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Diverging correlation lengths in electrolytes: Exact results at low densities
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The restricted primitive model of an electrolyte~equisized hard spheres carrying charges6q0) is studied
using Meeron’s expressions@J. Chem. Phys.28, 630 ~1958!# for the multicomponent radial distribution func-
tions gst(r ;T,r), that are correct through terms of relative orderr, the overall density. Theexactsecond and
fourth momentdensity-densitycorrelation lengthsjN,1(T,r) andjN,2(T,r), respectively, are thereby derived
for low densities: in contrast to the Debye lengthjD5(kBT/4pq0

2r)1/2, these diverge whenr→0 as (Tr)21/4

and (T/r3)1/8, respectively, withuniversalamplitudes. The asymptotic expressions agree precisely with those
obtained by Lee and Fisher@Phys. Rev. Lett.76, 2906~1996!# from a generalization of Debye-Hu¨ckel ~GDH!
theory tononuniformion densities. Other aspects of this GDH theory are checked and found to be exact at low
densities. Specifically, with the further aid of the hypernetted-chain resummation, the correspondingcharge-
chargecorrelation lengthsjZ,1 andjZ,2 and the Lebowitz length,jL ~which restricts charge fluctuations in large
domains!, are calculated up to nonuniversal terms of ordersr ln r andr. In accord with the Stillinger-Lovett
condition, one findsjZ,15jD although the ratiosjZ,2 /jD andjL /jD deviate from unity at nonzeror.

PACS number~s!: 61.20.Qg, 05.40.1j, 61.20.Gy, 05.70.Jk
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I. INTRODUCTION AND SUMMARY

A. The various correlation lengths

Considerable progress has been made in this century
ward understanding the thermodynamic properties of elec
lyte solutions~e.g., NaCl in water!. A central problem, which
remains a challenge to theory, has been applying pre
methods of statistical mechanics to the simplest mode
ionic solutions, namely, the restricted primitive mod
~RPM!, consisting ofN5N11N2[Vr hard spheres of di-
ametera with N1 carrying elementary charges1q0 andN2

(5N1) charges2q0 , in a medium of dielectric constantD.
Our aim here is to respond to this challenge by deriv
explicit exact results for variousdensity-densityandcharge-
charge correlation lengthsat low densities in order to com
pare them with recent approximate theories potentially va
at higher densities.

The pioneering work in 1923 of Debye and Hu¨ckel ~DH!
@1#, who constructed and then linearized an appropr
Poisson-Boltzmann equation, shed light on the importanc
ion screening characterized—in the leading approxim
tion—by the Debye screening lengthjD , given by

jD
22[kD

2 54pb(
s

~zsq0!2rs /D, ~1.1!

whereb51/kBT, while rs and zs are the number densit
and valence of speciess, respectively. For the RPM one ha
zs511,21 for ion species s51,2, so that kD

2

54pbq0
2r/D with r5r11r2 . The DH theory, which is,

in effect, a special type of mean field theory, provides
reasonably good account of the thermodynamics of elec
lytes at moderate densityr, and was shown to be exact whe
r→0 ~the DH limiting laws! by Kirkwood and Poirier@2#.
However, systematic improvements of DH theory ha
proven elusive.
PRE 591063-651X/99/59~1!/492~20!/$15.00
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In 1950, Mayer@3# developed a systematic theory of th
statistical thermodynamics of ionic solutions based on clu
expansion techniques which, in principle, allows one to c
culate successive corrections to the DH limiting laws. Ma
er’s calculation of the osmotic pressure exerted by the ion
formally equivalent to a virial expansion of the pressure o
gas. One of the central insights of the Mayer theory is that
summing the ‘‘ring graphs’’ to all orders in the densityr,
one recovers Debye screening which is an inherently ma
body effect. This also solves the technical problem of div
gent integrals over the bare Coulomb interaction which
ters in the dimensionless form

bwst~r !5zszt b/r , ~1.2!

where Bjerrum’s length is

b5bq0
2/D[a/T* , ~1.3!

while T* 5kBTDa/q0
2 is the reduced temperature. In consi

ering only ring diagrams, Mayer found that his results for t
osmotic pressure and ionic activity coefficient confirmed
DH limiting laws. By including graphs of more comple
topological types, Haga@4# calculated the osmotic pressu
and logarithm of the ionic activity up to and including co
rection terms of relative orderr5/2 and r3/2, respectively.
Although, in principle, one may calculate thermodynam
properties of the RPM to arbitrary orders inr using Mayer’s
theory, the number and difficulty of the integrals which a
pear make going much beyond the second virial level@i.e.,
O(r2) in the free energy# analytically intractable.

In 1958, Meeron@5#, using a slightly modified approac
to Mayer’s theory@6#, was able to extend the treatment
thermodynamic properties to provide a calculation of the
tentials of average force,wst(r ;T,r), between two speciess
andt separated by a distancer, and of the radial distribution
functions,gst(r ;T,r). Meeron collected terms ofO(r1/2),
492 ©1999 The American Physical Society
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O(r ln r) and O(r), and gave explicit expressions fo
wst(r ) andgst(r ) exactthrough terms ofO(r). Using the
multicomponent virial expression relating the osmotic pr
surep(T,r) to thegst(r ) and the~Coulombic! interactions,
Meeron calculatedp(T,r) and checked agreement with th
known exact result@4# up to and including terms ofO(r2)
~i.e., the second virial level!. The expression forgst(r ),
however, is rather complicated, involving elaborate integr
@see Eq.~1.14! below#, and, indeed, Meeron did not extra
any other observable properties fromgst(r ).

Recent experiments on the criticality of electrolyte so
tions have renewed interest in understanding the behavio
ionic systems. A powerful tool in the study of critical ph
nomena and the structure of liquids is the scattering of e
tromagnetic radiation or of neutrons which enables one
observe the density-density structure factor

SNN~k;T,r!511rĥN~k;T,r!. ~1.4!

Here the appropriate number-density-number-density co
lation function for the RPM is given by the sum

hN~r !5 1
2 @h11~r !1h12~r !#5 1

4 (
s,t

hst~r !, ~1.5!

in which, withs,t 51,2, we employ the standard notatio

hst~r !5gst~r !21, ~1.6!

while we define the Fourier transform generally via

v̂~k!5E dr eik•rv~r !. ~1.7!

From small-angle-scattering experiments~i.e., k→0), one
measures thesecond momentand ~possibly! the fourth mo-
ment density-density correlation lengthsjN,1(T,r) and
jN,2(T,r), defined by

SNN~k;T,r!5SNN~0!@12jN,1
2 ~T,r!k2

1jN,2
4 ~T,r!k41O~k6!#, ~1.8!

where, for the RPM,SNN(0)5rkBTKT is the reduced com
pressibility. Of course, this assumes that a power series
pansion ofSNN(k) in k2 is possible, at least to the orde
shown: our analysis bears that out.

As mentioned, a principal aim of this paper is to deri
exactexpressions forjN,1(T,r) and jN,2(T,r), valid when
r→0 by using Meeron’s result forgst(r ). In addition, we
examine the dominant poles ofSNN(k) which yield thetrue
density correlation lengthjN,`(T,r) that determines the
Ornstein-Zernike-like exponential decay ofhN(r ) @7#. We
also calculate the corresponding second and fourth mom
charge-charge correlation lengthsjZ,1(T,r) and jZ,2(T,r)
from the charge-charge structure factor
-
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SZZ~k;T,r!511rĥZ~k;T,r!5jZ,1
2 k22jZ,2

4 k41O~k6!,
~1.9!

where the charge-charge correlation function for the RPM
given by the difference

hZ~r !5 1
2 @g11~r !2g12~r !#5 1

4 (
s,t

zszths,t~r !.

~1.10!

The vanishing ofSZZ(k) whenk→0 reflects electroneutral
ity, while jZ,1

2 is predicted by the well known second mo
ment or Stillinger-Lovett condition@8#. Note that the domi-
nant poles ofSZZ(k) yield the true screening length,jZ,`

[k`
21(T,r), which determines the exponential decay of t

chargecorrelations@7#.
Finally, we calculate thefirst moment charge-charge co

relation length using the appropriate generalization of E
~1.9! for the odd moments, namely,

jL~T,r![jZ,1/2[2 1
2 E ur urhZ~r !dr . ~1.11!

This was shown by Martin and Yalcin@9# to relate to the
charge fluctuationŝQL

2 & in a large subdomainL, which, as
a consequence of screening and charge neutrality, grow
the area u]Lu rather than the volumeuLu @9#. Lebowitz @10#
interpreted this by supposing the ions form neutral cluster
a characteristic linear dimension which we call@11# the
‘‘Lebowitz length’’ jL(T,r). Then net charge fluctuations i
L arise only when a neutral cluster is ‘‘cut’’ by the bounda
]L. Provided the clusters have no long-range correlatio
one may thus expect

^QL
2 &/u]Lu' 1

2 rq0
2jL~T,r!, ~1.12!

where the normalization has been chosen@11# so that Leb-
owitz’s conjecture@10# that jL should be identified with the
Debye lengthjD proves valid for the RPM whenr→0.

Noting thatrhZ(r ) in Eq. ~1.11! is essentially the inverse
Fourier transform ofSZZ(k), one can show@9~c!# that the
Lebowitz length is also given by

jL~T,r!5
2

p E
0

` dk

k2 SZZ~k!, ~1.13!

where the convergence of the integral at the lower limit
ensured bySZZ(k);ke with e.1 as embodied in Eq.~1.9!.

B. Relevance to ionic criticality

By way of motivation, let us review briefly how knowl
edge of the exact low-density expressions for these corr
tion lengths may contribute to our understanding of t
anomalous criticalityobserved in some electrolyte solution
An unresolved problem is understanding the possible cro
over behavior from classical~or van der Waals! to Ising-type
criticality when the reduced temperature deviation from cr
cality, t5uT2Tcu/Tc , approaches zero. Certain systems d
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494 PRE 59STEFAN BEKIRANOV AND MICHAEL E. FISHER
play pure Ising criticality@12#, others exhibit crossover a
scalest3;1021.5-1022.5 @13,14# and, in some cases, reve
no hint of Ising character@15#. For example, the system tr
ethylhexylammonium triethylhexylboride (N2226B2226) in
diphenyl ether@15# has displayed classical critical exponen
down to t;1024, and is also one that appears to best
proximate the RPM. Thus, an important theoretical challe
of deciding the universality class~and crossover scalet3 if
appropriate! of the RPM remains@16,17#.

To understand the behavior of any system near a crit
point, one must study the order parameter fluctuations.
primary order parameter for ionic fluids is simply the over
number density of ions,r. The original DH theory@1# and its
extensions@17# shed light on the charge-charge correlatio
but say essentially nothing about the overall density-den
correlations. Recently, however, Lee and Fisher@14# gener-
alized DH theory tononuniformion densities thereby deriv
ing a free-energy functional ofr(r ). This GDH theory then
yields ~approximate! density correlations via functional dif
ferentiation. In particular, Lee and Fisher calculated the s
ond moment density correlation lengthjN,1(T,r) for the
RPM which they found exhibited a novel, universal dive
gence for allT whenr→0. In the critical region, the predic
tion wasjN,1(rc ,T)'j0

1/t1/2 for t→01, as expected for a
mean field theory. Using this latter result, Fisher and L
@18# were able to implement the Ginzburg criterion for cla
sical critical behavior. Indeed, the Ginzburg temperat
tG (;t3) was explicitly evaluated but was found to be sim
lar in magnitude to that derived for simple fluids using
comparable approach. Their analysis thus suggested tha
RPM exhibits little if any classical behavior. If that is co
rect, the explanation of the experiments must be sough
new directions.

Other approaches to deriving a Landau-Ginzburg fr
energy functional for the RPM@19,20# from which j0

1 and
tG can be extracted@17# have also been reported. Leote
Carvalho and Evans@19# used a generalized mean-spheric
approximation~GMSA! which repairs the simple MSA~for
which the critical density fluctuations remain bounded!! by
adding to the direct correlation function a term with para
eters which are adjusted to satisfy various sum rules; t
jN,1 diverges at criticality, andj0

1 can be estimated. Weis
and Schro¨er @20# followed a procedure similar to that orig
nally proposed by van der Waals in the theory of surfa
tension: however, they replaced the original square-grad
term by one derived from the pair distribution function pr
dicted by DH theory. Both these theories exhibit serious
fects. In particular, as suggested by Fisher and Lee@14,18#
and confirmed by the exact calculations reported here,
density correlation lengthjN,1(r,T) predicted by the GMSA
@19# and by the Weiss-Schro¨er approach@20# prove to be
significantly in error at low densities: the former has a co
pletely incorrect dependence onT and r ~→0!; the latter
yields the correct form~see below!, as does the GDH ap
proach @14#, but the numerical amplitude is in error by
factor of about 5.7. Now the critical density of the RP
appears to be rather small (rc* [rca

3.0.03– 0.08: see Ref
@16~b!#!; furthermore, the Ginzburg temperaturetG (;t3)
varies as (a/j0

1)6. Consequently, an error by a factor of 5
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in estimating the amplitude ofjN,1 at low densities suggest
that the Weiss-Schro¨er estimate oftG @20# may well be in
error by a few orders of magnitude. Conversely, the GD
theory @14# also yields theexact low-density amplitude for
jN,1 , and so seems likely to be more reliable in the critic
region @18,20~c!#.

C. Meeron’s expression and its analysis

We calculate the correlation lengthsjN,1 and jN,2 from
Meeron’s expressions forgst(r ); thus in Sec. II, we briefly
review Meeron’s derivation, which yields

gst~ ur u;T,r!5gst
D ~r ;T,r!@11hst~r ;T,r!

1Est~r ;T,$rs%!#, ~1.14!

where the leading factor, which may be regarded simply
the DH approximation for the correlation functions, is

gst
D ~r ;T,r!5exp@2bust

† ~r !1wst
D ~r !#, ~1.15!

in which the hard-core potentials for the RPM~but, more
generally, the short-range potentials! are just

ust
† ~r !5u†~r !5`, r ,a

50, r>a, ~1.16!

while the ionic coupling enters through

wst
D ~r ;T,r!52zszt be2kDr /r , ~1.17!

which is just the Debye-Hu¨ckel screened Coulomb interac
tion: recall Eqs.~1.1!–~1.3!.

Now, to expresshst(r ) in Eq. ~1.14!, Meeron@5,21# for-
mulated integral kernelshst,n...

(n) (r ; r1 ,...,rn) in diagram-
matic terms. With the notation

hst
D ~r !5gst

D ~r !21, ~1.18!

the first- and second-order kernels may be written

hst,n
~1! ~r ,r 8!5hsn

D ~r2r 8!hnt
D ~r 8!2wsn

D ~r2r 8!wnt
D ~r 8!,

~1.19!

hst,nm
~2! ~r ,r 8,r 9!5wsn

D ~r 8! f nm
† ~r 92r 8!wmt

D ~r2r 9!

1 1
2 wsn

D ~r 8!@11 f nm
† ~r 92r 8!#

3@wnm
D ~r 92r 8!#2wmt

D ~r2r 9!,

~1.20!

where the short-range Mayerf bond ~for the hard-core po-
tential! is

f st
† ~r !5 f †~r !5e2bu†~r !21. ~1.21!

Then in Eq.~1.14! we have
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hst~r ;T,r!5(
n

rnE dr 8hst,n
~1! ~r ;r 8!1(

n,m
rnrmE dr 8E dr 9hst,nm

~2! ~r ; r 8,r 9!. ~1.22!
l
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Finally, Est(r ;T,$rs%) is a ‘‘remainder’’ function formally
of orderr3, whose specific character whenr becomes smal
is discussed in Sec. II: see also below Eq.~1.24!.

In Sec. III, we deriveSNN(k) for the RPM by taking the
Fourier transform of Eq.~1.14! and using Eqs.~1.4!–~1.7!.
By employing the convolution theorem, we first wri
ĥst(k), explicitly in terms of ĥst

D (k), ŵst
D (k), and f̂ †(k).

Then, by expanding the exponential defininghst
D (r ) in pow-

ers ofwst
D (r ) and taking the Fourier transform of each ter

we show thatĥst
D (k) may be written in terms off̂ †(k) plus

an infinite series of exponential integrals~or incomplete
gamma functions! @22#. Finally, to find ĥN(k), we calculate
the sums over the speciess, t, n, andm. Using the result for
ĥN(k) obtained in Eq.~3.30!, we find thatSNN(k) takes the
simple form

SNN~k!5@12rĥN
D~k!#211 ẼN~kjD ;T,r!, ~1.23!

where the density-density DH correlation function is defin
via Eqs.~1.18! and ~1.15! as

hN
D~r !5 1

2 @h11
D ~r !1h12

D ~r !#, ~1.24!

while ẼN(s;T,r) is a remainder function derived from
Est(r ;T,r) with some additional terms, which, in orderss0,
s2, ands4, behaves asr3/2(ln r)j when r→0, wherej is a
small integer; but recall, also, thatjD;r21/2 asr→0.

Following a similar procedure, we are able to calcula
SZZ(k) in terms ofĥZ

D(k), the Fourier transform of the DH
difference or charge correlation function

hZ
D~r !5 1

2 @h11
D ~r !2h12

D ~r !#. ~1.25!

However, we now find that we lose precision by a factor
order r1/2. Explicitly, the Stillinger-Lovett~SL! zeroth and
second moment sum rules, that specifySZZ(0)50 andjZ,1 ,
are satisfied only up to errors of relative orderr ln r in the
density. Consequently, our expression forjZ,2 will be valid
only up to the same relative order. Moreover, to determ
the Lebowitz length from Eq.~1.13! we need an expressio
for SZZ(k) which satisfies the electroneutrality condition
all orders in the density. To overcome these difficulties
appeal to the well known hypernetted chain~HNC! resum-
mation@23# which, as we now indicate, resolves these pro
lems and provides a higher-order precision.

D. HNC and Meeron resummations„HNCM …

It has been shown@24# that the zeroth and second mome
SL sum rules can be derived from the Ornstein-Zernike~OZ!
relation @25#
,

d

e

f

e

e

-

t

hst~r !5cst~r !1(
n

rnE csn~ ur2r 8u!hnt~r 8!dr 8,

~1.26!

by assuming that the direct correlation function takes
form

cst~r !52
bzszt q0

2

Dr
1cst

0 ~r !, ~1.27!

where cst
0 (r ) is short ranged and its Fourier transfor

ĉst
0 (k) possesses an expansion in powers ofk. Indeed, the

expression for the direct correlation function derived by t
HNC resummation@23# takes a similar form, namely,

cst~r !52bvst~r !1hst~r !2 ln@11hst~r !#1bst~r !,
~1.28!

where the total~reduced! potential is

bvst~r !5zszt~b/r !1bu†~r !, ~1.29!

while bst(r ) is represented graphically by a sum over
bridge diagrams.

Inserting Meeron’s expansion~1.14! into Eq. ~1.28! and
using Eq.~1.6! yields an explicit, exact expression for th
short-range parts of the direct correlation function, name

cst
0 ~r !5hst

D ~r !2wst
D ~r !1Rst~r !, ~1.30!

where the remainder function is

Rst~r !5hst
D ~r !@hst~r !1Est~r !#1bst~r !

2 (
n52

`

~21!n@hst~r !1Est~r !#n/n. ~1.31!

In Appendix A we bound the leading contributions
Rst(r ), namely,hst

D (r )hst(r ); in Appendix B we bound
the leading bridge-diagram contribution tobst(r ) @26,27#
and the leading contribution to the sum in Eq.~1.31!,
namely, @hst(r )#2. We find thatRst(r ) contributes up to
relative orderr3/2(ln r)j and higher, and can, therefore, b
neglected in our analysis.

Equations~1.27! and ~1.30! @neglectingRst(r )# consti-
tute the HNC Meeron~HNCM! result for the direct correla-
tion function, which, along with the OZ relation~1.26!, allow
us to calculateSNN(0), jZ,1 , jZ,2 , and jL exactly up to
errors of relative orderr3/2(ln r)j, and jN,1 and jN,2 up to
orderr ln r.
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In Sec. III D we show that the HNCM result forSNN(k)
agrees precisely with that derived by the ‘‘Meeron only
approach recorded in Eq.~1.23!. Section IV considers the
charge-charge structure factor for the RPM and establis
the simple form

1/SZZ~k!5~kD /k!2112r@ ĥZ
D~k!2ŵZ

D~k!1R̂Z~k!#,
~1.32!

where the charge-charge Debye correlation functionhZ
D(r ) is

defined in Eq.~1.25!, and wZ
D(r ) and RZ(r ) are defined

analogously via Eqs.~1.17! and~1.31!. Finally, note that Eq.
~1.32! satisfies both the zeroth and second moment SL r

tions to all orders in the density even whenR̂Z(k) is ne-
glected.

It is, perhaps, worth recalling that the HNCapproxima-
tion @23–25# is an integral equation for thehst(r ) or,
equivalently, for thecst(r ), obtained by combining Eq
~1.26! with Eq. ~1.28! and neglecting the bridge function
bst(r ). What we here call the HNCM procedure has so
resemblance to a first iteration of the HNC approximation
which, initially, hst(r ) is neglected in Eq.~1.28!, and Eq.
~1.26! is used to obtain a first nontrivial approximation f
hst which, in turn, is then used in Eq.~1.28!. However,
because of the density ordering that we~and Meeron! em-
ploy, the suggested correspondence is not precise. Fur
more, in extending our results to encompassnonsymmetric,
multicomponentprimitive models@11#, even though only to
the sameorders in density as obtained here, it proves ess
tial to retain a leading bridge diagram contribution@and also
to allow for a ~2,1,2! chain not included by Meeron in hi
truncation#.

E. Overview of results

Using our results forĥst(k) and SNN(k) we derive, in
Sec. III,jN,1 andjN,2 by expanding in powers ofk. Thus we
obtain the exact expressions

jN,1~T,r!5S b

48kD
D 1/2

@11 1
8 kDb1O~r lnjr!#

'
1

4 S b

36pr D 1/4

, ~1.33!

jN,2~T,r!5S b

320kD
3 D 1/4

@11 7
72 kDb1O~r lnjr!#

'
b21/8

4~10!1/4~pr!3/8, ~1.34!

for the second and fourth moment correlation lengths,
spectively.~Recall, that, here and below,j is a small integer.!
Evidently, both correlation lengths diverge whenr→0, but
with different laws, namely, as 1/(Tr)1/4 and (T/r3)1/8, re-
spectively. Furthermore, both amplitudes areuniversal in
that they do not depend on the short-range potentialust

† (r ),
es

a-

e

er-

n-

-

which enters, here, only through the hard-core diametea.
The divergence ofjN,1(r) andjN,2(r) whenr→0 is remi-
niscent of the divergence of density fluctuations at a criti
point @16~a!#. Note that these divergences are much wea
than that of the charge-charge correlation length which~see
below! is asymptotically determined byjD;(T/r)1/2.

Result~1.33! for jN,1(T,r) precisely confirms the predic
tion of GDH theoryup to the correction term shown: see E
~10! of Ref. @14~a!#. The leading correction term in GDH
theory is proportional to (kDa)2;ra2/T, which is clearly
nonuniversal; the exact correction term in Eq.~1.33! is, no
doubt, also nonuniversal but we have not calculated it fr
Meeron’s analysis. On the other hand, it transpires that
GDH analysis also yields the form~1.34! of jN,2(T,r) as
r→0 @14~b!#. Indeed, following Lee and Fisher@14#, we
note that the leading terms of the HNC approximation for
direct correlation function~see, e.g., Ref.@25#!, namely,

ci j ~r !'2bui j ~r !1 1
2 hi j

2 ~r !1¯ , ~1.35!

with ui j (r )5ui j
† (r )1w i j (r ), lead to

SNN~k!'@12 1
4 kDbs~k/2kD!#21, s~y!5~ tan21y!/y,

~1.36!

if one uses the DH form@Eq. ~1.15!# as an approximation for
long distances and low densities. On expansion in power
k and use of Eq.~1.8!, this leadspreciselyto Eqs.~1.33! and
~1.34! @excluding only theO(r ln r) terms#. This further
suggests the general asymptotic behavior

jN,n
2n ~T,r!'b/8~2n11!~2kD!2n21 ~1.37!

for r→0, which we believe is correct since the analysis d
scribed in connection with Eqs.~3.38! and ~3.39! below in-
dicates that the error terms in Eq.~1.36! will contribute only
to higher order inr.

As a further check, we have verified that our result~1.23!
for SNN leads via the sum rules@25# to the reduced isother
mal compressibility correct up to the second-virial lev
namely,

SNN~0!511 1
4 kDb1 1

16 ~kDb!2

14pra3 (
m50

`
~T* !22m

~2m!! ~2m23!
1O„r3/2~ ln r! j

…,

~1.38!

which agrees with the reduced compressibility calcula
from the known low density expansion of the free energy
the RPM@4,28#. It is remarkable that the leading nonunive
sal form of the second-virial corrections follows just fro
the DH forms~1.15!–~1.17!. For completeness we quote th
expansion for 1/SNN(0) which includestheO(r3/2 ln r) term
omitted in Eq.~1.38!: this follows from Haga’s analysis@4#
as
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1

SNN~0!
512 1

4 kDb24pra3 (
m50

`
~T* !22m

~2m23!~2m!!
2 5

4 pkDrb4@ ln~4kDa!1gE2 7
15 #2 15

16 kD
3 a3/T*

1 15
4 pkDbra3 (

m52

`
~T* !22m21

~m21!~2m11!!
1O„r2~ ln r! j

…, ~1.39!
th
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the
and confirms Meeron’s conclusions as to the order of
residual term in Eqs.~1.23! and ~1.38!.

Using our results forĉst(k) andSZZ(k) we derive, in Sec.
IV, jZ,1 andjZ,2 by expanding in powers ofk, and alsojL by
evaluating the integral~1.13!. Thus we obtain the exact ex
pressions

1/jZ,1~T,r!5kD , ~1.40!

1/jZ,2~T,r!5kD$11 1
8 x21 1

24 ~kDb!2

3@ ln x1e22Y~T* !#1O~r3/2 lnjr!%,

~1.41!

jL~T,r!5kD
21$11 1

4 x21 1
12 ~kDb!2

3@ ln x1eL2Y~T* !#1O~r3/2 lnjr!%,

~1.42!

where x5kDa and, employing Euler’s constantgE
.0.57721̄ , the coefficients are

e25gE1 ln 3.1.675 83, ~1.43!

eL5gE1 ln 4.1.963 51. ~1.44!

Note that the leadingnonuniversalcorrections can be calcu
lated ~although we have been unable to do this for the d
sity correlation lengths!: explicitly one finds

Y~T* !56(
n53

`

~T* !422n/~2n24!~2n21!! ~1.45!

Not surprisingly Eqs.~1.41! and ~1.42! do not confirm the
GDH approximation@29# beyond leading order since th
cannot generate the leadingkD

2 ln x ; r ln r term. We dis-
cuss the GDH results forSZZ(k), jZ,1 , jZ,2 , andjL further
in Sec. IV.

Finally, in Sec. V, we compare our results in more det
with those derived from the correlation-function calculatio
of Kjellander and Mitchell~KM ! @27#, who evaluated the
leading order bridge-diagram corrections to the HNC pred
tions at long distances. The main focus of the careful K
analysis was, in fact, on the nature of the long-rangedecayof
the correlation functions at low densities. In particular, th
e

-

il

-

y

determined the true correlation lengthjZ,`[1/k` for the
screening of the charge-charge correlation functions find
generally,

k`
2

kD
2 '11

kDb ln 3

4 F (
s

zs
3cs

(
s

zs
2cs

G 2

1
~kDb!2 ln~kDb!

6 F (
s

zs
4cs

(
s

zs
2cs

G 2

1¯ ,

~1.46!

where the cs5rs /r are the relative concentrations o
equivalently, the stoichometric coefficients.„See KM, Eq.
~150!, in Ref. @27~a!#.! In the case of the RPM, the firs
correction term here vanishes by symmetry and the sec
squared factor reduces to unity. KM wrote a correction te
in Eq. ~1.46! of order (kDb)2, but this is an oversight to the
extent that nonuniversal terms entailingkDa actually arise
as, in fact, KM mention in their subsequent discussion.

The KM formulation can also be used to study the dec
of the density correlation functionhN(r ;T,r) @see Eq.~1.5!#.
The corresponding true correlation length is found to sati

jN,`5 1
2 jZ,`@112 exp~28/kDb!1¯#, ~1.47!

where the argument of the exponential neglects correct
of relative orderr1/2, while the additive terms are of orde
e216/kDb. This result also confirms the predictions of th
GDH theory in leading order except insofar as the exact
sult ~1.46! for jZ,` is replaced in Eq.~12! of Ref. @14~a!# by
the leading behaviorjD5kD

21. As remarked in Ref.@14~a!#,
this result means that the density-density correlation func
hN(r ) decays ase2r /jN,`/r which is slightly more slowly
than e22kr /r 2, the square of the charge-charge correlat
function decay @27#: however, the associated amplitud
should vanish asr→0.

Although KM mainly addressed the long-distance cor
lation decay, their incidental low-density results, specifica
for the Fourier transformĉst(k;T,r) of the direct correlation
function, can be used to examine the correlation lengthsjN,1
andjN,2 by expanding in powers ofk. These KM results lack
the short-distance contributions of the bridge function, a
are not claimed to be correct to a specific order in the den
~in contradistinction to Meeron’s results@4,21#!. However, to
the leading orders in the density that we have evaluated,
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formal results of KM agree precisely with our results. On
again, then, the validity of the GDH treatment@14# at low
densities is confirmed.

II. RADIAL DISTRIBUTION FUNCTIONS

A. Short-range diagrammatics

The diagrammatic analysis of the radial distribution fun
tions,gst(r ), presented by Meeron@5# is fairly complex, and
a helpful overview~Ref. @21#! is not readily accessible. Fo
our purposes, it is also useful to understand the origin of
basic results quoted in Eqs.~1.14!–~1.22!. Accordingly, here
we present a brief review and, in particular, discuss the c
acter of the error functionEst(r ;T,$rs%) in Eq. ~1.14!.

Meeron’s starting point, following Mayer@3#, is a general
multicomponent system with short-range interaction pot
tials ust(r ) and corresponding Mayerf functions

f st~r !5e2bust~r !21. ~2.1!

One then has the density expansion

gst~ ur u!5e2bust~r !F11(
n

rn gst
~n!~r !

1(
n,m

rnrm gst
~nm!~r !1¯G , ~2.2!

in which the first-order coefficients are given by the clus
integrals

gst
~n!~r !5E dr 8 f sn~r2r 8! f nt~r 8!, ~2.3!

corresponding simply to a chain diagram of twof bonds with
one field point, (r 8;n), and two root points,~0;s! and (r ;t):
see, e.g., Eq.~5.3.4! of Hansen and McDonald~HMc! @25#
where the single-component case was described. The hi
order coefficientsgst

(nm) ,¯, have corresponding diagram
matic representations as sums of cluster integrals: in sec
order there are five diagrams with two field points, the d
gram of longest range being a simple chain of threef bonds:
@HMc, Eq. ~5.3.5!#. In general, each field point is associat
with a factorrm and must be connected to each root point
disjoint chains off bonds.

For the RPM the pair potential is

ust~r !5ust
† ~r !1wst~r !. ~2.4!

This is of long range and leads to divergent integrals in
the coefficientsgst

(n)(r ),... . To avert this problem Meeron
following Mayer, multipliedwst(r ) by a convergence facto
-

e

r-

-

r

er

nd
-

ll

e2ar , rearranged the density expansion by summing cha
of appropriate bonds, and, finally, tooka→0. Specifically,
invoking Eq.~1.21!, Meeron wrote

f st5 f st
† 1~11 f st

† ! (
n51

`

qst
n /n!, ~2.5!

qst~r !52bwst~r !e2ar . ~2.6!

Then each diagram off bonds in thegst expansion generate
an infinite sum of diagrams of the same form but with ea
bond now being either anf † bondor a qm bond~that carries
a factorqst

m with m51, 2, . . .) or acompoundf †qm bond.
Figure 1 illustrates the nine graph types arising in first ord
as usual, field points are denoted by solid circles, and r
points by open circles~HMc!.

B. Resummation and truncation toO„r…

In the next step, Meeron excluded from consideration
diagrams containing simpleq-bond chains~i.e., a sequence
of one or more field points linked byq1 bonds!. Thus, the
fourth graph in Fig. 1 is excludedwhen m5n51 ~but is
retained ifm or n exceeds unity!. The remaining set of dia-
grams, sayP, can clearly be used to regenerate the full se
diagrams if eachindividual qbond is allowed to be replace
by all possible simpleq-bond chains of lengths 2, 3, . . . q
bonds. By employing the convolution properties of the e
plicit Fourier transforms ofqst(r ), Meeron was then able to
sum over all the possible simple chains in any diagram ofP.
At the end, the limita→0 may be taken safely, leaving onl
rapidly decaying bond functions.

In total, the complete expansion forgst(r ) is now ob-
tained fromP by replacing each individualq bond ~in a qm

bond! by a screened Debye bond, or wD bond, carrying the
factorwst

D (r ;T,r) as defined in Eq.~1.17!. On reversing the
steps leading to Eq.~2.5! one can collect infinite series o
diagrams whose sum representseffective fbonds carrying
factors f st

eff[hst
D (r ;T,r) as defined in Eq.~1.18! with Eq.

~1.15!.

FIG. 1. The first-order coefficient forgst(r ) expanded diagram-
matically in terms off † bonds~dashed lines! andqm bonds~triple
lines! where m51,2, . . . andqst(r )[2bwst(r )e2at. After re-
summation and the exclusion of diagrams with simpleq-bond
chains~see text!, each individualq bond becomes a screenedwD

bond.
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At first sight this suggests that one can simply rewr
gst(r ) through the original expansion~2.2! but with an ef-
fective short-range interaction potential

ust
eff~r ;T,r!5ust

† ~r !1zszt q0
2e2kDr /Dr ~2.7!

replacingust(r ). However, this appealing picture would e
tail diagrams withwD-bond chains which have, in fact, a
ready been included in performing the summations lead
to wst

D (r ). Consequently, Meeron chose to writegst(r ) in
terms ofust

eff(r ) and the correspondingf bonds,f st
eff[hst

D (r ),
but to explicitly subtract off the overcounted diagrams co
tainingwD chains. Indeed, the zeroth order term of Meero
final expression~1.14! corresponds just to the leading fact
in Eq. ~2.2! with ust replaced byust

eff . The first-order term,
with kernelhst,n

(1) (r ;r 8;T,r) given in Eq.~1.19!, contains the
anticipated product of twof eff bonds but with a two-bond
wD-chain term subtracted.

The same general structure could have been embodie
Meeron’s expression forhst,n,m

(2) : see Eq.~1.20!. However,
the formula presented includes only those diagrams with
field points that, after integration overr 8 and r 9, contribute
to gst(r ) up to and including the overall orderr. The crucial
point is that, on integration, the screening facto
exp(2kDur 8u), etc., typically lead to factors 1/kD}1/r1/2, so
that a given diagram may, in fact, contribute to terms
lower order than suggested by the number of its field poin

To check that no diagrams have been overlooked to o
r in Eqs.~1.14! and~1.15!, Meeron explicitly examined dia
grams with an arbitrary number of points in which each fie
point is connected to no more than three others and
diagrams which are ‘‘orderable’’ in the sense that the cor
sponding integrals can be related directly to those deriv
from diagrams with only two field points, as in Fig. 1. The
further diagrams were found to contribute togst(r ;T,r)
terms of order at leastr3/2 or, possibly, r3/2(ln r)j (j
51, 2, . . .).These conclusions indicate the order of the er
term Est in Eq. ~1.14!.

Meeron was actually unable to evaluate definitively t
orders inr of various more highly connected diagrams th
enter formally in ordersrlrmrn , etc.: see Fig. 2; but he
argued that these cannot contribute to orders be
r3/2(ln r)j. As a further test, he used Eq.~1.14! to calculate
the osmotic pressure via the appropriatevirial relation @25#.
His result agrees with expressions derived purely from
thermodynamic expansions to the exactly known seco
virial level: see Eq.~1.39!, which, however, we derive her
via thecompressibility relation~which is available for atwo-
component electrolyte! @25#.

It is also instructive to switch off the Coulomb intera
tions by lettingzs→0 in order to verify that the proper viria
expansion for hard spheres is generated. In this limit we

FIG. 2. Leading ‘‘unorderable’’ diagrams that are expected
contribute togst(r ) only in ordersr3/2(ln r)j or higher.
g

-
s

in

o

f
.

er

so
-
g

r

t

w

e
d-

ee

from Eq. ~1.17! that wst
D →0 so that, by Eq.~1.20!, hst,nm

(2)

vanishes identically while Eqs.~1.15! and ~1.19! yield

gst
D ~r ;T,r!→e2bust

†
~r !, ~2.8!

hst,n
~1! ~r ,r 8!→ f sn

† ~r2r 8! f nt
† ~r 8!. ~2.9!

Comparison with Eqs.~2.2! and~2.3! confirms that the short-
range expansion forgst(r ) is correctly reproduced to orderr
~which also corresponds to the second-virial coefficient
the pressure!. Notice, however, that no contributions of ord
r2 are generated despite the apparent order of the third t
in Eq. ~1.14!.

From our analysis of Meeron’s results forgst(r ;T,r), we
conclude that expressions~1.14!–~1.22! should be valid for
the RPM up to corrections of orderr3/2(ln r)j at fixedr and
T and, hence, equally when they are integrated over so
bounded kernelK(r ) that decayssufficiently rapidlywhen
r→`. In our case, however, we takeK(r )5eik•r andur un so
as to obtainSNN(k), other Fourier transforms, and variou
moments. In such cases, as noted above, integration
lead to a loss of order of precision by factors 1/kD}r21/2.
Thus, as mentioned in Sec. I, we have used Meeron’s for
lation for gst(r ) in the HNC resummation to obtain resul
for the correlation lengths which are valid up to correctio
of orderr3/2(ln r)j or r ln r.

III. DENSITY-DENSITY STRUCTURE FACTOR

A. Symmetry considerations

Now we focus on the RPM, which enjoys a special sy
metry beyond the obvious~1,2! symmetry yielding, e.g.,
r15r25 1

2 r. Specifically, if, as is certainly of interest@11#,
we assign three distinct hard-core diameters, namely,a11 ,
a12 , anda22 , the RPM has not onlya115a225a but
alsoa125a; see Eq.~1.16!. Consequently, as stated in E
~1.21!, f st

† is independent ofs andt. On the other hand, the
DH potentialwst

D , defined in Eq.~1.17!, depends ons andt
only through the factorzszt561.

Consider now thehst,nm
(2) kernel defined in Eq.~1.20!, and

note that in the basic results~1.14! and ~1.22! for the corre-
lation functions, the indicesn andm are summed over. The
two terms in Eq.~1.20! thus yield contributions tohst pro-
portional to

S15(
n,m

zsznzmzt5zsztS (
n

znD 2

, ~3.1!

S25(
n,m

zszn~znzm!2zmzt5zsztS (
n

zn
3D 2

. ~3.2!

But both of thesevanish identically. Consequently theh (2)

term in Eq.~1.20! makesno contribution tohst(r ) for the
RPM. However, it will enter for a 1:1 electrolyte as soon
u12

† (r ) differs from u11
† (r ) or u22

† (r ) even if u11
†
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5u22
† @11#. It remains to analyze the two leading terms

Eq. ~1.14!: no comparable simplification is implied for th
h (1) term in Eq.~1.19!.

B. Correlation functions in Fourier space

We calculate the density-density structure factorSNN(k)

by first computing the Fourier transformsĥst(k) using Eqs.
~1.14!, ~1.18!, and~1.19!. To that end, note the relations
rm

s

ĝst
D ~k!5~2p!3d~k!1ĥst

D ~k!, ~3.3!

and, via the convolution theorem,

E dr g~r !eik•rE dr 8h~r2r 8! j ~r 8!

5E dk8

~2p!3 ĝ~k2k8!ĥ~k8! ĵ ~k8!. ~3.4!

Thus we obtain the basic expression
ĥst~k!5ĥst
D ~k!1(

n
rn@ ĥsn

D ~k!ĥnt
D ~k!2ŵsn

D ~k!ŵnt
D ~k!#

1(
n

rnE dk8

~2p!3 ĥst
D ~k2k8!@ ĥsn

D ~k8!ĥnt
D ~k8!2ŵsn

D ~k8!ŵnt
D ~k8!#1r21Ẽst~kjD ;T,r!, ~3.5!
a

of
to
where for the RPM the symmetric sum of the error te
ẼN(kjD ;T,r) is of orderr3/2(ln r)j at fixedk whenr→0.

To handle the Fourier transforms it is convenient to u
the dimensionless variables

x5kDa and q5ka, ~3.6!

and to analyzeĥst
D (k) via Eq.~1.15! by expanding in powers

of wst
D 52zszt be2kDr /r . We then find

ŵst
D ~k!524pa3zszt /T* ~x21q2!, ~3.7!

and need to study the integrals

I 0~q;x!5 f̂ †~q!/4pa35~q cosq2sin q!/q3,

52 1
3 1 1

30 q22 1
840q41¯ , ~3.8!

I 1~q;x!5
1

q E
1

`

sin~qy!e2xydy,

5e2x@cosq1~x/q!sin q#/~x21q2!, ~3.9!

and, forn>2,

I n~q;x!5
1

q E
1

`

dy sin~qy!e2nxy/yn21

5
1

2iq
@En21~nx2 iq !2En21~nx1 iq !#,

~3.10!

where the exponential integrals are given by@22#

En~v !5E
1

`

du e2uv/un5vn21G~12n,v !, ~3.11!
e

for all n, with G(a,v) the incompletel function. In terms of
these integrals we have

ĥst
D ~k!54pa3(

n50

` 1

n!
I n~q;x!S 2zszt

T* D n

. ~3.12!

Now employing Euler’s constant gE52c(1)
.0.5772̄ and the logarithmic derivative of the gamm
function

c~n!5 (
l 51

n21

l 212gE , ~3.13!

the exponential integrals have the expansions@22#

En~v !5
~2v !n21

~n21!!
@c~n!2 ln v#2 ( 8

m50

` ~2v !m

m! ~m2n11!
~3.14!

for n>1, where the prime on the sum denotes omission
the formally infinite term which, in this case, corresponds
m5n21. Forn>2 we can thus write

I n~q;x!5FAn22S q

nx
D ln~nx!212BnS q

nx
D G ~2nx!n23

~n22!!

2 ( 8
m51

`

AmS q

nx
D ~2nx!m21

m! ~m2n12!
, ~3.15!

where the momentum variableq/x5k/kD ([ns) enters via

An~s!5~11s2!n/2 sin@ns̃~s!#/s, ~3.16!
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Bn12~s!5$s̃ cos~ns̃!1@ 1
2 ln~11s2!2c~n11!#sin~ns̃!%

3~11s2!n/2/s, ~3.17!

where, for brevity, we write
tan21 s5 s̃~s!5s2 1
3 s31¯ . ~3.18!

For use later we quote the expansions

An~s!5n2S n
3D s21S n

5D s41O~s6!, ~3.19!
Bn~s!512~n22!c~n21!1F S n22
3 Dc~n21!2 1

2 n213n24 1
3 Gs2

2F S n22
5 Dc~n21!2 1

24 n41 2
3 n32 31

8 n21 29
3 n28 7

10 Gs41O~s6!. ~3.20!
ac-
C. Analysis of the density structure factor

To obtainSNN(k) we now focus on calculatingĥN(k) by
summingĥst(k) over s, t : see Eqs.~1.4! and ~1.5!. In ad-
dition, we consider the sum over the field point labeledn in
Eq. ~3.5!. The leading term in Eq.~3.5!, together with Eq.
~3.7! and expansion~3.12!, entails the valence sums

Sn,0,05
1
4 (

s,t
~zszt!

n5 1
2 @11~21!n#. ~3.21!

The second orĥDĥD term in Eq.~3.5! generates

rS0,p,r5
1
4 (

s,t,n
rn~zszn!p~znzt!

r

5 1
4 r@11~21!p#@11~21!r #, ~3.22!

sincer15r25 1
2 r. The third term, involvingŵDŵD, entails

only rS0,1,150 and so does not contribute toĥN(k). The
fourth term, with threeĥD factors, yields
rSn,p,r5
1
4 (

s,t,n
rn~zszt!

n~zszn!p~znzt!
r

5 1
4 r@11~21!n1p1~21!p1r1~21!n1r #.

~3.23!

Finally, the last term, containingĥDŵDŵD, leads to

rSn,1,15
1
4 (

s,t,n
rn~zszt!

n~zszn!~znzt!

5 1
2 r@11~21!n11#. ~3.24!

Overall we thus find that the density-density structure f
tor takes the form

SNN~k!511rĥN
D~k!1@rĥN

D~k!#21RN
M~k!, ~3.25!

where, recalling Eq.~3.6!,
ĥN
D~k!54pa3(

n50

` S Sn,0,0

n! ~T* !nD I n~ka,kDa!, ~3.26!

RN
M~k;T,r!58a6r2F (

n,p,r 50

` S Sn,p,r

n! p! r ! ~2T* !n1p1r D E dq8I n~q2q8!I p~q8!I r~q8!

2 (
n50

` S Sn,1,1

n! ~2T* !n12D E dq8
I n~q2q8!

~x21q82!2G1 ẼN~kjD ;T,r!, ~3.27!
while Sn,p,r selects terms according to the simple rule

Sn,p,r51
50

for n, p, r all even or all odd
otherwise. ~3.28!

To extractjN,1 andjN,2 we now expandĥN
D(k) in powers
of k and collect the contributions inr of lowest order using
Eqs.~3.26!, ~3.8!, and~3.15!–~3.20!. This yields

rĥN
D~k!5H01H2k21H4k41O~k6!, ~3.29!

where theH0 term reproduces result~1.38! for SNN(0) while
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H25
2b

48kD
2

kDb3

576
2

2pra5

3 (
n50

`
1

~2n!! ~2n25!~T* !2n

1O~r3/2 ln r!, ~3.30!

H45
b

320kD
3 1

b3

45390kD
1

kDb5

643202

1
pra7

30 (
n50

`
1

~2n!! ~2n27!~T* !2n 1O~r3/2 ln r!.

~3.31!

Thence we obtain

SNN~0!jN,1
2 5

b

3324kD
1

b2

3325 1O„r1/2~ ln r! j
…,

~3.32!

SNN~0!jN,2
4 5

b

5326kD
3 1

23b2

45328kD
2 1O„r21/2~ ln r! j

…,

~3.33!
-
t
d

nd
y

sit
e
n

which yield the results forjN,1(T,r) andjN,2(T,r) quoted in
Eq. ~1.33! and ~1.34!.

Note that we are limited to the orders inr shown here by
our neglect of the contributions from the infinite set
graphs contributing toẼN(k) in Eq. ~3.27!, which derives
from Ẽst(k) in Eq. ~3.5!. Indeed, from Meeron’s analysis o
gst(r ) we know thatÊN(0) contributes toSNN(0) in order
r3/2(ln r)j. Moreover, as indicated in Sec. II C, we fin
ẼN(k) contributes toSNN(0)jN,1

2 and SNN(0)jN,2
4 in orders

r1/2(ln r)j and r21/2(ln r)j, respectively. We also show in
Appendix A that the integrals entering the remainder fun
tion RN

M in Eq. ~3.27! do not contribute toSNN(0), jN,1 and
jN,2 to the orders inr displayed in Sec. I. We do this b
studying the integrals

Fnpr~q;x!5E dq8I n~q2q8!I p~q8!I r~q8!, ~3.34!

defined via Eqs.~3.8!–~3.10! with the expansions~3.15!–
~3.20!.

As an example, we analyze here the integralFnpr(0;x)
which contributes toSNN(0;T,r) via Eqs.~3.25! and~3.27!.
For this we have
Fnpr~0;x!522p2E
1

`

duE
1

`

du8E
1

`

du9
e2x~nu1pu81ru9!

un21~u8!p21~u9!r 21 z~u,u8,u9!, ~3.35!
es
where, with sgn(y)5y/uyu (yÞ0), one finds

z~u,u8,u9!52
2

p E
0

`

dq
sin~qu!sin~qu8!sin~qu9!

q

5 1
4 @sgn~u1u81u9!2sgn~u1u82u9!

2sgn~u2u81u9!1sgn~u2u82u9!#.

~3.36!

Evidently one hasuz(u,u8,u9)u,1 so that, on lettingx
5kDa→0, we obtain

uFnpr~0;0!u,2p2E
1

` du

un21 E
1

` du8

~u8!p21 E
1

` du9

~u9!r 21 ,

~3.37!

which is bounded forn, p, r>3. Consequently, the contribu
tion toRN

M(0) andSNN(0) coming from such integrals is a
worst of orderr2, which is of higher order than considere
in the present analysis. In Appendix A, we explicitly bou
Fnpr(q;x) for all n, p, andr using similar methods, thereb
justifying the neglect ofRN

M for the results stated.
As remarked in Sec. I, the approximate density-den

structure factor~1.36!, derived from the leading terms of th
HNC approximation, leads precisely to the leading low de
sity results forjN,1 and jN,2 presented in Eqs.~1.33! and
y

-

~1.34! @missing theO(r lnjr) terms#. We can see why this is
so for all the leading contributions, as in Eq.~1.37!, by first
rewriting Eq.~3.25! as

SNN~k!'@12rĥN
D~k!#21. ~3.38!

From Eqs.~3.15!–~3.20!, we find the leading contribution to
rĥN

D(k) whenr→0 comes from then52 term of Eq.~3.26!,
which yields

ĥN
D~k!'

4pa3

2~T* !2 I 2~q,x!1¯ , ~3.39!

with I 2(q,x)'tan21(q/2x)/q1¯ . Then Eq. ~3.38! pre-
cisely yields the HNC-derived result, Eq.~1.36!.

D. Density structure factor from HNCM

It is instructive to check that the HNCM approach giv
precisely the same result forSNN(k), namely, Eq.~1.23!, as
the ‘‘Meeron only’’ route. We may relateSNN(k) to the di-
rect correlation function

ĉN~k!5 1
2 @ ĉ11~k!1 ĉ12~k!#, ~3.40!
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by using Eq.~1.4! and the OZ equation~1.26!. For the RPM,
one finds the simple relation

SNN~k!5@12r ĉN~k!#21. ~3.41!

From Eqs.~1.27!, ~1.30!, ~1.17!, and~3.40! we thus find that
the HNCM result,

SNN~k!5@12rĥN
D~k!2rR̂N~k!#21

511rĥN
D~k!1@rĥN

D~k!#21O„rR̂N~k!…,

~3.42!

is exactly the same as that derived using Meeron’sgst(r )
directly up to and including terms of relative orderr: com-
pare with Eqs.~1.23! and~3.25!. Note that the relevant com
binationrR̂N(k) contributes in relative orderr3/2(ln r)j and
may therefore be neglected in this analysis.
s

A
s

IV. CHARGE-CHARGE STRUCTURE FACTOR

A. Analysis following Meeron

Following essentially the same steps that lead to exp
sion ~3.25! for SNN(k) but now for the charge correlations
we find

SZZ~k!511rĥZ
D~k!1r2@„ĥZ

D~k!…22„ŵZ
D~k!…2#1RZ

M~k!,
~4.1!

where

ĥZ
D~k!524pa3(

n50

`
1

~2n11!!
I 2n11~q;x!S 1

T* D 2n11

,

~4.2!

ŵZ
D~k!524pa3/T* ~x21q2!, ~4.3!

while RZ
M(k) is found from Eq.~3.27! by replacingSn,p,r

~andSn,1,1) by
Dn,p,r51
50

for n even with p, r odd, or n odd with p, r even
otherwise, ~4.4!
ts
and substitutingÊZ(k) for ÊN(k). On expanding Eq.~4.1! in
powers ofk, we find that Meeron’s analysis yields

SZZ~0!5O~r ln r!, ~4.5!

jZ,15jD@11O~r ln r!#, ~4.6!

jZ,25jD@11O~r ln r!#, ~4.7!

so that the SL zeroth and second moment sum rules are
isfied but only up to possible deviations of orderr ln r. This
must be regarded as a serious defect of the approach.
cordingly, we turn to the HNCM formulation which ensure
the validity of both sum rules to all orders inr, i.e.,
SZZ(0)[0 andjN,15jD . Furthermore, as reported,jZ,2 can
then be found to be correct to relative orderr.

B. Charge correlations via HNCM

Following Sec. III D, we first relateSZZ(k) to the direct
correlation function

ĉZ~k!5 1
2 @ ĉ11~k!2 ĉ12~k!# ~4.8!

via Eq. ~1.9! and the OZ relation~1.26!. For the RPM, one
finds

SZZ~k!5@12r ĉZ~k!#21. ~4.9!

Then, with the aid of Eqs.~1.27!–~1.31!, we obtain the
at-

c-

HNCM result forSZZ(k) reported in Eq.~1.32!. This enjoys
the smallk expansion

SZZ~k!5jD
2 k2$11@12r„ĥZ

D~0!2ŵZ
D~0!1R̂Z~0!…#jD

2 k2

1O~k4!%. ~4.10!

The requiredk50 terms follow directly from Eqs.~4.2! and
~4.3! with the aid of Eqs.~3.8!–~3.20!, as

r@ ĥZ
D~0!2ŵZ

D~0!#5 1
2 x21 1

6 ~kDb!2@ ln x1e22Y~T* !#

1O~r3/2 ln r!, ~4.11!

wheree2 and Y(T* ) are defined in Eqs.~1.43! and ~1.45!,
respectively. Finally, Appendix B establishes thatrR̂Z(0) is
of orderr3/2(ln r)j. In total, the analysis thus justifies resul
~1.40! and ~1.41! for jZ,1 andjZ,2 .

C. Lebowitz length

We may now use the expression~1.32! for SZZ(k) and the
relation~1.13! to calculatejL(T,r). We begin by expanding
in powers ofr(ĥZ

D2ŵZ
D) to obtain

SZZ~k!'
k2

k21kD
2 H 11

rk2

k21kD
2 @ ĥZ

D~k!2ŵZ
D~k!#1¯J .

~4.12!
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Then, employing Eqs.~3.6!–~3.12! and integrating onk leads
to

jL~T,r!'
2a

p F p

2x
2x2(

n50

`
~T* !22n

~2n11!!
JL

~2n11!~x!1¯G ,

~4.13!

where, form>1,

JL
~m!~x!5E

0

`

dq
q2

~x21q2!2 F I m~q;x!2
dm,1

x21q2G .
~4.14!

We find the contribution of leading order inx from these
integrals as follows. Form51 we putq5ux and expand to
find

@ I 1~q;x!2~x21q2!21#q5ux52 1
2 ~u211!x21O~x3!,

~4.15!

which yields

JL
~1!~x!52~p/8x!1O~x0!. ~4.16!

For m>2 we use the integral form~3.10! and interchange
orders of integration to obtain

JL
~m!~x!5E

1

`

dy
e2mxy

ym21 E
0

`

dq
q sin~qy!

~x21q2!2

5
p

4x E
1

`

dy
e2~m11!xy

ym22 5
p

4x
Em22~mx1x!.

~4.17!

Collecting all terms up to and including those of orderx,
recalling the expansion~3.14!, and appealing to Appendix B
for a bound onR̂Z(k), finally establishes the result fo
jL(T,r) given in Eq.~1.42!.

D. Analysis of the generalized DH predictions

The pure GDH~generalization of the DH theory! approxi-
mation forSZZ(k) is

SZZ
GDH~k!5

q2

x21q21g0~x;q!
, ~4.18!

where, from Eqs.~1! and ~2! of Ref. @29#,

g0~x;q!5x2~cosq21!2@2 ln~11x!22x1x2#

3~cosq2sin q/q!. ~4.19!

Clearly GDH theory satisfies the zeroth and second mom
SL sum rules. Expanding for smallq5ka yields
nt

jZ,2
GDH5jD@11 2

3 ln~11x!2 2
3 x2 1

6 x2#1/4

5jD /@11 1
8 x22 1

18 x31 31
384x41O~x5!#. ~4.20!

As regards the Lebowitz length, the form~1.13! gives

jL
GDH5

2a

p E
0

`

dq
1

x21q21g0~q;x!
, ~4.21!

which on expansion in powers ofg0 yields a sum over the
integrals

Jn~x!5
1

p E
0

`

dq
@2g0~q;x!#n

~x21q2!n11 . ~4.22!

Then one hasJ0(x)51/2x and evaluation using Eq.~4.19!
gives

J1~x!52 1
8 x1 5

36 x22 11
96 x31 43

480x41O~x5!, ~4.23!

J2~x!5 3
64 x32 1

10 x41O~x5!, ~4.24!

while Jn(x)5O(x2n21) for n>3. Collecting terms yields
the GDH prediction

jL
GDH5jD@11 1

4 x22 5
18 x31 31

96 x41O~x5!#. ~4.25!

Comparing this with the exact low-density result~1.42!,
one sees that GDH theory generates the exact leading be
ior and one of the correction terms of relative orderr,
namely, 1

4 x2. Similarly, comparing Eqs.~4.20! and ~1.41!,
one finds that the theory predicts the leading behavior ofjZ,2
as well as the 1

8 x2 correction. However, the dominan
O(r ln r) term doesnot appear.

Why this is so is most easily understood by compar
SZZ

GDH(k) in Eq. ~4.18! with SZZ(k) as represented in Eq
~1.32!. By using Eq.~3.7! for ŵZ

D(k) and retaining only the

first two terms in the expansion ofĥZ
D(k) in Eq. ~3.12!, one

may write SZZ(k) in the GDH form, but withg0(q,x) re-
placed by

g̃0~q,x!5q2x2@ I 1~q;x!2~x21q2!21#

5x2~cosq21!1O~x3!. ~4.26!

But one then observes thatg0(q;x) has precisely the sam
small-x expansion. Thus, in effect, GDH theory generates
first term in the full expansion ofĥZ

D(k)2ŵZ
D(k): see Eqs.

~4.2! and~4.3!. However, the dominantO(r ln r) correction
actually comes from thenextterm in this expansion, namely
from I 3(q;x), which GDH theory does not produce.
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From this discussion and the success of GDH theory
predicting the correct density-density correlation lengths~in-
cluding leading correction terms!, we conclude that the ap
proximation essentially reproduces the correct low-dens
fixed-k behavior ofSZZ(k) and SNN(k) that arises from the
first two terms in the expansion~3.12! of the Debye correla-
tion function.

V. RESULTS FROM THE KM ANALYSIS

A. Direct correlation function expression

Kjellander and Mitchell@27# have constructed a formall
exact theory for primitive model Coulomb fluids in terms
a Poisson-Boltzmann equationlinear in the average electro
static potential for ‘‘dressed ions.’’ The nonlinear contrib
tions appear in a nonlocal dielectric response function
effective values for the ionic charges, namely,

qs* 5qs1(
t

qtrt ĥst
0 ~ ik`!, ~5.1!

and in the true screening lengthk`
21[jZ,` given by

k`
2 54pb(

s
qsqs* rs /D, ~5.2!

where qs5zsq0 while ĥst
0 (k) is defined in terms of the

short-range part of the direct correlation functioncst
0 (r ) in

Eq. ~1.27! via the ‘‘reduced’’ OZ relation

hst
0 ~r !5cst

0 ~r !1(
n

rnE csn
0 ~ ur2r 8u!hnt

0 ~r 8!dr 8.

~5.3!

KM studiedcst
0 (r )—and thencehst

0 (r )—using the HNC
resummation~1.28! including bst(r ), the bridge diagram
corrections: see Ref.@27~a!# for details. They focused explic
itly on the long-distance decayof cst

0 (r ) andhst
0 (r ) at low

densities by searching for the poles and branch-cut singu
ties of ĉst

0 (k) in the complexk plane that lie closest to th
real axis. One can extract a corresponding low-density
pression forĉN

0 (k) for the RPM, defined similarly toĉN(k) in
Eq. ~3.40!, by using Eqs.~C21!, ~B5a!, ~C23!, ~C15!, and
~C17! of Ref. @27~a!#. This is found to be

r ĉN
0 ~k!' 1

4 kDbs~k/2kD!@12 1
8 ~kDb!2s~k/2kD!#211¯ ,

~5.4!

where, as before,s(y)5(tan21y)/y.

B. Comparison with KM results

We can find a corresponding KM expression forSNN(k)
by using Eqs~5.4!, ~3.41!, and ~1.27!. On expanding the
result for smallk, we discover that the KM direct correlatio
function ~which includes leading bridge function corre
tions!, although constructed only to ensure accurate beha
for r→`, gives precisely the same results forjN,1 andjN,2
reported in Eqs.~1.33! and ~1.34!, respectively. Moreover
n

y,

n

ri-

x-

or

analysis of the dominant pole of the corresponding expr
sion forSNN(k) also yields the true density-correlation dec
length

jN,`5 1
2 jZ,`F112 expH 28

kDb
~12 1

2 kDb1¯ !J 1¯ G .
~5.5!

By comparing this with the GDH result, Eq.~12! of Ref.
@14~a!#, we see that it is the bridge function that generates
1
2 kDb correction, although the most essential features ofjN,`

at low densities are captured by the GDH approach.
Finally, we compare with the KM result~1.46! for jZ,`

[1/k` by using the small r expansion of r@ ĥZ
D(0)

2ŵZ
D(0)] presented in Eq.~4.11!, in SZZ(k), as given in Eq.

~1.32!, and solvingSZZ
21( ik`)50 with neglect of the remain-

der R̂Z . We find

jZ,`5jD@12 1
12 ~kDb!2 ln x1O~r!#, ~5.6!

which agrees with the KM result~1.46! when evaluated for
the RPM. As remarked in Sec. I, the KM expression conta
the factor lnkDb, since KM tookb as a lower cutoff whereas
we explicitly find lnkDa as written.

In summary, the KM analysis provides a complementa
verification of our principal results and, in so doing, reve
a comforting degree of uniformity~with respect to long-
distance behavior and low-k variation! in the restricted
primitive model at low densities. The same high degree
uniformity should not be expected for charge and/or ha
corenonsymmetric primitive models@11#.
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APPENDIX A: ANALYSIS OF INTEGRALS IN THE
MEERON REMAINDER

In this appendix we analyze the integrals and integral d
ferences appearing in the Meeron remainder ter
RN

M(k;T,r) and RZ
M(k;T,r) @see Eqs.~3.27! and ~4.1!–

~4.4!#; of course, these derive from the termhst
D (r )hst(r ) in

the original expressions~1.14!, ~1.18!, and~1.22!. In particu-
lar, we expand in powers ofq}k all the integralsFnpr(q;x),
defined in Eq.~3.34! as a convolution over the exponenti
integrals I n(q;x) introduced in Eqs.~3.8!–~3.11!. Thus,
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writing

Fnpr~q;x!/2p252Fnpr
~0! ~x!1

1

3!
q2Fnpr

~2! ~x!

2
1

5!
q4Fnpr

~4! ~x!1O~q6!, ~A1!

we aim to determine the low-density (x}r1/2→0) behavior
of the integrals appearing inFnpr

(m) for m50, 2, and 4.
t

n

e

s

Now by using the convolution relation in bipolar coord
nates, namely,

E dq8 f ~ uq2q8u!g~q8!

5
2p

q E
0

`

du f~u!uE
uu2qu

u1q

dv g~v !v, ~A2!

together with Eqs.~3.8!–~3.10! we may rewrite Eq.~3.34! in
the compact form
Fnpr~q;x!5
2p

q E
1

Un
duE

1

Up
du8E

1

Ur
du9

e2x~nu1pu81ru9!

un21~u8!p21~u9!r 21 Y~q;u,u8,u9!, ~A3!

with n,p,r>0, whereU050 but Un5` for n>1; the integrand factor becomes

Y~q;u,u8,u9!5E
0

`

dv sin~vu!C~q;v;u8, u9!, ~A4!

where, withu25u82u9 andu15u81u9, we have

C~q;v;u8, u9!5 1
2 E

uv2qu

v1q dw

w
~cosu2w2cosu1w!. ~A5!

This kernel can be expanded as

C~q;v;u8; u9!5
2q

v
sin~vu8!sin~vu9!1 (

n51

`

@C2n11~u2;v !2C2n11~u1;v !#
q2n11

~2n11!!
, ~A6!
e
n-

r

be

the
with coefficients

C2n11~u;v !5~21!n11E
0

u

z2n sin~vz!dz. ~A7!

Performing the various trigonometric integrals then leads

Y~q;u;u8;u9!52pqF12
1

3!
~qu!21

1

5!
~qu!4

1O~q6!Gz~u,u8, u9!, ~A8!

where the step functionz(u,v,w) has already appeared i
Eq. ~3.36!.

Substitution in Eq.~A3! yields integral expressions for th
desired coefficients in Eq.~A1!. By using the trivial bounds
uzu<1 and*0

1umdu<1, one is then led to

uFnpr
~m!~x!u,F̃npr

~m!~x!, ~A9!

where, since the integrals in Eq.~A3! now factorize, the
bounds can be written@using the exponential integral
~3.11!# in the compact form
o

F̃npr
~m!~x!5@dn,01 d̄n,0 En2m21~nx!#@dp,01 d̄p,0 Ep21~px!#

3@d r ,01 d̄ r ,0 Er 21~rx !#, ~A10!

wheredn,m is the Kronecker delta andd̄n,m[12dn,m .
Finally, by employing the expansion~3.14! of the expo-

nential integrals forn>1 ~and noting that the integrals ar
elementary forn<0), we may bound the orders of the co
tributions that a particular combinationr2Fnpr(q;x) makes
to RN

M(k) and RZ
M(k). As an example, consider (n,p,r )

5(3,1,1) andm50; we find that the leading order behavio
whenr→0 is given by

r2F̃311
~0! ~x!5r2E2~3x!@E0~x!#2;r2x0~x21!2;r.

~A11!

Of course, the bound on the behavior ofFn,p,r(x) asr→0
obtained this way need not be optimal. However, it may
adequate if it is of higher order inr than the terms explicitly
retained in our various results. This will be the case~form

50, 2, and 4! provided r2F̃n,p,r proves to be of order
r (32m)/2(ln r) j or higher. Evidently, however, Eq.~A11! is
not adequate. Now, by careful tabulation one finds that
only inadequate cases arise~a! from the integralsFn,1,1(x)
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for all n>0, and~b! from F1,p,1(x) and F1,1,r(x) for p, r
>3. @Note that the definition~3.34! implies F1,p,1(x)
5F1,1,p(x).#

Now, in diagrammatic terms, the integralsFn,1,1(x) im-
plicitly contain a two-bondwD chain which~since it is al-
ready included in the Mayer resummation, as discusse
Sec. II! is subtracted off explicitly in the full expressions fo
hst

D hst : see Eq.~1.19!. Consequently, by recalling Eq.~3.7!
for ŵst

D (k), we see that the relevant contributions toRN
M(k)

andRZ
M(k) are the differences

Dn~q;x![Fn,1,1~q;x!2E I n~q2q8;x!

~x21q82!2 dq8. ~A12!

To analyze theDn , it is useful to define a rescaled version
the integralsI n(q,x) defined in Eq.~3.10!: thus we putq
5xs andy5u/x to obtain

I n~q;x!5Jn~s;x![
xn23

s E
x

Un du

un21 sin~su!e2nu,

~A13!

whereQn is defined as in Eq.~A3!. We may now write
s

al
f

in

Dn~sx, x!5x3E ds8Jn~ us2s8u;x!G~s8; x!, ~A14!

where we have simply

G~s,x!5
@cos~sx!1sin~sx!/s#2e22x21

x4~11s2!2 , ~A15!

which, whenx→0, can be represented as

G~s,x!52x22/~11s2!@11O~x!#. ~A16!

In parallel with Eq.~A1! we may write the expansion

Dn~sx;x!/2p252Dn
~0!1

1

3!
s2x2Dn

~2!~x!2¯ .

~A17!

On neglecting theO(x) term in Eq. ~A16!, and appealing
again to the bipolar convolution theorem~A2!, we can ex-
press the coefficients here as
Dn
~0!~x!'

2x

p E
0

`

du Jn~u;x!u2/~11u2!, ~A18!

Dn
~2!~x!'

4

px E
0

`

du Jn~u;x!u2~32u2!/~11u2!3, ~A19!

Dn
~4!~x!'

48

px3 E
0

`

du Jn~u;x!u2~5210u21u4!/~11u2!5, ~A20!
al to

te

re-
d in

of
for x→0. On substituting with Eq.~A13! and evaluating the
infinite integrals onu, we obtain

Dn
~m!~x!'E

1

Un
du e2~n11!xu/un2m21, ~A21!

so that, asx→0, Dn
(m)5O(1) for n50 or n.m12, while

Dn
(m)5O(x2m221n) for 1<n,m12 and Dm12

(m) 5O(ln x).
Thus the lowest order behavior derives fromn51. Conse-
quently, one finds from Eq.~A17! that the contributions from
r2Dn

(m)(x) are at worst of orderr (32m)/2 for m50, 2, and 4.
This is of higher order than the expected error term
O„r (32m)/2(ln r)j

…, in thek expansion ofRN
M(k) andRZ

M(k),
and so may be neglected.

Finally, we analyze the leading behavior of the integr
F1,p,1(s;x) for p>3 which we again write in terms o
Jn(s;x), as introduced in Eq.~A13!, to find
,

s

F1,p,1~sx;x!5x3E ds8J1~s2s8!Jp~s8!J1~s8!. ~A22!

Following essentially the same steps as above, we appe
Eq. ~A2!, and expandJ1(s8;x) here for smallx. Then we
expand for smalls and compare with Eq.~A1! to discover
that the dominant contribution arises fromF1,3,1

(m) (x)
5O„r2(m11)/2 ln r…. @Note that this replaces an inadequa
bound of orderr12(m/2) following from Eq. ~A10!.# Finally,
therefore, the most relevant terms satisfyr2F1,p,1

(m) (x)
5O(r (32m)/2 ln r) ~for m50, 2, and 4! which is of higher
order than concerns us.

In conclusion, all the terms contained in the Meeron
mainders can be correctly neglected to the orders claime
the text.

APPENDIX B: ANALYSIS OF INTEGRALS IN THE HNCM
REMAINDER

In Appendix A we actually bounded the orders
the leading contributions toRst(k), namely, the integrals
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derived from hst
D (r )hst(r ): see Eqs.~1.31! and ~1.32!

et seq. For completeness we now analyze the next m
important terms, namely, the bridge integralb̂Z(0) and
the dominant quadratic terms@ĥZ(0)#2 appearing in the
st
sum in Eq.~1.31!. As seen from Eq.~4.10!, both these con-
tribute to the charge correlation lengthjZ,2(T,r).

We begin with the leading bridge diagram which has fi
hst bonds@26,27~a!#, so that
bst~r !5 1
2 (

m
(

n
rmrnE dr 8E dr 9 hsm~r 8!hsn~r 9!hnt~ ur2r 9u!hnm~ ur 82r 9u!hmt~ ur2r 8u!1¯ . ~B1!

We then employ the leading low-density contribution tohst(r ), namely,hst
D (r ), arising via Eqs.~1.14!–~1.18!. The expansion

of hst(r ) in powers ofwst
D (r ) may be rewritten conveniently as

hst~r !' f †~r !1 (
m51

`

~2zszt b!mfm~r !/m!, ~B2!

where we recall Eq.~1.21! and have set

fm~r !5e2bu†~r !e2mkDr /r m. ~B3!

The leading contributions to the required combination

bZ~r !5 1
4 (

s,t
zszt bst~r !, ~B4!

follow by substitution in Eq.~B1!. The coefficient off jf lfmfnfp in the resulting integrand entails the valence sums

S3~ j ,l ,m,n,p!5(
s,t

(
m,n

zs
j 1 l 11zt

m1p11zm
j 1n1pzn

l 1m1n

5@11~21! j 1 l 11#@11~21!m1p11#@11~21! j 1n1p#@11~21! l 1m1n#. ~B5!

The dominant terms inr requireS3Þ0, and are found to arise from (j ,l ,m,n,p)5(2,1,2,1,1) and~1,2,1,1,2!, which both make
the same contribution tob̂Z(0). Adding these yields, after some rearrangement,

b̂Z
~1!~0;x!52 1

4 r2b7E drE dr 8f1~r 8!f2~ ur2r 8u!E dr 9f2~r 9!f1~ ur2r 9u!f1~ ur 82r 9u!, ~B6!

where we will neglect the corresponding higher order contributionsb̂Z
(n)(0;x).

Now we may decoupler 8 and r 9 in the last factor in Eq.~B6! by using the trivial boundfm(r )<a2m, wherea is the
hard-core diameter. Then we can call again on the convolution relation~3.4!, now withk50 while g(r ) itself is a convolution.
This yields the bound

ub̂Z
~1!~0;x!u<

r2b7

4a E dk

~2p!3 @f̂1~k!#2@f̂2~k!#2 5 8pb7a2r2F1,2~x!, ~B7!

in which the integral can be written in terms of theI n(q;x) defined in Eqs.~3.9!–~3.11! via

Fn,m~x!5E dq@ I n~q;x!#2@ I m~q;x!#2. ~B8!
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On substituting the forms~3.9! and ~3.10!, the integral overq can be performed to obtain

Fn,m~x!5E
1

`

duE
1

`

du8E
1

`

du9E
1

`

du-
e2x@n~u1u8!1m~u91u-!#

un21~u8!n21~u9!m21~u-!m21 z̃~u,u8, u9, u-!, ~B9!

where, with the aid of machine algebra~MathematicaandMaple!, we find

z̃~u,u8, u9, u-!5E
0

`

dq
1

q2 sin~qu!sin~qu8!sin~qu9!sin~qu-!52 1
16 p (

6,6,6
~6 !~6 !~6 !uu6u86u96u-u. ~B10!
Eq

t

e

m

,
n
to

e
s

the

the
For u, u8...>1, as required, a simple bound is

u z̃~u,¯ !u, 1
2 p~u1u81u91u-!. ~B11!

With this and Eq.~3.11! ~including the casesn<0) we find
that uFn,m(x)u/p is bounded by

F̃n,m~x!5En22~nx!En21~nx!@Em21~mx!#2

1Em22~mx!Em21~mx!@En21~nx!#2.

~B12!

The smallx expansion~3.14! ~for n>1) then yields

F̃1,2~x!5x23 ln x @ ln x1O~1!#, ~B13!

which shows that the relevant combinationrb̂Z(0) contrib-
utes torRZ(0) only in orderr3/2(ln r)2 or higher, and can
thus be neglected in the present analysis.

In order to bound the leading order contributions to

ĥZ
2~0!5 1

4 (
s,t

E dr zszthst
2 ~r !, ~B14!

we may follow essentially the same steps which led to
~B7! and to the bounds~B12! and ~B13!. Using Eqs.~B2!,
~1.19!, and ~1.22! in Eq. ~B14! @and recalling that theh (2)

term in Eq.~1.20! makes no contribution for the RPM# leads
to the sums

S4~ j ,l ,m,p!5(
s,t

(
m,n

zs
j 1m11zt

l 1p11zn
j 1 lzm

m1p

5@11~21! j 1m11#@11~21! l 1p11#

3@11~21! j 1 l #@11~21!m1p#, ~B15!

as coefficients off jf lfmfp in the expansion of the produc
of four hst

D factors.
The leading order low-density contributions to th

hDhDhDhD term which, excluding the effects of thewDwD

term in Eq. ~1.19!, we denote byĥZ
H(k;x), arise from the
.

smallest values ofj, l, m, and p (>1) for which S4Þ0.
The dominant contributions are found to derive fro
( j ,l ,m,p)5(1,1,2,2) and~2,2,1,1! which yield equivalent
expressions so that

ĥZ
H~0!' 1

2 r2b6E drE dr 8f1~ ur2r 8u!f1~r 8!

3E dr 9f2~ ur2r 9u!f2~r 9!. ~B16!

With the aid, once more, of the convolution relation~3.4!,
this reduces to

ĥZ
H~0;x!'16pb6a3r2F1,2~x!, ~B17!

with F1,2 still defined in Eq.~B8!. The bound~B13! applies
equally, and we conclude thatrĥZ

H contributes torRZ(0) in
no order lower thanr3/2(ln r)2.

The wDwD factor so far neglected in Eq.~1.19! yields
products hDhDwDwD leading to a contribution, say
ĥZ

W(k;x). But eachwD factor corresponds, essentially, to a
index of j, l, m, or p51. The same method thus suffices
establish thatrĥZ

W contributes torRZ(0) only in order
r3/2(ln r)2 or higher. To complete the discussion of th
@ĥZ(0)#2 term we note that the fourfold product
wDwDwDwD are eliminated by the valence sumsS4 which
vanish identically for these products. We conclude that
overall corrections arising from@ĥZ#2 are no worse than
r3/2(ln r)2. Actually, more explicit calculations which allow
for cancellations arising inh (1)}(hDhD2wDwD) indicate
that rĥZ(0) is, in reality, only of orderr5/2 ln r.

Some further work is needed to bound the orders of
corrections to results~4.12!–~4.17! for the Lebowitz length.
In fact, the~unwritten! correction termR̂Z(k) entering Eq.
~4.12! and derived, in leading order, fromhst

D (r )hst(r ),
must enter the expression~4.13! for jL(T,r) as a sum over
n, p, andr of integrals
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Fnpr
L ~x!5

2x

p E
0

`

dq
q2

~x21q2!2 Fnpr~q;x!, ~B18!

in parallel to Eq.~4.14!, whereFnpr(q;x) remains as ex-
pressed in Eqs.~A3!–~A8!.

If Eq. ~A8! is now written in the closed form
d

ot
qs

fo

nt

th
Y~q;u,u8, u9!52p sin~qu!z~u,u8,u9!/u, ~B19!

and used in Eqs.~A3! and~B18!, one obtains the same inte
gral as evaluated in Eq.~4.17! ~with, merely,y replaced by
u!. This then yields
he
Fnpr
L ~x!52p2E

1

Un

duE
1

Up

du8E
1

Ur

du9
e2x@~n11!u1pu81ru9#

un21~u8!p21~u9!r 21 z~u,u8, u9!, ~B20!

which can be bounded following the analysis of the integralsFnpr
(m)(x) in Eq. ~A9!. Indeed, the extra factore2xu in Eq. ~B20!

relative to Eq.~A3! has no sensible effect so that, up to constant factors, precisely the same bounds are found forFnpr
L as

established forFnpr
(0) (x) in Appendix A.

Beyond the terms thus adequately bounded one must examine the (hD2wD) difference integrals entailing theDn(q;x)
introduced in Eq.~A12!. These lead to corresponding corrections forjL, namely,

Dn
L~x!5

2x

p E
0

`

dq
q2

~x21q2!2 Dn~q;x!. ~B21!

In leading order inr one can show that these exhibit the same behavior as theDn(0;x). Consequently, one can retrace t
analysis of Appendix A for bounding the behavior of theFnpr(0;x) and Dn(0;x), and thereby conclude thatrR̂Z(k)
contributes tojL(T,r) no more than the terms of orderr3/2(ln r)j displayed in the result~1.42!.
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