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Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate
the shear viscosity of fluids

Florian Müller-Plathe
Max-Planck-Institut fu¨r Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany

~Received 2 November 1998!

A nonequilibrium method for calculating the shear viscosity is presented. It reverses the cause-and-effect
picture customarily used in nonequilibrium molecular dynamics: the effect, the momentum flux or stress, is
imposed, whereas the cause, the velocity gradient or shear rate, is obtained from the simulation. It differs from
other Norton-ensemble methods by the way in which the steady-state momentum flux is maintained. This
method involves a simple exchange of particle momenta, which is easy to implement. Moreover, it can be
made to conserve the total energy as well as the total linear momentum, so no coupling to an external
temperature bath is needed. The resulting raw data, the velocity profile, is a robust and rapidly converging
property. The method is tested on the Lennard-Jones fluid near its triple point. It yields a viscosity of 3.2-3.3,
in Lennard-Jones reduced units, in agreement with literature results.@S1063-651X~99!03105-0#

PACS number~s!: 66.20.1d, 61.20.Ja, 02.70.2c
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I. INTRODUCTION

Linear-response theory relates a fluxJ ~e.g., matter, en-
ergy, momentum! to a thermodynamic driving force or fiel
E, which usually is a gradient of some quantity~e.g., activity,
temperature, flow velocity!. The proportionality constant is
the corresponding transport coefficientk:

J52kE. ~1!

The flux is defined as the amount of the quantity transpo
per time through an area perpendicular to the flux directi
We note that, e.g., in an anisotropic medium, the directi
of J andE need not be collinear in which case their vector
nature has to be taken into consideration andk becomes a
tensor. In isotropic fluids, however, we can use the sc
form @Eq. ~1!#.

Transport coefficients can be calculated by equilibriu
molecular dynamics~MD! calculations using the appropria
Einstein or Green-Kubo relations@1–3#. The alternative
route are nonequilibrium molecular dynamics~NEMD!
simulations@3,4#: An appropriate perturbationE is applied
which is not necessarily the same as in the experiment,
which can be shown to generate the same response@4#. Then,
the ensemble average of the resulting flux^J& is measured
and the ratio of flux and field gives the transport coefficie
k. There are many ways of setting up NEMD simulatio
@4#. In most of them, the field is applied and the flux
measured.

In this contribution, we consider a scheme in which cau
and effect are reversed in an NEMD simulation: The flux
imposed and the corresponding field is measured. S
methods, also known as Norton-ensemble methods@4–7#,
have their advantages in cases where the flux is difficul
define microscopically or is slowly converging. In contrast
previous methods, the one presented in this article can
made, in certain cases, to conserve the total energy as we
the total linear momentum, so it can be used in a micro
nonical ensemble, i.e., without an additional thermos
Moreover, it is simple to implement and generates interm
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diate data which is robust and easy to analyse. Similar c
cepts have been used by Hafskjoldet al. @8–10# and by us
@11–13# to calculate thermal conductivities and Soret coe
cients. In this article, it is extended to the practically mo
important calculation of the shear viscosity.

II. METHOD

The shear viscosity connects a shear field with a flux
transverse linear momentum@14#. The shear field is a gradi
ent of one component of the fluid velocity, say thex direc-
tion, with respect to another direction, say thez direction,
]vx /]z . It is also denoted as the shear rate. The momen
flux j z(px) is collinear: It is thex component of the momen
tum px transported inz direction per given time and per un
area, see Fig. 1. It can also be regarded as an off-diag
~xz! component of the stress tensor. The proportionality
efficient is the shear viscosityh:

j z~px!52h
]nx

]z
. ~2!

FIG. 1. Geometry of the nonequilibrium situation. A gradient
vx is set up in thez direction by shearing the liquid. As a result,x
momentum flows in thez direction, giving rise to a momentum flux
j z(px) through thexy plane of areaA.
4894 ©1999 The American Physical Society
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The momentum fluxj z(px) is defined as the momentum
flowing through a surface perpendicular to the flux direct
~z! of areaA during a timet. In SI units it has, therefore, th
dimension kg m21 s22. Since the velocity gradient has th
unit s21, the unit of the viscosity is 1 Poise51 kg m21 s21.

The momentum flux is imposed on the system in an
physical way. The periodic simulation box is subdivided in
slabs along thez coordinate~Fig. 2!. The atoms inside the
slab atz50 ~and its period images! are propelled in the1x
direction, those inside the slab atz5Lz/2 ~with Lz the box
length in thez direction! in the2x direction. This is accom-
plished by finding the atom most moving against the des
slab movement: In the slab moving in the1x direction (z
50), the atom with the largest momentum component in
2x direction ~5the atom with the smallestpx) is found.
Likewise, in the slab moving in the2x direction (z
5Lz/2), the atom with the largest momentum componen
the 1x direction ~5the atom with the largestpx) is found.
Then thepx of the two atoms are interchanged. N.B. If bo
atoms have the same mass, the unphysical momentum
conserves both linear momentum and kinetic energy of
system as a whole. Since atom positions are not changed
potential energy and, hence, the total energy of the syste
conserved.

The amount of momentumDpx transferred from thez
5Lz/2 slab to thez50 slab is precisely known. If momen
tum swaps are repeated periodically, the total momen
transferred in a simulationPx is the sum of theDpx . The
system responds to the nonequilibrium situation by lett
momentum flow in the opposite direction via a physic
mechanism~friction!. In the steady state, the rate of mome
tum transferred unphysically by momentum swaps is eq
to that of momentum flowing back through the fluid by fri
tion. Hence, the momentum fluxj z(px) can be calculated.

j ~px!5
Px

2tA
, ~3!

wheret is the length of the simulation andA5LxLy ~Fig. 1!,
the factor 2 arises because of the periodicity of the sys
@11#.

The physical momentum current gives rise to a veloc
profile in the fluid ~see Fig. 2!. The flow velocityvx in x
direction in every slab is calculated as the average of thevx,i
of all atomsi in that slab. If the momentum flux is not to

FIG. 2. Schematic view of the periodic simulation box.
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large the velocity profile is approximately linear an
^]vx /]z& and its error can be obtained by a linear regressi
The viscosity is then given by Eq.~2!. Its error can be esti-
mated using the rules for error propagation from the erro
the velocity gradient, the value forj z(px) at steady state
being known exactly. If the velocity profile is not linear th
means that the efficiency of the momentum transfer~;1/h!
is not uniform across the system. This indicates that the m
mentum flux is too large, that the mechanism of moment
transfer is no longer uniform, and that the linear-respo
regime has been left. Velocity profiles are shown in Fig.
The interval between velocity exchangesW is varied be-
tween 3 and 1200 time steps. The applied momentum
thus varies by more than 2 orders of magnitude. Except
the highest momentum fluxes (W<15Dt), the velocity gra-
dient is uniform throughout the system. Surprisingly, even
the slightly nonlinear regime the viscosity can be calcula
with reasonable accuracy~see below!.

At this point, one might ask how there can be shear fl
apparently without viscous heating. The answer is that th
is viscous heating but the excess heat is drained by the
mentum exchange itself. It acts as an internal thermostat,
a mechanism that removes the heat generated by frict
The algorithm, that maybe thought of as a Maxwell dem
selectively picks particles with the largest velocity comp
nent ui5vi2^v& against the flow direction of the slab̂v&.
The peculiar velocitiesui , on the other hand, define the sla
temperature. After the exchange, the peculiar velocity of
particle is in the direction of the local flow and, although t
absolute velocity is on average unchanged, the peculiar
locity and, thus, the temperature has decreased. There
the two slabs in which the momentum exchange takes p
are the heat sinks where the heat generated by frictio
disposed of. As a consequence, a temperature profile ac
the box is expected. This is indeed found in Fig. 4, where
show the fraction of kinetic energy calculated from the p
culiar velocities, i.e., our definition of local temperature. F
the strongest perturbations@W53,15, Fig. 4~b!# the tempera-
ture profile is a parabola. This is intuitively understood, sin
a linear flow velocity profile causes a quadratic kinetic e
ergy profile associated with the flow. For the small perturb
tions @Fig. 4~a!#, the situation is less clear. There, the regio
of strongest viscous heating are not necessarily halfway

FIG. 3. Velocity profiles in the simulation cell~only one-half is
shown! for different intervals of momentum interchange~number of
time stepsW between momentum exchanges!. Lennard-Jones re-
duced units are used.
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tween the heat sinks. For the time being, we report this a
phenomenon. It still remains to be clarified if this is a phy
cal effect or results from insufficient statistics or from t
finite width of the slabs.

III. COMPUTATIONAL DETAILS

The system was composed of 2592 atoms of massm in-
teracting via the Lennard-Jones~LJ! potential

V~r !54«F S s

r D 12

2S s

r D 6G ~4!

with a cutoff of 3s. The size of the orthorhombic periodi
simulation cell was 10.0587s310.0587s330.1762s, corre-
sponding to a reduced number densityr* 5rs350.849. The
temperature wasT* 5kBT/«50.722. The system was thu
very close to the triple point of the LJ fluid. In the constantT
runs, the temperature was maintained by weakly couplin
a temperature bath@15# with the coupling time t* of
0.464(«/ms2)1/2, unless noted otherwise. Constant-ene
runs were preceded by equilibration runs at the same t
perature. The time step wasDt* 5Dt(«/ms2)1/256.965
31023. A multiple-time-step scheme based on the veloci
Verlet algorithm @16# was used with the parameters as
Ref. @11#. A Verlet neighbor list was updated every 12 tim
steps, the update used indexing of the particles accordin
their z direction @11#. The momentum flux was imposed i
thez direction, the number of slabs was 20~see Fig. 2!. The
simulation times were 15 000 time steps (W53), 60 000
time steps (W515,60), and 300 000 time steps (W
5300,1200), respectively. For reference, the LJ redu
units of the relevant transport quantities arej z* (px)
5 j z(px)s

3«21, (]vx /]z)* 5(]vx /]z)(ms2/«)1/2, h*
5hs2(«m)21/2.

FIG. 4. Temperature profile across the simulation cell. For e
slab, the figure shows the kinetic energy calculated from pecu
velocities, i.e., the ‘‘temperature,’’ relative to the total kinetic e
ergy calculated from the total velocities, i.e., including the d
velocity. In order to improve statistics, temperatures of symme
cally equivalent slabs have been averaged. The root-mean-sq
fluctuations of temperatures within individual slabs are of the or
of 0.1 on the scale of this figure. For clarity, the figure is split in
two parts with different scaling of the ordinate. Lennard-Jones
duced units are used.
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The momentum-exchange algorithm is, in princip
energy-conserving. However, there is a small nonconse
tion of energy in practice due to discretizing Newton’s equ
tion of motion into finite time steps. The Verlet algorithm
tacitly assumes that, over the length of the time step,
force acting on a particle is constant. This is no longer tru
a discontinuity is imposed on the trajectory and it will lead
some loss of accuracy in the integration. In practical cal
lations of viscosities, the perturbation can be conside
small, since only two out of several thousand particles
affected every several dozen or several hundred time st
Moreover, in our analysis of the velocity profile we disrega
the two slabs in which the momentum exchange takes pl
On the other hand, the discontinuous trajectories make
algorithm difficult to analyze from a purely theoretical poi
of view. One also has to keep in mind that the moment
exchange algorithm produces not only the intended velo
profile of periodicityLz , but also a concomitant temperatu
profile of periodicityLz/2.

IV. RESULTS AND DISCUSSION

The validity of the linear-response relation@Eq. ~2!# is
tested in Fig. 5. Linear response appears to hold even for
strongest applied perturbation. This indicates that, altho
the viscosity is not completely uniform over the simulatio
cell ~see Fig. 3!, these heterogeneities tend to cancel out.
very small momentum transfer, the resulting velocity gra
ent is blurred by noise, so longer simulation times would
needed here. Constant-temperature and constant-en
simulations are both linear and give the same slope in
gions were the slope converges well.

For all perturbations, the viscosity has been calculated
Eq. ~2!. In Fig. 6, it is seen that the viscosity is not we
defined at very low perturbations (W5300,1200). At the
strongest perturbation (W53), the onset of nonlinearity is
visible. In between (W515,60), there is a usefully wide pla
teau region~the abscissa in Fig. 6 is plotted logarithmicall!
from which the viscosity can be reliably obtained. Except
the two smallest perturbations, constant-energy and cons
temperature simulations give the same viscosity. Most ca
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FIG. 5. Linear response relation between the velocity grad
~shear rate! and the momentum flux~stress!. The plot follows the
customary presentation with the perturbation as the abscissa an
resulting flux as the ordinate, although the perturbation is app
reversely in this work. Solid line, constant energy; dashed li
constant temperature. Lennard-Jones reduced units are used.
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PRE 59 4897REVERSING THE PERTURBATION IN . . .
lations of the LJ triple-point viscosity have used consid
ably smaller systems~108 to 256 particles! which yield ah*
of about 3.0. However, using larger systems~up to 1372
particles!, Palmer@17# has estimatedh* (k* 50) to be 3.25
60.08, k* 5ks being the reciprocal lattice vector. Ou
simulation cell is large enough in thez direction fork* to be
close to zero. Therefore, it is no surprise that all our plat
values ofh* 53.2-3.3 are very close to the literature es
mate. Note, however, that because of the periodicity of
perturbation, the viscosity calculated by this method belo
to a certaink, and thek* 50 limit has to be found by sys
tematically varying the box length.

The nonequilibrium scheme presented above conse
total linear momentum as well as the total energy of
system. Hence, it does not require an external thermostat
the other hand, one may want to use it together with a th
mostat~and/or manostat! for practical reasons. It is, there
fore, worth knowing if and how a thermostat affects t
value of the calculated viscosity. The Berendsen thermo
@15# is often used for its simplicity and robustness, ev
though it is not derived from a Hamiltonian and has not be
shown to generate a canonical ensemble. In Fig. 7 it is
vestigated how the intensity of thermostatting, the value
the coupling timet* , changes the calculated viscosity. T
this end,t* has been varied over 6 orders of magnitud
Figure 7 shows that the viscosity does depend on the ch
of t* . This dependence appears to be rather erratic. Al
the values are, however, close to each other, the stan
deviation being 0.12, and to the microcanonical val
Therefore, thermostats have to be watched for their influe
on the viscosity if used with this algorithm, as with othe
but they are not likely to distort the results qualitatively.

V. SUMMARY AND OUTLOOK

The nonequilibrium method for calculating the shear v
cosity presented reverses the customary cause-and-effec

FIG. 6. Lennard-Jones triple-point viscosity calculated at diff
ent momentum transfer rates. Solid circles, constant energy; o
squares, constant temperature. Lennard-Jones reduced unit
used.
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ture: the effect, the momentum flux, is imposed, whereas
cause, the velocity gradient, is calculated from the simu
tion. It differs from other Norton-ensemble methods by t
way, in which the steady-state momentum flux is maintain
It involves a simple exchange of particle momenta, which
easy to implement. The exchange events, although unph
cal, conserve the total linear momentum as well as the t
energy if the masses of the particles are equal. In this c
no external thermostat is needed. The resulting raw data
velocity profile, is a robust and rapidly converging proper

A similar momentum and energy-conserving rever
perturbation scheme has recently been used to study the
conductivity and thermal diffusion@11–13#. There, the rel-
evant energy flux could also be set up using only veloc
exchanges between particles. It is easy to see how the p
ciple of reverse perturbation can be extended to calcu
other transport coefficients. However, it is less clear if
extension is useful in all cases. For example, it would be n
to calculate the mutual diffusion coefficient in a binary flui
In order to maintain an interdiffusion current, one wou
have to exchange particle identities, which means excha
ing force field parameters. While this is possible, it necess
ily destroys the conservation of total energy, which is t
beauty of the present method. Of course, one may give b
species the same interaction parameters and just ‘‘color’’~la-
bel! them differently. This is an established method for c
culating the self-diffusion coefficient@18# which is obtained
from the color gradient.

ACKNOWLEDGMENTS

I would like to thank Professor Denis J. Evans who co
tributed much to my understanding of the algorithm, and
Burkhard Dünweg for many enlightening discussions abo
the subject.

-
en
are

FIG. 7. Influence of the coupling time of the weak-couplin
thermostat on the calculated viscosity. The coupling timet* is l
30.464(«/ms2)1/2, the logarithm of the scale factorl is used as
the abscissa. The momentum-exchange intervalW was 60 for all
calculations in this figure. Lennard-Jones reduced units are use
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