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Transport in the XX chain at zero temperature: Emergence of flat magnetization profiles
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We study the connection between magnetization transport and magnetization profiles in zero-temperature
XX chains. The time evolution of the transverse magnetizatipx,t) is calculated using an inhomogeneous
initial state that is the ground state at fixed magnetization but miteversed from—m, for x<0 to m, for
x>0. In the long-time limit, the magnetization evolves into a scaling fon(x,t)=®(x/t) and the profile
develops a flat partng=® = 0) in the|x/t|<c(mg) region. The flat region shrinks to zeronf,— 1/2 while it
expands with the maximum velocitgy=1 for my— 0. The states emerging in the scaling limit are compared
to those of a homogeneous system where the same magnetization current is driven by a bulk field, and we find
that the expectation values of various quantifiesergy, occupation number in the fermionic representation
agree in the two systempS1063-651X%99)03605-3

PACS numbsgps): 05.60.Gg, 75.10.Jm, 05.70.Ln

[. INTRODUCTION cannot provide an exact solution for any of the interesting
cases.

Transport in integrable systems is anomalous. This means One can make some progress, however, in a closely re-
that a harmonic latticéor a transverse Ising chaicannot lated problem. Namely, current-carrying states generated by
support an internal thermal gradient when the two ends ofthomogeneous initial conditions can be studied and one can
the system are kept at different temperatifgg]. The tem-  ask whether those states were describable by the Lagrange
perature profile that forms is flat everywhere apart from themultiplier method. In order to illuminate the new problem,
neighborhood of the boundaries, and the energy flux idet us imagine the original problem as finding the steady state
clearly not proportional to the temperature gradient inside®f @ brick with two of its opposite sides kept at different
the sample. The origin of this anomaly is the fact that cur-{emperatures. In the new problem, we have two semi-infinite
rents in integrable systenfenergy currents in the above ex- bricks at different temperatures and, at time zero, the bricks

amples often emerge as integrals of motion thus causing th(?hre joined at t?de ends.tlftrt]hiz tt;}ncl;s were ||ntt¢grable Tgstems
transport coefficients to be divergent or ill define&d. en one would expect that the time-evolution wouid pro-

The existence of flat densitfemperaturgprofiles in the duce an interesting temperature proflle_W|th a flat part around
. . the joining point and it would be meaningful to compare the
presence oflenergy currents points to the important role

. o eprofile as well as various local expectation values to those
played by the homogeneous, current-carrying states in int 5

. btained from the Lagrange-multiplier method. This is what
grable systems. In previous pappds5], we suggested that a we shall do in this paper for th&X chain after making the

method of constructing such states at zero temperature is 9)5,ing simplifications. First, we note that the transverse
add to the Hamiltonian an appropriate current with amagnetizationm is a conserved quantity in théX model.
Lagrange multiplier and then find the ground state of thegince this is a much simpler quantity to treat, we shall study
system. This method can be applied with relative ease tghe transport ofm instead of the transport of the energy.
models such as the transverse Ising and isotroffc (so  Second, we restrict our study to the zero-temperature prop-
called XX) models, and one can calculate the effect of enerties of the system. Third, we shall use a simple inhomoge-
ergy current on experimentally measurable correlations.  neous initial state pasted together from two zero-temperature
Since there are physical systems that are rather well afhromogeneous pieces witm(x<0,0)=m, and m(x>0,0)
proximated asXX models[6], and since the effect of cur- =-mjy.
rents should be measurable in inelastic neutron scattering As a result of the above simplifications, the problem of
experiment$7], one should carefully examine the validity of time evolution becomes solvable and the formation of a flat
the assumptions underlying the calculations of the correlamagnetization profile can be observed. We find that both the
tions. The Lagrange multiplier method is based on the asmagnetization profile and the fermionic two-point correla-
sumption that the homogeneous, current-carrying states at®ns agree with the results obtained from the Lagrange mul-
the same whether they were induced by boundary conditiontiplier method, thus indicating that the method does work for
or by bulk driving fields. This is not an obvious assumptionobtaining the homogeneous current carrying states.
and its validity should be checked by first solving the bound- We start(Sec. 1) by defining the system and constructing
ary condition problem and then comparing the results withthe initial state in terms of fermionic operators. Next, the
those obtained from the Lagrange-multiplier method. Unfortime evolution of the magnetization is calculated and the
tunately, the execution of this program runs into difficultiesscaling formm(x,t)=®(x/t) of the long-time limit is dis-
since the boundary condition problem is nontrivial and wecussed(Sec. ll)). Finally, we show that the local properties
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of the scaling limit can be described using the homogeneous, Mo for —N<n<Q0,
current carrying states obtained from the Lagrange multiplier (¢|Si(0)|@)= _
method(Sec. V).

(7)

my for 1<n=<N.

Il. THE MODEL AND THE CONSTRUCTION The above condition, however, does not specify the initial
OF THE INITIAL STATE state uniquely. In order to defije) precisely, we shall con-
struct the state of the spins as a direct product of states of
two systems ol spins. The left system contains the<0
spins while the right one is built from the rest1). In
order to get close to a zero-temperature, current-carrying
H>*= > h*= -3 (sksX,,+s)s’, 1), (1)  state we choose the lowest energy state under the above con-
n n ditions (7). Namely, both half chains are chosen to be in their
ground states with the magnetizations bemgand —m, on
Cthe left and right, respectively. Another reason for choosing
Such a state comes from trying to avoid possible energy cur-
rents in the system. In thd—c limit, the above state is a
ground state of the model at fixad=*+m, and the two

The system we investigate is theX model defined by the
Hamiltonian

where the spins; (e=X,y,z) are 1/2 times the Pauli matri-
ces situated at the sites of a one-dimensional periodic latti
[n=0,=1,...,#(N—1),N;sy,1=5%\,;1]- The couplingd

is set toJ=1 throughout this paper and— = is assumed in

most of our calculations. o , . homogeneous sides have the same energy. Thus one expects
Thez component of the total magnetizatioh®==2s, iS  that only magnetization current will flow in the course of the

conserved in this system and, using the continuity equatiogme evolution of the system.

for M, a local magnetization current can be defifigy A formal definition of|¢) with the above properties can

be given as follows. Let us define annihilation operators on

the left and right by the Fourier transforms of the fermionic

on the appropriate sides of the system:

My X X
In _S¥Sn+l_sn3¥+l- 2

It can be easily shown that the global magnetization currenPeratorse
M =2nj,';" commutes with the Hamiltoniafl) and thus one

can classify the eigenstates BF* by the global current 1 0 . 1 5

flowing through the system. Below we shall study how the L=— 2 ¢€Xe, R=—=> €&kc.. (8
T . N i=—L+1 J N =1 J

initial conditions can generate states that are locally homo- VN = VIN=

geneous and carry a finite magnetization current.

The time evolution that follows from a given initial con- aq can pe shown, these operators are also fermionic opera-

diti(;n cs\r} be calcula:cted for thx)é_ mode(lj slince, using & tors with the anticommutation relatios. L7} ={Ry R}
Jordan-Wigner transformation, this model can be trans- Seq. and the initial statée) can be written as

formed into a set of free fermiori§]

XX E t k- ke
7=~ g coskbdi, @ o= 11 R IT i), ©
k=—k- k=-k,
whereb, is the annihilation operator of a fermion of wave
numberk. It follows that the time evolution of thb, opera- where ||} is the state with all spins down arid. = (2

tors is knownb,(t) =b,(0)expft cosk) and a Fourier trans- . . . .
form provides us with the time dependence of a local Fermi-Mo)- In the followingmo>0 will be assumed without re-

operatorc, as a sum of Bessel functions of the first kiigy ~ Stricting the generality of the arguments.

Ca(D) =2 ¢;(0)i1 "3, (). (4) . NUMERICAL AND ANALYTICAL EVALUATION
] OF THE TRANSVERSE MAGNETIZATION

The above expression is the starting point for our calcula- Once the initial statéyp) is given, the time evolution o’
tions since we wish study the local transverse magnetizatiofs expressed through initial correlations
s;, that can be expressed through the local Fermi operators as

1 L 1
si=clcy— > (5 <<P|5ﬁ(t)|¢>:% 1713, (03 n(t)( ¢l (0)c;(0)| @) — 5
(10
Our aim is to find the time evolution of the expectation

value of s} . .
" It follows now from the special construction gp) that the

m(n,t)=(e|s%(t)| @) (6) terms withj and| on different sides of the origin vanish.
Furthermore, the terms whete-j is odd cancel since the
using an initial statée) that is expected to produce a mag- expectation value is real. The calculation of
netization current. The simplest such state has a symmetr(qolcﬁ(O)cj(O)ho) is carried out by using the explicit form
step in the initial magnetization [Egs.(9)] for | ¢) and the result is as follows:
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FIG. 1. Magnetization profile for initial condition®,= 0.5 and FIG. 2. Scaling functions for the magnetization-current for ini-

mo=0.2. The large-time limits approach the scaling cur@slid tial conditionsmy=0.5 andm,=0.2 as given by Eq(15).
lines) given by Eq.(14).

D(v)=—-d(—v)

i—SIr[WZO(Sj)_J)] for s—jeven#0, 0 for 0<v<cogmmy)
_ m(s—
17 pleici| @)= 1

1 - — for cogmmy)<v<1

5>*M for s—j=0. _ mo+warcco$v) g M) <v

1
1y 3 for 1<v.

The upper(lower) sign is valid for boths andj being in the
left (right) part of the chain. Since the above expression de-
pends only on the even integer-j, the notation simplifies
considerably by introducing=(s—j)/2. Treating thel =0

term separately and using an idenfi8} for the Bessel func-
tions, =,J2=1, Egs.(10) and(11) yield the following mag-

(14)

As one can see, the magnetization profile does develop a flat
part that expands with a finite velocit= cosmm,. The ve-
locity c(mg) decreases with increasimg, and it diminishes

N s for my— 1/2.
netization profile fom=1: 0 . o
etization profile fo The conservation of magnetization implies that the mag-
n-1 netization current has a scaling forjif'(n,t)~W¥(n/t) as
m(n,t)=—m 2t wgll, and the sc;almg functhn can be obtamed from &d)
(n.t) oj;l‘in i using the continuity equation together with the boundary

" no1 conditionjM(n— +,t)=0. We find the scaling function
22 sin 2mmg| E 303 ) 12
L i(DJja(t). (12 1
—sinmm, for 0<v<cog mwmy)
o
The n=<0 values can also be calculated and they show the
symmetry of the initial statem(n,t)=—m(—n+1t). The
above expression fan(n,t) is the basis for both numerical

=P(—p)={ 1
V(v)=W(-v)={ 1 1-v? for cogmmy)<v<1

and analytical results presented below. 0 for 1<v,
(15
A. Numerical results
The infinite sum(12) defining m(n,t) converges well shown in Fig. 2.
since the main contribution comes from terms with snhall
The numerical evaluation ah(n,t) poses a problem only B. Analytical results
for me<1/2 when the scaling limin— o, t—o, with n/t Let us begin by deriving the analytical guess obtained

~1, cannot be readily reached due to the increasing numbegf,y, numerics(14) by treating the casen,= 1/2. This lim-
of terms that must be taken into account when evaluating thft‘ing case is especially simple since sint®,)=0 and hence

sums in Eq(12). _ _ _ one is left with the following expression:
The results from the numerical analyssee Fig. 1 show

that the magnetization profile evolves into a scaling form in 1 1t 1
the large-time limit mnt=—5 > JF(t)=—5+> J1). (16
2j:1—n 2 j=n !
m(n,t)~®(n/t) (13
We shall evaluate the scaling limit of the above sum by
with the following scaling functior{analytically obtained in calculating the integral of the large limit of the discrete
Sec. Il B) giving an excellent fit to the data: derivative ofm(n,t) defined a§11]
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n_/n local values of the conserved quantities and their fluxes,
O (v)=t[m(n+1t) —m(n,t) Jpi=p = — ;Jn(;)- where the expectation value of a local operatgft) is de-
(17) fined in the scaling limit as

The cases >1 andv <1 must be treated separately since (@),= lim (olan(t)| )| iz - (22
the asymptotic properties of the Bessel functions change at nt—o
v =1 [10]. Namely, one finds
The simplest conserved quantities are the magnetization,
, 1 2n B =(s%,=®(v) and the energy density=(h**), with the
Pp(v)~ 2\/—2—_16)“{ - 7(0‘305h o - sz—l)}, corresponding fluxes being the magnetization currght
TNY =(jMy, and the internal energy flux=(j'),, where

v>1 (18
while Jl:; J'L:; Sn(Sh—1Sh+1—Sh—1Sh+1)- (23
2 n T o . e .
& ()~ ————cod —(V1—02—p arccow ) — _}’ The energy density is homogeneous in the initial stapart
nl®) m1—v? U( vy ) 4 from the local perturbation of the domain wall at the orjgin

and it can be shown that this homogeneity remains intact in
v<l. (190  the long-time limit. Thus is determined by the initial con-

dition and, in the scaling limit, can be expressed throogh
As one can see, the derivative approaches zero exponentialjnd jM

for v>1 (outside of the “light cone’ and thus®(v) is

constant in this region. The constant is determined by the 1
boundary condition®(«)=—1/2 and thus we haveé (v) e=e(m,jM)=— —cog mmy)
=—1/2 forv>1. m
The casev <1 is complicated by the fact that the limit 1 o
n—o does not exist fod/(v) due to the increasing fre- =- ;COE{W|m|+aVCSW(7TJM)]- (24)

qguency of oscillations in Eq19). It should be noted, how-

ever, that we are interested in the integraliof(v) Note that the homogeneity of the energy density implies a

v vanishing energy fluxj'=0, for all values ofy and so Eq.
P(v)=Iim®,(v)=Ilim f ®/(y)dy, (200 (24 can be viewed as an equation of state connecting the
n— n—w0 relevant densities and fluxes.

o _ _ It is clear that (n,jM,e,j') gives only a partial character-
and then—o limit of the above integral does exist. The j;41ion of the state since there are infinitely many conserva-
value of the integral can be obtained by replacing the fasfiop, jaws in theX X model. Nevertheless, one may assume
oscillating coé term[see Eq(19)] by its average value 1/2. that (m,jM,e,j') were sufficient to describghe states

One then obtains emerging in the scaling limifThen one can ask if the prop-
1 erties of these states were the same as those of the homoge-
d(v)=— —arcsin, (2D neous, current-carrying state of an infinite system where the
m values ofm,jM,j' were fixed by introducing conjugate fields
(Lagrange multipliersand by finding the ground staté) of

in agreement with Eq14) for mg=1/2. the following Hamiltonian:

The evaluation ofb (v) for my# 1/2 is more involved but,
essentially, it follows the above steps and yields the general
expression Eq(14). An outline of the calculation and some
intermediate results are given in Appendix A.

H=H*~hM*=\yI"=\J". (25)

The reason for this identification is that the scaling emerges
as an evolution from an initial state of minimal energy at a
givenm=m,. We assume here that local states of the scal-
ing limit remain zero temperature states in the sense that they
A consequence of the emergence of scalimgn,t) have minimal energy density at the given valuesmof",
~®(n/t) is that the magnetization becomes locally flat,andj'.
m(n+1t)—m(n,t)~t 1®’'—0, in the scaling limit. Since Sincem,jM,j' are set by adjusting the Lagrange multipli-
these locally homogeneous segments of the system becorges, a necessary condition fio¥) having the local properties
arbitrarily large fort— oo, one would like to ask if they could of the scaling states is the equality of its energy density as a
be described as a homogeneous, current-carrying state of &inction of m,j™,j' to the energy densitg given by Eq.
infinite chain as obtained from the Lagrange multiplier (24). Verification of this equality can be viewed as checking

IV. COMPARISON WITH THE LAGRANGE MULTIPLIER
METHOD

method[5]. whether the equation of states of the two systems were iden-
In order to formulate the question more precisely, let ustical.
note that, for a givem/t=v and in the neighborhood of, In order to obtain(¢|h}*| ), we use the results from our

the scaling state of the system may be characterized by th@evious worl{ 5] where the problem of energy current in the



4916 T. ANTAL, Z. RACZ, A. RAKOS, AND G. M. SCHUrZ PRE 59

/n _ . Eliminatingh and\ ¢ from Egs.(28), (29), and(30) produces
maximal current line then Eq.(24), i.e., (4| ¢)=e(m,j™). This result indi-

® cates that the local states derived as a scaling limit can in-
- 1 deed be obtained with the help of the Lagrange method. Fur-
@ ther confirmation of the validity of this suggestion comes
from the studies of the scaling limit of the fermionic number
operator(n,), in momentum space, which can be defined as
follows:

E
=Y

[
——--u

<nk>v 2 e Ikml|m<(P|Cvt+m(t)Cvt )|(P> (31)

t—oo

-/n

-1 0 1 This quantity can be calculated for the special casengf
h =1/2 (see Appendix Band one finds that
FIG. 3. Magnetic-field(h)—energy-flux {E=j'—hjM) phase L
diagram of anXX model where the energy flux is driven homoge- (), = 1 if —arccogw) + mi2<k<arccogv) + m/2,
neously in the bulk5]. The dashed lines in regi@® correspond to k 0 else.
states of constant energy with the location of the dashed lines de- (32

termined by the initial conditions. The two filled squares represent
the m==m, regions while the filled circles describe identical SINCeN is a projection operator with eigenvalues 0,1 on the

states corresponding to the platm+£0) in Fig. 1. Moving along elgenstates oH** this result shows that the system evolves
the dashed lines provides the local statesj*,j'=0) in the tran-  locally [in the scaling sense described by E2R)] into an
sient region. eigenstate of th& X chain. The occupied levels are the same
as those obtained by the Lagrange multiplier method for the
transverseXX model was investigated. In that work, we given set of (,jM,j'=0). This can be interpreted as the
studied the ground-state properties of the following Hamil-local scaling states being equivalent to the ground states
tonian: found in the Lagrange multiplier method.
In order to demonstrate the value of the equivalence sug-
gested by the above considerations, let us show how simple
H=H*—hM?—\gJE (26) is the derivation of the magnetization profile if we assume
that the Lagrange multiplier method can be used to describe
the scaling limit. The calculation is based on the observation
with the total energy fluxJ® being a sum of the fluxes of that the locally flat magnetizatiof m(n+1t)—m(n,t)
internal and of magnetic energy ~t~1®’—0] implies that one can take the continuum limit
of the equation describing the conservation of magnetization

JE=J'—hJV. (27 dm+a,jM=0. (33

We found that thg,h phase diagram of this model has a Next, using the fact that the energy density is constant in
region (called region®@ in Fig.1 of [5], see Fig. 3 of the both space and time one finds the states that can be used to
present papgrwhere the ground-state expectation value ofdescribe the scaling limit for a given initial magnetization. It
the flux of internal energy is zerd ‘MJ |1/;> 0) and so the follows from Eq. (30) that these states are located aldng
j'=0 condition is automatically satisfied. The magnetization=const lines in thg=,h phase diagram as shown in Fig. 3.
flux in region(@ has been calculated [5]. For the case of Along this path, the current" depends only on the local
hAg<O0 that is needed in the setup we use,>0), it has  magnetization

the form 1

jE 1 M(X,t):F(m):;Sir{#(mo_|m|)], (34)
M= = IE? (28
where F(m) is obtained from Eqgs(28) and (29) using the
fact thath is given by the initial energy density through Eq.
f30)- It follows then that the continuity equatid®3) has a
scaling solutionincluding the solutiorm=0] and that the
magnetization profilen(x,t) = ®(x/t) can be obtained from
the following equation:

and the calculation of the densities of magnetization and o
energy is also a simple exercise with the following results:

m=i(—arcsin)x‘%arcsinh)—Esgr(h) (29) dF X
T E 2 ! _d = -, (35)
m t
1 i Taking into account the limiting behavio® (z— £ )=
XX - _ _ -
(ylha’l¥)= T 1=h% (30 +m, the straightforward steps described above lead to the
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results(14) obtained from a much more complicated calcu-with
lation treating the dynamics of the system.

V. FINAL REMARKS :
~sin(2mgr) n 2rv T

We have shown that in the zero-temperatXné model, A =lim CO{—Y(U“—”—) "2
an initial state with a steplike magnetization inhomogeneity n—e mr v n
evolves into a scaling state that is remarkable for its magne-
tization profile (emergence of a flat parand for the exis- \/ 2
tence of locally homogeneous, current carrying states. We X
have also provided evidence that the local states of the scal- mV1—(v*2rv/n)?

ing limit can be obtained by the Lagrange multiplier method.

The possibility of applying the Lagrange method would sim- sin(2mg ) n -

plify the calculation of transport significantly, thus it would = COi{—y(v)— — —2r arccow

be important to test the generality of our results. The sim- 27y v 4

plest questions to ask are whether the results could be ex-

tended to finite temperatures and whether the calculation >

could be generalized to the transport of energy as well. It % A / , (A3)
appears that these questions can be answered and work is in aV1l—1p2

progress along these lines.

ACKNOWLEDGMENTS
) ] ~ where y(x) = J1—x*—x arccox. We can drop the second
This work has been partially supported by the Hungariarym since it vanishes witlm—o. Using trigonometrical
National Science Foundatidi@rant Nos. OTKA T-019451 gentities, the calculation is reduced to evaluating the follow-

and T-017498 ing sums(for 0<x<2m):

APPENDIX A: MAGNETIZATION PROFILE

We are considering the cas&# 1/2 and study the scal-

ing limit of the discrete derivativé/(v) defined in Eq(17): 5 Sin(rx) _ m—X
r=

r 2’

(I)r,](v):t[m(n+1at)_m(n!t)]n/t=v

2m07T
=t{ - —— %

and

~. sin(2myr) 5 00sX) 1In[2(1 cosx)] (A4)
/77 = — - —
—23, =5 13Dz t) = 2

+J—n(t)~]—n+2r(t)]} : (A1) 4nd one finds

n/t=v

In order to take the scaling limit, we divide the sum into
three parts where the indexes of the Bessel functions arg
positive. Using the limiting properties of the Bessel func- " "
tions, one obtains the following formn{e« and 0O<v

<1):

(V)

0 for v <cosmyr,

4dmg n T = 2 n
®!  (v)=— ———=cog| —y(v)— 2 ————co¢ ;y(v)— wl4| for v> cosmgym.
v

m2\1-v? myl—v

2 ee]
—2\/—( AT+AS
m1—v? Zl( :

%)

-[1-(-1" X A

r=[n/2]+1

(A5)

Just as in Sec. IlIB one can see thdat+#lim,_.®/ since
n T the differentiation and the scaling limit cannot be exchanged.
cog —y(v)— 2 However, one can obtai® from Eq. (A5) by simply inte-
v grating it with the substitution cds-1/2 as it is a rapidly
(A2) oscillating function ofv in the scaling limit
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0 for v <cosmgr,

=i ’ ! — v d 1
Pw) n“_,n:of Ea)dy=1 _ j . A my+ — arccoy  for v>cosmgm. (A6)
cosmgm T :I_—y2 T

APPENDIX B: FERMION OCCUPATION NUMBER Using the asymptotic expression of the Bessel functja@$
IN THE SCALING LIMIT

In a translationally invariant system the expectation value

of the fermionic number operatdn,)=(b/b,) in momen- / 2 2 m
. . . 1)~ ————— tvi—ve—(vt+m)a— —
tum space is expressed in terms of the real-space creauohJUHm( ) PN Y o v°-(v Ja 4
and annihilation operators as the Fourier transform of the (B3)
two-point correlation function
<nk>:2 efikm<C_T+ ci) (B1) with a=arccoy and utilizing the addition theorems for
m Jrmed trigonometric functions we thus obtain

where the site numbgris arbitrary(because of translational

invariance. In order to investigate this expectation value in jm 1 (atmlk _

the scaling regime we chooge=vt and take the stationary  lim(c/,, (t)c,(t))= — sinam= =— dp €P™
limit t—oo in the expectation valubefore performing the t—e mm 27 ) —a+mi2
summation ovem. In this way we probe the scaling state of (B4)

the system in the region of the shifted origin located in the

pointvt where the state becomes translationally invariant in ) o .
the long-time limit. The Fourier transformation finally yields

At time t the correlation functior{cfmcj) for the initial
state withmy=1/2 is obtained from Eq4) as

- 1 a+ml2 i a+ml2
<C;r+ij>=(—i)m;o Js+m+j(DIs+j(1) (Nv=5_— dp>, €' k)mZJ L4 a(p—k)

—a+ml2 m
(BS)

—a+m

- (=)™
=(=1)"Im4jd;+ Z—j(Jm+ij+1_Jm+j+1~]j)-

(B2) and hence Eq32).
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