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Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate
the shear viscosity of fluids

Florian Muler-Plathe
Max-Planck-Institut fu Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
(Received 2 November 1998

A nonequilibrium method for calculating the shear viscosity is presented. It reverses the cause-and-effect
picture customarily used in nonequilibrium molecular dynamics: the effect, the momentum flux or stress, is
imposed, whereas the cause, the velocity gradient or shear rate, is obtained from the simulation. It differs from
other Norton-ensemble methods by the way in which the steady-state momentum flux is maintained. This
method involves a simple exchange of particle momenta, which is easy to implement. Moreover, it can be
made to conserve the total energy as well as the total linear momentum, so no coupling to an external
temperature bath is needed. The resulting raw data, the velocity profile, is a robust and rapidly converging
property. The method is tested on the Lennard-Jones fluid near its triple point. It yields a viscosity of 3.2-3.3,
in Lennard-Jones reduced units, in agreement with literature regait663-651X%99)03105-0

PACS numbd(s): 66.20+d, 61.20.Ja, 02.76.c

[. INTRODUCTION diate data which is robust and easy to analyse. Similar con-
cepts have been used by Hafskj@tal. [8—10] and by us
Linear-response theory relates a fliiXe.g., matter, en- [11-13 to calculate thermal conductivities and Soret coeffi-
ergy, momentumto a thermodynamic driving force or field cients. In this article, it is extended to the practically more
E, which usually is a gradient of some quantigyg., activity,  important calculation of the shear viscosity.
temperature, flow velocily The proportionality constant is
the corresponding transport coefficieat II. METHOD

J=—«E. (1) The shear viscosity connects a shear field with a flux of
transverse linear momentufh4]. The shear field is a gradi-

The flux is defined as the amount of the quantity transporte@nt of one component of the fluid velocity, say thelirec-

per time through an area perpendicular to the flux directiontion, with respect to another direction, say thelirection,

We note that, e.g., in an anisotropic medium, the directiongvx/dz. It is also denoted as the shear rate. The momentum
of JandE need not be collinear in which case their vectorial flux j,(py) is collinear: It is thex component of the momen-
nature has to be taken into consideration andecomes a tum p, transported irz direction per given time and per unit
tensor. In isotropic fluids, however, we can use the scala@rea, see Fig. 1. It can also be regarded as an off-diagonal
form [Eq. (1)]. (x2 component of the stress tensor. The proportionality co-

Transport coefficients can be calculated by equilibriumefficient is the shear viscosity:
molecular dynamicéMD) calculations using the appropriate
Einstein or Green-Kubo relationgl-3]. The alternative i (D)= % 2
route are nonequilibrium molecular dynami¢®lEMD) J2Px 757
simulations[3,4]: An appropriate perturbatiok is applied
which is not necessarily the same as in the experiment, but
which can be shown to generate the same resgers&hen,
the ensemble average of the resulting flidx is measured
and the ratio of flux and field gives the transport coefficient
k. There are many ways of setting up NEMD simulations
[4]. In most of them, the field is applied and the flux is
measured.

In this contribution, we consider a scheme in which cause
and effect are reversed in an NEMD simulation: The flux is
imposed and the corresponding field is measured. Such
methods, also known as Norton-ensemble metHdds7],
have their advantages in cases where the flux is difficult to
define microscopically or is slowly converging. In contrast to
previous methods, the one presented in this article can be
made, in certain cases, to conserve the total energy as well as F|G. 1. Geometry of the nonequilibrium situation. A gradient in
the total linear momentum, so it can be used in a microcap, is set up in thez direction by shearing the liquid. As a resut,
nonical ensemble, i.e., without an additional thermostatmomentum flows in the direction, giving rise to a momentum flux
Moreover, it is simple to implement and generates intermei,(p,) through thexy plane of area.
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FIG. 2. Schematic view of the periodic simulation box. FIG. 3. Velocity profiles in the simulation celbnly one-half is

shown for different intervals of momentum interchangeimber of

The momentum fluxj,(p,) is defined as the momentum time stepsW between momentum exchangekennard-Jones re-
flowing through a surface perpendicular to the flux directionduced units are used.
(2) of areaA during a timet. In Sl units it has, therefore, the . o . .
dimension kgm's 2 Since the velocity gradient has the large the velocity profile is approximately linear and
unit 5%, the unit of the viscosity is 1 Poisel kg m s, (dvy/dz) and its error can be obtained by a linear regression.

The momentum flux is imposed on the system in an unthe V|sc0_5|ty is then given by E@R). Its error can be esti- _
physical way. The periodic simulation box is subdivided into™ated using the rules for error propagation from the error in
slabs along the coordinate(Fig. 2. The atoms inside the the velocity gradient, the value far(p,) at steady state
slab atz=0 (and its period imagesare propelled in ther x being known exactly. If the velocity profile is not linear this
direction, those inside the slab at L /2 (with L, the box ~Means that the efficiency of the momentum transfet/7)
length in thez direction in the —x direction. This is accom- is not unlform_ across the system. This |nd|_cates that the mo-
plished by finding the atom most moving against the desired€ntum flux is too large, that the mechanism of momentum
slab movement: In the slab moving in thex direction transfer is no longer unlform, and_that the Ilnear—_response
—0), the atom with the largest momentum component in thé€9ime has been left. Velocity profiles are shown in Fig. 3.
—x direction (=the atom with the smallesp,) is found. he interval betwee_n velocity exchangh_?aé is varied be-
Likewise, in the slab moving in the-x direction ( tween 3 and 1200 time steps. The applied momentum flux

—L,/2), the atom with the largest momentum component inthus varies by more than 2 orders of magnitude. Except for

the +x direction (=the atom with the largegt,) is found. the highest momentum fluxe$\= 15At), the velocity gra-

Then thep, of the two atoms are interchanged. N.B. If both dient is uniform throughout the system. Surprisingly, even in

atoms have the same mass, the unphysical momentum sw e slightly nonlinear regime the viscosity can be calculated
ith reasonable accuradgee below.

conserves both linear momentum and kinetic energy of th At thi it one miaht ask how ther n be shear flow
system as a whole. Since atom positions are not changed, the S point, oneé might ask no €re can be shear 1o

potential energy and, hence, the total energy of the system faspp_arently With.OUt viscous heating. The_ answer is that there
conserved ’ ' IS viscous heating but the excess heat is drained by the mo-

The amount of momenturap, transferred from thez mentum exchange itself. It acts as an internal thermostat, i.e.,
—L./2 slab to thez=0 slab is précisely known. If momen- & mechanism that removes the heat generated by friction.
=L, = ] -

tum swaps are repeated periodically, the total momenturxhe a!gonthm, that m_aybe thought of as a Maxvyell demon,
transferred in a simulatioR, is the sum of the\p,. The selectively picks particles with the largest velocity compo-

system responds to the nonequilibrium situation by lettin intui=\1ii—r<\>/)lagji§|n§t thﬁ th!IOW t?]lrercl':lor?dofj t?i?n SL(’;}W)-I b
momentum flow in the opposite direction via a physicalterﬁ F:Z;Ju; :ft(:r: theelz;I Ie,xghaneeo thee uf)lcul,iarevelf)cite gfathe
mechanisntfriction). In the steady state, the rate of momen- P ) ge, P y

tum transferred unphysically by momentum swaps is equatParticle is in the direction of the local flow and, although the
to that of momentum flowing back through the fluid by fric- absolute velocity is on average unchanged, the peculiar ve-

. . locity and, thus, the temperature has decreased. Therefore,
tion. Hence, the momentum fly(p,) can be calculated. the two slabs in which the momentum exchange takes place

P are the heat sinks where the heat generated by friction is
i(po)= X 3) disposed of. As a consequence, a temperature profile across
2tA the box is expected. This is indeed found in Fig. 4, where we
show the fraction of kinetic energy calculated from the pe-
wheret is the length of the simulation and=L,L, (Fig. 1), culiar velocities, i.e., our definition of local temperature. For
the factor 2 arises because of the periodicity of the systerthe strongest perturbatiof®/= 3,15, Fig. 4b)] the tempera-
[11]. ture profile is a parabola. This is intuitively understood, since
The physical momentum current gives rise to a velocitya linear flow velocity profile causes a quadratic kinetic en-
profile in the fluid (see Fig. 2 The flow velocityv, in X  ergy profile associated with the flow. For the small perturba-
direction in every slab is calculated as the average obthe tions[Fig. 4(a)], the situation is less clear. There, the regions
of all atomsi in that slab. If the momentum flux is not too of strongest viscous heating are not necessarily halfway be-
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FIG. 5. Linear response relation between the velocity gradient
FIG. 4. Temperature profile across the simulation cell. For eactshear rateand the momentum fluxstress. The plot follows the
slab, the figure shows the kinetic energy calculated from peculiafustomary presentation with the perturbation as the abscissa and the
velocities, i.e., the “temperature,” relative to the total kinetic en- resulting flux as the ordinate, although the perturbation is applied
ergy calculated from the total velocities, i.e., including the drift reversely in this work. Solid line, constant energy; dashed line,
velocity. In order to improve statistics, temperatures of symmetri-constant temperature. Lennard-Jones reduced units are used.
cally equivalent slabs have been averaged. The root-mean-square
fluctuations of temperatures within individual slabs are of the order Theé momentum-exchange algorithm is, in principle,
of 0.1 on the scale of this figure. For clarity, the figure is split into €nergy-conserving. However, there is a small nonconserva-
two parts with different scaling of the ordinate. Lennard-Jones retion of energy in practice due to discretizing Newton’s equa-
duced units are used. tion of motion into finite time steps. The Verlet algorithm
tacitly assumes that, over the length of the time step, the
tween the heat sinks. For the time being, we report this as #rce acting on a particle is constant. This is no longer true if
phenomenon. It still remains to be clarified if this is a physi-a discontinuity is imposed on the trajectory and it will lead to
cal effect or results from insufficient statistics or from the some loss of accuracy in the integration. In practical calcu-
finite width of the slabs. lations of viscosities, the perturbation can be considered
small, since only two out of several thousand particles are
affected every several dozen or several hundred time steps.
Moreover, in our analysis of the velocity profile we disregard
The system was composed of 2592 atoms of nmags-  the two slabs in which the momentum exchange takes place.
teracting via the Lennard-Jonésl) potential On the other hand, the discontinuous trajectories make the
algorithm difficult to analyze from a purely theoretical point
o 12 g
7-[7

of view. One also has to keep in mind that the momentum
(4) exchange algorithm produces not only the intended velocity
with a cutoff of 3r. The size of the orthorhombic periodic
simulation cell was 10.0587x 10.0584 X 30.1762r, corre-

profile of periodicityL,, but also a concomitant temperature
profile of periodicityL ,/2.
sponding to a reduced number dengity= po°=0.849. The IV. RESULTS AND DISCUSSION
temperature wag* =kgT/e=0.722. The system was thus  The validity of the linear-response relatigiq. (2)] is
very close to the triple point of the LJ fluid. In the constdnt- tested in Fig. 5. Linear response appears to hold even for the
runs, the temperature was maintained by weakly coupling tetrongest applied perturbation. This indicates that, although
a temperature battj15] with the coupling time 7 of  the viscosity is not completely uniform over the simulation
0.464(/ma?)™?, unless noted otherwise. Constant-energycell (see Fig. 3, these heterogeneities tend to cancel out. At
runs were preceded by equilibration runs at the same temyrery small momentum transfer, the resulting velocity gradi-
perature. The time step waAt*=At(e/mo?)Y?=6.965 entis blurred by noise, so longer simulation times would be
X 10" 3. A multiple-time-step scheme based on the velocity-needed here. Constant-temperature and constant-energy
Verlet algorithm[16] was used with the parameters as insimulations are both linear and give the same slope in re-
Ref.[11]. A Verlet neighbor list was updated every 12 time gions were the slope converges well.
steps, the update used indexing of the particles according to For all perturbations, the viscosity has been calculated via
their z direction[11]. The momentum flux was imposed in Eq. (2). In Fig. 6, it is seen that the viscosity is not well
the z direction, the number of slabs was &®e Fig. 2 The  defined at very low perturbations\(=300,1200). At the
simulation times were 15000 time step#/£3), 60000 strongest perturbation§=3), the onset of nonlinearity is
time steps YW=15,60), and 300000 time stepsW( visible. In between\(V=15,60), there is a usefully wide pla-
=300,1200), respectively. For reference, the LJ reducedeau regionthe abscissa in Fig. 6 is plotted logarithmically
units of the relevant transport quantities aié(p,) from which the viscosity can be reliably obtained. Except for
=j(pyaie ™, (dv,ldz)* =(dvyldz)(ma?e)¥?  5*  the two smallest perturbations, constant-energy and constant-
=po?(em) 12 temperature simulations give the same viscosity. Most calcu-

IIl. COMPUTATIONAL DETAILS

6
V(r)=4s
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FIG. 6. Lennard-Jones triple-point viscosity calculated at differ- FIG. 7. Influence of the cquphn_g time of the_wea}k-cpupllng
thermostat on the calculated viscosity. The coupling titfieis A

ent momentum transfer rates. Solid circles, constant energy; ope

2\1/2 : H
squares, constant temperature. Lennard-Jones reduced units 5](58464(8./m0 )~ the logarithm of the sc_ale factar is used as
used. the abscissa. The momentum-exchange inteWakas 60 for all

calculations in this figure. Lennard-Jones reduced units are used.
lations of the LJ triple-point viscosity have used consider-
ably smaller system&l 08 to 256 particl@swhich yield an* ture: the effect, the momentum flux, is imposed, whereas the
of about 3.0. However, using larger systeup to 1372  cause, the velocity gradient, is calculated from the simula-
particleg, Palmer[17] has estimatedy* (k* =0) to be 3.25 tjon. It differs from other Norton-ensemble methods by the
*0.08, k* =ko being the reciprocal lattice vector. Our way, in which the steady-state momentum flux is maintained.
simulation cell is large enough in tizedirection fork™ to be |t involves a simple exchange of particle momenta, which is
close to zero. Therefore, itis no Surprise thata” our plate.aléasy to imp'ement_ The exchange eventS, a|th0ugh unphysi_
values of »* =3.2-3.3 are very close to the literature esti- 5] "conserve the total linear momentum as well as the total
mate. Note, however, that because of the periodicity of OUpnergy if the masses of the particles are equal. In this case,
perturbation, the viscosity calculated by this method belongg, external thermostat is needed. The resulting raw data, the
to a certaink, and thek* =0 limit has to be found by sys- \e|acity profile, is a robust and rapidly converging property.

tematically varying the box length. A similar momentum and energy-conserving reverse-

The nonequilibrium scheme presented above cOnserves, . mation scheme has recently been used to study thermal
total linear momentum as well as the total energy of theconductivity and thermal diffusiofl1~13. There, the rel-

system. Hence, it does not require an external thermostat. QQ ¢ energy flux could also be set up using only velocity

the other hand, one may want to use it together With a theréxchanges between particles. It is easy to see how the prin-
mostat(and/or manostatfor practical reasons. It is, there-

L ciple of reverse perturbation can be extended to calculate
fore, worth knowing if and how a thermostat affects the P P

| h lculated vi ) h d h other transport coefficients. However, it is less clear if an
value of the calculated viscosity. The Berendsen thermostal, iansjon is useful in all cases. For example, it would be nice
[15] is often used for its simplicity and robustness, eve

g : . %o calculate the mutual diffusion coefficient in a binary fluid.
though it is not derived from a Hamiltonian and has not been, oger to maintain an interdiffusion current, one would
ave to exchange patrticle identities, which means exchang-

shown to generate a canonical ensemble. In Fig. 7 it is in
vestigated how the intensity of thermostatting, the value 0{:19 force field parameters. While this is possible, it necessar-
ily destroys the conservation of total energy, which is the

the coupling timer*, changes the calculated viscosity. To

this end, 7" has been varied over 6 orders of magnitude.peq ity of the present method. Of course, one may give both
Flgu*re 7 shows that the viscosity does depend on the choicg,qjes the same interaction parameters and just “cdlar”
of 7%. This dependence appears to be rather erratic. All ofq)) them differently. This is an established method for cal-

the values are, however, close to each other, the standagd|ating the self-diffusion coefficieriL8] which is obtained
deviation being 0.12, and to the microcanonical value¢om the color gradient.

Therefore, thermostats have to be watched for their influence
on the viscosity if used with this algorithm, as with others,
but they are not likely to distort the results qualitatively. ACKNOWLEDGMENTS
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