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Exact stationary state for an asymmetric exclusion process with fully parallel dynamics
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The exact stationary state of an asymmetric exclusion process with fully parallel dynamics is obtained using
the matrix product ansatz. We give a simple derivation for the deterministic case by a physical interpretation
of the dimension of the matrices. We prove the stationarity via a cancellation mechanism, and by making use
of an explicit representation of the matrix algebra we easily find closed expressions for the correlation func-
tions in the general probabilistic case. Asymptotic expressions, obtained by making use of earlier results, allow
us to derive the exact phase diagrd®1063-651X99)03205-3

PACS numbdss): 05.50+q, 45.70.Vn

I. INTRODUCTION empty. Configurations on the lattice are written &8
={r4,...,7.} numbering from left to right, where the pres-
In this paper we describe the exact stationary state of asnce or absence of a particle at site denoted byr;=1 or
asymmetric exclusion proce$ASEP with fully parallel dy-  7,=0. An ASEP is defined by imposing the following dy-
namics and open boundaries. This is a special case of thfamics at each time step-t+ 1 for the particles: If there is
Nagel-Schreckenberg model for traffic flqw,2]. Exact re- 3 particle at site and if sitei + 1 is empty, it hops to sité
sults have been known for some time for several update rules 1 ith probabilityp and remains at sitewith probability
such as random sequentjal4] and sublattice parall¢b—8]. 1 | site j + 1 is occupied, the particle at siteremains
Results are also known for the case of fully parallel dynamypere with probability 1. This dynamics is applied to all par-
ics and cylindrical boundary condition&,9]. For fully par-  icjes at the same time, hence the name fully parallel. In the
allel dynamics and open boundary conditions mean field regeterministic limitp=1 this dynamics is also known as the
sults have been obtaingi0,11]. In a recent preprint, Evans, ye-184 cellular automaton which prescribes how the value
Rajewsky, and Spe¢f.2] presented an exact solution of this 7, at imet+1 depends on the values of ;, 7., and

model using a site-oriented matrix product an$a@. Using . 4t timet. Given the configuratio7} at timet, the
an explicit representation of the resulting algebra, they Calbonfiguration{r’} at timet+1 is given by
culated the current and density profile via generating func-
tion techniques. r_ & &

We willqpresent a simple and physical derivation of the i =Pimame (I ) (PO (L= 7
solution for deterministic bulk dynamics. This solution leads +77ie, (1=2,...L-1), @
us to a bond-oriented matrix product ansatz resulting in a
matrix algebra for stochastic bulk dynamics. Using an exawhere f; are stochastic Boolean variables with medn)
plicit representation of this algebra, it is shown that difficult =p. The lattice is coupled to two reservoirs at the first and
recursion relations can be circumvented, and that integrdhst sites. Particles may enter the system from the first reser-
expressions for the current and density profile can be giveRoir if the first site is empty with rate and they may leave
almost immediately. The resulting integrals can be calculatethe system with ratg8 into the second reservoir at the last
resulting in closed expressions similar to those of the randorgite. Thus
sequential case.

The outline of the paper is as follows. In Sec. 1l the model T1=&(1— 7))+ (1—=P1) (1= 7)) + 7170, 2
is defined, and some notation is fixed. In Sec. Il we find and
solve a simple recursion relation for the deterministic case.
This solution can naturally be recast in the form of a matrix
product through an interpretation of the dimension of the . ] R
matrices, which is done in Sec. IV. Section V is concerned¥herea and g are Boolean variables such tht) = a and
with the formulation of a matrix product ansatz for the gen-(3)= 8. Note that the dynamical rules have a manifest par-
eral case, solutions of which are presented in Sec. VI. In Sedicle hole symmetry given by
VIl it is shown that with a diagonalization procedure closed

n=pL1m 11— 1)+ (1-B)7, )

expressions for the density profile and other correlation func- Ti—1—7 i1,
tions are obtained easily. Finally, in Sec. VIII, the phase 4
diagram is derived using asymptotic expression for the den- &H,@.

sity profile and the current.

Let us now associate, to every configuratiet, a vector
7 defining an orthonormal basis of a Hilbert space. A state
The model is defined on a one-dimensional lattice with P(t) of the system will be any vector in this Hilbert space,
sites. Each site may be occupied with a particle or it may bé.e.,

Il. MODEL
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only. The jammed flow part starts with the leftmost 11 pair,

P()=2> P(7y,... 7). (5 and contains isolated holes only. The jammed flow and the
i} free flow cannot overlap, but they may be separated by an
The time evolution of such a state may be written as interface consisting of a sequence of 10 pairs. Using this
identification the dynamical rules become very simple. De-
P(t+1)=TP(1), (6)  note the site of the last 0 of the last 00 pairfpand the site

of the first 1 of the first 11 pair by, then the rules are given
whereT is the transfer matrix. One would like to know the ! I pair by ! aw

stationary state of this model, i.e., the eigenstate of the trans-
fer matrix with eigenvalue 1. As this state is time indepen- i=1_, (i=2,...f),
dent, from here on we will suppress the temporal suffiof , .
Ti:Ti+1 (IZJ!'--!L_]-)I (7)

lll. RECURRENCE RELATION T=T_1=741 (i=f+1,...j-1).

For the deterministic bulk dynamicg & 1) the bulk re- If there are no 00 pairs in a particular configuration we set
lations(1) simplify. Tilstra and Ernsf11] showed that in this f=1 if 7;=0; otherwisef =0. Similarly, if there are no 11
case each configuration that can occur in the stationary statmirs, j=L if 7. =1, otherwisej=L+1. In these cases the
may be spatially divided into three parts: a free flow part, abulk relations(7) are not valid but one has to use the bound-
jammed flow part, and an interface of varying width. Theary relations(2) and (3). The equations of motioti6) for
free flow part is defined to be that part of the configurationdeterministic bulk dynamicsp(=1), for the stationary state,
up to the rightmost 00 pair, and consists of isolated particleinduces the equation

P(71,...,71,(10)", 7 v ) =F (74| 72) (7| 7 _1)| P(72,...,71,(10 n+1,7'j e TL_1)

n
+ 2 P(1p,...,71,(10)90110)" %, 7y ,...7 1) |. )
q=0
|
Here, F and J are the transition rates for particles entering P(n)=x"y P(n+1)+(1—a)
and leaving the system. They are given by .
_ 2yp 2yn—p
F(O|0)=1—a’, ‘](1|1):1_B’ X(l B)pgo(ax ) (By ) y (13)
F(1|0)=e, J(0[1)=p, - . .
(99  where we have se|(0)=1. Explicit consideration of the
F(0|]1)=1, J(10)=1, equations of motion foP (0, . ..,0) andP(0, . ..,01)deter-

F(1]1)=0, J(0|0)=0. mines the ratio betweer andy. A convenient choice that
fulfills this relation isx= 8, y=«a. Recursion relatior{13)

lteration of Eq.(8) suggests the following ansatz for the ¢an be solved easily, and all the sums can be performed to

probabilitiesP; give
1— n+1__ 1— n+1
P(Tl,...,’Tf,(lO)n,Tj,...,TL) P|(n):(a’,8)n( 0[)6 IB ( B)a . (14)
-
1 - o
=~ Pl(7y,... 7)) PMP( 7} ,....7L), (10  We thus have calculated the complete probability distribu-
Z tion function for the stationary state for deterministic bulk
dynamics. The normalization in E¢LO) is given by
f-1
_ .2 L+1__ _p2y, L+t1
Pf(Tl!"'va):XfH F(Ti|Ti+l)v (11) Z :(1 a )B " (1 ﬁ )le " (15)
i=1 L B_a .
oL All expressions remain valid foi= 8 by taking the appro-
Pi(7; ’---’TL)ZYL_JHHJ I(7i 44| 7), (12)  priate limits.

. . IV. MATRIX PRODUCT
where x, y, and P,(n) are to be determined, and, is a

normalization. Substituting this ansatz into Ef), we find We now will construct a matrix product representation of
that P,(n) obeys the recursion relation the stationary state. This will turn out to be useful for calcu-
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lational reasons, but it also helps us to find the solution foln other words, the matrix operator in Ed.9) has two types
p<1. First the vectors are written as product states, of binary indices: the explicit ones, referring to the type of
flow, free or jammed, are contracted; and the internal ones,
the occupation numbers, are tensored.

L-1

=& V(r, 710, (16)
= V. ALGEBRA
Next we will show how the form of the solution obtained in
Sec. lll hints in the right direction.
The exact form ofP,(n) as given by Eq(14) suggests
another view at the structure of the probability distribution
function. This becomes clear by rewriting E44) as

Having found the stationary state for deterministic bulk
dynamics p=1) and its representation as a matrix product,
we now reverse the problem and show that the stationary
state may be found by also using the matrix product ansatz
(MPA) technique for stochastigpé 1) dynamics. In the fol-

n n lowing we will derive a matrix algebra from the MPA for the
P(n)=2, Po(2k)—(aB)Y2>, Po(2k—1), (170 ASEP,i.e., for arbitraryp. We will show that a finite dimen-
k=0 k=1 sional representation for this algebra can be foundpferl
o by using the solution found in Sec. IV.
wherePy is given by As usual for the MPA, the matrix produ€i9) will be

_ written as
Po(k):(xy) le(Tf,...,Tf+k)
XPi(Ttks1se-7)),s A\ ®L-D
B
=(ap)"a"" K212, (18) P=_ (W ¢ V) - (24
D

P; and P; are defined in Eqs(11) and(12). Thus Eq.(17)
tells us that the weight of the interface of widtin & equal
to a sum over the positions of a separator. Configurations twhere(A,B,C,D is a vector on the basig00), v(01), v(10),

the left of this separator are regarded as belonging to the freg11), with matrix valued entries. It is to be understood that
flow part, and configurations to the right as belonging to theeach entry of the tensor product is bra-ketted Wi1T4W| and
jammed part. There are different prefactors for even and odfly) . In Eq.(24), the tensored indices are explicit, while the
positions of the separator. After E(L7) is substituted into .o cted indices are implicit; this in contrast to Etf). In
Eg. (10), one may even place the separator inside the fre'ﬂwe following we will show that the transfer matrix for the

flow or the jammed flow, as the resulting additional termsasep with fully parallel update rules may be written s
vanish. This suggests that the stationary state may be written RT-1L, for which the following mechanism ensures that

as a matrix product, Eq. (24) is a stationary state:

PIE P(7y,...,7) 7 A
{7} A ~
B F sS\tt B I?
_<W| 0 J |V>/Z|_, (19 7.1<W|,C, c :7'1<W| E: ,
D
which is to be understood as a normal matrix multiplication, D %
but where the matrix elements are tensored. The matkces
andJ govern the free and jammed flow, respectively, wiile
is a matrix for the separator. Indeed, we find A
~ A
- _[*XF(0[0)v(00 xF(O|1)v(Ol)) B B
~|xF(1]oyv(10) 0 Rl C[IV)in=| ¢ |V)n (25)
(B(1-a)v(00) Av(0D) b D
=" apv(10 L (20 X
J:( 0 yJ(1|0)v(01)) " A . A
yJ(0|1)v(10) yJ(1|1)v(11) B A A B
. B B .
:( 0 av(01) ) 21) T Cl® C =l c|® C (26)
aBv(10) a(l—-pB)v(11))’ ) 5 5 )
0 v(01 [\ X - X
s=_ O epuOn] (22
(aB)v(10) 0

In order to find£, R, and T we introduce the probability
(W|=(1,1,0p), (V|=(8,0,1,D. (23 distribution



4902 JAN de GIER AND BERNARD NIENHUIS PRE 59

P71, s Tim 13052 Tis 1 s TL),s (27 value 0 corresponds to a hole both at titnandt+1, the
value 1 to a particle at timg and the value 2 to a particle
moving into sitei at timet+1. The introduction of such a
which corresponds to partial updated sequences witkhird states;=2 is necessary to incorporate correctly the
T1,...,Ti—y attimet+1 andr;,,...,7_attimet. The vari- fully parallel update rule. These probabilities correspond
ableo; can attain three different values, say 0, 1, and 2. Thavith the matrix product ansatz in the following way:

P(....7i_1;0 ,Ti+11---):Tl<W|"‘Y(Ti—z,Ti—l)Q(Ti—l,Ui)Y(Ti ’Ti+1)"'|v>7,_’ (29

wherer,=o; mod 2. This also shows why we need the fifth 1 B 0 0 0
matrix X=Y(0,2) for the intermediate states in E¢85) and 0 1- 0 0 1
(26). The equations, which defin€, for the probabilities R= 0 0 1 B 0
(27) are explicitly given by 0 0 0 1-8 0
P(....,0:0,.)=P(...;.0.0,..), With these definitions, Eq26) and(29) imply the following
P(...,0:1,.)=P(....0,1,..), algebra,
P(...,0;2,.)=pP(...;1,0,..), AA=AA, AB=AB, AX=pBC,
(29 A R - A oA N
P(...,1;0,.)=(1-p)P(...;1,0,..)+P(...;2,0,..), BC=(1-p)BC+XA, BD=BD+XB,
o L o (31
P(...,1;1,.)=P(...;1,1,.)+P(...;2,1,..), CA=CA, CB=CB, DD=DD,

P(....12,.)=0. ck=pbc, DE=(1-p)bC.

These equations immediately determine the mafrikn a
similar fashion the boundary operatafsand’R can be cal-
culated, and are given by

There also are relations related to the product formsof
which forbids that products like(7;_q,7)®V(1— 7,71 1)
occur in any physical quantity,

l-a 0 0 o0 R R R A R R R . N
0 1-« 0 0 AD=AC=BA=BB=BX=CC=CD=DA=DB=DX=0.
L= a 0 1-p O, (30 (32
0 @ 0 1 The boundary conditions from E5) with the explicit val-
0 0 p 0 ues of the matriceg andR [Eq. (30)] become

o WA= (1-a)o(WIA,  AlV)o=A|V)o+BB|V),,
o(WIB=(1-a)o(W|B, B|V)1=(1-B)B|V)1+X|V),,
(W|C=ag(WA+(1=p)(W|C, C|V)o=C|V)o+BDIV)y, (33)
1(W|D=ao(W[B+(W|D, D|V)1=(1-B)D|V),,

o WIX=py(W|C.

Any solution to Eqs(31), (32), and(33) thus automatically is a solution for the stationary state via E2.and(26). It is,
however, not obvious that the cancellation mechanism of &%8.and (26) is appropriate for this problem. Indeed, we will
see that for the case gi<1 we will need a slightly weakened version of E{®1) and(33).

By observation of explicit solutions for small system sizes, we have also inferred the following relations between the
matrices:
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DCB=apB((1-p)CB+DD+pafD),

BCB=aB(AB+BD+pafB),

(34)
BCA=aB((1—p)BC+AA+paBA),
DCA=aB(1-p)(DC+CA+paBC),
with the following boundary conditions:
o WIA=pB(1—a)o(W|, B|V)1=pe|V)o,,
o(WIB=pB(W|, D|V)1=pa(l-pB)[V)1,
(35)

W|CA=aB((WA+(1=p)(W|C), DC|V)o=aB(D|V);+(1-p)C|V)o),

(W|CB=aB((W|B+(W|D), BC|V)o=aB(A|V)o+B|V)1).

We believe Eqs(34) and(35) to be true for arbitrary system A=B(1—a), B=1, C=aB, D=a(l-p),
sizes. It turns out that these relations are particularly conve-
nient to obtain a representation. Using this representation in . . N
Egs.(31) and(33) to find the hatted matrices then gives an A=B(1-a)?, B=l—a, C=af(l-a), (39
easy proof of the stationarity of ansd@4).

Relations(32) can be easily fulfilled by writing -

D=a, ;Yzap
1 0 0 1
A=A® o ol B=B®(O O)’ with
(36)
0 0 00 Wol=B, Wil=1, [Vo)=1, [Vi)=a. (40
-cof? 9 o-osl ).

o . B. Representation forp=1
and similarly for the hatted matrices P P

In the case of deterministic dynamics in the bylks 1, a

. /1 0 . /0 1 two-dimensional representation of the subalgebra given by
A=A®(O o) B=B®(O O)' Eq. (31) for general values ofr and 8 can be found. The
matricesA, B, G and D can be easily read off from the
solution in Sec. IV, and are given by
. -~ (00 ~ ~ (0 O
C‘C®(1 o>' D‘D®(o 1)’ 87 A_(ﬁ(l—a) o) B—('B 1)
B 0 0/ ~\0 «a)
o (1 0) (41)
X=2®lg o) (a,B —a,B) (o 0
=lo g P7lo a(l—,B))'

The boundary vectors are then written as
The representation for the hatted matrices can then be found

_ 1 _ 0 using algebrg31) and its boundary condition&3), and is
Vo=we(g). a=lvoels) using al
(38)
o WI=(Wo|@(L1,0,  1(W[=(W1|2(0,1). . [B(1-a)? o) . (B(l-a) l-a
A=l 0 o) BEL o 0
VI. REPRESENTATIONS
A. Representation for 1-p=(1—a)(1-8) @:(O‘B(;_a) 8) @:(QO'B 0 , (42
Rajewski et al. [10] already remarked that the product “

form (24) is exact for ordinary numbers instead of matrices
on the line +p=(1—a)(1—B). Indeed, there exist a one- P af  a(l-p)
dimensional representation given by 1o a '
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with A representation that is valid for all values afand 8 can
also be constructed, but this particular one will be useful for
Wol=(8.0, (Wi|=(B.D), us in the sequel. First of all we would like to diagonalie
(43  =A+B+C+D to facilitate further calculations. To find the
Vo) = ( i) V)= ( 2) eigenvalues and eigenvectorsEBfwe define the vectors
C. Infinite-dimensional representation |Z>>o:nZO Z"e,, |Z>>1:nzo "f,. (46)

In Appendix A it is explained that for general valuesmpf

there exists a basige,,f,} on which the matrices take the |t will also be convenient to define the parameters
following form:

qg 1 00 az—p_a, b=—p_'8, (47)
0 g 10 aq Bq
= —p)= 00 1
D=B(1-p)=apBq d ' so that the boundary vectors may be expresse@es Ap-
0 0 0 ¢ .
: pendix A

(44 1-8
a 000 V)o=r7=5 0o, [V)i=xlb))r, (49

1 g 0O p

=C= 0 1 0
A=C=apq 0 0 ? q ' wherek is defined such that the normalization is given by
' o(WIV)o=B,  1(WIV)1=a. (49
whereq=y1—p. This representation does not lead to diver-
gent sums if In Appendix B it is shown that there exist vectdrsz 1))
that are linear combinations of the vectors defined in Egs.
a,f>1—1-p. (45 (46), which have the following properties:
|

Elzz" 1)), =A (2|z27 ) =aBd(z+z +a+q7Y)|zz7h) (50)
Elzz™)-=A_|zz7"))_=aeBa(q—q Hlzz H))-. (52)

By writing the boundary vectors as linear combinations of these eigenvg¢str£qs(B5) and(B7)], the normalization can
be expressed as

dz

2= (W (WDE (Vi M=% § = (- A AL (2 Kza)K(z), (52)
|z2|=14TIZ
where
_ @zh
K(Z,C)—m, c—a,b (53)
and

__1-p-(1-a)(1-§) _1-ab
“ aB(1-p) T p 4

Expression52) can be rewritten using the identities in Appendix C. We then find

—S.(b) S (a)—S.(b
ZL:_aﬁqsL;Z_aﬁﬁ )_S@-50) -

where

S.(c)= §<RL<c)— aBRL_1(C) (02— 1))= %(RL<c>+ paBR,_1(C), (56)
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L n
Rue)=(apa)t 2, 2 (q+ql—2>“‘( N

e 5
nJaer 4O (57)
(c<1) dz } .
o j%z|_14wizA+(z) K(z.e)(z=27). (58)
|
Note that the integral representatit®B) for R (c) is only ~(1-cDAL (O for c>1, o

valid for c<1. Under this condition it can be calculated to
give Eq.(57). Equation(57), however, is valid for all values
of ¢, which may be checked explicitly for small system sizeswhere
or by using another infinite-dimensional representation for
c>1.

In deriving the phase diagram we will need the latge
behavior of R, (c). Expression(57) for R (c) is similar to
that of the ASEP with a random sequential update; its as-
ymptotics can be calculated similaf4,12]. By identifying 2(1—a)
the terms that have the largest contribution to the sums we A+(a):aﬂp—a. (62)
find thatn~oL andm~2/(1-c) for c<1, m~2¢L for a(p—a)
c=1, andm~(c—1)oL/c for c>1, which give

9T 2¥q+q & AL (D)=aB(1+1-p)?

1 5 )2 1 A ;(b) is obtained fromA , (a) by interchangingx and B.
RL(C)~—(1TC) A (1)'——=p for c<1 (59

N (olL)
VII. EXPRESSIONS FOR THE CURRENT AND DENSITY
1 . o . .
~— A, (D" for c=1 (60) Us!ng the algebra, it is easy to derive the following ex-
J +{ (aL)? pression for the currert, = p{7;(1— 71 1)) :

1 . _

Jszz—L(o(W|+1(W|)E'CE'-"’2(|V>O+|V>1) (63

_ Zi VAR,
=pap| 5~ (1-23 1) +paB——(1-J 5|, (64)

L L

from which we find by induction,
Z|_,1

JL=pep Z (1=J-1). (65

The density profile is much harder to find from the algebra and our strategy will be to express all correlation function in terms
of the eigenvectors dt. In doing so, the correlation functions are easily expressed as integrals over the unit circle, and can be
calculated exactly by the residue theorem or asymptotically via the saddle-point method. We first demonstrate this for the
current. Calculating the action & on |z;z" 1)), using Eq.(B1) and reexpressing it in the eigenvecttesz 1)).. we find

A
Clzz ) =apal(L+2al2)~(1+2 0z Yl =ap g2z ) -2z ). @9
Inserting this into Eq(63), we find that
_ paBk dz B _ap
‘JL__ ZL §z|=14WiZA+(Z)L 1K(Z=a)K(Z!b)_m(aRLfl(a)_bRLfl(b))v (67)

which indeed fulfills Eq.(65).
In order to find the density profile, we now calculate the two-point correlatar . ), , which is given by

1 ) .
(7 Ti+1>L:Z—L(0<W| +(WHEIDE- (V) o+ | V)y). (69)
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This can be given in an integral representation using
Dlzz™)) . =aB(l-plz(1+209)[2)); -z (1+z )z ). (69)

Re-expressing Eq69) as a linear combination of eigenvectors using &zg), it then follows that

(Ti7Ti+1) =—a2ﬁ2q7( 5 ﬁ; ﬂA (W) K (w,a)(1+w? )W‘”é iA (2)- 7K (z,b)z(1+zq)Z"
TiTi+1/)L Z. &b Jw—12miw + ) q -2z + ) q
azﬁz%qu—i—l bq
=7 2, Rin2@Rn(b)+-73 (70
a?B%iq? ' ag+q?+1
=—Z—LmZ:0 Rm(a)RL—m—z(b)+1—TJL- (72)

Here we have made use of the fact that the product a
AL (W) A (2)- 7" can be written as a sum in two ways. <Ti>L:1+a
Equation (70) is useful for studying the right boundary,
while Eg. (71) is more suited for the left boundary. The
density profile is given by

(76)

l1-ai
@ L/
3. High density phase HD
This phase is characterized by~ 8, and the current and

()L =(mimi+ L+ IL/p. (72)  density can be obtained from those in the low density phase

by the particle hole symmetrid). They are given b
The easiest way to analyze the density profile is by looking y P y L y g y

at its lattice derivative B

a2B2~Rq2 ‘]+:1+ﬁ’ (77)

t()=(risL—(r)L=— Z—LRi—l(a)RL—i—l(b)-
73 () =135~ (1- e, (78)
The value of the current and the asymptotic behavidg Gf)
will determine the phase diagram. whereé 1= —In(B/a). Thus the density profile is flat except
near the left boundary where it increases exponentially from
VIIl. PHASE DIAGRAM its minimum valueg( 1), to its bulk value.
A. Casep=1

B. General values ofp

The two dimensional representati¢fd) for this case al- The current[Eq. (67)] may take three different values
low a simple evaluation of the current and density. The CUr'depending on the parametessand 8. These values corre-
rent takes two different values corresponding to I0W)  gnond to a low density phase, a high density phase and a so
and high densityHD) regions. called maximum current phase. The density profile in these
phases will be calculated and will give rise to a further dis-
crimination of phases within the low and high density phases
Here a<pB and the current and density profile are given(see Fig. 1

1. Low density phase LD

by
1. Low density phase LD
Jf:L, (74) This phase is characterized by the valaesb>1 or a
1ta <pB<1-+y1-p. The current and bulk density in this
phase is given by
< > :L 1+ ]'__’Be—r/§ (75)
L B : J . PaB _a(p-a)
T A.(a)tpaB p—a®’
where ¢ = —In(a/B) andr=L—i. The density profile is +(@)+paf P (79
flat except near the right boundary where it falls of exponen- p=1-Jla.

tially from its maximum valu€ 7 ), to the bulk value.
o We find an exponential decay of the density profile with a
2. Transition line from LD to HD length scale

On this linea= B. The current is still given by Eq.74) 11 1
but the density profile becomes linear, § =8 —& (80)
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1 4. Transition line from LD,; to the maximal current phase MC

_ LDy MC On this transition line the current and bulk value of the
T~ density are as in the maximum current phase. The slope of
T~ the density profile on this transition line is given by

LD N . () (1_p)1/4
\ L(i)=————
HDy \\ HDp 4\/;

\ Near the right boundary the slope decays algebraically as
r~32 Near the left boundary the slope of the density profile
a decays algebraically with a power of 1/2, but the amplitude
FIG. 1. Phase diagram in the 8 plane. Phase boundaries are at is Of. order 1L. Thus up to order 1/ corrections the density
a,f=1—I—p, anda= 8, where the transition is discontinuous profile may be regarded as flat near the left boundary.

in the density. On the dashed line, given by-f=(1-«)(1
—B), the mean field solution is exact.

(i/L) Y2 =372 (85)

5. Maximal current phase MC

This part of the phase diagram is characterizedably
with <1 or a,8>1—+1—p. In the maximal current phase the
current attains it maximum value which is first reached on its

£l=—In A+ (D) _ c=ab. 81) phase boundaries. Its value and the bulk value of the density
A, (c) are given by
The slope of the density profile is given Kyith r=_L—1i) B papB 1 1
Jmax_A+(1)+pa18_§(1_Vl_p), _E (86)

t (i)=(b—b 1)gl_(1—e H)e "V
_(1-a)(p-28+4%
(p—a®)(1-p)

Sinceb>1 the slope of the density profile is positive and the
density approaches its bulk value from above.

The slope of the density profile in this phase is given by

N (1—p)1/4_73/2 -32
t ()= 4\/;l (r/L) ™=~ (87)

(1—-e Ye e (82

Since its slope is negative the density approaches its bulk
value of p=1/2 from above a$ 2 near the left boundary

2. Transition line from LD, to LD, 2 ]
and from below ag ™~ ~'“ near the right boundary.

On this line, whereb=1 or B=1—+1—p, &, diverges
while &, remains finite. The bulk values are the same as in 6. High density phases Hpand HD,,

phase L[, butthe slope of the density profile now becomes The behavior of the density profile in the high density

2 phases and on their phase boundaries can be obtained from

t.(i)= aJ (1—e Yéa)g (r=Dléap =172 those of the low density phase by the particle hole symmetry

pvVom [see Eq(4)],
a(p—a) (1-p* Ti-i— 1o,

= 88
(p—a?) Jm(1-\1-p) aes B. ®9
X (1_e— 1/§a)e—(r—1)/§ar—1/2. (83)

7. Coexistence line

3. Low density phase LP This line is characterized bya=b>1 or a=p<1

This phase is determined Hy<1l<a or a<1—y1—p  —V1—p. The length{,=¢, remains finite but diverges.
< . Here the slope of the density profile still has a powerOn this line one finds a linear profile with a positive slope,

law correction to the exponential, but the power is different. 5
p—2a+a

al. As@(A(@—AL(b) W="=Ar

t ()=
p\/% (A+(2)~A(1)A () ~A(1) In the limit of small rates, i.e.¢=pa and B=pB and p
X (1—e Yéa)g "éay —312, (84  —0, we recover the results for the ASEP with random se-
guential updaté¢4,13]. By takingp— 1 the results reduce to

The slope changes sign at the cumeb ! or 1-p=(1  those derived in Sec. VIII A. Our results are in perfect agree-
—a)(1—B). This is the curve on which the mean field so- ment with those of Refl12].
lution is exact, and a one-dimensional representation of our In all phases and phase boundaries the current and bulk
algebra exists. On this line the stationary state completelgensity p satisfy the following relation which defines the
factorizes and the density profile is flat. fundamental diagram

(89
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J=11-1-4pp(1-p)). (90)  sites instead of one. In the general case the stationary state
can still be written as a product over matrices, but of infinite

Following Kolomeiskyet al. [14], we may understand the size. The stationarity of this product state can be proven by
phase diagram qualitatively by considering the domain walmeans of a cancellation mechanism which is a bit weaker
dynamics. In this picture two characteristic velocities are im-than in other cases. We have calculated the exact phase dia-
portant: the domain wall velocity and the collective velocity. gram using an explicit representation of the matrix algebra.
The collective velocity is the drift of the center of mass of aln this way we could, via a diagonalization procedure, derive
momentary local perturbation of the stationary state, and iexpression for the current and the density profile with rela-
related to the current by tive ease.

The results are independent of, and agree with, those of
Ref. [12], which were obtained by means of a different an-
satz. They prove the strength and the flexibility of the matrix
product ansatz, though until recently the fully parallel dy-
This velocity changes sign at=3, where the current takes npamical models have resisted solution. Even when the result-
its maximum value. For positive domain wall velocity (  ing algebra is cubidas in the present papeor quartic(in
>a) and a<1—+y1-p, an increase of the left boundary Ref.[12]), a representation could be obtained. Of course,
density leads to an increase of the bulk density siigg  now that the formalism has been set up, many other proper-
>0. This happens until the left boundary density eqgatsr  ties of the stationary state can be calculated. Instantaneous
a=1-—1—p. At this pointV,, changes sign, and a per- correlation functions are relatively straightforward. As our
turbation will no longer spread into the bulk. The system isrepresentation includes probability distributions involving
in the maximal current phase and a further increase of theonsecutive time steps, it is to be expected that the present
left boundary density does not lead to an increase of the bulkormalism is capable in principle of producing time depen-
density. ForB<a the system does not enter the maximaldent correlation functions. A more difficult test of the for-
current phase because of the negative domain wall velocitynalism is the calculation of the distribution of traveling
However, the overfeeding still occurs, which implies thattimes, for which it is necessary to follow a single particle as
further increase of the left boundary density beygndoes it flows through the system.
not lead to changes of the characteristic length scales in the
high density phase. This is seen in the divergence of the ACKNOWLEDGMENTS
length scalet, .

The correlations for the ASEP with fully parallel dynam- ~ We thank M. Ernst and A. Wolters for useful discussions.
ics are much stronger than for other dynamics. This becomeBhis work is part of the research program of the “Stichting
apparent when considering the relation between the lengtoor Fundamenteel Onderzoek der Materi@OM), which
scalesé&,, and the curents in the high and low density was financially supported by the “Nederlandse Organisatie

J
VcoII:%J(P)- (91

phases. The length, ;, can be written as voor Wetenschappelijk OnderzoékWO).”
Lr=6" &=g] (92
a J_v b Ji APPENDIX A: INFINITE-DIMENSIONAL
REPRESENTATION
where

As an example for finding infinite-dimensional matrices

1l I 1-Jmax 93 Ve explicitly construct the representation used in the main
&7 ==ln 1-J Jnax /| text. First we choose the following vectors as a basis:
This is in contrast to the random sequential and sublattice {eg,fo.€1.f1.62,f5,...}, (A1)
parallel dynamic$6,7,14, where
where
&l=—In K) (94) _

’ JIma 9n=(aBa) "(A-aB(1-p))"do.
In the latter cases this relation could be obtained directly by e"=Ag f.=Cg A2)
considering the domain wall as a biased random walker. We noon n
have no simple argument for the fluctuations in the domai _
wall position that leads to Eq93) in the case of fully par- r]—|ereq— 1-p, and we choosg, such that
allel dynamics. Dfg=aB(1-p)fy, Bfo=afe. (A3)

IX. CONCLUSION We then find the action of the matricéds B, G andD on

We have presented a stationary state solution of an asynihese vectors from Eq$34) and(35). For example, besides
metric simple exclusion process with fully parallel dynamics.Ed- (A3), we find, forn=1,
In the case of deterministic bulk dynamics the solution, ob-
tained directly from the master equations, has the form of a Df,=apq(fr-1tafy), (A4)
product over two-dimensional matrices. In contrast to
ASEP’s with other dynamics, the matrices depend on two Bf,=aBq (e, ,+qe,), (A5)
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so thatD and B are indeed given by E¢44). On the basis of to a term that vanishes when acted on ByD or (W|.

Eqg. (A1), the boundary vectors are given by Since (W|—q));=0 andB|—q));=D|—q)),=0, this is
1 the case if this term is a matrix of which the columns are
P _ _ 2 13 multiples of| —q)),. Thus, instead of the algebra obtained
1—,8<V°| (Val=#(1b,b%b%...), (A6) from Eq. (26), we find a solution of the algebra implied by
(Wol=k(1a,a%,ad,...), (A7) A
A ~
1 aq B I?
<W1|:m<WO|B= Kq_l ?,1,a,a2'a3,___), (A8) 7.1<W|,C C :T1<W| C y
5 b
where X
_ _ R (A11)
a= P pPF (A9) A
aq Ba A 5 A A
B A B B
and c | @R E? V=l c|®| c |V
pl-p-(1-a)(1-p)) D D D D
2_ -
K 2(1=5) (A10) X
This representation does not lead to divergencieshbf<1 /A T A
or a,>1—1—p. There are many possibilities in choos- [ A B A A A B
ing the set of basis vectors. We could for example dedine B A B | B B .
in a different way than was done in EGA3). The represen- C ®T E: | c “lcl|® c|® (f '
tation chosen here has some advantages which are exploitedp D D D D D
in the main text. It is, however, possible to choose a repre- X X
sentation which is valid for all values &f andb (Evans, ) i} (A12)
Rajewsky, and Speer gave an explicit example of such a
representationl2]). See Derridat al.[13] for a similar dis- r /A 7 A
cussion. B A A B
It turns out that for this representation we can find hatted - B B -
matrices satisfying the relations on the first line of E2f), SWITI | Clel o |=W| c]®f C
but not those on the second line. It is, however, possible to D D D D
relax the conditions of Eq31) a little in the following way. % %
Every matrix will be premultiplied by another matrix. In par- - } (A13)
ticular, C or D will be premultiplied byB or D (or ;{W| at

the boundary. We therefore do not have to satisfy the rela- A solution to this algebra still automatically gives rise to a
tions on the second line of E¢R1) identically, but only up  stationary state. We then find, in addition to Ed4),

1 (-t (—q? (-
o —q 1 (-t (—q)2
A=C+p2ep| (0> —q 1 ) , (Al4)

(—a® (-o* -q 1

1-2p —pX(—q) ' —-p*(-q) % -pA—-0)°

q 1-2p —p(—q)t —p¥-q)?
C=ap| O q 1-2p  —p*(-a) ! : (A15)
0 0 q 1-2p
1 0 0 0
-9 0 0 0
B=D—pap| (—q9)> 0 0 0 , D=D+pap, (A16)
0 00
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1 0 0 O
-q 0 0 O
X=pD+pap(l-p)| (—0)> 0 0 O (A17)
(= 0 0 0
|
APPENDIX B: EIGENVECTORS W W[z ) (2= YA, (D—A_)
It follows from a direct calculation that the actions of the ~° ! ’ T pB (zma)(zt-a)
matrices on the vectors defined by E46) are given by (BS)
Al2))o=aBa((Z"*+0)|2))o—2 'ey), (o{W]|+ (W) |Z;2"1))_=0. (B6)
Blz))1=aB(1+2q 1)|2))o, The vectorgV), and|V), can be expressed in the eigenvec-

(B1) lors using Eq(C1), from which we obtain
Clz))o=aBa((z *+a)|2))1—z o),

dz (z—z71) -
¢ = T |zz ).
Dl2))1=aBa(q+2)[2))1. 4=24miz (2=b)(z"~b)
Taking linear combinations of different vectofs)), and
|z))o such that terms witle, and f, drop out[15], we find
the following eigenvectors dE:

l_
=k (V)ot V= B2 -a))). - (B7)

The third term on the right hand side is a null vector, i.e.,

1zz7Y))==2|2))o— 27z 7))ot 7=(2)2)1 1(W|—q)),=0 andE|—q)); =0, and does not enter the cal-
- - culations.
—7.(Z Y|z H))1, (B2)
APPENDIX C: IDENTITIES
+
”*(Z):quz+chq’ 7_(z)=—q. (B3) The following identity which is frequently used through-

out this paper can be conveniently calculated looked up
in Ref.[16]) by writing the denominator of the integrand as

The eigenvalues corresponding to these vectors follow easil 4 X ! :
9 P 9 sum of two geometric series, and using the residue theorem

from Eqgs.(B1), and are

A (z)=aBq(z+z *+q+q7 ), o1 3g dz (zk—z*k)(z—zfl), o1

(B4) B J-14miz (z—c)(z *-c)
A_=apq(q—q1). (€D

From now on we takéz|=1. The following relations hold In a similar fashion the following integral can be calculated
for a<1 andb<1, ora,8>1—1-p: for c<1:

n

dz z—-z1 _
- 36 ——(2+z+z Ht" >
=0

L
=12z (z—c)(z *=c) ¢

L+n
>
k=0

(ZkL)CLJrnkl_(ZkL)CLnkl}, (CZ)

where 0<n=<L. Specializing ton=1 and rewriting the terms in the sum, we find that

dz (z-z7H*(2+z+z HN (=V N (2N-p| p+1
_ﬁz-lmﬂz (z—c)(z 1-c) = p—O( N >_(1+C)p- (C3

Another important identity that we use to express vectors in terms of the eigenvec®iis of
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d aBq?t
jgzl_ : pa (zz7 Yy =1z ) )(1+z 1) ({2 = (1+za)1((z7 1))

14miz A (2)—A_

fﬁ dz z 1 . 1 1
= P, gz m|z>>1— 1Jrzq|2 N1 (1+z7 )1 ((Z] = (1+za)((z ).
=1~ (1=g)[=an((—a~ 1. (Ca

This again can be simply evaluated using the residue theorem and the fagtthat

[1]
[1] K. Nagel and M. Schreckenberg, J. Phyg, 2221(1992. 3609(1994).

[2] M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito[10] N. Rajewsky, L. Santen, A. Schadschneider, and M. Schreck-

Phys. Rev. E51, 2939(1995. enberg, J. Stat. Phy82, 151 (1998.

[3] B. Derrida, E. Domany, and D. Mukamel, J. Stat. PH§a. [11] L. G. Tilstra and M. H. Ernst, J. Phys. &1, 5033(1998.
[12] M. R. Evans, N. Rajewsky, and E. R. Speer, J. Stat. Pltgs.

667 (1992. be publishey
FS? g Ez::zlaréd Eé)n[:anyangr;dJ.BStl(alit.e:hhlj/i—iz’JZYFZSSZQ;;.L?% [13] B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, J. Phys.
. T ' : o A 26, 1493(1993.
(1990'__ [14] A. B. Kolomeisky, G. Schtz, E. B. Kolomeisky, and J. P.
[6] G. Schitz, Phys. Rev. 7, 4265(1993. Straley, J. Phys. /81, 6911(19989.
[7] H. Hinrichsen, J. Phys. R9, 3659(1996. [15] V. Karimipour, Phys. Rev. 59, 205 (1999.
[8] A. Honecker and I. Peschel, J. Stat. Ph§8. 319 (1997). [16] I. S. Gradshteyn and I. M. RyzhiK;able of Integrals, Series

[9] S. Yukawa, M. Kikuchi, and S. Tadaki, J. Phys. Soc. %8). and ProductgAcademic, London, 1980



