)== 8.k, (4h) ering the normalization condition

where the functionse(i,j,k) and 8(i,j,k) are defined, ac- N N—i
cording to Eqs(30) and (30), as S, 3 [ali,jk+biij K +e(i,i =1 (7d
a(i,j,k) for k>0, T

a(i,j,k)=[ _ (53
0 for k=0, Defining a state vectd®(t), which may be represented as

o . a matrix ofM dimension in probability space, and an evolu-
| P K) - for >0, tion operatorW, a matrix of M x M dimension, Eqs(7a)—
or J=0. (7c) may be formed as

After some operations of parameters rearranging and unit- d
ing the terms, Eqs(4a)—(4h) may be systematized as fol- aS(t)=WS(t) (83
lows:

) or in a recursive form as
at(i,j,k =2 XsP(mi)e(i+mj-mk), (63
m=0 S()=TS(t—1)=T2S(t—2)=---=T'S(0),  (8b)
j
b*(i,j,k)= > (1—Xx)P(m,i+1) where T=1+W (here | represents an identity matjix
m=0 known as the transition matrix. In principle this matrix may
. L give all the information about the evolution of cluster states
xe(i+m+1j—mk=1), (6b) for a given CA model. In the following sections we only
i consider the average coverage fractions of surface reactants,
et (0,,k)= E (1—X4)P(m,0)e(m,j—mk), (60 which may be obtained by performing the average over all
m=0 the cluster states.
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EQUATIONS OF MOTION: EVOLUTION OF AVERAGE d6ss
COVERAGES T=%GBE(1—XA)(1—UN_1)

Let 64 denote the average coverage Xf states on
the lattice andfyy denote that of nearest-neighbdtY
pairs. The normalization conditionSyfyx=1 and Zy(fxx
+33y.x0xy)=1 give the relation between site and pair
coverage as

1
N Oe(1—X) (1—u™) = Ggg(1—wWN™h),
(12b

dbee _ _
. gt =3 0pe(1—0"N " H + 3 0gg(1-wWN"h)
Ox=Oxx+3 >, Oxy, ©
Y#X
+10(1 N)+10(1 wN)— 6, (120
01— N+ = Oa(1—wWN)— fep,
thus in anX cluster the probability of finding aXX pair is N A NP FE

0
szﬁ (10@
Ox
while that of finding anXY pair (X#Y) is
GXY
XY_Z_GX’ (10b
wherex=e¢, a, andb, corresponding t&, A, andB clusters,
and such quantities are normalizeg+ =y . x)Xy= 1.
Defining quantities as above, the probability of finding a

cluster stateX-{iE,jA,kB} on the lattice in terms of site and
pair probabilities may be formulated as

N!

X(1,J 1K) = Ty X

11
with the conditionS{L ;SN 0x(i,j, k)= 6.

Starting from the cluster evolution equatiot¥a)—(4h),
and summing up the variances of each pair coverage over all
cluster states, it is not difficult to deduce the equations of
motion concerning the evolution of each pair average cover-
age. For example, the increasefyf, may be obtained from
Eq. (4a):

N i .
+m
=S > S et (immj+mk)
i=0oj=om=0 N
=3 OpeXa+ OeXa,
while its decrease from Ed4g) is
N N-—i J
Oan=2 2 a (i.j.K)=—0a[1—(1—ag)" 1]
i=o{=o N
and thus
deAA _
at Opat Oan= 3 OneXa+ OceXi

—Oan[1-(1-ag)N 1] (1239

FIG. 3. Phase diagrams of th&B, model surface reaction
Constructed in the similar way, and defining=1—eg(1  on(a) triangular,(b) square, andc) hexagonal lattices. The average
—Xa), v=1—ag, andw=1-b,, the other equations are coveragesd, (—), 6 (— — —), and 6z (—) as functions
obtained as follows: of Xj.
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TABLE I. The transition values and the dimer coverag&at=0 for different lattice freedoniN.

Freedom Second-order First-order Og at X,=0 Og at X,=0
number transition value transition value (case 1 (case 2
6 0.138t0.002 0.525%*0.0001 0.5833 0.8582
4 0.242+0.002 0.40680.0001 0.6250 0.8535
3 0.312+0.002 0.3239:0.0001 0.6667 0.8519
2 0.7500 0.8125
N . reaction-like model, all processes will stop after one evolu-
gt~ 208eXat (2 0ne OeeXa) tion step. Starting from the blank lattife(N,0,0)=1], the
evolution rule may be formulated as
X (1=Xpa) (1—=uN"1) = O, (120
E-{NE,0A,0B}—C-{NC,0A,0B} —B-{(N—1)C,0A,1B}.
%: OeeXa(1— X)) (1—uN" D+ 30,e(1— X )uN "t In the case of ignhoring the interaction between
t clusters (case }, as in the above text, all the nearest-

L 0unt (Oant i) (1—pN-1 neighbor C's become E [B-{(N—1)C,0A,1B}—B-{(N
20ne (Oant20a8) (17077 —1)E,0A,1B}], and the coveragéz may be obtained as
1
- (1 WY) 3 0ae, (128 .1 N-1 N+1
03=633+503E=N+W=W. (13)

Oge=1— O0ppn— Ogg— Oce— Oag— Ok, 12 : . .
BE AA-7BB TEE TAB TAE (129 The values offg for differentN are given in Table I.

where 6y (X=A, B, or E), e, ag, andb, are determined Better results may be obtained by considering the interac-
by Eqs.>((9) (103') a’nd(ldb) Er’esgéctively.A tion of a cluster with the environmefitase 2. In this case
’ ’ ’ each nearest-neighb@ has a probabilityp,, for transform-

ing into B, dependent upon the states of the outerlayer sites
around it. Thusm of N—1 nearest-neighbdC'’s transform-

The stable solutions of Eq&l2a—(12f) may be obtained ing into B together with the remaining ones becoming
by carrying out the numerical integration of these equationsE [B-{(N—1)C,0A,1B}—B-{(N—1-m)E,0A,(m+1)B}]
Given values ofN and X,, the integration will lead to a has a probability
steady state of a macrocosm in which the average coverages N— 1)1
0n, 0g, andfg never change. Flgure_s shows the COVErages(m N—1—m)= ( )! PM(1—p)N-L ™ (14)

6, 0g, andfg as functions o, for differentN, and Table m{(N—1—m)! "¢

| presents the transition values and the valuegpft the _ ) ) )

point X,=0, in which all the integrations start from the ini- Where pc is dependent on the dimension of lattice. For a
tial values:fce=1 and dsa= Opg= Oap= Opc= Oge=0. linear Iatthe (\I=2), each clugter hadl (=2) outgrlayer

For N=6 (triangular lattice, 4 (squarg, and 3(hexago- nearestjnelgh'bor S|tes' around it, and thys 6., .whlle for
na), there are three phases which are tBesaturated, @ two-dimensional latticeN>2), each {N+1)-site cluster
A-saturated, and steady reactive phase. The transition b8as N outerlayer nearest neighbors around it, and thus
tweenB-saturated and reactive phase is of second gimer- =1~ (1~ 6c)% Herefc=36gc=(N—1)/2N.
tinuous, while that between the reactive amdsaturated By the same argument given in the preceding paragraphs,
phase is of first ordefdiscontinuouy just as observed in s May be constructed as
MC [3,4] and CA[6,8] simulations. The reactive window

PHASE DIAGRAMS

decreases its width witN taking a lower value, in agreement 1— ;( 1— E 1+ = ? for N>2
. . . . . 8 1
with that observed in MC simulations for square and trian- Og= N N (15
gular lattices[4]. The transition valuegthe bounds of the 08125 forN=2.
reactive window for differentN are given in Table I.
It is a natural conclusion from Fig. 3 and Table | that for The values are also given in Table I.
N=2 (linear lattice the width of the reactive window de-
crease to zer¢and to at least less than 0.012 fé= 3). This REMARKS
conclusion is confirmed by our integration in whie¢k al-
ways vanishes for any value &f, but zero. (i) The Mean-field theoryThe simplest and most fre-
quently used tool is the site-approximation approach, which
RANDOM DIMER EILLING PROBLEM ignores all the spatial correlations and local fluctuations, and

thus is usually used to get a quick impression of the behav-

The behavior at the poinK,=0 deserves further com- iors in a system, or to give an outlining explanation of some
ment. In this case the model corresponds to the randornomputer-simulated results. To describe a system more ac-
dimer filling problem[9]. In the CA version of a surface- curately, we need the cluster-approximation approach. Dick-
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man has described a pair-approximation mean-field scheneonsidering different types of latticedc) Because the
[10] for the ZGB model surface reaction on a square latticescheme involves the evolution of lattice states rather than the
based on analyzing the “processes” of the reaction. Ourspecial processes of dynamics, it has the advantage of being
approach belongs to another type which is based on analyable to turn from one model to another without special dif-

ing the evolution of “lattice states.” ficulties. We will present further studies elsewhere.
(i) The present scheme(a) The scheme consists of a

general lattice upon which a CA model is formulated. The
lattice freedom parameté\t enters into the theory. This al-
lows us to analyze the effect of geometric factors on the
kinetics in a model dynamical system, when necess@y. The authors thank Professor Zousen Zhao for helpful
As presented in the text, it is an easy-to-operate schemeliscussions. This work was supported by the National
Once the cluster evolution rules are formulated according tdNatural Science Foundation of China and the Science
a given CA model, the remaining derivations are quite dis-Research Foundation of Information and Engineering Insti-
tinct and simple. In particular, there is no difficulty when tute.
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