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Exact stationary state for an asymmetric exclusion process with fully parallel dynamics
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The exact stationary state of an asymmetric exclusion process with fully parallel dynamics is obtained using
the matrix product ansatz. We give a simple derivation for the deterministic case by a physical interpretation
of the dimension of the matrices. We prove the stationarity via a cancellation mechanism, and by making use
of an explicit representation of the matrix algebra we easily find closed expressions for the correlation func-
tions in the general probabilistic case. Asymptotic expressions, obtained by making use of earlier results, allow
us to derive the exact phase diagram.@S1063-651X~99!03205-5#

PACS number~s!: 05.50.1q, 45.70.Vn
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I. INTRODUCTION

In this paper we describe the exact stationary state o
asymmetric exclusion process~ASEP! with fully parallel dy-
namics and open boundaries. This is a special case o
Nagel-Schreckenberg model for traffic flow@1,2#. Exact re-
sults have been known for some time for several update r
such as random sequential@3,4# and sublattice parallel@5–8#.
Results are also known for the case of fully parallel dyna
ics and cylindrical boundary conditions@2,9#. For fully par-
allel dynamics and open boundary conditions mean field
sults have been obtained@10,11#. In a recent preprint, Evans
Rajewsky, and Speer@12# presented an exact solution of th
model using a site-oriented matrix product ansatz@13#. Using
an explicit representation of the resulting algebra, they c
culated the current and density profile via generating fu
tion techniques.

We will present a simple and physical derivation of t
solution for deterministic bulk dynamics. This solution lea
us to a bond-oriented matrix product ansatz resulting i
matrix algebra for stochastic bulk dynamics. Using an
plicit representation of this algebra, it is shown that diffic
recursion relations can be circumvented, and that inte
expressions for the current and density profile can be gi
almost immediately. The resulting integrals can be calcula
resulting in closed expressions similar to those of the rand
sequential case.

The outline of the paper is as follows. In Sec. II the mod
is defined, and some notation is fixed. In Sec. III we find a
solve a simple recursion relation for the deterministic ca
This solution can naturally be recast in the form of a mat
product through an interpretation of the dimension of
matrices, which is done in Sec. IV. Section V is concern
with the formulation of a matrix product ansatz for the ge
eral case, solutions of which are presented in Sec. VI. In S
VII it is shown that with a diagonalization procedure clos
expressions for the density profile and other correlation fu
tions are obtained easily. Finally, in Sec. VIII, the pha
diagram is derived using asymptotic expression for the d
sity profile and the current.

II. MODEL

The model is defined on a one-dimensional lattice withL
sites. Each site may be occupied with a particle or it may
PRE 591063-651X/99/59~5!/4899~13!/$15.00
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empty. Configurations on the lattice are written as$t%
5$t1 ,...,tL% numbering from left to right, where the pres
ence or absence of a particle at sitei is denoted byt i51 or
t i50. An ASEP is defined by imposing the following dy
namics at each time stept→t11 for the particles: If there is
a particle at sitei and if sitei 11 is empty, it hops to sitei
11 with probabilityp and remains at sitei with probability
12p. If site i 11 is occupied, the particle at sitei remains
there with probability 1. This dynamics is applied to all pa
ticles at the same time, hence the name fully parallel. In
deterministic limitp51 this dynamics is also known as th
rule-184 cellular automaton which prescribes how the va
of t i at time t11 depends on the values oft i 21 , t i , and
t i 11 at time t. Given the configuration$t % at time t, the
configuration$t8% at time t11 is given by

t i85 p̂i 21t i 21~12t i !1~12 p̂i !t i~12t i 11!

1t it i 11 ~ i 52, . . . ,L21!, ~1!

where p̂i are stochastic Boolean variables with mean^ p̂i&
5p. The lattice is coupled to two reservoirs at the first a
last sites. Particles may enter the system from the first re
voir if the first site is empty with ratea and they may leave
the system with rateb into the second reservoir at the la
site. Thus

t185â~12t1!1~12 p̂1!t1~12t2!1t1t2 , ~2!

tL85 p̂L21tL21~12tL!1~12b̂ !tL , ~3!

whereâ and b̂ are Boolean variables such that^â&5a and

^b̂&5b. Note that the dynamical rules have a manifest p
ticle hole symmetry given by

t i→12tL2 i 11 ,
~4!

â↔b̂.

Let us now associate, to every configuration$t %, a vector
t defining an orthonormal basis of a Hilbert space. A st
P(t) of the system will be any vector in this Hilbert spac
i.e.,
4899 ©1999 The American Physical Society
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P~ t !5(
$t%

Pt~t1 ,...,tL!t. ~5!

The time evolution of such a state may be written as

P~ t11!5TP~ t !, ~6!

whereT is the transfer matrix. One would like to know th
stationary state of this model, i.e., the eigenstate of the tr
fer matrix with eigenvalue 1. As this state is time indepe
dent, from here on we will suppress the temporal suffix ofP.

III. RECURRENCE RELATION

For the deterministic bulk dynamics (p51) the bulk re-
lations~1! simplify. Tilstra and Ernst@11# showed that in this
case each configuration that can occur in the stationary s
may be spatially divided into three parts: a free flow part
jammed flow part, and an interface of varying width. T
free flow part is defined to be that part of the configurat
up to the rightmost 00 pair, and consists of isolated partic
ng

e

s-
-

te
a

s

only. The jammed flow part starts with the leftmost 11 pa
and contains isolated holes only. The jammed flow and
free flow cannot overlap, but they may be separated by
interface consisting of a sequence of 10 pairs. Using
identification the dynamical rules become very simple. D
note the site of the last 0 of the last 00 pair byf, and the site
of the first 1 of the first 11 pair byj; then the rules are given
by

t i85t i 21 ~ i 52, . . . ,f !,

t i85t i 11 ~ i 5 j , . . . ,L21!,

t i85t i 215t i 11 ~ i 5 f 11, . . . ,j 21!.

~7!

If there are no 00 pairs in a particular configuration we
f 51 if t150; otherwisef 50. Similarly, if there are no 11
pairs, j 5L if tL51, otherwisej 5L11. In these cases th
bulk relations~7! are not valid but one has to use the boun
ary relations~2! and ~3!. The equations of motion~6! for
deterministic bulk dynamics (p51), for the stationary state
induces the equation
P„t1 ,...,t f ,~10!n,t j ,...tL…5F~t1ut2!J~tLutL21!F P„t2 ,...,t f ,~10!n11,t j ,...tL21…

1 (
q50

n

P„t2 ,...,t f ,~10!q01~10!n2q,t j ,...tL21…G . ~8!
t

d to

u-
lk

of
u-
Here, F and J are the transition rates for particles enteri
and leaving the system. They are given by

F~0u0!512a, J~1u1!512b,

F~1u0!5a, J~0u1!5b,

F~0u1!51, J~1u0!51,

F~1u1!50, J~0u0!50.

~9!

Iteration of Eq. ~8! suggests the following ansatz for th
probabilitiesP;

P~t1 ,...,t f ,~10!n,t j ,...,tL!

5
1

ZL
Pf~t1 ,...,t f !PI~n!Pj~t j ,...,tL!, ~10!

Pf~t1 ,...,t f !5xf )
i 51

f 21

F~t i ut i 11!, ~11!

Pj~t j ,...,tL!5yL2 j 11)
i 5 j

L21

J~t i 11ut i !, ~12!

where x, y, and PI(n) are to be determined, andZL is a
normalization. Substituting this ansatz into Eq.~8!, we find
that PI(n) obeys the recursion relation
PI~n!5x21y21PI~n11!1~12a!

3~12b! (
p50

n

~ax2!p~by2!n2p, ~13!

where we have setPI(0)51. Explicit consideration of the
equations of motion forP(0, . . . ,0) andP(0, . . . ,01)deter-
mines the ratio betweenx and y. A convenient choice tha
fulfills this relation isx5b, y5a. Recursion relation~13!
can be solved easily, and all the sums can be performe
give

PI~n!5~ab!n
~12a!bn112~12b!an11

b2a
. ~14!

We thus have calculated the complete probability distrib
tion function for the stationary state for deterministic bu
dynamics. The normalization in Eq.~10! is given by

ZL5
~12a2!bL112~12b2!aL11

b2a
. ~15!

All expressions remain valid fora5b by taking the appro-
priate limits.

IV. MATRIX PRODUCT

We now will construct a matrix product representation
the stationary state. This will turn out to be useful for calc
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lational reasons, but it also helps us to find the solution
p,1. First the vectorst are written as product states,

t5 ^
i 51

L21

v~t i ,t i 11!. ~16!

Next we will show how the form of the solution obtained
Sec. III hints in the right direction.

The exact form ofPI(n) as given by Eq.~14! suggests
another view at the structure of the probability distributi
function. This becomes clear by rewriting Eq.~14! as

PI~n!5 (
k50

n

P0~2k!2~ab!1/2(
k51

n

P0~2k21!, ~17!

whereP0 is given by

P0~k!5~xy!21Pf~t f ,...,t f 1k!

3Pj~t f 1k11 ,...,t j !,

5~ab!nan2k/2bk/2. ~18!

Pf and Pj are defined in Eqs.~11! and ~12!. Thus Eq.~17!
tells us that the weight of the interface of width 2n is equal
to a sum over the positions of a separator. Configuration
the left of this separator are regarded as belonging to the
flow part, and configurations to the right as belonging to
jammed part. There are different prefactors for even and
positions of the separator. After Eq.~17! is substituted into
Eq. ~10!, one may even place the separator inside the
flow or the jammed flow, as the resulting additional term
vanish. This suggests that the stationary state may be wr
as a matrix product,

P5(
$t%

P~t1 ,...,tL!t

5^Wu S F
0

S
JD L21

uV&/ZL , ~19!

which is to be understood as a normal matrix multiplicatio
but where the matrix elements are tensored. The matriceF
andJ govern the free and jammed flow, respectively, whileS
is a matrix for the separator. Indeed, we find

F5S xF~0u0!v~00!

xF~1u0!v~10!

xF~0u1!v~01!

0 D
5S b~12a!v~00!

abv~10!

bv~01!

0 D , ~20!

J5S 0
yJ~0u1!v~10!

yJ~1u0!v~01!

yJ~1u1!v~11! D
5S 0

abv~10!

av~01!

a~12b!v~11! D , ~21!

S5S 0
2~ab!2v~10!

abv~01!

0 D , ~22!

^Wu5~1,1,0,a!, ^Vu5~b,0,1,1!. ~23!
r

to
ee
e
d

e
s
en

,

In other words, the matrix operator in Eq.~19! has two types
of binary indices: the explicit ones, referring to the type
flow, free or jammed, are contracted; and the internal on
the occupation numberst i , are tensored.

V. ALGEBRA

Having found the stationary state for deterministic bu
dynamics (p51) and its representation as a matrix produ
we now reverse the problem and show that the station
state may be found by also using the matrix product ans
~MPA! technique for stochastic (pÞ1) dynamics. In the fol-
lowing we will derive a matrix algebra from the MPA for th
ASEP, i.e., for arbitraryp. We will show that a finite dimen-
sional representation for this algebra can be found forp51
by using the solution found in Sec. IV.

As usual for the MPA, the matrix product~19! will be
written as

P5t1
^WuS A

B
C
D
D ^ ~L21!

uV&tL
, ~24!

where~A,B,C,D! is a vector on the basisv~00!, v~01!, v~10!,
v~11!, with matrix valued entries. It is to be understood th
each entry of the tensor product is bra-ketted witht1

^Wu and

uV&tL
. In Eq.~24!, the tensored indices are explicit, while th

contracted indices are implicit; this in contrast to Eq.~19!. In
the following we will show that the transfer matrix for th
ASEP with fully parallel update rules may be written asT
5RT L21L, for which the following mechanism ensures th
Eq. ~24! is a stationary state:

t1
^WuLS A

B
C
D
D 5t1

^WuS Â

B̂

Ĉ

D̂

X̂

D ,

RS Â

B̂

Ĉ

D̂

X̂

D uV&tL
5S A

B
C
D
D uV&tL

, ~25!

T F S Â

B̂

Ĉ

D̂

X̂

D ^S A
B
C
D
D G5S A

B
C
D
D ^S Â

B̂

Ĉ

D̂

X̂

D . ~26!

In order to findL, R, and T we introduce the probability
distribution
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P~t1 ,...,t i 21 ;s i ,t i 11 ...,tL!, ~27!

which corresponds to partial updated sequences w
t1 ,...,t i 21 at time t11 andt i 11 ,...,tL at time t. The vari-
ables i can attain three different values, say 0, 1, and 2. T
th
th

e

value 0 corresponds to a hole both at timet and t11, the
value 1 to a particle at timet, and the value 2 to a particle
moving into sitei at time t11. The introduction of such a
third states i52 is necessary to incorporate correctly t
fully parallel update rule. These probabilities correspo
with the matrix product ansatz in the following way:
P~ ...,t i 21 ;s i ,t i 11 ,...!5t1
^Wu¯Y~t i 22 ,t i 21!Ŷ~t i 21 ,s i !Y~t i ,t i 11!¯uV&tL

, ~28!
f

wheret i5s i mod 2. This also shows why we need the fif
matrix X̂5Ŷ(0,2) for the intermediate states in Eqs.~25! and
~26!. The equations, which defineT, for the probabilities
~27! are explicitly given by

P~ ...,0;0,...!5P~ ...;0,0,...!,

P~ ...,0;1,...!5P~ ...;0,1,...!,

P~ ...,0;2,...!5pP~ ...;1,0,...!,
~29!

P~ ...,1;0,...!5~12p!P~ ...;1,0,...!1P~ ...;2,0,...!,

P~ ...,1;1,...!5P~ ...;1,1,...!1P~ ...;2,1,...!,

P~ ...,1;2,...!50.

These equations immediately determine the matrixT. In a
similar fashion the boundary operatorsL andR can be cal-
culated, and are given by

L5S 12a
0
a
0
0

0
12a

0
a
0

0
0

12p
0
p

0
0
0
1
0

D , ~30!
R5S 1
0
0
0

b
12b

0
0

0
0
1
0

0
0
b

12b

0
1
0
0
D .

With these definitions, Eq.~26! and~29! imply the following
algebra,

AÂ5ÂA, AB̂5ÂB, AX̂5pB̂C,

BĈ5~12p!B̂C1X̂A, BD̂5B̂D1X̂B,
~31!

CÂ5ĈA, CB̂5ĈB, DD̂5D̂D,

CX̂5pD̂C, DĈ5~12p!D̂C.

There also are relations related to the product form ot
which forbids that products likev(t i 21 ,t i) ^ v(12t i ,t i 11)
occur in any physical quantity,

AD̂5AĈ5BÂ5BB̂5BX̂5CĈ5CD̂5DÂ5DB̂5DX̂50.
~32!

The boundary conditions from Eq.~25! with the explicit val-
ues of the matricesL andR @Eq. ~30!# become
ill

en the
0^WuÂ5~12a!0^WuA, AuV&05ÂuV&01bB̂uV&1 ,

0^WuB̂5~12a!0^WuB, BuV&15~12b!B̂uV&11X̂uV&0 ,

1^WuĈ5a0^WuA1~12p!1^WuC, CuV&05ĈuV&01bD̂uV&1 , ~33!

1^WuD̂5a0^WuB11^WuD, DuV&15~12b!D̂uV&1,

0^WuX̂5p1^WuC.

Any solution to Eqs.~31!, ~32!, and~33! thus automatically is a solution for the stationary state via Eqs.~25! and~26!. It is,
however, not obvious that the cancellation mechanism of Eqs.~25! and ~26! is appropriate for this problem. Indeed, we w
see that for the case ofp,1 we will need a slightly weakened version of Eqs.~31! and ~33!.

By observation of explicit solutions for small system sizes, we have also inferred the following relations betwe
matrices:
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DCB5ab„~12p!CB1DD1pabD…,

BCB5ab~AB1BD1pabB!,
~34!

BCA5ab„~12p!BC1AA1pabA…,

DCA5ab~12p!~DC1CA1pabC!,

with the following boundary conditions:

0^WuA5pb~12a!0^Wu, BuV&15pauV&0 ,

0^WuB5pb1^Wu, DuV&15pa~12b!uV&1 ,
~35!

1^WuCA5ab~0^WuA1~12p!1^WuC!, DCuV&05ab~DuV&11~12p!CuV&0!,

1^WuCB5ab~0^WuB11^WuD !, BCuV&05ab~AuV&01BuV&1!.
v
n
an

ct
es
-

by

und
We believe Eqs.~34! and~35! to be true for arbitrary system
sizes. It turns out that these relations are particularly con
nient to obtain a representation. Using this representatio
Eqs. ~31! and ~33! to find the hatted matrices then gives
easy proof of the stationarity of ansatz~24!.

Relations~32! can be easily fulfilled by writing

A5A^ S 1
0

0
0D , B5B^ S 0

0
1
0D ,

~36!

C5C^ S 0
1

0
0D , D5D^ S 0

0
0
1D ,

and similarly for the hatted matrices

Â5Â^ S 1
0

0
0D , B̂5B̂^ S 0

0
1
0D ,

Ĉ5 Ĉ^ S 0
1

0
0D , D̂5D̂^ S 0

0
0
1D , ~37!

X̂5X̂^ S 1
0

0
0D .

The boundary vectors are then written as

uV&05uV0& ^ S 1
0D , uV&15uV1& ^ S 0

1D ,

~38!

0^Wu5^W0u ^ ~1,0!, 1^Wu5^W1u ^ ~0,1!.

VI. REPRESENTATIONS

A. Representation for 12p5„12a…„12b…

Rajewski et al. @10# already remarked that the produ
form ~24! is exact for ordinary numbers instead of matric
on the line 12p5(12a)(12b). Indeed, there exist a one
dimensional representation given by
e-
in

A5b~12a!, B51, C5ab, D5a~12b!,

Â5b~12a!2, B̂512a, Ĉ5ab~12a!, ~39!

D̂5a, X̂5ap

with

^W0u5b, ^W1u51, uV0&51, uV1&5a. ~40!

B. Representation forp51

In the case of deterministic dynamics in the bulk,p51, a
two-dimensional representation of the subalgebra given
Eq. ~31! for general values ofa and b can be found. The
matricesA, B, C, and D can be easily read off from the
solution in Sec. IV, and are given by

A5 S b~12a!

0
0
0D , B5S b

0
1
a D ,

~41!

C5S ab
0

2ab
ab D , D5S 0

0
0

a~12b! D .

The representation for the hatted matrices can then be fo
using algebra~31! and its boundary conditions~33!, and is
given by

Â5S b~12a!2

0
0
0D , B̂5S b~12a!

0
12a

0 D ,

Ĉ5S ab~12a!

0
0
0D , D̂5S ab

0
0
a D , ~42!

X̂5S ab
0

a~12b!

a D ,
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with

^W0u5~b,0!, ^W1u5~b,1!,
~43!

uV0&5S 1
a D , uV1&5S 0

a D .

C. Infinite-dimensional representation

In Appendix A it is explained that for general values ofp
there exists a basis$en , f n% on which the matrices take th
following form:

D5B~12p!5abqS q
0
0
0
]

1
q
0
0

0
1
q
0

0
0
1
q

¯

�

D ,

~44!

A5C5abqS q
1
0
0
]

0
q
1
0

0
0
q
1

0
0
0
q

¯

�

D ,

whereq5A12p. This representation does not lead to dive
gent sums if

a,b.12A12p. ~45!
-

A representation that is valid for all values ofa and b can
also be constructed, but this particular one will be useful
us in the sequel. First of all we would like to diagonalizeE
5A1B1C1D to facilitate further calculations. To find th
eigenvalues and eigenvectors ofE, we define the vectors

uz&&05 (
n50

`

znen , uz&&15 (
n50

`

znf n . ~46!

It will also be convenient to define the parameters

a5
p2a

aq
, b5

p2b

bq
, ~47!

so that the boundary vectors may be expressed as~see Ap-
pendix A!

uV&05k
12b

12p
ub&&0 , uV&15kub&&1 , ~48!

wherek is defined such that the normalization is given by

0^WuV&05b, 1^WuV&15a. ~49!

In Appendix B it is shown that there exist vectorsuz;z21&&6

that are linear combinations of the vectors defined in E
~46!, which have the following properties:
Euz;z21&&15L1~z!uz;z21&&15abq~z1z211q1q21! uz;z21&&1 , ~50!

Euz;z21&&25L2uz;z21&&25abq~q2q21!uz;z21&&2 . ~51!

By writing the boundary vectors as linear combinations of these eigenvectors@see Eqs.~B5! and~B7!#, the normalization can
be expressed as

ZL5~0^Wu11^Wu!EL21~ uV&01uV&1!52k̃ R
uzu51

dz

4p iz
„L1~z!2L2…L1~z!L21K~z,a!K~z,b!, ~52!

where

K~z,c!5
~z2z21!

~z2c!~z212c!
, c5a,b ~53!

and

k̃5
12p2~12a!~12b!

ab~12p!
5

12ab

p
. ~54!

Expression~52! can be rewritten using the identities in Appendix C. We then find

ZL52abq
SL~a!2SL~b!

p~a2b!
5

SL~a!2SL~b!

a2b
, ~55!

where

SL~c!5
c

p
„RL~c!2abRL21~c!~q221!…5

c

p
„RL~c!1pabRL21~c!…, ~56!
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RL~c!5~abq!L (
n50

L

(
m50

n

~q1q2122!L2nS L
nD S 2n2m

n D m11

n11
~11c!m ~57!

5
~c,1!

2 R
uzu51

dz

4p iz
L1~z!LK~z,c!~z2z21!. ~58!
to

e
fo

a

w

x-
Note that the integral representation~58! for RL(c) is only
valid for c,1. Under this condition it can be calculated
give Eq.~57!. Equation~57!, however, is valid for all values
of c, which may be checked explicitly for small system siz
or by using another infinite-dimensional representation
c.1.

In deriving the phase diagram we will need the largeL
behavior ofRL(c). Expression~57! for RL(c) is similar to
that of the ASEP with a random sequential update; its
ymptotics can be calculated similarly@4,12#. By identifying
the terms that have the largest contribution to the sums
find that n;sL and m;2/(12c) for c,1, m;A2sL for
c51, andm;(c21)sL/c for c.1, which give

RL~c!'
1

Ap
S 2

12cD 2

L1~1!L
1

~sL !3/2 for c,1 ~59!

'
2

Ap
L1~1!L

1

~sL !1/2 for c51 ~60!
s
r

s-

e

'~12c22!L1~c!L for c.1, ~61!

where

s5
4

21q1q21 , L1~1!5ab~11A12p!2,

L1~a!5ab
p2~12a!

a~p2a!
. ~62!

L1(b) is obtained fromL1(a) by interchanginga andb.

VII. EXPRESSIONS FOR THE CURRENT AND DENSITY

Using the algebra, it is easy to derive the following e
pression for the currentJL5p^t i(12t i 11)&L :
n terms
can be
for the
JL5p
1

ZL
~0^Wu11^Wu!EiCEL2 i 22~ uV&01uV&1! ~63!

5pabS ZL21

ZL
~122JL21!1pab

ZL22

ZL
~12JL22! D , ~64!

from which we find by induction,

JL5pab
ZL21

ZL
~12JL21!. ~65!

The density profile is much harder to find from the algebra and our strategy will be to express all correlation function i
of the eigenvectors ofE. In doing so, the correlation functions are easily expressed as integrals over the unit circle, and
calculated exactly by the residue theorem or asymptotically via the saddle-point method. We first demonstrate this
current. Calculating the action ofC on uz;z21&&1 using Eq.~B1! and reexpressing it in the eigenvectorsuz;z21&&6 we find

Cuz;z21&&15abq@~11zq!uz&&12~11z21q!z21&&1] 5ab
L1~z!

L1~z!2L2
~ uz;z21&&12uz;z21&&2). ~66!

Inserting this into Eq.~63!, we find that

JL52
pabk̃

ZL
R

uzu51

dz

4p iz
L1~z!L21K~z,a!K~z,b!5

ab

~a2b!ZL
„aRL21~a!2bRL21~b!…, ~67!

which indeed fulfills Eq.~65!.
In order to find the density profile, we now calculate the two-point correlator^t it i 11&L , which is given by

^t it i 11&L5
1

ZL
~0^Wu11^Wu!Ei 21DEL2 i 21~ uV&01uV&1!. ~68!
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This can be given in an integral representation using

Duz;z21&&15ab~12p!@z~11zq!uz&&12z21~11z21q!uz21&&1]. ~69!

Re-expressing Eq.~69! as a linear combination of eigenvectors using Eq.~C4!, it then follows that

^t it i 11&L52
a2b2qk̃

ZL
(
n50

` R
uwu51

dw

2p iw
L1~w! i 21K~w,a!~11w21q!w2n R

uzu51

dz

2p iz
L1~z!L2 i 21K~z,b!z~11zq!zn

5
a2b2k̃q2

ZL
(

m50

L2 i 21

RL2m22~a!Rm~b!1
bq

p
JL ~70!

52
a2b2k̃q2

ZL
(

m50

i 22

Rm~a!RL2m22~b!112
aq1q211

p
JL . ~71!
u
s.
,
e

in

u

en

en

ase

t
om

s
-
a so
ese
is-
ses

a

Here we have made use of the fact that the prod
L1(w) i 21L1(z)L2 i 21 can be written as a sum in two way
Equation ~70! is useful for studying the right boundary
while Eq. ~71! is more suited for the left boundary. Th
density profile is given by

^t i&L5^t it i 11&L1JL /p. ~72!

The easiest way to analyze the density profile is by look
at its lattice derivative

tL~ i !5^t i 11&L2^t i&L52
a2b2k̃q2

ZL
Ri 21~a!RL2 i 21~b!.

~73!

The value of the current and the asymptotic behavior oftL( i )
will determine the phase diagram.

VIII. PHASE DIAGRAM

A. Casep51

The two dimensional representation~41! for this case al-
low a simple evaluation of the current and density. The c
rent takes two different values corresponding to low~LD!
and high density~HD! regions.

1. Low density phase LD

Here a,b and the current and density profile are giv
by

J25
a

11a
, ~74!

^t i&L5
a

11a S 11
12b

b
e2r /jD , ~75!

where j2152 ln(a /b) and r 5L2 i . The density profile is
flat except near the right boundary where it falls of expon
tially from its maximum valuê tL&L to the bulk value.

2. Transition line from LD to HD

On this linea5b. The current is still given by Eq.~74!
but the density profile becomes linear,
ct

g

r-

-

^t i&L5
a

11a S 11
12a

a

i

L D . ~76!

3. High density phase HD

This phase is characterized bya.b, and the current and
density can be obtained from those in the low density ph
by the particle hole symmetry~4!. They are given by

J15
b

11b
, ~77!

^t i&L5
1

11b
„12~12a!e2 i /j

…, ~78!

wherej2152 ln(b /a). Thus the density profile is flat excep
near the left boundary where it increases exponentially fr
its minimum valuê t1&L to its bulk value.

B. General values ofp

The current@Eq. ~67!# may take three different value
depending on the parametersa and b. These values corre
spond to a low density phase, a high density phase and
called maximum current phase. The density profile in th
phases will be calculated and will give rise to a further d
crimination of phases within the low and high density pha
~see Fig. 1!.

1. Low density phase LDI

This phase is characterized by the valuesa.b.1 or a
,b,12A12p. The current and bulk densityr in this
phase is given by

J25
pab

L1~a!1pab
5

a~p2a!

p2a2 ,

~79!
r512J/a.

We find an exponential decay of the density profile with
length scale

j215ja
212jb

21, ~80!
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with

jc
2152 lnS L1~1!

L1~c! D , c5a,b. ~81!

The slope of the density profile is given by~with r 5L2 i )

tL~ i !5~b2b21!qJ2~12e21/j!e2~r 21!/j

5
~12a!~p22b1b2!

~p2a2!~12b!
~12e21/j!e2r /j. ~82!

Sinceb.1 the slope of the density profile is positive and t
density approaches its bulk value from above.

2. Transition line from LDI to LDII

On this line, whereb51 or b512A12p, jb diverges
while ja remains finite. The bulk values are the same as
phase LDI, but the slope of the density profile now becom

tL~ i !5
2qJ2

pAsp
~12e21/ja!e2~r 21!/jar 21/2,

5
a~p2a!

~p2a2!

~12p!1/4

Ap~12A12p!

3~12e21/ja!e2~r 21!/jar 21/2. ~83!

3. Low density phase LDII

This phase is determined byb,1,a or a,12A12p
,b. Here the slope of the density profile still has a pow
law correction to the exponential, but the power is differe

tL~ i !5
qJ2

pAps

L1~a!„L1~a!2L1~b!…

„L1~a!2L1~1!…„L1~b!2L1~1!…

3~12e21/ja!e2r /jar 23/2. ~84!

The slope changes sign at the curvea5b21 or 12p5(1
2a)(12b). This is the curve on which the mean field s
lution is exact, and a one-dimensional representation of
algebra exists. On this line the stationary state comple
factorizes and the density profile is flat.

FIG. 1. Phase diagram in thea-b plane. Phase boundaries are
a,b512A12p, anda5b, where the transition is discontinuou
in the density. On the dashed line, given by 12p5(12a)(1
2b), the mean field solution is exact.
n
s

r
.

ur
ly

4. Transition line from LDII to the maximal current phase MC

On this transition line the current and bulk value of t
density are as in the maximum current phase. The slop
the density profile on this transition line is given by

tL~ i !52
~12p!1/4

4Ap
~ i /L !21/2r 23/2. ~85!

Near the right boundary the slope decays algebraically
r 23/2. Near the left boundary the slope of the density profi
decays algebraically with a power of 1/2, but the amplitu
is of order 1/L. Thus up to order 1/L corrections the density
profile may be regarded as flat near the left boundary.

5. Maximal current phase MC

This part of the phase diagram is characterized bya,b
,1 or a,b.12A12p. In the maximal current phase th
current attains it maximum value which is first reached on
phase boundaries. Its value and the bulk value of the den
are given by

Jmax5
pab

L1~1!1pab
5

1

2
~12A12p!, r5

1

2
. ~86!

The slope of the density profile in this phase is given by

tL~ i !52
~12p!1/4

4Ap
i 23/2~r /L !23/2. ~87!

Since its slope is negative the density approaches its b
value of r51/2 from above asi 21/2 near the left boundary
and from below asr 21/2 near the right boundary.

6. High density phases HDI and HDII

The behavior of the density profile in the high dens
phases and on their phase boundaries can be obtained
those of the low density phase by the particle hole symme
@see Eq.~4!#,

t i 21→12t r ,
~88!

a↔b.

7. Coexistence line

This line is characterized bya5b.1 or a5b,1
2A12p. The lengthja5jb remains finite butj diverges.
On this line one finds a linear profile with a positive slop

tL~ i !5
p22a1a2

~p2a2!L
. ~89!

In the limit of small rates, i.e.,a5pã and b5pb̃ and p
→0, we recover the results for the ASEP with random
quential update@4,13#. By taking p→1 the results reduce to
those derived in Sec. VIII A. Our results are in perfect agr
ment with those of Ref.@12#.

In all phases and phase boundaries the current and
density r satisfy the following relation which defines th
fundamental diagram
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J5 1
2 „12A124pr~12r!…. ~90!

Following Kolomeiskyet al. @14#, we may understand th
phase diagram qualitatively by considering the domain w
dynamics. In this picture two characteristic velocities are i
portant: the domain wall velocity and the collective veloci
The collective velocity is the drift of the center of mass o
momentary local perturbation of the stationary state, an
related to the current by

Vcoll5
]

]r
J~r!. ~91!

This velocity changes sign atr5 1
2 , where the current take

its maximum value. For positive domain wall velocity (b
.a) and a,12A12p, an increase of the left boundar
density leads to an increase of the bulk density sinceVcoll
.0. This happens until the left boundary density equals1

2, or
a512A12p. At this point Vcoll changes sign, and a pe
turbation will no longer spread into the bulk. The system
in the maximal current phase and a further increase of
left boundary density does not lead to an increase of the b
density. Forb,a the system does not enter the maxim
current phase because of the negative domain wall velo
However, the overfeeding still occurs, which implies th
further increase of the left boundary density beyond1

2 does
not lead to changes of the characteristic length scales in
high density phase. This is seen in the divergence of
length scaleja .

The correlations for the ASEP with fully parallel dynam
ics are much stronger than for other dynamics. This beco
apparent when considering the relation between the len
scalesja,b and the curents in the high and low dens
phases. The lengthsja,b can be written as

ja
215jJ2

21, jb
215jJ1

21, ~92!

where

jJ
2152 lnS J

12J

12Jmax

Jmax
D . ~93!

This is in contrast to the random sequential and sublat
parallel dynamics@6,7,14#, where

jJ
2152 lnS J

Jmax
D . ~94!

In the latter cases this relation could be obtained directly
considering the domain wall as a biased random walker.
have no simple argument for the fluctuations in the dom
wall position that leads to Eq.~93! in the case of fully par-
allel dynamics.

IX. CONCLUSION

We have presented a stationary state solution of an as
metric simple exclusion process with fully parallel dynamic
In the case of deterministic bulk dynamics the solution, o
tained directly from the master equations, has the form o
product over two-dimensional matrices. In contrast
ASEP’s with other dynamics, the matrices depend on t
ll
-
.

is

s
e
lk
l
y.
t

he
e

es
th

e

y
e
n

m-
.
-
a

o

sites instead of one. In the general case the stationary
can still be written as a product over matrices, but of infin
size. The stationarity of this product state can be proven
means of a cancellation mechanism which is a bit wea
than in other cases. We have calculated the exact phase
gram using an explicit representation of the matrix algeb
In this way we could, via a diagonalization procedure, der
expression for the current and the density profile with re
tive ease.

The results are independent of, and agree with, thos
Ref. @12#, which were obtained by means of a different a
satz. They prove the strength and the flexibility of the mat
product ansatz, though until recently the fully parallel d
namical models have resisted solution. Even when the res
ing algebra is cubic~as in the present paper! or quartic ~in
Ref. @12#!, a representation could be obtained. Of cour
now that the formalism has been set up, many other pro
ties of the stationary state can be calculated. Instantane
correlation functions are relatively straightforward. As o
representation includes probability distributions involvin
consecutive time steps, it is to be expected that the pre
formalism is capable in principle of producing time depe
dent correlation functions. A more difficult test of the fo
malism is the calculation of the distribution of travelin
times, for which it is necessary to follow a single particle
it flows through the system.
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APPENDIX A: INFINITE-DIMENSIONAL
REPRESENTATION

As an example for finding infinite-dimensional matric
we explicitly construct the representation used in the m
text. First we choose the following vectors as a basis:

$e0 , f 0 ,e1 , f 1 ,e2 , f 2 ,...%, ~A1!

where

gn5~abq!2n
„A2ab~12p!…ng0 ,

~A2!
en5Agn , f n5Cgn .

Hereq5A12p, and we chooseg0 such that

D f 05ab~12p! f 0 , B f05abe0. ~A3!

We then find the action of the matricesA, B, C, andD on
these vectors from Eqs.~34! and ~35!. For example, beside
Eq. ~A3!, we find, forn>1,

D f n5abq~ f n211q fn!, ~A4!

B fn5abq21~en211qen!, ~A5!
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so thatD andB are indeed given by Eq.~44!. On the basis of
Eq. ~A1!, the boundary vectors are given by

12p

12b
^V0u5^V1u5k~1,b,b2,b3,...!, ~A6!

^W0u5k~1,a,a2,a3,...!, ~A7!

^W1u5
1

pb
^W0uB5kq21S aq

p
,1,a,a2,a3,...D , ~A8!

where

a5
p2a

aq
, b5

p2b

bq
, ~A9!

and

k25
p„12p2~12a!~12b!…

a~12b!
. ~A10!

This representation does not lead to divergencies ifa,b,1
or a,b.12A12p. There are many possibilities in choo
ing the set of basis vectors. We could for example defineg0
in a different way than was done in Eq.~A3!. The represen-
tation chosen here has some advantages which are expl
in the main text. It is, however, possible to choose a rep
sentation which is valid for all values ofa and b ~Evans,
Rajewsky, and Speer gave an explicit example of suc
representation@12#!. See Derridaet al. @13# for a similar dis-
cussion.

It turns out that for this representation we can find hat
matrices satisfying the relations on the first line of Eq.~31!,
but not those on the second line. It is, however, possible
relax the conditions of Eq.~31! a little in the following way.
Every matrix will be premultiplied by another matrix. In pa
ticular, C or D will be premultiplied byB or D ~or 1^Wu at
the boundary!. We therefore do not have to satisfy the re
tions on the second line of Eq.~31! identically, but only up
ted
-

a

d

to

-

to a term that vanishes when acted on byB, D or 1^Wu.
Since 1^Wu2q&&150 and Bu2q&&15Du2q&&150, this is
the case if this term is a matrix of which the columns a
multiples of u2q&&1 . Thus, instead of the algebra obtaine
from Eq. ~26!, we find a solution of the algebra implied by

t1
^WuLS A

B
C
D
D 5t1

^WuS Â

B̂

Ĉ

D̂

X̂

D ,

~A11!

S A
B
C
D
D ^RS Â

B̂

Ĉ

D̂

X̂

D uV&tL
5S A

B
C
D
D ^S A

B
C
D
D uV&tL

,

S A
B
C
D
D ^T F S Â

B̂

Ĉ

D̂

X̂

D ^S A
B
C
D
D G5S A

B
C
D
D ^S A

B
C
D
D ^S Â

B̂

Ĉ

D̂

X̂

D ,

~A12!

t1
^WuT F S Â

B̂

Ĉ

D̂

X̂

D ^S A
B
C
D
D G5t1

^WuS A
B
C
D
D ^S Â

B̂

Ĉ

D̂

X̂

D .

~A13!

A solution to this algebra still automatically gives rise to
stationary state. We then find, in addition to Eq.~44!,
Â5Ĉ1p2abS 1
2q

~2q!2

~2q!3

]

~2q!21

1
2q

~2q!2

~2q!22

~2q!21

1
2q

~2q!23

~2q!22

~2q!21

1

¯

�

D , ~A14!

Ĉ5abS 122p
q
0
0
]

2p2~2q!21

122p
q
0

2p2~2q!22

2p2~2q!21

122p
q

2p2~2q!3

2p2~2q!22

2p2~2q!21

122p

¯

�

D , ~A15!

B̂5D̂2pabS 1
2q

~2q!2

~2q!3

]

0
0
0
0

0
0
0
0

0
0
0
0

¯

�

D , D̂5D1pab, ~A16!
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X̂5pD̂1pab~12p!S 1
2q

~2q!2

~2q!3

]

0
0
0
0

0
0
0
0

0
0
0
0

¯

�

D . ~A17!
e

s

c-

e.,
l-

-

s
rem

ed
APPENDIX B: EIGENVECTORS

It follows from a direct calculation that the actions of th
matrices on the vectors defined by Eq.~46! are given by

Auz&&05abq~~z211q!uz&&02z21e0),

Buz&&15ab~11zq21!uz&&0 ,
~B1!

Cuz&&05abq„~z211q!uz&&12z21f 0…,

Duz&&15abq~q1z!uz&&1 .

Taking linear combinations of different vectorsuz&&1 and
uz&&0 such that terms withe0 and f 0 drop out@15#, we find
the following eigenvectors ofE:

uz;z21&&65zuz&&02z21uz21&&01h6~z!uz&&1

2h6~z21!uz21&&1 , ~B2!

h1~z!5zq
11zq

z1q
, h2~z!52q. ~B3!

The eigenvalues corresponding to these vectors follow ea
from Eqs.~B1!, and are

L1~z!5abq~z1z211q1q21!,
~B4!

L25abq~q2q21!.

From now on we takeuzu51. The following relations hold
for a,1 andb,1, or a,b.12A12p:
ily

~0^Wu11^Wu!uz;z21&&15
k

pb

~z2z21!„L1~z!2L2…

~z2a!~z212a!
,

~B5!

~0^Wu11^Wu!uz;z21&&250. ~B6!

The vectorsuV&0 anduV&1 can be expressed in the eigenve
tors using Eq.~C1!, from which we obtain

2 R
uzu51

dz

4p iz

~z2z21!

~z2b!~z212b!
uz;z21&&1

5k21
12p

12b
~ uV&01uV&12b2ku2q&&1). ~B7!

The third term on the right hand side is a null vector, i.
1^Wu2q&&150 andEu2q&&150, and does not enter the ca
culations.

APPENDIX C: IDENTITIES

The following identity which is frequently used through
out this paper can be conveniently calculated~or looked up
in Ref. @16#! by writing the denominator of the integrand a
a sum of two geometric series, and using the residue theo

ck2152 R
uzu51

dz

4p iz

~zk2z2k!~z2z21!

~z2c!~z212c!
, c,1.

~C1!

In a similar fashion the following integral can be calculat
for c,1:
2 R
uzu51

dz

2p iz
~21z1z21!Lzn

z2z21

~z2c!~z212c!
5 (

k50

L2n

(
k50

L1n F S 2L
k D cL1n2k212S 2L

k D cL2n2k21G , ~C2!

where 0,n<L. Specializing ton51 and rewriting the terms in the sum, we find that

2 R
uzu51

dz

4p iz

~z2z21!2~21z1z21!N

~z2c!~z212c!
5

~c,1!

(
p50

N S 2N2p
N D p11

N11
~11c!p. ~C3!

Another important identity that we use to express vectors in terms of the eigenvectors ofE is
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R
uzu51

dz

4p iz

abq21

L1~z!2L2
~ uz;z21&&12uz;z21&&2)„~11z21q!1^^zu2~11zq!1^^z

21u…

5 R
uzu51

dz

4p iz S z

z1q
uz&&12

1

11zq
uz21&&1D „~11z21q!1^^zu2~11zq!1^^z

21u….

5I 12~12q2!u2q&&1^^2q21u. ~C4!

This again can be simply evaluated using the residue theorem and the fact thatq,1.
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