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Diverging correlation lengths in electrolytes: Exact results at low densities
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The restricted primitive model of an electrolytequisized hard spheres carrying chargeg,) is studied
using Meeron’s expressiod. Chem. Phys28, 630(1958] for the multicomponent radial distribution func-
tionsg,.(r;T,p), that are correct through terms of relative orgdethe overall density. Thexactsecond and
fourth momentdensity-densitgorrelation lengthsy 1(T,p) and &y (T, p), respectively, are thereby derived
for low densities: in contrast to the Debye lendth= (kg T/4mq2p)*?, these diverge whep—0 as (Tp) ¥4
and (T/p%)*8, respectively, withuniversalamplitudes. The asymptotic expressions agree precisely with those
obtained by Lee and FishfPhys. Rev. Lett76, 2906(1996] from a generalization of Debye-ldkel (GDH)
theory tononuniformion densities. Other aspects of this GDH theory are checked and found to be exact at low
densities. Specifically, with the further aid of the hypernetted-chain resummation, the corresparatiger
chargecorrelation lengthg; ; andé; , and the Lebowitz length, (which restricts charge fluctuations in large
domaing, are calculated up to nonuniversal terms of orgets p andp. In accord with the Stillinger-Lovett
condition, one finds, ;= &p although the ratiog; ,/ép and £ /&p deviate from unity at nonzerp.

PACS numbgs): 61.20.Qg, 05.40:j, 61.20.Gy, 05.70.Jk

I. INTRODUCTION AND SUMMARY In 1950, Mayer 3] developed a systematic theory of the
statistical thermodynamics of ionic solutions based on cluster
expansion techniques which, in principle, allows one to cal-
Considerable progress has been made in this century teulate successive corrections to the DH limiting laws. May-
ward understanding the thermodynamic properties of electrcer’s calculation of the osmotic pressure exerted by the ions is
lyte solutions(e.g., NaCl in water A central problem, which  formally equivalent to a virial expansion of the pressure of a
remains a challenge to theory, has been applying precisgas. One of the central insights of the Mayer theory is that by
methods of statistical mechanics to the simplest model osumming the “ring graphs” to all orders in the density
ionic solutions, namely, the restricted primitive model one recovers Debye screening which is an inherently many-
(RPM), consisting ofN=N_ +N_=Vp hard spheres of di- body effect. This also solves the technical problem of diver-
ametera with N, carrying elementary chargesq, andN_  gent integrals over the bare Coulomb interaction which en-
(=N,) charges—qp, in a medium of dielectric constapt.  t€rs in the dimensionless form
Our aim here is to respond to this challenge by deriving
explicit exact results for varioudensity-densitgndcharge- BosAr)=2z,2, blr, (1.2
charge correlation lengthat low densities in order to com-
pare them with recent approximate theories potentially validyhere Bjerrum’s length is
at higher densities.
The pioneering work in 1923 of Debye and ¢kel (DH)
[1], who constructed and then linearized an appropriate
Poisson-Boltzmann equation, shed light on the importance of
ion screening characterized—in the leading approximawhile T* =kgTDa/qj is the reduced temperature. In consid-
tion—by the Debye screening lengéh , given by ering only ring diagrams, Mayer found that his results for the
osmotic pressure and ionic activity coefficient confirmed the
DH limiting laws. By including graphs of more complex
épl= K%:47752 (2,90)%p, /D, (1.1  topological types, Hag§4] calculated the osmotic pressure
4 and logarithm of the ionic activity up to and including cor-
rection terms of relative ordep®? and p%?, respectively.
Although, in principle, one may calculate thermodynamic
where 8= 1/kgT, while p, andz, are the number density properties of the RPM to arbitrary ordersgrusing Mayer’s
and valence of species respectively. For the RPM one, has theory, the number and difficulty of the integrals which ap-
z,=+1,—1 for ion species o=+,—, so that «3 pear make going much beyond the second virial I¢izel,
=47-r,8q§p/D with p=p,+p_. The DH theory, which is, O(p?) in the free energlanalytically intractable.
in effect, a special type of mean field theory, provides a In 1958, Meeror{5], using a slightly modified approach
reasonably good account of the thermodynamics of electrao Mayer’s theory[6], was able to extend the treatment of
lytes at moderate densigy and was shown to be exact when thermodynamic properties to provide a calculation of the po-
p—0 (the DH limiting laws by Kirkwood and Poirie[2].  tentials of average forcey, (r;T,p), between two speciaes
However, systematic improvements of DH theory haveandr separated by a distanceand of the radial distribution
proven elusive. functions, g,..(r;T,p). Meeron collected terms dd(p?),

A. The various correlation lengths

b=pq3/D=a/T*, (1.3
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O(p Inp) and O(p), and gave explicit expressions for . _ B (e 2 L2 A 4 6

w,.(r) andg,.(r) exactthrough terms of(p). Using the Szz(KiT.p) =1+ phz(KiT,p) = &7k &40+ Ol ()1 9
multicomponent virial expression relating the osmotic pres- '
surep(T,p) to theg,,(r) and the(Coulombig interactions, where the charge-charge correlation function for the RPM is
Meeron calculateg(T,p) and checked agreement with the given by the difference

known exact resulf4] up to and including terms a®(p?)

(i.e., the second virial level The expression fog,.(r),

however, is rather complicated, involving elaborate integrals ho(r)=3%[g..(r)—g._(r)]= %E 2,2,h, A(1).

[see Eq.(1.14) below], and, indeed, Meeron did not extract o7

any other observable properties fram.(r). (1.10

Recent experiments on the criticality of electrolyte solu- o
tions have renewed interest in understanding the behavior c->|1_‘he vanishing 0fSz;(k) whenk—0 reflects electroneutral

ionic systems. A powerful tool in the study of critical phe- 1y, while &, is predicted by the well known second mo-

nomena and the structure of liquids is the scattering of elecnent or Stilinger-Lovett conditioi8]. Note that the domi-

tromagnetic radiation or of neutrons which enables one t(panflpoles 0fSzz(k) yield the true screening lengtify ..
observe the density-density structure factor =k, (T,p), which determines the exponential decay of the
chargecorrelationg 7].

Finally, we calculate théirst moment charge-charge cor-
Sun(k:T.p) =1+ phy(k:T.p). (1.4) relation length using the appropriate generalization of Eq.
Y Y (1.9 for the odd moments, namely,

Here the appropriate number-density-number-density corre-

lation function for the RPM is given by the sum .
E(Tp)=éz10=— zf [r|phz(r)dr. (1.12

_1 _1 This was shown by Martin and Yalcif®] to relate to the
IN(0) = 2lhe (D) +h. (0] 4; Mol (19 charge fluctuationéQ?) in a large subdomain, which, as
a consequence of screening and charge neutrality, grow like
in which, witho, 7 = +,—, we employ the standard notation the area|dA| rather than the volumg\| [9]. Lebowitz[10]
interpreted this by supposing the ions form neutral clusters of
a characteristic linear dimension which we cflll] the

Ny(r)=0s,(r)—1, (1.6)  “Lebowitz length” & (T,p). Then net charge fluctuations in
A arise only when a neutral cluster is “cut” by the boundary
while we define the Fourier transform generally via JdA. Provided the clusters have no long-range correlations,

one may thus expect

b(k)= f dr v (r). (1.7 (Q3)/10A|~3paZeL(T.p), (112

where the normalization has been cho$&h| so that Leb-
owitz's conjecturg 10] that £, should be identified with the
Debye lengthép proves valid for the RPM whep— 0.

Noting thatph,(r) in Eq. (1.1)) is essentially the inverse
Fourier transform ofS,,(k), one can show9(c)] that the
Lebowitz length is also given by

From small-angle-scattering experimerii®., k—0), one
measures theecond momerdnd (possibly the fourth mo-
ment density-density correlation length&, ,(T,p) and
énaA(T,p), defined by

Sun(k;T,p) =Sun(0)[1— &5 (T, p)k?
2 (»dk
+ &L AT, p)K*+0(KO) ], (1.9 fL(T,p)=; JO Fszz(k), (1.13

where, for the RPMSyn(0)=pksTKy is the reduced com- a0 the convergence of the integral at the lower limit is

pressibility. Of course, this assumes that a power series ex: ZKE with e> Lo
pansion ofSyy(k) in k? is possible, at least to the orders Ensured byz,(k)~k* with €>1 as embodied in Eq1.9).

shown: our analysis bears that out.

As mentioned, a principal aim of this paper is to derive
exactexpressions fogy 1(T,p) and &y o(T,p), valid when By way of motivation, let us review briefly how knowl-
p—0 by using Meeron’s result fog,.(r). In addition, we edge of the exact low-density expressions for these correla-
examine the dominant poles 8fy(k) which yield thetrue  tion lengths may contribute to our understanding of the
density correlation lengthéy .(T,p) that determines the anomalous criticalityobserved in some electrolyte solutions.
Ornstein-Zernike-like exponential decay bf(r) [7]. We  An unresolved problem is understanding the possible cross-
also calculate the corresponding second and fourth momemwtver behavior from classicé&br van der Waalsto Ising-type
charge-charge correlation lengtlfs ;(T,p) and &7 o(T,p) criticality when the reduced temperature deviation from criti-
from the charge-charge structure factor cality, t=|T—T|/T., approaches zero. Certain systems dis-

B. Relevance to ionic criticality
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play pure Ising criticality[12], others exhibit crossover at in estimating the amplitude dfy ; at low densities suggests
scalest, ~10 15-10725[13,14 and, in some cases, reveal that the Weiss-Sches estimate otg [20] may well be in

no hint of Ising characterl5]. For example, the system tri- error by a few orders of magnitude. Conversely, the GDH
ethylhexylammonium triethylhexylboride bbBsssg N theory[14] also yields theexactlow-density amplitude for
diphenyl ethef15] has displayed classical critical exponents &y ;, and so seems likely to be more reliable in the critical
down tot~10 4, and is also one that appears to best apregion[18,20c)].

proximate the RPM. Thus, an important theoretical challenge

of deciding the universality claggnd crossover scalg, if C. Meeron’s expression and its analysis

appropriatg¢ of the RPM remain$16,17).

To understand the behavior of any system near a critic
point, one must study the order parameter fluctuations. Th
primary order parameter for ionic fluids is simply the overall
number density of iong. The original DH theory1] and its

We calculate the correlation lengtlgg ; and &y, from
eeron’s expressions fa,..(r); thus in Sec. I, we briefly
review Meeron’s derivation, which yields

extensiong17] shed light on the charge-charge correlations, 9o (T[T, p) =001 T, p)[ 1+ 7,,(r; T, p)
but say essentially nothing about the overall density-density
correlations. Recently, however, Lee and FisHef| gener- + &A1 TApab) ], (1.14

alized DH theory tanonuniformion densities thereby deriv-
ing a free-energy functional gf(r). This GDH theory then
yields (approximate density correlations via functional dif-
ferentiation. In particular, Lee and Fisher calculated the sec-

ond moment density correlation lengti 1(T,p) for the g2.(r;T,p)=exd —Bul (N+wP(n], (119
RPM which they found exhibited a novel, universal diver- ) )

gence for allT whenp—0. In the critical region, the predic- N which the hard-core potentials for the RP(dut, more
tion WasgNyl(pc,T)%gg/tl’z for t—0+, as expected for a generally, the short-range potentjaise just

mean field theory. Using this latter result, Fisher and Lee

where the leading factor, which may be regarded simply as
the DH approximation for the correlation functions, is

[18] were able to implement the Ginzburg criterion for clas- u’[”(r):u*(r)zoo, r<a
sical critical behavior. Indeed, the Ginzburg temperature
ts (~ty) was explicitly evaluated but was found to be simi- =0, r=a, (1.19

lar in magnitude to that derived for simple fluids using a
comparable approach. Their analysis thus suggested that t
RPM exhibits little if any classical behavior. If that is cor-
rect, the explanation of the experiments must be sought in WET(I’;T,p)= -2z,2, be *0'/r, (1.17
new directions. )

Other approaches to deriving a Landau-Ginzburg freewhich is just the Debye-Hikel screened Coulomb interac-
energy functional for the RPNI19,20] from which ¢ and  tion: recall Egs(1.1)—(1.3).
ts can be extractefil7] have also been reported. Leote de  NOw, to expressy,(r) in Eq. (1.14, Meeron[5,21] for-
Carvalho and Evangl9] used a generalized mean-sphericalmulated integral kernels;{”), (r; ry,....r) in diagram-
approximation(GMSA) which repairs the simple MSA&or ~ matic terms. With the notation
which the critical density fluctuations remain boundelly
adding to the direct correlation function a term with param- h° (ry=g® (r)—1, (1.18
eters which are adjusted to satisfy various sum rules; then or T
&n,1 diverges at criticality, andy can be estimated. Weiss the first- and second-order kernels may be written
and Schrer [20] followed a procedure similar to that origi-
nally proposed by van der Waals in the theory of surface ,75717) V(r,r'):hgv(r_r’)hET(r’)_ng(r_r')WET(r'),
tension: however, they replaced the original square-gradient ' (1.19
term by one derived from the pair distribution function pre-
dicted by DH theory. Both these theories exhibit serious de- (2) P ey — D rVET (e — e WD (et
fects. In particular, as suggested by Fisher and [[1ee18 oran( ) =W, (P, (1= W (r =)
and confirmed by the exact calculations reported here, the + 2wl (r) [+ (=)
density correlation lengthy ;(p,T) predicted by the GMSA a
[19] and by the Weiss-Scheo approacH20] prove to be x[wfﬂ(r”—r’)]zwgf(r—r”),
significantly in error at low densities: the former has a com-
pletely incorrect dependence anand p (—0); the latter (1.20
yields the correct forn{see beloy, as does the GDH ap- where the short-range Mayérond (for the hard-core po-
proach[14], but the numerical amplitude is in error by a tentia) is
factor of about 5.7. Now the critical density of the RPM
appears to be rather smabé(_zpca3z0.03—0.08: see Ref. f;T(r):fT(r):e—ﬁuT(r)_l_ (1.21)
[16(b)]); furthermore, the Ginzburg temperaturg (~ty)
varies as &/&;)°®. Consequently, an error by a factor of 5.7 Then in Eq.(1.14 we have

H\g'nile the ionic coupling enters through
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nm(r;T.p)=2V P, dr'nff),y(r;r’)Jr% pypﬂf dr’J'dr”nffﬁ,m(r; r',r). (1.22
|
Finally, &,.(r;T,{p,}) is a “remainder” function formally ’ o
of orderp®, whose specific character wherbecomes small hm(r)ICM(YHEV ny Cou([r=r"Dh,(r")dr’,

is discussed in Sec. Il: see also below EGQ24). (1.26
In Sec. I, we deriveSyy(k) for the RPM by taking the '

Fourier transform of Eq(1.14 and using Eqs(1.49—(1.7.  py assuming that the direct correlation function takes the
By employing the convolution theorem, we first write form

h,.(k), explicitly in terms ofh® (k), WP (k), and f'(k).

Then, by expanding the exponential definh@,(r) in pow-

ers OfWET(I’) and taking the Fourier transform of each term,

we show thathP (k) may be written in terms of (k) plus

an infinite series of exponential integrafser incomplete 0 ) ) .
gamma functions[22]. Finally, to find hy(k), we calculate Y\ghere Cq,(r) is short rangeq ar]d its Fourier transform
the sums over the species 7, v, andu. Using the result for C,.(K) possesses an expansion in powerk.olndeed, the

e , . , expression for the direct correlation function derived by the
giNn(]lg)Ieof%t?aned in Eq/(3.30, we find thatSyy(k) takes the HNC resummatiori23] takes a similar form, namely,

2
ﬂzrrzr qO

0
Or +c, (1), (1.29

Ca”r(r)z -

Cl)’T(r): _Bv(rT(r)+ho’r(r)_ln[1+htrr(r)]+bu’7(r)l
1.

Sun(k)=[1-phR(K) ] *+E&n(kép;T.p),  (1.23 (1.28

where the density-density DH correlation function is definedwhere the totalreduced potential is
via Egs.(1.18 and(1.15 as

BU A1) =2,2,(bIr)+ Bu’(r), (1.29
hR(r)=3[h2 (1) +h?_(n], (1.24 _ _ _
while b, .(r) is represented graphically by a sum over all

while Zy(s;T,p) is a remainder function derived from bridge diagrams.

&,.(r:T,p) with some additional terms, which, in ordes$ Inserting Meeron’s expansiofi.14 into Eq. (1.28 and
s?, ands®, behaves ap®4(In p) when p—0, wherej is a  USing Eq.(1.6) yields an explicit, exact expression for the
small integer; but recall, also, thég~p 2 asp—0. short-range parts of the direct correlation function, namely,

Following a similar procedure, we are able to calculate

Sz7(K) in terms ofﬁ?(k), the Fourier transform of the DH

0 _nD _wPD
difference or charge correlation function Carl 1) =g (N) =Wa (1) + Roo(1), (1.30

where the remainder function is
h2(r)=3[h%.(r)—h2_(n)]. (1.29

_nD
However, we now find that we lose precision by a factor of Ror(1)=hg (N[ 7:r)+Eg(r) ]+ b,,(r)
order p*2. Explicitly, the Stillinger-Lovett(SL) zeroth and >
second moment sum rules, that spe@f(0)=0 andé;,, - 2 (=D)"5,(r)+E,(r)]"n. (1.3)
are satisfied only up to errors of relative orgemn p in the n=2
density. Consequently, our expression &r, will be valid . . I
only up to the same relative order. Moreover, to determineIn Appendix A V\ée bound .th.e Iead|ng'contr|but|ons o
the Lebowitz length from Eq(1.13 we need an expression Rqe(r), namely,h;(r)7,,(r); in Appendix B we bound
for S;,(k) which satisfies the electroneutrality condition to the leading b_rldge-dlag_ram contribution tq,f(r) [26,27
all orders in the density. To overcome these difficulties Weand the Ieadmgz contrlputlon to the sum n Eq.3D),
appeal to the well known hypernetted ch&itNC) resum- namgly,[nm(r)s;z- We]_ find thatR,,T(r) contributes up to
mation[23] which, as we now indicate, resolves these prob-€lative orderp™(In p)! and higher, and can, therefore, be

lems and provides a higher-order precision. neglected in our analysis.
P g P Equations(1.27) and (1.30 [neglectingR,,(r)] consti-

. tute the HNC MeerofHNCM) result for the direct correla-
D. HNC and Meeron resummations(HNCM) tion function, which, along with the OZ relatiqi.26), allow
It has been showf®4] that the zeroth and second momentus to calculateSyn(0), 71, &7, and & exactly up to
SL sum rules can be derived from the Ornstein-Zerii®&)  errors of relative ordep®%(In p)!, and &y, and &y, up to
relation[25] orderp In p.
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In Sec. lll D we show that the HNCM result f@yn(k) which enters, here, only through the hard-core diamater
agrees precisely with that derived by the “Meeron only” The divergence oy 4(p) and &y o(p) whenp—0 is remi-
approach recorded in Eql1.23. Section IV considers the niscent of the divergence of density fluctuations at a critical
charge-charge structure factor for the RPM and establishgmint [16(a)]. Note that these divergences are much weaker
the simple form than that of the charge-charge correlation length wiisee

below) is asymptotically determined b§n~ (T/p)*2.
. - Result(1.33 for &y 4(T,p) precisely confirms the predic-
1/S77(k) = (kp /K)2+ 1= p[h2 (k) —WZ (k) + R(K)], tion of GDH theoryup to the correction term shown: see Eq.
(1.32 (10) of Ref. [14(a)]. The Ieadigg cozrrection term in GDH
. | . theory is proportional to £pa)“~ pa“/T, which is clearl
whgre th_e charge-charge Deé)ye correlation fundug)('r? IS nonur%iverrs)al;pthe exact clf)Drre)ctiofr)l term in E#.33 is, noy
defined in Eq.(1.29, andw;(r) and Rz(r) are defined 4, bt also nonuniversal but we have not calculated it from
analogou_sly via Eq41.17 and(1.3D. Finally, note that EQ.  peeron’s analysis. On the other hand, it transpires that the
(1.32 satisfies both the zeroth and second [noment SL relagpH analysis also yields the forrfl..34) of & (T,p) as
tions to all orders in the density even wh&y(k) is ne- p—0 [14(b)]. Indeed, following Lee and Fishdd4], we
glected. note that the leading terms of the HNC approximation for the

It is, perhaps, worth recalling that the HN&pproxima-  direct correlation functiorisee, e.g., Ref.25]), namely,
tion [23-25 is an integral equation for thé,.(r) or,
equivalently, for thec,.(r), obtained by combining Eq.

(1.26) with Eq. (1.28 and neglecting the bridge functions Cij(r)=~—Buj(r)+3h5(r)+---, (1.39
b,.(r). What we here call the HNCM procedure has some +

resemblance to a first iteration of the HNC approximation inWith Uj;(r) =u;;(r) + ;;(r), lead to

which, initially, h,(r) is neglected in Eq(1.28, and Eq.

(1.26 is used to obtain a first nontrivial approximation for

h,, which, in turn, is then used in Eq1.28. However,  Sun(K)=[1— 3xpbs(ki2kp)]™t,  s(y)=(tan ty)ly,
because of the density ordering that vead Meeroh em- (1.36

ploy, the suggested correspondence is not precise. Further- o
more, in extending our results to encompasmsymmetric, | One uses the DH formiEq. (1.15] as an approximation for

multicomponenprimitive models[11], even though only to long distances and Iow_densities. Qn expansion in powers of
the sameorders in density as obtained here, it proves esserf¢ @nd use of Eq(1.8), this leadspreciselyto Egs.(1.33 and
tial to retain a leading bridge diagram contributi@md also ~ (1-34 [excluding only theO(p In p) termd. This further
to allow for a(2,1,2 chain not included by Meeron in his SU9gests the general asymptotic behavior
truncation.

E. Overview of results ﬁ‘n(T,p)~b/8(2n+ 1)(2KD)2n_1 (1.39
Using our results foh,(k) and Syn(k) we derive, in ~ for p—0, which we believe is correct since the analysis de-

to higher order irp.
As a further check, we have verified that our regil23

b \12 A for Syn leads via the sum rulg®5] to the reduced isother-
fN,l(PPF(W) [1+ xpb+O(p Inip)] mal compressibility correct up to the second-virial level,
D namely,
1 b 1/4
~2 (%) ’ (133
Sun(0)=1+ Zxpb+ 15(kph)?
*° —-2m
14 . (T*) o
- +4mpa ——F—=+0 In p)!),
gN,2<T,p>=(320K3) [1+ %Ko +O(p Ip)] m0a’ 2 Gmyim—g) 0w N
D
b8 (1.38
”4(10)174(7713)378' (1.34 which agrees with the reduced compressibility calculated

from the known low density expansion of the free energy for
for the second and fourth moment correlation lengths, rethe RPM[4,28]. It is remarkable that the leading nonuniver-
spectively(Recall, that, here and beloyis a small integey.  sal form of the second-virial corrections follows just from
Evidently, both correlation lengths diverge whena-0, but  the DH forms(1.15—(1.17). For completeness we quote the
with different laws, namely, as Tp)** and (T/p%)Y8 re-  expansion for 1%\ (0) whichincludesthe O(p®? In p) term
spectively. Furthermore, both amplitudes aneiversalin omitted in Eqg.(1.38: this follows from Haga’s analysigt]
that they do not depend on the short-range poteuﬂmr), as
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1 * (T*)72m
——=1- ikpb—4mpad
Sun(0) 47D p

oo

—2m-1
—I—%WKDbpa?’Z -
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m=0 (2m—3)(2m)!

m=2

(m—=1)(2m+1)!

497

— 2 mkppb*[IN(4kpa) + ye— 15]— 2kda/T*

+0(p?(In p)h), (1.39

and confirms Meeron’s conclusions as to the order of theletermined the true correlation length ..=1/k.. for the

residual term in Eqs(1.23 and (1.38).

Using our results fog (k) andS;7(k) we derive, in Sec.

IV, &7, andé; , by expanding in powers &, and alscé, by

evaluating the integrall.13. Thus we obtain the exact ex-

pressions

1é7(T,p)=kp, (1.40

1é; o(T,p)=kp{1+ §X*+ 35(kpb)?
X[In x+e,— Y(T*)]+0(p*? Inip)},
(1.42)

EU(T.p)=rp {1+ DX+ f5(kpb)?
X[In x+e —Y(T*)]+0(p¥?Inip)},
(1.42

where x=«kpa and, employing Euler's constantyg
=0.57721--, the coefficients are

e,= yg+In 3=1.675 83, (1.43

e = ye+In4=1.963 51. (1.44

screening of the charge-charge correlation functions finding,
generally,

2

S Z,
g
S 2,

K2 1+ kpb In3
P2 4

; Zicﬂ'
S Ze,

n (KDb)zeln(KDb)

(1.49

where thec,=p,/p are the relative concentrations or,
equivalently, the stoichometric coefficientSee KM, Eq.
(150), in Ref. [27(a)].) In the case of the RPM, the first
correction term here vanishes by symmetry and the second
squared factor reduces to unity. KM wrote a correction term
in Eq. (1.46 of order (kpb)?, but this is an oversight to the
extent that nonuniversal terms entailirgya actually arise
as, in fact, KM mention in their subsequent discussion.

The KM formulation can also be used to study the decay
of the density correlation functiolmy(r; T,p) [see Eq(1.5].
The corresponding true correlation length is found to satisfy

Ene=3E7.[1+2exd—8lkpb)+---],  (1.47)

Note that the leadingonuniversalcorrections can be calcu- \yhere the argument of the exponential neglects corrections
lated (although we have been unable to do this for the denyt rejative orderp’’2 while the additive terms are of order

sity correlation lengths explicitly one finds

Y(T*)= 6;3 (T*)42/(2n—4)(2n—1)! (145

Not surprisingly Eqs(1.41) and (1.42 do not confirm the

GDH approximation[29] beyond leading order since this

cannot generate the Ieadimj, Inx~ plnp term. We dis-
cuss the GDH results fd8;,(k), £7.1, &2, and§ further
in Sec. IV.

e 16/ob  This result also confirms the predictions of the

GDH theory in leading order except insofar as the exact re-
sult (1.46) for & .. is replaced in Eq(12) of Ref.[14(a)] by
the leading behaviogp = KBl. As remarked in Ref.14(a)],
this result means that the density-density correlation function
hn(r) decays ase™"/éN=/r which is slightly more slowly
than e 2<"/r?, the square of the charge-charge correlation
function decay[27]: however, the associated amplitude
should vanish agp— 0.

Although KM mainly addressed the long-distance corre-
lation decay, their incidental low-density results, specifically

Finally, in Sec. V, we compare our results in more detailfor the Fourier transforng,, .(k;T,p) of the direct correlation
with those derived from the correlation-function calculationsfunction, can be used to examine the correlation lengths
of Kjellander and Mitchell(KM) [27], who evaluated the andéy , by expanding in powers & These KM results lack
leading order bridge-diagram corrections to the HNC predicthe short-distance contributions of the bridge function, and
tions at long distances. The main focus of the careful KMare not claimed to be correct to a specific order in the density

analysis was, in fact, on the nature of the long-radgeayof

(in contradistinction to Meeron'’s resuli4,21]). However, to

the correlation functions at low densities. In particular, theythe leading orders in the density that we have evaluated, the
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formal results of KM agree precisely with our results. Once o7 ~ X
again, then, the validity of the GDH treatmdrit4] at low FARN /X %\\ %\
densities is confirmed. Zj ;9 3’ > %

II. RADIAL DISTRIBUTION FUNCTIONS v
// \\ / \\ // n m N\ // \\
A. Short-range diagrammatics S m Im AN m 2\ m n

The diagrammatic analysis of the radial distribution func- g T
tions,g, (r), presented by Meerdm] is fairly complex, and FIG. 1. The first-order coefficient fay,.(r) expanded diagram-
a helpful overview(Ref. [21]) is not readily accessible. For matically in terms off ' bonds(dashed linegsand g™ bonds(triple
our purposes, it is also useful to understand the origin of théines) where m=1,2,... andq,,(r)=—-Be,,(r)e"*". After re-
basic results quoted in Eqd..14—(1.22). Accordingly, here  summation and the exclusion of diagrams with simpkdond
we present a brief review and, in particular, discuss the chashains(see text, each individualg bond becomes a screeneg)
acter of the error functiod, .(r;T,{p,}) in Eq. (1.14. bond.

Meeron'’s starting point, following Mayd8], is a general
multicomponent system with short-range interaction potene—af, rearranged the density expansion by Summing chains
tials u,.(r) and corresponding Mayérfunctions of appropriate bonds, and, finally, toak— 0. Specifically,

invoking Eq.(1.21), Meeron wrote

for)=e PlordD—1, (2.1)
One then has the density expansion ”
yexp fo,=fr +(1+f1)> o /nt, (2.5
n=1
o) =e P 14 X p, gir(r)
Y Aor(1)=—Be,(r)e . (2.9

: (2.2

T2 pupu 95 (1)
v # Then each diagram dfbonds in theg,,, expansion generates

an infinite sum of diagraTs of the same form but with each
. . m )
in which the first-order coefficients are given by the clusterbond novrr}bellng either af bondor aq bond(ttrla;carnes
integrals a_factorq_(,f with m=1, 2 ...)or acompoqn_df q pond.
Figure 1 illustrates the nine graph types arising in first order:
as usual, field points are denoted by solid circles, and root
points by open circlesHMc).

0p0= [ art -t @3
B. Resummation and truncation to O(p)

In the next step, Meeron excluded from consideration all

; . , , diagrams containing simplg-bond chaing(i.e., a sequence
one field point, (';»), and two root pointsl0;o) and ;7). ot one or more field points linked bg bonds. Thus, the

see, e.g., EQ(5.3.4 of Hansen and McDonal@Mc) [25]  ¢,1th graph in Fig. 1 is excludedhen m=n=1 (but is

where the single-component case was described. The high?étained ifm or n exceeds unity The remaining set of dia-

order coefﬁuentsgff”j‘),---, have corresponding diagram- 4rams; sayl, can clearly be used to regenerate the full set of
matic representations as sums of cluster integrals: in seconfiagrams if eactindividual qbond is allowed to be replaced
order there are five diagr_ams wrth two fielld points, the dia—by all possible simpleg-bond chains of lengths 2, 3. q
gram of longest range being a simple chain of tHreends:  onds. By employing the convolution properties of the ex-
[HMc, Eq. (5.3.5]. In general, each field point is associated pjicit Fourier transforms of,.(r), Meeron was then able to
with a factorp,, and must be connected to each root point viasym over all the possible simple chains in any diagrarfi.of
disjoint chains off bonds. o At the end, the limite— 0 may be taken safely, leaving only
For the RPM the pair potential is rapidly decaying bond functions.
In total, the complete expansion far, (r) is now ob-

tained fromII by replacing each individuaj bond(in a g™
(2.4 bong by ascreened Debye bondr wp bond, carrying the

faCtOFWET(I’;T,p) as defined in Eq(1.17). On reversing the

steps leading to Eg2.5 one can collect infinite series of
This is of long range and leads to divergent integrals in alldiagrams whose sum represeeffective fbonds carrying
the coefficientsg{’)(r),... . Toavert this problem Meeron, factors f&T=hP (r:T,p) as defined in Eq(1.18 with Eq.
following Mayer, multipliede,,.(r) by a convergence factor (1.15.

corresponding simply to a chain diagram of tiMeonds with

Up A1) =ul (1) + @y.(r).
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from Eq. (1.17) thatw®_—0 so that, by Eq(1.20, 7{?

oT, VL

vanishes identically while Eq$1.15 and(1.19 yield

FIG. 2. Leading “unorderable” diagrams that are expected to gBT(r;T,p)_)e*ﬁu:rrT(f), (2.8
contribute tog,,,(r) only in ordersp®¥(In p)! or higher.

At first sight this suggests that one can simply rewrite 7P ()= r—rf (). (2.9
d..(r) through the original expansiof2.2) but with an ef- oy 7 "
fective short-range interaction potential Comparison with Eq92.2) and(2.3) confirms that the short-

range expansion fay,..(r) is correctly reproduced to ordgr
(which also corresponds to the second-virial coefficient in
the pressune Notice, however, that no contributions of order
p? are generated despite the apparent order of the third term
replacingu,,(r). However, this appealing picture would en- in Eq. (1.14).

tail diagrams withwpy-bond chains which have, in fact, al- From our analysis of Meeron’s results fgg.(r;T,p), we
ready been included in performing the summations leadingonclude that expressiori$.14—(1.22 should be valid for

to w? _(r). Consequently, Meeron chose to wrig,(r) in ~ the RPM up to corrections of ordef’%(In p)! at fixedr and
terms ofu®(r) and the correspondinigbonds,f®"=h° (r), T and, hence, equally when they are integrated over some
but to explicitly subtract off the overcounted diagrams con-bounded kernelC(r) that decayssufficiently rapidlywhen
tainingwp, chains. Indeed, the zeroth order term of Meeron’st —. In our case, however, we takg(r) =e'* " and|r|" so

final expressior(1.14 corresponds just to the leading factor as to obtainSyy(k), other Fourier transforms, and various
in Eq. (2.2) with u,,, replaced byu'f,f:. The first-order term, Moments. In such cases, as noted above, integration may
with kernel 72 (r;r’:T,p) given in Eq.(1.19, contains the lead to a Ioss_of ord_er of precision by factorscd#k p =12
anticipated product of twd®" bonds but with a two-bond Thus, as mentioned in Sec. |, we have used Meeron's formu-
Wp-chain term subtracted. lation for g,,,(r) in the HNC resummation to obtain results

The same general structure could have been embodied fer the correlation lengths which are valid up to corrections
) - @ . of orderp®?(Inp)’ or plnp.

Meeron’s expression for,”,  : see Eq.(1.20. However, p p pip
the formula presented includes only those diagrams with two
field points that, after integration ovef andr”, contribute ll. DENSITY-DENSITY STRUCTURE FACTOR
to g,.(r) up to and including the overall order The crucial
point is that, on integration, the screening factors
exp(—«p|r']), etc., typically lead to factors &ho1/p*? so Now we focus on the RPM, which enjoys a special sym-
that a given diagram may, in fact, contribute to terms ofmetry beyond the obvious+,—) symmetry yielding, e.g.,
lower order than suggested by the number of its field pointsp+=p-=7zp. Specifically, if, as is certainly of interefst1],

To check that no diagrams have been overlooked to ordeke assign three distinct hard-core diameters, nanzely, ,
pin Egs.(1.14 and(1.15, Meeron explicitly examined dia- a+-, anda__, the RPM has not onlg, , =a__=a but
grams with an arbitrary number of points in which each fieldalsoa, _=a; see Eq(1.16. Consequently, as stated in Eq.
point is connected to no more than three others and als6l.23), f!_ is independent oé and 7. On the other hand, the
diagrams which are “orderable” in the sense that the correDH potentialw® _, defined in Eq(1.17), depends om and

sponding integrals can be related directly to those derivingnly through the factoe,z,= +1.
from diagrams with only two field points, as in Fig. 1. These  Consider now the7(2) kernel defined in Eq(1.20, and

aT, VI

u(r;T,p)=u’ (r)+z,z, g3 “o'/Dr (2.7

A. Symmetry considerations

further diagrams were found to contribute ¢p.(r;T,p)  note that in the basic resultd.14 and(1.22 for the corre-
terms of order at leasp®? or, possibly, p*4Inp)'(j  Ilation functions, the indices and . are summed over. The
=1, 2,...).These conclusions indicate the order of the errortwo terms in Eq.(1.20 thus yield contributions td,. pro-
term &, in Eq. (1.14). portional to

Meeron was actually unable to evaluate definitively the
orders inp of various more highly connected diagrams that ,
enter formally in ordersp,p,p,, etc.: see Fig. 2; but he _ _
argued that these cannot contribute to orders below Sl_% Zolvlulr=2oZs ZV Zv)
3, j '
p~In p)l. As a further test, he used E(L.14 to calculate
the osmotic pressure via the approprigigal relation [25].
His result agrees with expressions derived purely from the 2
thermodynamic expansions to the exactly known second- 52:2 z,2,(2,2,)%2,2,=2,7 (2 23) ) (3.2
. . . . o~V vep MET og=T v
virial level: see Eq(1.39, which, however, we derive here Vi v
via thecompressibility relationiwhich is available for awo-
component electrolyjd 25]. But both of thesevanish identically Consequently the)(®
It is also instructive to switch off the Coulomb interac- term in Eq.(1.20 makesno contribution toh,(r) for the
tions by lettingz,— 0 in order to verify that the proper virial RPM. However, it will enter for a 1:1 electrolyte as soon as
expansion for hard spheres is generated. In this limit we seei,(r) differs from uTH(r) or u _(r) even if uT++

(3.9
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—yt i - [ A

=u’__ [11]. It remains to analyze the two leading terms in §°.(k)=(2m)38(k)+ A2 _(k), (3.3
Eqg. (1.14: no comparable simplification is implied for the

7@ term in Eq.(1.19. and, via the convolution theorem,

dr g(r e””f dr'h(r=r")j(r’
B. Correlation functions in Fourier space f 9(r) ( N
k' " A
We calculate the density-density strycture facg (k) =J 27 g(k—k"Hh(k")j(k"). (3.9
by first computing the Fourier transforrhs (k) using Egs.
(1.14), (1.18, and(1.19. To that end, note the relations Thus we obtain the basic expression

Ror(K)=h2 (K)+ 2 p,[RD,(K)AD, (k)= W2, (K)WD (k)]

dk’ . - - ~
+2 pvf 2y Nanlk= KOG (KORZ(K) — g (KW (K T+ p~ (kb Top), (39

where for the RPM the symmetric sum of the error termfor all n, with I'(«,v) the incompletex function. In terms of

En(kép ;T,p) is of orderp®(In p)i at fixedk when p—0. these integrals we have
To handle the Fourier transforms it is convenient to use
the dimensionless variables

<D s 1 z,Z\"
hC (k)=4ma nzo (@)l ] - (312
x=kpa and q=Kka, (3.6

~D . o Now employing Euler's constant yg=— (1)
and to analyzé, (k) via Eq.(1.19 by expanding in powers  _q 5772.. and the logarithmic derivative of the gamma
of WP, =—z,z, be “o'/r. We then find function

WP (k)= —4ma®z,z,IT* (x*+q?), (3.7 n-1
=2, 17 e, (3.13

and need to study the integrals

lo(q:x) = F1(q)/4ma®= (q cosq—sin q)/q® the exponential integrals have the expansi@®

=31 30° sl (3.8 ()" nep- S 0
E =———[y(n)—Inv]- _—
n(v) (n—1)! [ =Invl= 2, m!(m—n+1)
1 (= B 3.1
ax= | sinaye iy, (.14
for n=1, where the prime on the sum denotes omission of
=e [cosq+(x/q)sinql/(x*+9?), (3.9 the formally infinite term which, in this case, corresponds to

m=n—1. Forn=2 we can thus write
and, forn=2,

1(~ ; —nxyj,n—1 voN q 1 q (_nx)n—3
|n(q;X)=a L dy sin(qy)e ™Yy In(a;X) =] An—2 x In(nx)~"—B, x| n=2n
_ 1 E —ig)—E i _i,A <Q) (—nx)m? -
_2iq[ n-1(NX=iq) —E,_1(nx+iq)], & Aml m (3.19
(3.10

where the momentum variabligx=k/kp (=ns) enters via
where the exponential integrals are given[Bg]

En(v)=fdu & U=y (1-n), (340 An(s)=(1+5%)" sirri¥(s) /s, (3.16
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Bns2(s)={3 cognd)+[2In(1+s?)— y(n+1)]sin(nd)} tan ! s=3(s)=s— 3s3+--- . (3.18

X (1+s%)"7s, (3.17  For use later we quote the expansions
A, (s)=n— 24 (N s*+0(s?) (3.19
where, for brevity, we write n 3 5 ' '
|
n—-2 ) 12
By(s)=1—-(n—2)y(n—1)+ 3 Yp(n—1)—3n“+3n—43|s
n—2
—[( 5 )lp(n—l)—i n*+ 2n3— 3n2+ 2n-8 5 |s*+0O(sP). (3.20
|
C. Analysis of the density structure factor . 2
N Snpr=3 A252)"(252,)P(2,2,)"

To obtainSyn(k) we now focus on calculatingy (k) by Ponpr fiy Pl A A )
summingﬁm(k) over o, 7: see Egs(1.4 and(1.5). In ad- =114+ (— 1) P (—1)PH 4+ (— )T
dition, we consider the sum over the field point labeleid apl1+(=1) =1 (=™
Eq. (3.5. The leading term in Eq(3.5), together with Eq. (3.23
(3.7) and expansiori3.12), entails the valence sums

Finally, the last term, containing®WPWP, leads to

Sn00=12 (2,2)"=3[1+(-1)".  (3.2)

PSn,l,l:%l E pv(zcrzr)n(za'zv)(zyz‘r)

The second ohPhP term in Eq.(3.5) generates
4399 = p[1+(~ 1)) (3.24
pSO,p,rz% E pv(zu'zv)p(zvzq')r ) ) .
o7y Overall we thus find that the density-density structure fac-
:%p[1+(_1)p][1+(_1)r], (322 tor takes the form

sincep, =p_=3p. The third term, involvingh°WP, entails
only pSp11=0 and so does not contribute fm(k). The
fourth term, with threeh® factors, yields

Sun(k)=1+phR(k) +[phR(k) 1>+ RN (k), (3.29

where, recalling Eq(3.6),

. S,
hﬁ(k)=4wa3n20 (Wio)“) I.(ka, kpa), (3.26
RU(GT,p) =827 S il fd Tn(g=a")1p(a")1(a")
N Y P =0 n!p!r!(_T*)n+p+r q n q q p q r q
- Sn,l,l , In(q_q’) ~, .
—nzo (W)qu Crq2)2 +En(kép ;i T,p), (3.27

while S, , ; selects terms according to the simple rule

Sppr=1 for n, p, r all even or all odd
=0 otherwise.

(3.28

To extractéy ; and &y , we now expancﬁﬁ(k) in powers

of k and collect the contributions ip of lowest order using
Egs.(3.26), (3.8), and(3.15—(3.20. This yields

phR(K)=Hg+H,k?+H4k*+O(k®), (3.29

where theH, term reproduces result.38 for Syy(0) while
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H.= —b  kpb® 2mpa® 1
2 48kp 576 3 &, (2n)1(2n—5)(T*)2
+0(p*21n p), (3.30
H,= + b " Kxpb®
4320k 45><90KD 7% 27
e ! 312
30 =0 (2n)!(2n— 7)(T*)2n+o(p In p).
(3.3)
Thence we obtain
2
= 1/2 j
Sun(0) €N 3><24KD+3><25+O(p (In p))),
(3.32
Sun(0) &4 2= P + 23 +0(p~Y(In p)))
NNUSN2T B 26,3 " 45x 28k p)),
(3.33

n,D,(Ox)——27-rf duJ' duf du”

where, with sgnf)=y/ly| (y#0), one finds

sin(qu)sin(qu’)sin(qu”)

Py — 2 fxd
g(u!u U )_ ; 0 q

q
=2[sgnu+u’+u”)—sgrnu+u’ —u")
—sgnu—u’+u”)+sgnu—u’—u")].
(3.36

Evidently one has/{(u,u’,u”)|<1 so that, on lettingx

= kpa—0, we obtain
o | @

(3.37
which is bounded fon, p, r=3. Consequently, the contribu-
tion to RR,"(O) andSyn(0) coming from such integrals is at

» du

n—-1

. 2
|q)npr(0:0)|<277 fl u

(u")
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which yield the results foéy 1(T,p) andéy »(T,p) quoted in
Eqg. (1.33 and(1.34.

Note that we are limited to the orders grshown here by
our neglect of the contributions from the infinite set of
graphs contributing t&y(k) in Eq. (3.27), which derives
from £,,(k) in Eq. (3.5). Indeed, from Meeron’s analysis of
g..(r) we know that&(0) contributes toSyy(0) in order

p>%(In p)l. Moreover, as indicated in Sec. IIC, we find
En(K) contributes toSNN(O)gN , and S,\,N(O)gN2 in orders

pY(In p)l and p~Y(In p)’, respectively. We also show in
Appendix A that the integrals entering the remainder func-
tion R',l," in Eq. (3.27 do not contribute t&yn(0), &y 1 and
én 2 to the orders inp displayed in Sec. I. We do this by
studying the integrals

<I>npr<q;x>=fdq'|n<q—q'>|p<q'>lr<q'>, (334

defined via Eqgs(3.8—(3.10 with the expansion$3.15—
(3.20.

As an example, we analyze here the integbal,(0;x)
which contributes t&yy(0;T,p) via Egs.(3.25 and(3.27).
For this we have

—x(nu+ pu’+ru”)

(3.39

u"" 1(u )p l(u//)r 1§(U u’ U”)

(1.34) [missing theO(p Inlp) termg. We can see why this is
so for all the leading contributions, as in E4.37), by first
rewriting Eq.(3.29 as

Sun(k)=[1-phR(k)] ™" (3.39
From Egs.(3.15—(3.20, we find the leading contribution to

pﬁﬁ(k) whenp—0 comes from th@=2 term of Eq.(3.26),
which yields

3

" 4
AR~ ey 120X+ (339

with 1,(q,x)~tan }(g/2x)/q+--- . Then Eq.(3.38 pre-
cisely yields the HNC-derived result, E(L.36).

worst of orderp?, which is of higher order than considered

in the present analysis. In Appendix A, we explicitly bound
®,(g;x) for all n, p, andr using similar methods, thereby It is instructive to check that the HNCM approach gives

justifying the neglect ofR} for the results stated. precisely the same result f&y(k), namely, Eq(1.23, as
As remarked in Sec. |, the approximate density-densitythe “Meeron only” route. We may relat&yy(k) to the di-

structure factof1.36), derived from the leading terms of the rect correlation function

HNC approximation, leads precisely to the leading low den-

sity results foréy ; and &y, presented in Egs(1.33 and

D. Density structure factor from HNCM

en(k)=3[Cs (k) +&s (K], (3.40
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by using Eq.(1.4) and the OZ equatiofiL.26). For the RPM,
one finds the simple relation

Sun(k)=[1—peyn(k)] . (3.41)

From Egs(1.27), (1.30, (1.1, and(3.40 we thus find that
the HNCM result,

Sun(k)=[1-phg(k) — pR(k)]
=1+ phR(k) + [phR (k) 12+ O(p R (K)),
(3.42

is exactly the same as that derived using Meerap qr)
directly up to and including terms of relative ordercom-
pare with Eqs(1.23 and(3.25. Note that the relevant com-
bination pRy (k) contributes in relative ordgs®?(In p) and
may therefore be neglected in this analysis.

Dy =1 for n even with p, r odd, or n odd with p, r even

=0 otherwise,

and substituting;(k) for £y(k). On expanding Eq(4.1) in
powers ofk, we find that Meeron’s analysis yields

Sz2(0)=0(p In p), (4.9
§21=&[1+0(p In p)], (4.6
§2,=&[1+0(p In p)], (4.7
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IV. CHARGE-CHARGE STRUCTURE FACTOR

A. Analysis following Meeron

Following essentially the same steps that lead to expres-
sion (3.25 for Syn(K) but now for the charge correlations,
we find

Sy2(k)=1+ph2 (k) + p?[ (A2 (k))?— (W2 (K))?]+ RY (),

4.1
where
. e 1 1 2n+1
h?(k):—47733n§=:O ansin |2n+1(Q§X)(T—*) ,
(4.2
W3 (K)=—47a3IT* (x*+q?), 4.3

while RQ"(k) is found from Eq.(3.27) by replacingS, ,
(and S, 1 1) by

4.4

HNCM result forS, (k) reported in Eq(1.32. This enjoys
the smallk expansion

Sz2(K) = E5KH 1+ [1— p(h2(0) = W2 (0) +R(0))]£5K?
+0(kH}. (4.10

The requireck= 0 terms follow directly from Egs(4.2) and
(4.3) with the aid of Eqs(3.8—(3.20, as

so that the SL zeroth and second moment sum rules are sat-

isfied but only up to possible deviations of orgem p. This

must be regarded as a serious defect of the approach. Ac-
cordingly, we turn to the HNCM formulation which ensures

the validity of both sum rules to all orders ip, i.e.,
S;7(0)=0 andéy 1= ¢p . Furthermore, as reportedy , can
then be found to be correct to relative orger

B. Charge correlations via HNCM

Following Sec. Il D, we first relateés; ,(k) to the direct
correlation function

Cz(k)=

N

[é++(k)_é+—(k)] (4-8)

via Eqg. (1.9 and the OZ relatior{1.26. For the RPM, one
finds

Szz(K)=[1—pez(K)] . (4.9

Then, with the aid of Eqs(1.279—(1.31), we obtain the

p[h2(0)—W2(0)]=3x2+ §(kpb)?[In x+e,— Y(T*)]

+0(p*21n p), (4.11

wheree, and Y(T*) are defined in Eqs1.43 and (1.45),

respectively. Finally, Appendix B establishes tbaiz(O) is
of orderp®?(In p)\. In total, the analysis thus justifies results
(1.40 and(1.4)) for &7, andéz .

C. Lebowitz length
We may now use the expressith32 for S;,(k) and the
relation(1.13 to calculatet, (T,p). We begin by expanding
in powers ofp(h2 —W?2) to obtain

k2 2

Pk p o
e Ak A LAUES CCIRS
(4.12

S;2(k) =~
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Then, employing Eq€3.6)—(3.12 and integrating ok leads
to

2a| w Z(T*)en
~ | 2 ~ 7 =(2n+1)
fL(T’P) T | 2x X E (2n+1)| ‘—‘L (X)+ ’
(4.13
where, form=1,
* q° Om1
= (m) — I y) — M
27 (X) fo dq X2+ )2 I'm(d;%) X2t P
(4.149

We find the contribution of leading order i from these
integrals as follows. Fom=1 we putg=ux and expand to
find

[11(9;%) = (X2 +0?%) " Hgoux= — 3(UP+ 1)X*+O(x3),
(4.15

which yields

M (x)=—(7/8x)+O(x?). (4.16

For m=2 we use the integral forn3.10 and interchange
orders of integration to obtain
q sin(qy)

~<m>(x)—j dy _mxyj dq oy

—(m+1)xy T
f dy = Ix Em_2(MX+X).

(4.17

Collecting all terms up to and including those of order

recalling the expansio(8.14), and appealing to Appendix B
for a bound onRy(k), finally establishes the result for

& (T,p) given in Eq.(1.42.

D. Analysis of the generalized DH predictions

The pure GDHgeneralization of the DH theorapproxi-
mation forS;,(k) is

q2

R k) = e, 4.1
= T T g (418
where, from Eqgs(1) and (2) of Ref.[29],
9o(X;q)=x3(cosq—1)—[2 In(1+x) — 2x+X?]
X (cosg—sinqg/q). (4.19
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SOH=&p[1+ 2In(1+x)— x— £x?]¥4

=&pl[1+ 3x%— 53+ x4+ 0(x%)]. (4.20

As regards the Lebowitz length, the forih.13 gives

1
GDH__
) fo a4

which on expansion in powers @f, yields a sum over the
integrals

[—go(a;x)]"

ey 422

In(X)=— . F q

Then one hag/y(x)=1/2x and evaluation using Ed4.19
gives

Ji(X)=— 5X+ 36X - %X3+ aoX +O(x°), (4.23

()= &x3— Hx*+0(x°), (4.29

while 7,(x)=0(x?""1) for n=3. Collecting terms yields
the GDH prediction

M=ol 1+ 1= &+ Ex*+0(x)].  (4.29
Comparing this with the exact low-density res(t42),
one sees that GDH theory generates the exact leading behav-
ior and one of the correction terms of relative order
namely, 1x?. Similarly, comparing Eqs(4.20 and (1.41),
one finds that the theory predicts the leading behavigt, gf
as well as theix? correction. However, the dominant
O(p In p) term doesot appear.
Why this is so is most easily understood by comparing
oOH(k) in Eq. (4.18 with S,,(k) as represented in Eq.
(1.32. By using Eq.(3.7) for W (k) and retaining only the

first two terms in the expansion cﬁfZ)(k) in Eq. (3.12, one
may write S;7(k) in the GDH form, but withgy(q,x) re-
placed by

To(4. ) =0X°[1(g;x) — (x*+g?) 1]
=x%(cosq—1)+0O(x3). (4.26

But one then observes thgp(q;x) has precisely the same
smallx expansion. Thus, in effect, GDH theory generates the
first term in the full expansion dﬁ?(k)—v‘vz(k): see Egs.
(4.2 and(4.3). However, the dominar®(p In p) correction

Clearly GDH theory satisfies the zeroth and second momerdctually comes from thaextterm in this expansion, namely,

SL sum rules. Expanding for smaj=ka yields

from 15(q;x), which GDH theory does not produce.



PRE 59 DIVERGING CORRELATION LENGTHS IN ELECTROLYTES: ... 505

From this discussion and the success of GDH theory iranalysis of the dominant pole of the corresponding expres-
predicting the correct density-density correlation lendths  sion for Syy(k) also yields the true density-correlation decay
cluding leading correction termswe conclude that the ap- length
proximation essentially reproduces the correct low-density,
fixedk behavior ofS;,(k) and Syy(K) that arises from the

first two terms in the expansio3.12 of the Debye correla- Eno=5& . 1+2 exp(_—s (1= Liph+-)f+---].
tion function. ' ' Kkpb
(5.9
V. RESULTS FROM THE KM ANALYSIS
A. Direct correlation function expression By comparing this with the GDH result, E412) of Ref.

Kjellander and Mitchel[27] have constructed a formally [14(@)], we see that it is the bridge function that generates the
exact theory for primitive model Coulomb fluids in terms of 3 xpb correction, although the most essential featurezof
a Poisson-Boltzmann equatidinear in the average electro- at low densities are captured by the GDH approach.
static potential for “dressed ions.” The nonlinear contribu-  Finally, we compare with the KM resultl.46 for &, ..
tions appear in a nonlocal dielectric response function, in=1/«,, by using the smallp expansion of p[h2(0)
effective values for the ionic charges, namely, —W2(0)] presented in Eq4.11), in S,4(k), as given in Eq.
(1.32, and solvingsgzl(i K.) =0 with neglect of the remain-

A5 =00+ 2 .0, FO. (i), (5y derRz. Welfind

and in the true screening lengi '= &7 . given by
é7.=ép[1- $(xkpb)? In x+0(p)], (5.9

K2=4mB2 d,95p,/D, (5.2
7 which agrees with the KM resultl.46 when evaluated for
where q,=2,q, while R° (k) is defined in terms of the the RPM. As remarked in Sec. |, the KM expression contains

short-range part of the direct correlation functicf(r) in the factor Inkpb, since KM tookb as a lower cutoff whereas

Eq. (1.27) via the “reduced” OZ relation we explicitly find In«pa as written.
In summary, the KM analysis provides a complementary

verification of our principal results and, in so doing, reveals
ho (1) =c® (r)+ fco F—r'RO (r")dr . a comforting degree of uniformitywith respect to long-
oA 1) =Corl1) Ey P Al Dh,(r") distance behavior and low-variation in the restricted
(5.3 primitive model at low densities. The same high degree of
uniformity should not be expected for charge and/or hard-

KM studiedc,..(r)—and thenceén _(r)—using the HNC core norsymmetric primitive model§11].

resummation(1.28 including b,.(r), the bridge diagram
corrections: see Reff27(a)] for details. They focused explic-
ity on the long-distance decagf c® (r) andh? (r) at low
densities by searching for the poles and branch-cut singulari-
ties of 82 (k) in the complexk plane that lie closest to the We appreciate interactions with Professor Joel L. Lebow-
real axis. One can extract a corresponding low-density exitz and correspondence with Professor Robert Evans and
pression foi€y (k) for the RPM, defined similarly téy(k) in Professor R. Kjellander, and have benefited from the assis-
Eqg. (3.40, by using Egs.(C21), (B5a), (C23, (C15, and tance and interest of Dr. Benjamin P. Lee and Dr. Daniel M.
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per(K)~ F kpbs(k/2kp)[1— §(kpb)?s(k/2kp)] 1+---, g

(5.9
where, as befores(y) = (tan™ly)ly. APPENDIX A: ANALYSIS OF INTEGRALS IN THE
MEERON REMAINDER
B. Comparison with KM results In this appendix we analyze the integrals and integral dif-

We can find a corresponding KM expression &(k) ferences appearing in the Meeron remainder terms
by using Eqs(5.4), (3.41), and (1.27). On expanding the RN(K;T,p) and RY(k;T,p) [see Egs.(3.27 and (4.1)—
result for smalk, we discover that the KM direct correlation (4.4)]; of course, these derive from the tehﬁ,(r) -1 in
function (which includes leading bridge function correc- the original expressiond.14), (1.18, and(1.22. In particu-
tions), although constructed only to ensure accurate behavidar, we expand in powers afxk all the integralsb,,.(q;x),
for r—o, gives precisely the same results faf; andéy,  defined in Eq.(3.34 as a convolution over the exponential
reported in Eqs(1.33 and (1.34), respectively. Moreover, integrals I,(q;x) introduced in Egs.(3.8—(3.11). Thus,
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writing

1
Drpe(0:X)/272= = DL (X) + 27 AP D L(X)

1
— 5 AP0 +0(e?), (AL

we aim to determine the low-densitx# p'/>—0) behavior

of the integrals appearing i® () for m=0, 2, and 4.

21 (On 6p O
Dop0 = [ Mau [ Tau [ Faw
q Ji1 1 1
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Now by using the convolution relation in bipolar coordi-
nates, namely,

f da’'f(la—a’'l)a(q’)

27 (= utq
r fo du f(u)ufu qdv gv)v, (A2)

together with Eqs(3.8)—(3.10 we may rewrite Eq(3.39) in
the compact form

efx(nu+ pu’+ru”)

with n,p,r=0, where©,=0 but©,= for n=1; the integrand factor becomes

where, withu_=u’—u" andu, =u’+u", we have

Y(qio;u’, u”)= %f

This kernel can be expanded as

un—l(ur)p—l(u//)r—l Y(q;u,u’,u”), (A3)
Y(q;u,u’,u”):f0 dv sin(vu)¥(q;v;u’, u”), (A4)
v+a dw
o W (cosu_w—cosu,w). (A5)
2n+1
q
(2n+ 1)1’ (A6)

2q . =
Y(q;v;u’; u")= o Sln(vu’)sm(vu”)Jrr;l [Von1(Us0)=Woniq(Uisv)]

with coefficients

‘If2n+1(u;v)=(—1)”+lf0u22” sinlvz)dz. (A7)

DM (X)=[ 80+ B0 En-m-1(NX) [ 8,0+ 6,0 Ep-1(PX)]
X[ 8; 0% 80 Er—1(rX)], (A10)

where 8, o, is the Kronecker delta anELmEl— Snm-

Performing the various trigonometric integrals then leads to Finally, by employing the expansiof8.14 of the expo-

! " 1 2 1 4
Y(g;u;u’;u”)=—mq 1—§(qU) +a(qU)

+0(q%) |(u,u’, u), (A8)

where the step functiog(u,v,w) has already appeared in
Eqg. (3.36.

Substitution in Eq(A3) yields integral expressions for the
desired coefficients in EqA1). By using the trivial bounds
|£|<1 andfju™du=<1, one is then led to

DD (x)[<D{M(x),

npr

(A9)

where, since the integrals in E¢A3) now factorize, the
bounds can be writtejusing the exponential integrals
(3.11)] in the compact form

nential integrals fon=1 (and noting that the integrals are
elementary fon<0), we may bound the orders of the con-
tributions that a particular combinatiqﬁ-d)npr(q;x) makes
to Ry (k) and RY(k). As an example, considem(p,r)
=(3,1,1) andn=0; we find that the leading order behavior
whenp—0 is given by

P2 D LX) = p2E(3X)[Eq(X) 12~ p?x(x 12~ p.
(A11)

Of course, the bound on the behavior®f , (x) asp—0
obtained this way need not be optimal. However, it may be
adequate if it is of higher order imthan the terms explicitly
retained in our various results. This will be the cakam

=0, 2, and 4 provided p2<I>n,p,r proves to be of order
pCG~™"2(In p)} or higher. Evidently, however, EGA11) is

not adequate. Now, by careful tabulation one finds that the
only inadequate cases arit® from the integralsb,, ; 1(x)
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for all n=0, and(b) from ®,,,(x) and®,,,(x) for p, r 5 ) , )
=3. [Note that the definition(3.34 implies @, () Ap(sx, X)=x J ds'Jn([s=s'[;)I(s; x), (A14)
=@ 1,5(x).]

Now, in diagrammatic terms, the integrals, ; 1(x) im-  where we have simply
plicitly contain a two-bondwy chain which(since it is al-
ready included in the Mayer resummation, as discussed in
Sec. l) is subtracted off explicitly in the full expressions for [cogsX)+sin(sx)/s]’e” >~ 1

h® 7,.: see Eq(1.19. Consequently, by recalling E¢3.7) T(s.x)= x}(1+5%)? » (ALY)
for WP (k), we see that the relevant contributionsRgf (k)
and RQ"(k) are the differences which, whenx—0, can be represented as
In(a—a"x) [(s,X)=—x"2/(1+s*)[1+0O(x)]. A16
An(q;X)E(I)n,l,l(q;X)_f —(nxz+q/2)2 dg’. (A12) (8.%) ( il ()] (A16)

In parallel with Eqg.(A1) we may write the expansion
To analyze the\ ,, it is useful to define a rescaled version of
the integralsl ,(q,x) defined in Eq.(3.10: thus we putq
=xs andy=u/x to obtain 1
Y An(sxx)2m?=—AP + 3 SPCAP(x)—- -+ .

=3 o du A17
S f gt sinsue™™, (ALD

In(Q;X) = Jn(s;X)=
(A13) On neglecting theD(x) term in Eq.(A16), and appealing
again to the bipolar convolution theorefA2), we can ex-

where®,, is defined as in EQLA3). We may now write press the coefficients here as
0) 2x = 2 2
A} (x)~? du Jy(u;x)uc/(1+u”), (A18)
0
(2) 4 ” 2 2 2\3
Al (X)%R du J,(u;x)us(3—u)/(1+u)®, (A19)
0
(4) 48 * 2 2 4 2\5
Ay (x)wm du J(u;x)us(5—10u~+u*)/(1+u°)>, (A20)
0

for x—0. On substituting with EqA13) and evaluating the 5 , ) ) ,
infinite integrals oru, we obtain Dy pa(SXX) =X f ds'Ji(s—8")J,(s)d1(s). (A22)

Following essentially the same steps as above, we appeal to
o Eq. (A2), and expandl,(s’;x) here for smallx. Then we
Aﬁ"”(X)%J "du e (n+Dxuyn-m-1 (A21)  expand for smalks and compare with Eq(A1) to discover
1 that the dominant contribution arises fromb{" (x)
=0(p (M2 1n p). [Note that this replaces an inadequate
bound of ordep®~ (™2 following from Eq. (A10).] Finally,

(m) — — i
so that, ax—0, Ay"=0(1) forn=0 or n>m+2, while  yherefore, the most relevant terms satish?®{™,(x)

J P,
Al(qm)=O(X m 2+n) for lsn<.m+2 'and Afnm+)2=0(ln X). :O(p(s—m)/z In P) (fOI’ m=0, 2, and 4Wh|Ch is of hlgher
Thus the lowest order behavior derives frore 1. Conse-  grder than concerns us.
quently, one finds from EqA17) that the contributions from In conclusion, all the terms contained in the Meeron re-

pZAﬁm)(x) are at worst of ordep®"™”2 for m=0, 2, and 4. mainders can be correctly neglected to the orders claimed in
This is of higher order than the expected error termsthe text.
O(pC®~™2(In p))), in thek expansion ofRy (k) andRY (k),
and so may be neglected.

Finally, we analyze the leading behavior of the integrals
®;,4(s;x) for p=3 which we again write in terms of In Appendix A we actually bounded the orders of
Jn(s;X), as introduced in EqA13), to find the leading contributions t® . .(k), namely, the integrals

APPENDIX B: ANALYSIS OF INTEGRALS IN THE HNCM
REMAINDER
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derived from hP (r),.(r): see Egs.(1.3) and (1.32  sum in Eq.(1.31). As seen from Eq(4.10, both these con-
et seq For completeness we now analyze the next mostribute to the charge correlation lenggh »(T,p).

important terms, namely, the bridge integra}(0) and We begin with the leading bridge diagram which has five
the dominant quadratic termisi,(0)]?> appearing in the h,,bonds[26,271@)], so that

o) =13 S o, [ ar' [ 1" B (09— D =D =D 8D
noov

We then employ the leading low-density contributiornto(r), namely,h® (r), arising via Eqs(1.14—(1.18. The expansion
of h,(r) in powers owaT(r) may be rewritten conveniently as

heN)=FT()+ X (=242, 0)"ro(r)/ml, (B2)
m=1
where we recall Eq(1.21) and have set

Dm(r)= e~ Bu'(Ng=mrprjpm (B3)

The leading contributions to the required combination

bo(r)=3%> 2,2, b,(r), (B4)

follow by substitution in Eq(B1). The coefficient ofp; ¢ dPn¢, in the resulting integrand entails the valence sums

: j+1+1om+p+1oj+n+pol+m+
Ss(j,l,mn,p)=2, > Z e zZ)MtPz, fmn

O, T M,V
=[1+ (=114 (=)™ P14 (— 1) P14 (— 1) MmN, (B5)

The dominant terms ip requireS;# 0, and are found to arise fron,(,m,n,p)=(2,1,2,1,1) and1,2,1,1,2, which both make
the same contribution tBZ(O). Adding these yields, after some rearrangement,

byY(05%) =~ %p2b7f drf dr’¢1(r’)¢2(|r—r’|)f dr” (1) a(|r —r"[) a (|1 —r"]), (B6)

where we will neglect the corresponding higher order contribut&gﬂ)s{o;x).

Now we may decouple’ andr” in the last factor in Eq(B6) by using the trivial boundp(r)<a™ ™, wherea is the
hard-core diameter. Then we can call again on the convolution rel@idn now withk= 0 while g(r) itself is a convolution.
This yields the bound

R p’ dk . -
B0 < 5 J Gy [0 d2(K)]2 = 8mbTa%p?®y Ax), (B7)

in which the integral can be written in terms of th€q;x) defined in Eqs(3.9—-(3.11) via

d>n,m(><)=f daf 1 1(a;X) 12 m(a;x) ]2 (B8)
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On substituting the form&3.9) and (3.10), the integral overj can be performed to obtain

—x[n(u+u’)+m(u”+u")]

O m(x)= fduf duf du”f du”

n 1(U )n 1(uu)m 1(um)m 1§(U u’

// /II)

(B9)

where, with the aid of machine algebffslathematicaand Maple), we find

~ L |
Z(u,u’, u”, u”’)=f dqg azsin(qu)sin(qu’)sin(qu”)sin(qu”’)=— =T
0

Foru, u’...=1, as required, a simple bound is

[Z(u, )| <im(u+u’+u"+u"). (B12)

With this and Eq.3.1)) (including the cases<0) we find
that|®, (x)|/ 7 is bounded by

@, m(X)=En_2(N)En_1(NX)[Ep_1(Mx)]2
+Em_2(MYEp_1(MY)[E,_1(nx)]2
(B12)

The smallx expansion(3.14) (for n=1) then yields

@1 x)=x"31Inx [In x+0(1)], (B13
which shows that the relevant combinatipBZ(O) contrib-
utes topR(0) only in orderp®?(In p)? or higher, and can
thus be neglected in the present analysis.

In order to bound the leading order contributions to

750)= 1> | dr z,2.73.(1), (B14)

we may follow essentially the same steps which led to Eqproducts h®hPwPwP

(B7) and to the bound$B12) and (B13). Using Eqgs.(B2),
(1.19, and(1.22 in Eq. (B14) [and recalling that the;®
term in Eq.(1.20 makes no contribution for the RPNeads
to the sums

. j+m+1_l+p+1_j+l_m+
Sy(jlmp)=2 X ZFmrigretigliznee

o7 MV
:[1+(_1)j+m+l][1+(_1)|+p+l]
X[1+(-1)*[1+(-1)™P], (B15)

as coeﬁluents ofth; b pme,, in the expansion of the product
of four h , factors.

+)(=)(=)|uxu’=u"=u"|. (B10)

2.

* *

smallest values of, I, m, andp (=1) for which S,#0.
The dominant contributions are found to derive from
(j,!,m,p)=(1,1,2,2) and(2,2,1,2 which yield equivalent
expressions so that

0= 3% [ dr [ d gullr=r (e

XJ dr”ga([r=r"]) o(r"). (B16)

With the aid, once more, of the convolution relatith4),
this reduces to

72 (0;%)~16mb°a%p?®; o), (B17)

with @, , still defined in Eq.(B8). The boundB13) applies
equally, and we conclude thaf;;} contributes tgpR,(0) in
no order lower thap®?(In p)°.

The wPwP factor so far neglected in Eq1.19 vyields
leading to a contribution, say,
%?’(k;x). But eachwP factor corresponds, essentially, to an
index ofj, I, m, or p=1. The same method thus suffices to
establish thatp, contributes topRz(0) only in order
p¥(In p)? or higher. To complete the discussion of the
[%2(0)]?> term we note that the fourfold products
wPwPWPWP are eliminated by the valence surfg which
vanish identically for these products. We conclude that the
overall corrections arising fromi#%,]? are no worse than
p%?(In p)2. Actually, more explicit calculations which allow
for cancellations arising iny(Yo(hPh®—wPwP) indicate
that p 77(0) is, in reality, only of ordep®? In p.

Some further work is needed to bound the orders of the
corrections to result&4.12—(4.17) for the Lebowitz length.

In fact, the (unwritten) correction ternik (k) entering Eq.

The Ieadmg order low-density contributions to the (4.12 and derived, in leading order, from® (r)z,.(r),

hPhPhPhP term which, excluding the effects of thePwP
term in Eq.(1.19, we denote bynz(k x), arise from the

must enter the expressida.13 for ¢ (T,p) as a sum over
n, p, andr of integrals
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(B19)

2x (= q° Y(q;u,u’, u”)=— sin(qu)(u,u’,u”)/u,
q)hpr(x): T fo dqg (_X2+_q272 ‘anr(q;X), (B1y)

and used in Eq9A3) and(B18), one obtains the same inte-
gral as evaluated in Ed4.17) (with, merely,y replaced by
u). This then yields

in parallel to Eq.(4.14, where ®,,(q;x) remains as ex-
pressed in EQ4A3)—(A8).
If Eq. (A8) is now written in the closed form

—x[(n+1)u+pu’ +ru”]

L 2 on op ' or " e ' "
q)npr(x)__ﬂ- fl dufl du fl du un—l(u/)p—l(u//)r—l g(U,U , u ), (BZO)

which can be bounded following the analysis of the integﬁaﬂg),(x) in Eq. (A9). Indeed, the extra fact@™ *“ in Eq. (B20)
relative to Eq.(A3) has no sensible effect so that, up to constant factors, precisely the same bounds are fdnmg &
established forb{?),(x) in Appendix A.

Beyond the terms thus adequately bounded one must examind®rew®) difference integrals entailing th&,(q;x)
introduced in Eq(A12). These lead to corresponding corrections §or namely,

AL(x)= 2 f “d i An(q; B21
n(X)=— o 49 72 n(0;X). (B2
In leading order inp one can show that these exhibit the same behavior ad tf@;x). Consequently, one can retrace the

analysis of Appendix A for bounding the behavior of tHg,,(0;x) and A,(0;x), and thereby conclude thatR (k)
contributes ta¢, (T,p) no more than the terms of ordpf’%(In p)! displayed in the resultl.42).
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