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Jamming transition in a two-dimensional traffic flow model
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Phase transition and critical phenomenon are investigated in the two-dimensional traffic flow numerically
and analytically. The one-dimensional lattice hydrodynamic model of traffic is extended to the two-
dimensional traffic flow in which there are two types of carsrthbound and eastbound cail$ is shown that
the phase transition among the freely moving phase, the coexisting phase, and the uniformly congested phase
occurs below the critical point. Above the critical point, no phase transition occurs. Theagatdi¢he critical
point decreases as increasing fractioof the eastbound cars for<0.5. The linear stability theory is applied.

The neutral stability lines are found. The time-dependent Ginzburg-Lafid2@L) equation is derived by the
use of nonlinear analysis. The phase separation lines, the spinodal lines, and the critical point are calculated
from the TDGL equation[S1063-651X99)00405-3

PACS numbsg(s): 05.90:+m, 05.70.Fh, 05.70.Jk, 89.48k

I. INTRODUCTION In this paper, we present a lattice hydrodynamic model for
two-dimensional traffic flow. We study numerically and ana-
Recently, traffic problems have attracted considerable atytically the two-dimensional traffic behavior in the lattice
tention[1-3]. One-dimensional traffic flow has been inves- hydrodynamic model. We show that the phase transition oc-
tigated by the use of a variety of modgl—27]. The jam-  curs among the freely moving phase, the coexisting phase,
ming transitions between the freely moving traffic and theand the uniformly congested phase. We apply the linear sta-
jammed traffic have been found in the following one- bility theory and nonlinear analysis to the lattice hydrody-
dimensional traffic models: the Nagel-Schreckenbesjlu-  Namic model. We derive the time-dependent Ginzburg-
lar automatonmodel[7], the car following(dynamio mod- Landau equation. We calculate the phase separation lines,
els [6], and the hydrodynamic modgL9]. The transitions the spinodal lines, and the critical point. We compare the
have properties very similar to the conventional phase tran@nalytical result with the simulation result.
sitions and critical phenomena. In the car following model of
the one-dimensional traffic flow, the jamming transition has Il. LATTICE HYDRODYNAMIC MODEL
been described in terms of thermodynamic terminology of
phase transitions and critical phenomé@8]. The thermo- We present a lattice hydrodynamic model for two-
dynamic potential describing the jamming transitions haglimensional traffic flow. For simplicity, we consider only
been found by the analytical method. two types of cars, similar to the BML modE29]: one type
On the other hand, two-dimensional traffic flow has beerPf cars(eastbound caysnoves only in the positive direc-
investigated by the use of the cellular automation modeléion and the other type of cataorthbound cagsmoves only
[29-35. Biham, Middelton, and Leving29] have proposed in the positivey direction. The continuity equation relates the
a two-dimensional traffic cellular automaton modaML  local density of eastbound cafrsorthbound caijsto the local
mode) for a network of city roads on a square lattice. Thereaverage speed. The speed and density of eastbound cars
are two types of cars in the model: one type of camast- (northbound cajsare denoted, respectively, by(x,y,t)
bound carsis able to move only in the positivedirection  [v(X,y,t)] and p,(x,y,t) [py(x,y,t)]. The continuity equa-
and the other type of cafsorthbound capsonly in the posi- tions of the eastbound and northbound cars are given, respec-
tive y direction. They have found that a phase transition fromtively, by
a freely moving phase to a perfectly jammed phase occurs

with increasing car density. The two-dimensional cellular au- Apx(X, Y, 1) + dypy (X, Y, tHu(x,y,t)=0, (h)
tomaton model has been extended to traffic problems with
two-level crossindg30], direction changing31], and car ac- Sy (XY, 1)+ dypy (XY, v(X,Y,1) =0, )

cidents. The cellular automaton models have been analyzed

by the use of the mean-field thed§0,34]. Whered,=dldt, = aldx, anda,=dlay
One-dimensional traffic flow problems have been investi- ' e B .
gated extensively by the use gf various models, but two- We assume that the traffic current is adjusted by the op-

) ; . . timal current with a delay time. The traffic currents of east-
dimensional problems have been studied only with use of th ound and northbound cars are given, respectively, by
cellular automaton model. Until now, the two-dimensional ' '
traffic flow problems have seldom been investigated by the
hydrodynamic model and the car following model. The hy- px(X,y, t+ TU(X, Y, t+ 1) =CpoV(p(X+X0,Y, 1)),  (3)
drodynamic and car following models have the merit that the
Iine?r dstability analysis and the nonlinear analysis can be p (X,y,t+7)v(x,y,t+ 7-)=(1—c)p0V(p(x,y+y0,t)),( )
applied. 4
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where c is the fraction of eastbound cargg is the total In the limit of c=0 or 1, the two-dimensional lattice hy-
average density(X,y,t)[ = py(X,y,t) +py(X,y,t)] is the lo-  drodynamic model reduces to the one-dimensional lattice hy-
cal densityx, is the average headway of eastbound cars, androdynamic modef36].

Yo is the average headway of northbound cars. Equat®ns The optimal velocity function is given by

and (4) are the evolution equations in the place of the

Navier-Stokes equation. The functidf(p(x,y,t)) is called V(o (1) =tant =— pim 1
the optimal velocity. The delay timeallows for the time lag Pim Po PG

that it takes the traffic current to reach the optimal current

when the traffic flow is varying. The idea is that traffic cur- wherep, is the inverse of the safety distanf25,2§. This
rents p,(X,y,t)u(x,y,t) and py(x,y,t)v(x,y,t) at position function has the turning poinfinflection poin} at p; (t)
(x,y) at time t are adjusted by the optimal currents =p,=p.. Generally, it is necessary that the optimal velocity
cpoV(p(x+Xxq,y,t—7)) at position &+Xq,y) and (1 function has the following properties: it is a monotonically
—C)poV(p(X,y+Yyg,t— 7)) at position &,y+y,) at timet decreasing function, it has an upper boynthximal veloc-

— 7. This is similar to the idea of the one-dimensional carity), and it has a turning point at the safety distance.
following model analyzed by Neweld] and Whitham[5]. By inserting Egs.(9) and (11) into Egs. (8) and (10),

In the limit of c=0 or 1, the above two-dimensional hydro- respectively, and adding E() to Eq. (10), one obtains the
dynamic model reduces to the one-dimensional hydrodyedensity equation

namic model[36]. In the one-dimensional hydrodynamic

l‘(l)
+tanh —|, (12
p

Pc c

model, it has been proved that the jamming transition occurs. pi m(t+27) = pj m(t+ 1)+ 7C2p3[ V(pj+ 1m(1))
We transform the hydrodynamic model to the lattice 5 2
model. The time and space derivatives are replaced by the =V(pj m(t) ]+ 7(1=c)pel V(pj m+1(t))
following differences: ~V(p; m(1)]=0, (13
+ —
Fpy(X,y, 1) = px(Xyt+7) pX(X'y’t), (5)  Wherep; m(t)=py j m(t) + py,j,m(t).

T In the limit of c=0 or 1, Eq.(13) reduces to the density
equation of the one-dimensional traffic flow.
Ipx(X,y, Hu(X,y,t)
Ill. SIMULATION
- pX(X,y,t)U(X,y,t) _pX(X_XO ,y,t)U(X_XO,y,t)
= e ,

(6) We carry out a simulation to study numerically the traffic
behaviors in the two-dimensional lattice hydrodynamic
model. We derive numerically the phase separation lines
existing curves We compare the simulation result with the
analytical result in Sec. VA priori it cannot be assumed that

- py(x,y,t)v(x,y,t)—py(x,y—yo,t)v(x,y—yo,t). (7)  the lattice hydrodynamic model yields a jamming transition
Yo similar to the cellular automata. Therefore, simulation is car-
ried out to validate two point41) First it has to be shown

We choose 1fpo) and 1f(1-c)po] for xo andyo where  that the model is capable of describing two-dimensional traf-

1/(cpo) and 1f(1—c)po] are the average headways of the fic dynamics and the jamming transition indeed occ(@s.

eastbound and northbound cars. We consider the twaNext the applicability of the nonlinear analysis has to be
dimensional traffic flow on the square lattice with the hori- proved.

ﬁypy(X,y,t)V(X,y,t)

zontal and vertical spacings: &fto) and 1f(1—c)po]. The We setr as the unit time step. The boundary is periodic.
lattice hydrodynamic model is described by the following |nitially, the density is assumed to be distributed uniformly
difference equations: over spacepj m(0)=po=p=0.2. Then, the local densities
pLiL(l) andp-1;p-1(1) at sites [/2L/2) and (/2
Pxj,m(t+7) = py jm(t) + 7Cpol pyjm(D) U}, m(t) —1,L/2—1) attimet=1 are set as 0.1 and 0.3 whérés the
— P 1m(DUj_1(D)]=0, ®) system size. We study the traffic patterns for various values

of delay time. As a result, three types of traffic flow have to
be distinguished(l) a freely moving phas€?) a coexisting

9 . ) ;
phase in which jams appear, af®) a uniformly congested
phase. In Fig. 1, the time evolutions of traffic patterns are
shown when the disturbance at the center is added to the

Px j,m(t+ TUj m(t+7)=CpoV(pj+1m(t))

for the eastbound cars, and

C (t+ P —pu: (D4 H1—C (D (1 uniform initial state py=0.2), where the sensitivita (the
Pyt 1) =Py V) 7(1=C)pol py (B vy (D) inverse of the delay timeis 1.0 and the system size is 140
= Py,jm-1()¥j m-1(1)]=0, (100 X 140. The regions with higher density than 0.2 are indicated

by the gray color. The gray regions represent the jammed
Py.im(t+ TV m(t+7)=(1-C)poV(p; m+1(1)) (11)  traffic. The patternga) and (b) indicate the time evolutions
of traffic patterns forc=0.5 and 0.2. At early stage, jams
for the northbound cars, whepsg ; ,(t) andpy j n(t) are the  occur within a small region. In time, the jams spread to the
local densities of eastbound and northbound cars orfjgite ~ whole system. Foc=0.5 in which the density of eastbound
at timet. cars equals the density of northbound cars, the jams propa-
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FIG. 2. The time evolutions of traffic patterns on the horizontal
road aty=40. The jammed traffic with higher density than
=0.2 is indicated by the gray. The jammed regions propagate back-
ward as the density wave&) a=1.0 andc=0.5. (b) a=1.0 and
c=0.2.

—1) versus densityp(t) at a site of the system fot
=6000-10000 fom=1.0: (a) c=0.5 and(b) c=0.2. The
plots (a) and(b) correspond, respectively, to the traffic flows
(@) and (b) in Fig. 3. The patterr(a) in Fig. 3 exhibits the
limit cycle (a single closed curyen the plot of Fig. 4. It
corresponds to the periodic traffic behavior. The pattéin

in Fig. 3 exhibits the dispersed plots around a closed loop. It
corresponds to the irregular traffic behavior. The points on
the right and left ends represent, respectively, the states
within the traffic jams and within the freely moving phase.

FIG. 1. Time evolutions of traffic patterns for=40, 100, 200,
and 2000 when the disturbance at the center is added to the uniform
initial state (y=0.2), where the system size is 24040. The
regions with higher density thas,=0.2 are indicated by the gray
color. The gray regions represent the jammed traféicThe traffic
patterns fora=1.0 andc=0.5. (b) The traffic patterns foa=1.0
andc=0.2.

gate backward. The traffic jams are formed with the diago-
nally striped patterns. Far=0.2 in which the density of the
eastbound cars is less than the density of the northbound
cars, the traffic pattern of jams exhibits the complex structure
but the jams propagate backward approximately in the diag-
onal direction. Figure 2 shows the time evolutions of traffic
patterns on the single-horizontal roadyat 40 for the same
initial condition as Fig. 1. The patterr{e) and (b) indicate

the time evolutions foc=0.5 and 0.2. The jammed regions
indicated by the gray propagate backward. Figure 3 shows
the density profiles obtained at=6000 on the single-
horizontal road ay =40 for the same initial condition as Fig.

2. The profiles(a) and (b) indicate those foc=0.5 and 0.2.
The regions of density higher than 0.2 represent the traffic
jams and propagate backward. The jams are the density
waves. The density waves have the symmetric kink-antikink
form after sufficiently long time. After sufficiently long time,

0.4
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FIG. 3. The density profiles obtainedtat 6000 on the horizon-

the shapes of density waves do not change with timecfor taj road aty=40 fora= 1.0 andp,=0.2. The density waveisraffic
=0.5 but do change for=0.2. jamg have the symmetric kink-antikink form@) c=0.5. (b) ¢
Figure 4 shows the plots of density differeneé) — p(t =0.2.
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;'? 0.1 0.2 0.3
& P
L gL
f'\ FIG. 5. Phase separation lines in thed) plane, where is the
Q& density,a(=1/7) is the sensitivity(the inverse of the delay time
andp.=0.2. The circles, triangles, and diamonds indicate, respec-
o1 L tively, the simulation results faz=0.1, 0.2, and 0.5. The solid lines
: | ' | represent the analytical results obtained by the nonlinear analysis.

0.1 (t) 0.2 0.3 o .
P Let yj m(t) be a small deviation from the uniform steady-
(b) state flow:pj m(t) = po+Yj m(t). Then, the linear equation is

FIG. 4. The plots of density differenggt) — p(t—1) vs density obtained from Eq(13),
p(t) for t=6000—10 000 whera=1.0 andpy=0.2.(a) c=0.5.(b)

=0.2. ,
¢ Yim(t+27) =y} m(t+ 1)+ 7¢2p3V (po)
In any case considering long-time evolution, only two dis- X[Yjr1m(D =Y m(D]
tinct densities survive for the coexisting phase, depending on 2 21
the sensitivity(the inverse of the delay timand the fraction +7(1=¢)poV' (Po)Yj m+1(D) —Yjm()]=0,
c. Each density is the density of the transition points on the (15)

coexisting curve. Figure 5 shows the plots of densities at the

transition points versus sensitivigx The circles, triangles,

and diamonds indicate the simulation results, respectivelywherev’(po)=[dV(p)/dp]|p:pO
for c=0.1, 0.2, and 0.5. The solid lines represent the analyti-
cal results in Sec. V. The simulation results are consistent
with the analytical results. The phase separation line de-
creases as increasing fractioor c<0.5. The apex of each
curve indicates the critical point. Above the critical point, no
traffic jams occur. Figure 6 shows the plot of the critical
point versus fractiom. The circular points indicate the simu- 25
lation result. The solid line indicates the analytical result in a
Sec. V. The simulation result agrees with the analytical re-

sult. 20—~ ¢

IV. LINEAR STABILITY ANALYSIS \\//

151
We apply the linear stability method to E{.3). We con-
sider the stability of the uniform traffic flow. The uniform
traffic flow is defined by such a state as a traffic flow with 1.0 | l |
constant density,, constantx-directional velocityV(pg), 0 0.25 0.5 0.75 1.0
and constany-directional velocityV(p,). Equation(13) has C
the solution of the uniform steady state:

3.0

FIG. 6. The plot of the critical points vs fractian The circles
Pim(1)=po, Ujm(t)=V(pg), and vj n(t)=V(pg). indicate the simulation result. The solid line represents the analyti-
(14)  cal result obtained by the nonlinear analysis.
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wave appears. As fractionincreases ¢<0.5), the critical
points and the neutral stability curves decrease.

V. TDGL EQUATION

We now consider the traffic behavior of long-wavelength
modes on coarse-grained scales. The simplest way to de-
scribe the behavior of long-wavelength modes is the long-
wave expansion. We consider the slowly varying behavior at
long wavelengths near the critical point(, 7.). We extract
slow scales for space variablgsn, and time variablet
[28,37). For 0<e <1, we therefore define the slow variables
XandT:

X=¢e(j+m+bt) and T=¢5, (20)
FIG. 7. The phase diagrams in the,4) plane obtained by the
TDGL equation forc=0.0, 0.1, 0.2, 0.3, and 0.5. The solid and whereb is a constant determined later. Here we consider the
dotted lines indicate the phase separation lines and the spinodgensity wave propagating in the diagonal direction. The di-
curves. The apex of each curve indicates the critical point. agonally propagating density wave is observed in our simu-

] ] . ) lation. We set the density as
Since the density wave propagates in both negatisad

y directions with equivalent propagation velocity, we expand P m(t)=peteR(X,T). (22)
yj.m(t) as follows:y; (t)=expik(j+m)+zt. The following b
equation ofz is derived: By expanding Eq(13) to the fifth order ofe with the use of

Egs.(20) and(21), one obtains the following nonlinear par-

2zt T 2 20 2\t Aik —
e7—e+ r{c*+(1-0)%poV' (€1 -1)=0, (16 g differential equations:

whereV'=V'(pg).
By expandingz with z;(ik) + z,(ik)?+- - -, the first-order e2(b+ gpgvl)axR_,_ &3

2 2\ /1
3b T+ngV) )

. . aXR
and second-order terms if are obtained, 2 2
— _fr2 A2 2\ 7b3,7.2 gpzvr gPZVW
z;=—{c+(1-c)}psV’, +e% 9:R+ 5 + g (9>3<R+ C6 xR3
3 {c?+(1—c)?} 0
_ 2 27 2\/1\2 2\ /1 4 3 2\ /1
z,=—z7cc+(1-c)}(pgV' ) — ——=—p5V'. 5b*7 vV
R Heo 2 P N L i P
If z, is a negative value, the uniform steady-state flow be- 2
comes unstable for long-wavelength modes. Wheris a n 9pc 2R3 =0 (22)
positive value, the uniform flow is stable. One obtains the 12 X ’

neutral stability condition
whereV’=[dV(p)/dp]|p=pc, V”’=[d3V(p)/dp3]|p=pc, and
__ 1 g=c?+(1—c)?. Here we used the expansions shown in the
2 IPIVTE (18 .
3{c+(1-c)}pgV’ Appendix.
By takingb=— gpﬁv’(pc), the second-order term efis

For small disturbances of long wavelengths, the uniform trafiminated from Eq(22). We consider the neighborhood of
fic flow is unstable if the critical pointz,:

1
- 3{c2+(1—0)F 3V’

™ (19

r
—=1+¢?, (23
Tc

The derivativeV' of optimal velocity has the minimal value 2, ) ] ]
at turning point po=pe. If r<rr.=—1/3c2+(1 where 7.= —1/3gp:V' (p.) = 1/3g. Equation(22) is rewrit-
— )% paV’ (pc) = 1/3{c?+ (1—c)?}], the uniform flow is al- "
ways stable irrespective of density. We find that there is a

2
critical point atp=p. and 7= 7.. Whenc=0 or 1, the criti- "

2\
49( pCV)ﬁiR— 4gpcv

4 _ 3

cal point and the neutral stability line are consistent with s"0rR=¢ 27 ® 76 IR

those in the one-dimensional traffic modab]. The dotted o o

lines in Fig. 7 show the neutral stability lines for=0.0, 0.1, g3 9(—pcV') (1_ 1) 2R— b 9(—pcV') PR
0.2, 0.3, and 0.5. The apex of each curve indicates the critical 2 Te X 54 X
point. Above each curve, the two-dimensional traffic flow is 2

stable and the density wavgraffic jam) does not appear. 45 9pcV aiR3 (24)

Below each curve, the traffic flow is unstable and the density 12
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By transforming variableX andT to variables<=¢ X and
t=¢"3T, and takingS(x,t) =eR(X,T), Eq.(24) is rewritten
as follows:

2 "

9(—p3V") gpeV
ats=2—;afs °6 2,83
9(—pV') ) 9(—p2V') 4
T\ AST T A4S
2 "m
ng 203
+— 12 35 S°. (25

By adding termg(— pCV )(7/7.—1)d,S on both left and
right sides of Eq(25) and performing the transformatidn
=t and x;=x+g(—p2V')(7/7.— 1)t in Eq. (25), one ob-

tains
1 g(—pgV")
3, S= axl—z&xlﬂz—;axls
T gp2 "m
+g(—p2V") ?_1)5‘ ; 93} (26)
C

We define the thermodynamic potential

T
——1)82+
Tc

By rewriting Eq.(26) with Eq. (27), one obtains the time-
dependent Ginzburg-LanddiDGL) equation:

2
7

with @(S)Efdxl<%(a S)2+¢>(S))
(28)

gpi Vi

24

9(—p2V')

H(S)=— > st

(27)

oD (S)
6S

1
0,S=—| o~ 5

where ¢(S) is given by Eq.(27).

The TDGL equatior(28) has two steady-state solutions in
addition to a trivial solutionS=0: the one is the uniform
solution

6(—p2V')(—3gp2V'7—1)
gvm

S(Xq,ty) ==

112
} (29

and the other is the kink solution

6(—
S(Xlltl):+ p

X tani‘{

Wherex10 is a constant. Equatio(80) represents the coex-

isting phase which consists of a low density phéseely
moving phasgand a high density phageongested phase

)(=3gpeV' T 1)[ ¥
(Z:VW

1/2
S (~3gp2V' 7 1)) (X=%1,) |,

(30
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One can obtain the coexisting curve, the spinodal line,
and the critical point by differentiating thermodynamic po-
tential (27) with order paramete®. The coexisting curve is
given by the condition

¢
ES

P
=0 and —=>0. (32)

From Eq.(31), one obtains the coexisting curve in terms of
the original parameters

6(—p2V')(—3gpV' r—1)|*?
=p.*
Pco= Pc— pgvm . (32)
The spinodal line is given by the condition
)
ﬁ—o. (33

From Eq.(33), one obtains the spinodal line in terms of the
original parameters

2(—p2V')(—3gp2V'r—1)|¥

Psp=Pc™ (34
sp c cV
The critical point is given by the condition
) P’d
(9_8 =0 an (9_82 =0. (35)

From Eq.(35), one obtains the critical point in terms of the
original parameters

1

39—} 0

p=pc and 7.=

Figure 7 shows the phase diagram in tipea) plane where

=0.2, —p2V'=1, andpiV"”=2. Each solid curve indi-
cates the coexisting curve given by E§2). Each dotted line
indicates the spinodal line given by E4). The apex of
each curve indicates the critical point. In the region within
the coexisting curve, the freely moving phase coexists with
the congested phase. The intermediate regions between the
coexisting curve and the spinodal line represent the meta-
stable regions.

Generally, the jamming transition is the first-order phase
transition below the critical point. The metastability ob-
served in the traffic flow model corresponds to the spinodal
decomposition in the conventional first-order phase transi-
tion.

VI. MKdV EQUATION

We derive the modified Korteweg—de Vries equation
(MKdV) equation from Eq(13). We show the connection
between the MKdV equation and the TDGL equation. Simi-
larly to the derivation of the TDGL equation, we consider the
slowly varying behavior at long wavelengths near the critical
point. We extract slow scales for space varialjles and
time t. We obtain Eq.(22). By inserting —39p§V’7-—1
=1/7.—1=¢? into Eq.(23), one obtains
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2\ m

9(—pV’) gpeV
84(9TR= 84T (9)3<R— 84T ﬂXRs
9(—paV’) 9(—peV’)
- SST 0§(R— SST (9;1(R
2\ ym
gpcV
+85%a§R3. (37)
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The solution(43) agrees with the solutio(80) obtained from
the TDGL equation. The kink solution represents the coex-
isting phase which consists of the freely moving phagith

low density and the congested phageith high density.
The traffic jam seems to be static from the point of view of
the backward moving frame with the jam propagation veloc-
ity. Thus, the jamming transition can be described by both
the TDGL equation with a nontraveling solution and the
MKdV equation with a propagating solution.

In order to derive the regularized equation, we make the

following transformations:

_2p2vr 1/2
T and R(X,T)=(—C) R'(X,T").

_9(—piV)
9P(2;VW
(38)

27

!

One obtains the regularized equation

R =03R’ —9yR'3— e[ & 95R’ + 2 oxR’ — 3 5R'2].
(39

If we ignore theO(g) term in Eq.(39), it is just the MKdV

equation with a kink solution as the desired solution,

RH(X,T")=/p tanh/p/2(X—pT"). (40)

Next, assuming theR' (X, T')=Ry(X,T')+eR;(X,T'), we
take into account th®(e) correction. In order to determine
the selected value of the propagation velogitfor the kink
solution (40), it is necessary to satisfy the solvability condi-

tion

(RyMIRG)= | axRMIRG=0, (4D

— o0

where M[Ry]=%2 93R’ + 295R' — 192R’3. By performing
the integration, we obtain the selected velogity 27. One

obtains the solution

6(_pgv/) 1/2 1/2 -
R(X,T)= g | a5 [X=g(=pcV')TI.
Pc

(42

By replacing variableX and T with original variableg, m,
andt, one obtains the solution

6(—p2V')(—3gp2V’ r—1)|*?
p(Z:V//r

Pjm(t)=pc*

xtanH {% (—3gpV’ r— 1)} +m—gp2V’
X (2+3gp2V' 7)t}]. (43)

VIl. SUMMARY

We have proposed a lattice hydrodynamic model for two-
dimensional traffic flow. We have investigated the jamming
transition between the freely moving phase and the jammed
phase numerically and analytically. In the numerical simula-
tion, we have shown that the jamming transition occurs with
increasing density. We have found that there is a critical
point. The critical point decreases as increasing fraction of
the eastbound cars.

We have applied the linear stability theory and nonlinear
analysis to two-dimensional traffic flow. We have found that
the jamming transition is described by the time-dependent
Ginzburg-Landau equation. The phase separation lines, the
spinodal lines, and the critical point are calculated by the use
of the thermodynamic potential. The critical point, the spin-
odal lines, and the phase separation lines are definitely dif-
ferent from those of one-dimensional traffic flow.

APPENDIX

In this appendix, we present the expansions of each term
in Eq. (13) to fifth order ofe,

2 3(b7')2 )
pjm(t+7)=pc+eR+e“brixR+e > xR
(b7)® (b7)*
+g* 6 07)3(R+847'&TR+85 >4 &iR
+&%b729794R, (A1)
2 5 (2b7)°
pjm(t+27)=p.+eR+e“2bTixR+ e 5 xR
(2b7)° (2b7)*
+e4 5 3R+ *279R+&° o %
+&%4br?9105R, (A2)
— 2 83 2 84 3 85 4
(A3)

We expand the optimal velocity function at the turning point:

V/// C)
V(Pj,m) =V(pc) +V,(Pc)(Pj,m_Pc) + %(P],m_l)c)ga

(A4)
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_ : V" (pe) _ 2 e,
V(pj+1m) =V(pd) V' (p)(pj+1m=p) + —¢ V(pjm+1) =V(pjm)=V'(pc)| e°0xR+ 5 34R
><(Pj+1,m_pc)31 (A5) e’ 3 &> 2
, + E(S)XR‘F ﬂaXR
t]
V(pj+1,m)_v(pj,m):V,(pc)( e?dyR+ ?5>2<R V" (pe)
[e%o4R3+&%2 92R®].
4 5
& 3 & 4
+ EO’)XR"— ﬂaXR (A?)
V”/(pC) 3 253
+ [e*0xR%+e°2 05R°]. By inserting Eqs(A1)—(A7) into Eq. (13), one obtains Eq.
(A6) (22
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