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Sinai’'s model of diffusion in one dimension with random local bias is studied by a real space renormaliza-
tion group, which yields exact results at long times. The effects of an additional small uniform bias force are
also studied. We obtain analytically the scaling form of the distribution of the positignof a particle, the
probability of it not returning to the origin, and the distributions of first passage times, in an infinite sample as
well as in the presence of a boundary and in a finite but large sample. We compute the distribution of the
meeting time of two particles in the same environment. We also obtain a detailed analytic description of the
thermally averaged trajectories by computing quantities such as the joint distribution of the number of returns
and of the number of jumps forward. These quantities obey multifractal scaling, characterized by generalized
persistence exponentg) which we compute. In the presence of a small bias, the number of returns to the
origin becomes finite, characterized by a universal scaling function which we obtain. The full statistics of the
distribution of successive times of return of thermally averaged trajectories is obtained, as well as detailed
analytical information about correlations between directions and times of successive jumps. The two-time
distribution of the positions of a particle(t) andx(t’) with t>t’, is also computed exactly. It is found to
exhibit “aging” with several time regimes characterized by different behaviors. In the unbiased case, for
t—t'~t'* with «>1, it exhibits a In/Int’ scaling, with a singularity at coinciding rescaled positioit)
=x(t"). This singularity is a novel feature, and corresponds to particles that remain in a renormalized valley.
For closer timese<<1, the two-time diffusion front exhibits a quasiequilibrium regime with &-i()/Int’
behavior which we compute. The crossover tdta aging form in the presence of a small bias is also obtained
analytically. Rare events corresponding to intermittent splitting of the thermal packet between separated wells
which dominate some averaged observables are also characterized in detail. Connections with the Green
function of a one-dimensional Sclioger problem and quantum spin chains are discussed.
[S1063-651%99)06204-2

PACS numbds): 64.60.Ak

I. INTRODUCTION cal predictions. Solvable models, where the answers are
known, should also provide a useful testing ground for nu-
Studying nonequilibrium dynamics provides a usefulmerical methods by giving clues to the necessary simulation
route to elucidate the properties of systems with quenchetime scales and averaging procedures in disordered systems
disorder. In addition it is very relevant for experiments, sincewhich are often dominated by rare events.
most such systems form glassy states with ultraslow dynam- Some progress has been made in obtaining analytical so-
ics and usually do not reach full thermal equilibrium within lutions for the large-time behavior of mean field type models
the accessible time scales. This is the case for a variety ¢6]. Although it is still extremely unclear how much these
experimental systems such as spin glagéésrandom field mean field results will carry through to short range, finite-
systemg2,3], vortex lines in superconductofd,5], and do-  dimensional systems, one outcome of these wks3] has
main growth in the presence of quenched disorder. Despitbeen to demonstrate the existence of several possible large-
decades of extensive work, there are still a number of unretime regimes and to attempt to classify them. This provides
solved issues in the theoretical description of the dynamicfurther motivation to study aging dynamics in a larger class
of systems with quenched disorder. This uncertainty is duegf models, in particular, to study the possible ways of taking
to a large extent, to the lack of physically relevant models fothe large-timet,t’—oo limits for correlations between con-
which analytical solutions can be obtained, providing clearfigurations of the system at a waiting tinié=t,, after a
cut answers to well posed questions. The need for such moduench at =0, and a later observation time
els is all the more acute since it is prohibitively difficult to  Other types of approaches, such as droplet descriptions of
obtain unambiguous answers from numerical simulationshe statics and the nonequilibrium dynamics of disordered
when the dynamics is ultraslow, especially since the intersystemd 3], make use of domain growth arguments. These
pretation is often blurred by the absence of precise theoretapproaches emphasize the leading role of thermally activated
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processes, which should play an important role in short rangByson-Schmidt method, replica methods, supersymmetry,
models, while mean field dynamics may be dominated bytransfer matrix, etd.29]. Despite that, a large number of our
other types of collective processg. The “coarsening” of  results are, to our knowledge, novel. Indeed, as we aim to
domain structures evolving towards equilibrium has beerillustrate in this paper, the most interesting feature of the
studied extensively in pure mod€dl$0] but little is known RSRG, besides being simple to apply, is that it allows one to
rigorously for domain growth with quenched disorder. Thusobtain all these resul®ew and oldl from a single method,
these approaches are still to a large extent phenomenologicahile other methods usually allow access to only specific
and one would like to find models where solid results aboutypes of exact results. As we will explain, the only limita-
aging in the presence of activated dynamics can be obtaindibns are the ones usually associated with any RG method.
analytically. A natural hope for that would be to study one-First, almost by definition, it only addresses and obtains ex-
dimensional(1D) models which could be used as testing actly the universal quantities, i.e., the ones which are inde-
grounds for more comple®>1 cases which have resisted pendent of the short-scale details of the model. Second, it
analytic attack. does rely on the global assumption that the starting model is

A celebrated 1D model for glassy activated dynamics isyithin the basin of attraction of the zero temperature fixed
the Sinai mOdeI, which describes the diffusion of a randonboint studied here, and is thus not “exact from first prin_

walker in a 1D random static force field—equivalent o aciples.” This is not a restriction in the case of the Sinai

random potential which itself has the statistics of a 1D ranyodel because rigorous results already exist from probability
dom walk[11]. Although this modelwith or without a bias  theory, this last assumption can be considered established.
has been much studied, the known analytical re(lts-1§ In the future[30,31], we plan to detail the applications of

usually concern single-time and single particle quantities anﬁﬂ|e RSRG, given as a short account i8], to the Glauber

are techmcglly har_d o Obta'ﬂ-. It is known that .th'S .mOdeIdynamics of disordered spin models and to diffusion-reaction
without a bias exhibits nontrivial ultraslow logarithmic be- . )
processes in the presence of quenched disorder. These works

havior, as the walker typically moves as-(Int)?, as well as . L
several dynamical phases with anomalous diffusion as thgely heawly on the S'.na' model anc_i the present work. Thus
we here give a detailed presentation of the results for the

bias is increased from zero. By contrast, there were until now..~ .
no exact results about two-time aging dynamics, despite sev2n@ model. , _
eral mostly qualitative and numerical studigk?,16 that An |_nterest|ng feature_of the RSRG is that |t_de_m0nstrat_es
found interesting aging behavior in this model. In addition," & Simple and operational way how the Sinai model is
the Sinai model has interesting extensions to many interacf€lated to other one-dimensional disordered models. More
ing particles, and via domain walls, to the Glauber dynamicdormal derivations of such mappings can also be made in
of 1D random field Ising ferromagnets and spin glasses in &0me cases via free fermion models. For instance, the quan-
magnetic field. tum XX spin chains with disorder and the random transverse
Recently we have proposed an approach, based on a refigld Ising chain (RTFIC) are related via Jordan-Wigner
space renormalization groyRSRG method, which allows transformations to free fermion models near half filling with
us to obtain many exact results for the nonequilibrium dy-disorder in the hopping term. This problem is in turn related,
namics of several 1D disordered systefi§]. We have via its expression as a random Dirac problem, to a supersym-
shown that it applies to the Sinai model as well as to 1Dmetric random Schutinger operato{32] identical to the
disordered spin models and diffusion-reaction processes iRokker-Planck diffusion operator associated with the Sinai
Sinai's type of energy landscapes. This RSRG method isnodel [14,33. Most of these relations have been detailed
closely related to that used to study disordered quantum spipreviously in various context&ee, e.g., for a revieyWd4—
chains[19-24. The crucial feature of the RG is coarse 36]). These disordered fermion models have been much re-
graining the energy landscape in a way that preserves thavestigated recently as they provide examples of quantum
long-time dynamics. In Sinai's model the way to implementdelocalization transitions. It may sometimes be useful to re-
the RSRG is very direct: one decimates iterativelysh®ll-  cast them in terms of the Sinai model where some quantities
est energy barriein the system, stopping when the time to have a straightforward physical interpretati@ng., the loga-
surmount the smallest remaining barrier is of the order of theithmic Arrhenius diffusion over barriers growing as a ran-
time scale of interest. Despite its approximate character, thdom walk gives the logarithmic energy dependence of the
RSRG vyields for many quantities asymptotically exact re-local density of statgs The RSRG demonstrates such map-
sults. As in[21] it works because the iterated distribution of pings for the low energylarge-time properties in a very
barriers grows infinitely wide, consistent with1]. direct way, as we will illustrate. Zero drift in Sinai's model
The aim of the present paper is to show in detail how thecorresponds to the self-dual critical case in the RTRT]
RSRG method applies to the Sinai model, allowing one taand to the antiferromagneti¥X chain [20,19, while the
obtain in a simple way a large number of exact results. Wezero velocity biased phagé&3,14] corresponds to the Grif-
obtain a host of quantities such as return and first passadihs phase of the RTFI(21] and a dimerize X chain. As
probabilities, and single-time correlations as well as two-we show here, magnetization properties correspond to per-
time correlations of the type that are probed in aging experisistence properties in Sinai's model.
ments. Given the long history of Sinai's model, some of the Although the idea of studying the random diffusion prob-
results obtained here have been derived previously, by contem via real space decimation techniques has been used pre-
pletely different methods. These methods include those fromiiously, it has been mostly applied to fractal or hierarchical
probability theory[25,11,26—-28 as well as conventional landscapessee, e.g.[37]) which are designed for such
methods of the physics of disordered systems, such as thmethods. By contrast, here the RSRG emerges from the
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structure of the zero temperature fixed point itself, as the Witln (a)
natural way to treat diffusion in a statistically translationally /N
invariant disordered system, with reed hoc assumptions. —
Interestingly, a similar property arises in the problem of the \_J
coarsening of the pure 1®* model at zero temperature,
which can be treated exactly by successive elimination of the Wans1
smallest domains in the systd88], a method reminiscent of
the RSRG studied here. Finally note that sint& appeared, (b)
several new papers have been devoted to the Sinai model
[39-47. Bne1
] Un' Un+1
Outline - *
n n+l

The outline of this paper is as follows. Section Il contains
a pedagogical introduction to the real space renormalization U (c)
group approach for the Sinai model. It terminates with the
explicit expressions for the fixed points of the RSR&ec.
I C). In Sec. Il we compute the averaged single-time diffu-
sion front for the symmetric Sinai model in Sec. Ill A and
with a bias in Sec. Il B. In Sec. IV we study the returns to
the origin (persistence propertigsf the thermally averaged
motion, as well as the statistics of the jumps, in the symmet-
ric and biased case. In Sec. V, we study returns to the origin FIG. 1. (a) General hopping mode(b) interpretation ofa) with
of a single walker, distributions of first passage time and ofa barrier between each site and a potential differetazal biag;
the maximum position, as well as the probability of two (c) model studied here.
walkers meeting. Section VI is devoted to the aging proper-
ties of the Sinai model and contains a general discussionJ1, from n+1 to n. Finally, fully continuum models,
(Sec. VI A), calculations of singular parts of the diffusion with the Fokker-Planck equation
front (Sec. VI B), the full two-time probability distribution
(Sec. VI D), and the analysis of a simpler ca&®ec. VI B. P (X,t) =HgpP=d,D(X)[ T P—F(x)P], 2
The section terminates with the analysis of rare events and o
calculation of the front in the quasiequilibrium regirg®ecs. have also been studigith D(x)>0]. _ o
VI F and VI G) and fluctuations in the single-time diffusion It is useful to distinguish three classes of disordeithin
front (Sec. IV H. In Sec. VIl the RSRG is studied in a finite €ach descriptionleading to different types of generic 1D
size system; equilibration properties, first passage times witlrge-time behaviotfor uncorrelated disordgr
boundaries, and finite size diffusion fronts are computed. Fi- (i) Detailed balance, random diffusion coefficiefihis
nally, in Sec. VIIl we obtain the Green function of the asso-corresponds oV, o 1=Wp.1,=Dniq in Eq. (1) or to
ciated Schrdinger operators in Sec. VIII B. Section IX con- F(X)=0 andD(x) a random positive function. It is well
tains the conclusions. Further technicalities are relegated t¢hown that the large-time diffusion coefficient B

various Appendixes. =(1MW)~ ! for uncorrelated disorder and thus that this model
exhibits asymptotic “normal diffusion” unless thB, ;1
Il. MODELS AND REAL SPACE have a broad distribution, with a tail near the origFl"(,D)
RENORMALIZATION PROCEDURE ~D"* (0=a<1).
(ii) Random trapsThis corresponds toV, ., 1=1/7,
A. Diffusion models and W, ,,=1/m,. Each site is characterized by a release

Diffusion in one-dimensional random media has beertime, but the exit is with the same probability 1/2 to the left
modeled in three ways, which usually lead to equivalentr to the right(the jump probability depends only on the
classes of behavior in the large-time limit. Probabilists havestarting point. Again this model exhibits asymptotic “nor-
often studied models discrete in tiraad space; for instance, Mmal diffusion” unless the release times have an algebraically
a particle on points of a one-dimensional lattice,which ~ broad distribution.
jumps to the right i+ 1) with probability p, and to the left (iii) Generic case: Sinai modein the generic case one
with probability 1—p,. Physicists, on the other hand, have can always parametrize the hopping rates as
often considered random hopping models, continuous in time

. ; . : — .~ 1aBE ~(12B(Up=Up1)
but discrete in space, described by the master equation: Whn1=17o €7nntie mooe

dP(t) Wi 10= Ta1eﬁEn,n+1e*(1/2)B<Un+rUn), 3
T_ _(\]n+l,n_\]n,nfl)v
where 8=1/T and T is the temperature. This can be illus-
Joi1n=Wii10Pn—=Wiy 1t 1Ppi1- (1) trated as in Fig. 1; there is a symmetric bariigy, ., be-
’ ’ ’ tween sitesn andn+1, plus an additional potential differ-
W .10 andJ,, 1, are, respectively, the transition rate andence. The barrierE, ., gives the average diffusion
the current fromn to n+1, and W, ., and J,n41= coefficient(or attempt frequengyon the bond. The “forces”
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on the bonds aré,; ,=—(U,.,—U,), which represent a U @
local bias. In a finite size systefiperiodic in theU,) the
expressiong3) correctly lead to the Gibbs zero current equi-
librium measureg™#Yn/Z.

The main case of interest here and studied by Sinai is that
of independent random force$he generic case, for uncor- )]
related disorder and for distributions &f andEj, ,;; with
fast enough decafe.g., faster than exponentialll belong to .
the class of Sinai’s model, which is a discrete time model. A F T FERIR
similar potential can be introduced for this model,— U, F, > |
=TE{‘;11 In[p;/(1—p;)]. One can most easily visualize these
as Arrhenius motion in a random potentld}, which itself N
performs a random walk, either symmetric or biased. This 1 1 I
motion has been studied extensively and it is known that
diffusion is logarithmicx~In?t, in the symmetric case, sub-  FIG. 2. (a) Energy landscape in the Sinai modé) Decimation
linear, x~t*, for a small bias £<1), and with a finite  method; the bond with the smallest barriey;,=F, is eliminated as
velocity x~Vt for u>1, whereu is related to the asymme- three bonds are grouped into ofsee text
try of the force distributions as defined later.

For convenience and to be specific in what follows we The RSRG procedure on a given landscape is imple-
will mostly study, as our basic model, the random hoppingmented as follows. One can first group the bonds with the
model with the choic&, ;. ;=0. We will also compare with same sign of the forcsee Fig. 1c)], and then can start, with
the discrete time model originally studied by Sinai. How-no loss of generality, from an “antiferromagnetic” land-
ever, our results are much more general and apply to angcapesee Fig. 2with the f;, alternatively positive and nega-
model within the locally random force clagsvith short  tive but with a distribution of bond lengtHs. Our starting
range correlations model is thus defined by, =(—1)"F, where theF,=|U,,

—U, .| are the useful variables—called here “barriers”—
and the two bond variableB,l are chosen independently
B. Renormalization method from bond to bond with an initial distributioR(F,l). In the
presence of a bias one needs two distinct distributions
) . P ™(F,I) for “descending bonds” an& ~ (F,l) for “ascend-

As described above, we consider models of diffusion iNing bonds” (opposing the mean forgeboth normalized to
_1D Iandscapes in Whi_ch Wa_lker_s perform Arrhenius_diffusionunity. Note that the combining of consecutive descending
in a potentialU, (n is a site index A “force” variable  pongs in this way naturally leads to an exponential tail in the
fa=Un—Up, is defined on each bond(n+1) (indexed  gistributionP~ and likewise inP*. Such exponential tails in
as bondh) and as in the Sinai model, ttig are independent  parrier distributions will play an important role in the physics
random variables with distributio@(f)df. The long-time  gnd in our analysis.
dynamics in such landscapes are primarily determined by the \ye are interested in long times when the behavior will be
large barriers and deep valleys. Thus we need to be able §ominated by large barriers and it is on these that we must
focus on these aspects of the landscape while eliminating ggcus. Our RG procedure is conceptually simple: in a given
much as possible the effects of the finer-scale structure.  energy landscape it consists of iterative decimation of the

~We therefore mtroduce a renormallzatlon procedure, for gyond with thesmallest barrierl” = Fomins SayFo=U3—U,
given landscape, which will allow us, in this way, to study =T as jllustrated in Fig. 2. At time scales much longer than
the asymptotic dynamics. We should emphasize that we Wi|éxp0:2/-|—)’ local equilibrium will be established between
apply it mainly to the case of forces independent from bondsjies 2 and 3 and the rate for the walker to get from 4 to 1
to bond, but it can in principle be applied to any 1D land-yyj| pe essentially the same as it would be if sites 2 and 3 did

scape. The crucial feature which is needed for the RG 19,0t exist but 1 and 4 were instead connected by a bond with
yield asymptotically exact results is that the landscapes havgarier

extremal values of the potential which grow with length

scale. This will make the distributions of the renormalized F'=F,—F,+F, (4
barriers broader and broader. In the case of the Sinai model,

it is possible to follow exactly the RG flowbecause the and length

forces remain uncorrelated under the )R®d thus to check

a posteriorithat at large scales the distributions of renormal- ["=1,+1,+15. 5)

ized barriers are indeed very broad. However, the procedure

is much more general and would also lead to asymptoticallyWe thus carry out exactly this replacement. This preserves
exact results for correlated landscapes in which the renormathe zigzag structurgthe model remains alternating “up
ized barriers become higher and higher. The difficulty indown”) and the larger-scale extrema of the potential since
such correlated cases is to follow the distributions. Of cours¢he total length and the extrema bf in the segments are
there are 1D landscapes for which the RSRG would not givexactly preserved. Furthermore, if the starting distribution is
exact results for the diffusion behavior: in particular, independent forces from bond to bond, this remains so under
bounded potentials which have normal diffusive behavior. the RG. One then keeps on iteratively eliminating barriers

1. Definitions and RG equations
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I'<F<TI'+dI’ thereby gradually decreasing the minimum the RTFIC correspond to the ascending and descending bar-
remaining barrier heighf'. Note that there is no ambiguity riers, respectively, through the relatioRs, /T= —In h, and

in the case of continuous distributions as considered here, &S, 1/T=—1InJ,. We can also identify the renormalization
one can always neglect the unlikely events when two neighscaleI” in both models. For the diffusion model it corre-

bors or next nearest neighbors are witdin.

sponds to an Arrhenius time scatety exp(’/T) to go over a

The above rules foF andl define the RSRG transforma- barrierF=1I", whereas in the quantum model it corresponds
tion for arbitrary landscapes. In the case of the Sinai landto the minimal energy scale of the levels which have been
scape where bonds remain statistically independent one casiminated,Q=Q,e " ". The duality betweed andh in the

define
gnEFn_Fv

and introduceP; ({=F—T,l) and P;({=F—T,l) which

denote the probabilities that-a renormalized bond at scale

I' has a barrieF=I"+{>T and a lengtH, each normalized

by [3d¢fgdIPr(Z,1)=1. One can then explicitly write
closed RG equations for these two distributions describing
their evolution under the decimation represented in Fig. 2:

(0r=3)PF (&N =P (0, )% |PF (-, )% PF(-,-)

—2P§(§,I)J:dl’PFI(O,I ")

+P%@J)J:dl'[P%(o,l')+P?<o,|'>],

(6)

where* , denotes a convolution with respect foonly and
* .1 With respect to bothy and | with the variables to be

RTFIC simply corresponds to reversing the average force
(i.e.,x— —Xx) in Sinai's model. As will be discussed below,
the deviation from criticality parameters2in the RTFIC
corresponds to the parametgd/T in Sinai's model (see
[13,14)) which controls the long-time properties and the vari-
ous phases and is defined for the original model with unit
length bonds by

exp —uf,/T)=1.

Zero drift corresponds to criticality in the RTFIQ1], while

the biased phase with zero velocit¥3,14] corresponds to
the Griffiths phase of the RTFI{21] as will be discussed
below. Note, however, that the physical quantities of interest
in the two models can be different.

2. Effective dynamics and validity of the method

Throughout the paper, we define the “effective dynam-
ics” as the dynamics which consists in putting the particle at
time t at the bottom of the renormalized valley at schle
=T In(t/ty) which contains the starting point &t 0 (see Fig.

2). Thus in the effective dynamics the particle does not move

convoluted denoted by dots. The first term on the right hanq,hjess one of the bonds which are the sides of the renormal-

side represents the new renormalized bonds, the second t

d valley to which it belongs is decimated, in which case it

bonds which are decimated as neighbors of the smallest bagsm s 16 the bottom of the new renormalized bond as in Fig.
rier, and the last comes from keeping the distribution nor> "ere t is a nonuniversal microscopic time scale, which

malized. The total number of bonds in the system evolves throughout the paper we set to unity by appropriate redefini-

as
ﬁrnr=—nrf:dl’[PF(O,l’)+Pf(0,l’)]. (7)
We need also to introduce the average lengths
Ti= [ Cac[ e
0 0

of a = bond, and the total average Ieng|_'r1h=l_fr +I_f of a
valley that evolves as

oo [ Carpp o eprn. @

We have of course thaty~ 1/

The RG equation$6) derived here for Sinai's model are

tion of time units; we can then udéandT Int interchange-
ably.

Symmetric caséhis effective dynamics is an approxima-
tion of the true dynamics. But within the RG approach it can
be seen that this approximation becomes better and better as
I'=TInt increases since the distribution of barrid?g(F)
becomes broader and broader, as is detailed below. Thus the
renormalized landscape consists entirely of deep valleys
separated by high barriers and with high probability the par-
ticle will be near the bottom of the valley in which it began.
Upon rescaling of space a6=x/I"? the effective dynamics
of the diffusion front becomes exact Bstends to~ as was
proven in Ref[11]. Indeed, the probability that the walker is
close—in a precise sense that we discuss later—to its posi-
tion given by the effective dynamics approaches one at long
times. This stronger result has also been rigorously estab-
lished[11,12,24.

There is clearly a source of error in the approximation of

identical to those derived to study the low energy propertieshe true dynamics by the effective dynamics when two

of the random transverse field Ising chair{ 21] (we choose
notations and conventions as [i@1]) using a perturbative

neighboring bonds have barridfsthat are within ordefl of
each other. However, the error introduced by assigning a

analysis of the effects of the strongest bonds and fields. Thparticle to one of two almost-equal-depth neighboring val-
reason for this is that the two models are in fact formallyleys rather than splitting its distribution between the two val-
related, as mentioned in the Introduction. At the level of theleys will occur more and more rarely at long scales. Further-
RSRG equations, the mapping appears in a very simple waynore, any such error is wiped out by a later decimation

the local random fieldf, and the random exchangég in

which eliminates the two valleys in favor of a deeper valley.
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These errors thus lead only to subdominant contributions tcu,
the quantities that we will compute—with the exception of
tails of certain distributions which are dominated by rare
configurations of the lansdscape. These subdominant corre( U
tions can themselves be estimated via the RG. For instance
the rescaled mean square thermal width of a packel
(LTH(x(t)?)—(x(t))? (with overbars denoting averaging |U;
over landscapedends to O for largd” which is its value in
the effective dynamics, but hasl’l€orrections coming from 0 @2)
barrier degeneracies, estimated in Sec. VI H. U

Strong differences between the real dynamics and the ef
fective dynamics can appear in some quantities, such as th
persistence properties studied in Secs. IV and V. These quar
tities are usually in some way nonlocal in time and depend
on the behavior of the system over time. Even in these case

(al) (1)

(b2)

though, as we show in Secs. IV and V, it is possible to Absorbing
compute some of these quantities by a proper interpretatior zone
and examination of the RG procedure. Y

. Bllased caseln the blasgd gasg with a b'&o one flnds FIG. 3. lllustration of the RG in the presence of a boundéag)
within the RG that the distribution of barriers against theReﬂecting boundary conditions; the boundary at site0 can be

drift is no longer infinitely broad. However, i is small the  represented by settirig,= + . (a2) Renormalized landscapéal)
barriers remain large enough so that the RSRG remains &bsorbing boundary conditions; the boundary at site0 can be
good approximation. Again, this approximation remains ex-+epresented by settirg,= —«. (b2) Renormalized landscape with
act, in the same sense as above, in the appropriate scalitfge absorbing zonésee text

limit fixed 8T" andx/T"? (corresponding to the critical region

of the RTFIQ. For a fixeds one expects that the thermal OrEr()=—Pr(D)Er()+Ep(-)* Pr(T,-)* Pr(-).
packet is spread over several deep wells, but wherO the (9)
contributions of these few additional wells become subdomi-

hant. The case of an absorbing boundary can be treated in the

Tc.) conclude this section, we stress that despite its aPsame way since it amounts to setting the potential of the site
proximate character, our RSRG method allows us to obtaiy _ Uo=—oc. This is illustrated in Fig. 3. Thus the first

exact results for many quantities both for the symmetric anq);nd will always be ascending with an infinite barrfey=

the weakly biased Sinai model. +o and a lengthl; (and thus cannot be decimajedhe
rules are thus the same as above with the same RG equation
3. RG with one boundary: reflecting or absorbing (9) for the distributionEr(l) of the length of the first bond.
The interpretation is, however, different: the first bond rep-
resents an “absorbing zone” such that any particle starting

there are two main types of boundary conditions for the dif-Tom @ point within this zone will be absorbed by the bound-
fusing particle:(i) reflecting(the current at the boundary is &'y Pefore timd’=Tint, while the particles starting outside
zero and(ii) absorbing(the probability is zero at the bound- thiS zone are still “alive” (and outside this zoneat I
ary). We show in this section how both boundary conditions= T Int (with probability asymptotically close to ope
can be treated by adding to the bulk RSRG specific rules We not_e at this stage tha'; this equa’qon _commdes with the
near the boundary, which we call boundary RSRG. RG equation f_or the end point magnetization in the RTFIC;
Let us start with the zero bias case and a reflecting bound:€-» With the first exchange beingy=0. Conversely, a re-
ary. This condition can be represented by placing a barrie_ﬂectlng boundary cqrresponQS to the first transverse field be-
with infinite potentialU,= + atx=0 with U finite, as is N9 hlz'O. The equivalence is reversed on the other end of
illustrated in Fig. 3. the chain[21]. _ o
When grouping bonds with the same sign as in the pre- In the case of a blas,+ the probability dlstrlbutl_on of the
ceding section, the first bond will always be descending witHirst renormalized bond;: (1) (+ when the bond is along
an infinite barrierF; =+ and a lengtH,. The decimation the bias, and- when it is againgtsatisfies
of the landscape then proceeds as in the bulk case except that
now the first bond is never decimated and when the second B o
bond gets decimatedat I'=F,) it simply increases the c9rE§(|)=PF(0,~)*|EF(')*|f d'Pr(',)
length of the first bond;=I,+1,+15. One can easily see 0
that starting from a landscape where bonds are statistically . % _
uncorrelated—uwith a distributioB(1) for the first bond and —Er(l )f dI'Pr(0l"), (10
Pr(F,l) for all the other bonds—they remain so under the 0
boundary RSRG. Upon increaselin the bulk distributiorP
obeys the same RG equati®®) while E satisfies which generalizes Eq9) of the zero bias case.

We now consider the problem of diffusion in a semi-
infinite one-dimensional medium defined»as 0. In practice
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C. General analysis of the RSRG equations (p) 1
( )zl_TpiA _ (14)
b(p) cosh(\/p)

In this section we recall some results from Refs.P(A)= LTpﬂ
[20,21,18,22 which will be used extensively in this paper,

about the largd™ behavior of the solutions of the RSRG o
es?:;tlr(:]rgig)l and(10) and discuss them in the context of the :n;x n+> m(—1)"e - 72\ (n+1/2)2
1. Symmetric model 2 (—1ym (UM (m+ 122 (15
We start with the symmetric Sinai modgero bias, self- 3’2m
dua) and thus the RG of a single distributi®ht =P ~. One )
first defines the large-scale varianeeof the potentlal as It was shown in[21] that the convergence towards the
fixed point solutionP*(7%)=e~ 7 on the critical manifold

TERTRY i.e., symmetric perturbatiohss like with eigenvector
(U—U))%=~20]1;_|] (i i batiopss like 1" with ei

PN (5)=(n—1)e "—corresponding simply to a shift in
I'—plus other parts that decay exponentiallylinand de-

with ; _; the distance fron to j. Since bothl;; and U; pend on tails in the initial distributions.

—Uj are preserved by the RG; is also preserved and de—
termmed by the initial model asa@= [df f2Q(f). In the
remainder of the paper we will absoib in | and simply )
study the caser=1. The units of length are thend./ To In the case of the biased model one must follow the de-
obtain the full results one must changesol (and dI  scending bond distributioR . and the ascending bond dis-

— o dl) in the following formulas. The rescaled probability tribution P_, which are different. Contrary to the preceding

ables scaled distributions and variables. In terms of the Laplace

transformsP (p,1)=[4“dl e P'P;(¢£,1), Eq. (6) reads
(dr=3)P=(£,p)=PT(0p)P*(-,p)*P*(-.p)

satisfies, when Laplace transformed\ir-p, +[P*(0,00—P*(0,0]P=(¢,p).

2. Biased model

=T, \=IT?

16
[Tar—(1+ 7)2,+2p3,~ 1]Pr(7.p) (19
_ _ ) As was shown in21], for largeI" the distributionsP .
Pr(OpIPr(-.p)*4Pr(-.p). take the following form, in the scaling regime of smaland

. . 2 . .
The fixed point solutiori21] is found to be smallp with oT" fixed andpI™ fixed:

P(7.p)=a(p)e” 7P PE(£p)=Ur(p)e” i, (7
% up(p)=+p+ 6 cotfT'\p+ 6]+ 6, (18)
. p
h -——— b(p)= .
with  a(p) Sinh(Vo) (p)=+p coth(\/p) . Jo¥ & o 19
(11) : sinH'Vp+ 8?] '

Thus, takingp=0, one finds the physically natural result (Note that here we usé rather than th&” of [21].) We will
that, due to the occurrence of long regions which are prealso use the evolution equations obtained by substituting Eq.
dominantly up or predominantly down, the coarse-grained22) in the RG equatior{16):

probability distribution of barriers in Sinai's model éxpo-

nential drui (p)=—Ur(p)Ur (p), (20
Po(F)= Q(FF_F)e_“:_WF, 12 grUr (p)=—ur(P)Ur(p). (21
The distributions of barriers alone are
with a width that grows aéF)~1"~T Int. The total number 258 25
of bonds satisfies Eq7) and thus decays asymptotically as P~ () —r; p( —g—zm), (22
n~I'~2 and the average bond lengtB) grows as~T"2. 1-e

Sincel’~Int, one recovers Sinai's scalifd1]
e 26 26
x~In?t. (13 PT (D)= ezra_lex _gezra_l ' (23

In the following we will need the explicit form of the and the average lengths of the-Y bonds are, respectively,
distribution P(\) = [d 7 P(7,\), given by
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T+= 1 Ol i
I —ﬁ[e sinh(oT") — 617, (24

1 =0T ai
E[ﬁf—e sinh(6T)].

(29)

When 6—0 one hasl_i—>%l“2, and thus the total average
length of a valley is

-1

Nnr ,

; 2
sinh(T’ 5)) 26

— T
lr=17+1 ( 5
whereny is the total number of bonds.

The convergence towards the soluti@®) has been dis-
cussed iM21]. The above solutiori22) thus depends on an
“integration constant” 2=uy (p=0)—u; (p=0) which is

determined by the initial condition, and is proportional to the

drift. In [21] it was identified for smalls as the ratio of the
mean to the variance of thariginal distributionQ(f) of the
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where Q(s)=Q"(s)+Q (—s)=/"2df Q(f)e s". The
definition of u, Eq. (28), for the original model is thus
equivalent for the initial zigzag landscape to definjagas
the unique nonzero solution of the equation

(e™#F+ /T>Pg<eﬂp’ /T>P5 =1.

But since the renormalized valleys at scBlare constructed
from the valleys of the initial zigzag potential and are statis-
tically uncorrelated, this implies that for the probability dis-
tributionsPy: (F) of the renormalized barriers at any schle

<e_”F*/T>P;<e’LF’/T>P;

= L dF, e—MF+’TP;(F+)fF dF_e* -"TPr(F_)=1.
31

Using the explicit solutiong22) for the distributions of
barriers, we obtain, in terms af =up (p=0), the follow-

initial independent bonds of unit length 1: i.e., before group-Ng equation foru:

ing the bonds together:

(27)

It is useful to introduce a parametes defined by the
unique nonzero solution of the equation

—+ oo
e M= f df Q(f)e #T=1. (28)

This parametepr has been introduced previously[i®5] and

m
UF'F?

= - - r ' (32
1+ (u/Tupup)[(up —up) — w/T]

and we thus obtain that the parametei=2u; —u;’ param-
etrizing the RG solution§22) indeed corresponds to the pa-
rameteru/T. Note, however, that the expressi@Y) is only
valid for small 8.

is known to determine exactly the various phases of the dy- Thus even away from smalt, the RSRG allows one to

namics of the Sinai model with a biag{t* for u>1, X
~t for u>1). Indeed it is also known in random walk

obtain exact information on the structure of the landscape, in
particular, the behavior of the probability of large barriers

theory [43] to control the probability of large excursions impeding the drift. For largd” we have from Eq(22) that
against the bias. We now show that we can interpret thesg@or positive §) P~ (¢)~2d8e™ 2%, implying that the prob-
properties within the RG as associated with the exact deciability of a large barrierF, is ~exp(—uF/T). As we will see

mation of the landscap).
The distributionsP, (F) of the barriersF>0 of the zig-

zag landscapésee Fig. 2 obtained by grouping together the

shortly, this controls the anomalous drift expongnt

3. Boundary fixed point solutions

consecutive ascending or descending bonds of the original The RG equation for the distribution of lengths of the

discrete model are related to the origif@{f) distribution
through

= Q7 (0) Q*(s)
dFe SFPg(F)=—————, 29
fo MO T T
where QY (s)=/g df e s'Q(f) and Q (s)

=[9_df es'Q(f). The difference of potential{, —F_) of

boundary bond=* (1) defined in Sec(ll B 3) was given in
Eqg. (10). In the Laplace variable with respect to length the
RG equation(10) reads

arEf (p)=Ef (p)[PF (Op)PF(p)— P (0,p=0)].
(33

For largel” using the properties of the fixed point solution
(22) for P* and the propertie€0) of the functionsU andu,

the boundaries of a valley of the initial zigzag potential hasy,is can be rewritten as

Laplace transform
f dF, e*sF+Pg(F+)f dF_e*"-Py(F.)
0 0

_ Q'(9Q (-9
1-Q(s)+Q*(s)Q (-9)’

(30

 UiPUE(p)
N (p)=
r

= op[INUf (0)~ Inug(p).

—ur(0)

(39

Finally we find
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L ur(0) B se*or with
: Ug(p)  sinh(8T)(Vp+ 62 cot T \p+ 6215 5) 42 (—1) ) ,
(35) qX)=—> e WATX@n+1)? (40)

mTh=o 2n+1
In the symmetric casé=0 we get
where we have reinsertet This coincides with the Kesten-
sinh(T"/p) Golosov rigorous resuftl2,27] for a Brownian potential, as
(36) it should[11] since our method gives exact results for prop-
erties of the rescaled walkgt)/In’t.

P peosnr Vb

whose inverse Laplace transform in the rescaled variable
B. Single-time diffusion front for the biased model

A= I_ The case of a global bigg)o>0 is described by the RG
2 equations(6) with P*#P~. The fixed point(22) was ana-
lyzed in the preceding section. It shows that at large sdales
is the barriers impeding the drift have an exponential distribu-
. s tion that does not continue to broaden:
E\)= > e A(n+127 1 > (—1me M, Py (F)~28e 20F T g(F—T). (41)
n=—ow JN m=2e

(37) On the other hand, the bonds along the drift become very

long with large barriers:
Ill. SINGLE-TIME DIFFUSION PROPERTIES
IN SINAI MODEL 1
_ _ o _ PL(F)~—e F"DIFrg(F—T), (42)
In this section we study the diffusion front using the ef- Fr
fective dynamics introduced in Sec. II B 2.
where Fr~(1/26)e?°" ~(1/26)t*. Asymptotically in the
RG only barriers impeding the drift are decimated, since the
) ) ] T ] barriers to go against the bias are very large. The distribution
We now consider thesingle-time diffusion front, i.e., the  Eq. (41) is then simply that of potential drops between the
probability Prob,t[x,,0) that a particle starting ato att  jmpeding barriers. One thus recovers the physical picture
=0 is located aix at timet, for the symmetric, zero bias [14] that Sinai’s biased diffusion renormalizes onto a di-
case. At large time the effective(renormalizegl dynamics  rected model with trapéascending bondf release times:
corresponds to moving the particle from its starting peint with distribution p(7)~ 7~ 174, The average Iengtﬁ* of

to the lower-potential end of the renormalized bond at scal : L _ i
T'=TInt that containsc,. This is illustrated in Fig 2. In a Tgﬁsdgi?fzes?gr'lngct;ﬁﬂg(ﬂ'f,ﬁ”b“t'on H@4) yields the anoma

single environment Prob(,t|x,0) is thus localized near the We now compute the average diffusion front

bottom of the bond—i.e., the bottom of a valley—and the—-———— . .
rescaled position/In’t has as-function shape at large time. Prob(x,.t|0,0) in the case of a small average potential drpp
One can compute averages over environments, or equivé’—er unit Iengthtf>t0. The arg{ur;!etr)t IS _a;(r)] tfhe sym<moetr|c
lently over initial conditionsx, (with a spatially uniform case, except that one must distinguiskr & from X<,
which correspond, respectively, to the starting point being on

measurg in a single environment. The average diffusion ) ) )
front ;rﬁt; +xlt|?< 0 i\s”obtained as foII:)/ws gTheI liolb- a descendingR™) or ascendingR") renormalized bond at
®oFX,1|X0,0) : P scalel’. One thus uses the formula

ability that a given bond has lengtH is Pp(l)

=[d#n Pr(75,]) and the probability density tha¢, belongs

to a renormalized bond of length at scale I' is m:_i
IP()/f,IPp(1). Taking into account that the distand R
between the starting point, and the bottom of the bond is

A. Single-time diffusion front for the symmetric model

0(x)f:wd| P (1)

uniformly distributed on[0|], one finds, after averaging +t9(—x)f+wdl P;(I)}. @3
overl, -x
Prok(x,t[0,0) = 1 fmdl Pr(1). (39) This yields, in the scaling limit wher&' is large while
ZJIP M x| A=I/T? and y=T6 are both fixed but arbitrary, the gener-
[T alization of Eq.(39):

Using the fixed point solutiorill), (14) with I'=TInt, o oX
we find that the diffusion front takes the scaling form Prok(x,t|0,0) = Wq X= WJ’:TNM :
) (44)

oX

Prok(x,t|0,0)=
o T?2In?t

q (39

g
T?In%t with
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X,y)= )2 OX)LT ! ! 1 we
a(X,y)= sinhy (X) s=Xs Kk coshk— y sinhk
FO—XLTE o1 -~ )
(=X) s——Xg k coshk+ ysinhk) |’

(49)

with k= s+ y?. From this expression we can compute the

moments. One finds

1 .
(x(t))= 852_—72(smr[4y] —67ycosh2y]

sinH v]
+sinf{27y]), (46)
e 1 ~ _
(x(1)%) 1654$im[7]2(003f[67] 10y sint 4]
+3 costidy]+ 18y? coshi2y]— 12y sinj 2y]
+coshi2y]+2y%—5). (47

Note that(x(t))~ £ 513 for small y= 6", a form implied by
scaling and analyticity ird.

One can also perform the Laplace inversion. kerl let
us introduce the roote, (y) (n=0,1,...) of theequation

ay (y)cola, (y) ==y with n7<a, (y)<(n+1)z.
(48)

For y>1, the rootag (7y) does not exist, but is replaced by

the positive rootag (y) of the equationag (y)cotag (7)]
=v. In terms of these roots, the Laplace inversion gives

o

g%, Y)=00X) D ¢ (y)e Xn

o
+e<—><>n§0cn‘(we—x'5n<v>, (49
where
sy (V)=7"+[aq (9% (50)
Ctm:(_v )2 2= Hap (e
" sinhy) \ly?+[ay (0] ¥y*+[aq (1)]*F 2}

(51)

except for the terrm=0 in the domainX>0 and y>1 for
which

so (y>1)=7"~[ag(9]% (52)
cg(y>1)

( y )2 2[ag (y)]%e?
\sinhy V2 —lag (D PRIv+a ()= 72

(53
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Note thats; () is an analytic function ofy despite its defi-
nition by two domains. In the limit of smaly, we recover of
course the symmetric case E@9) using a, (y—0)=(1
+2n) /2. For largey>1, i.e., TInt>1/5, we have?xg(y)
=y(1—2e ?7+...) and thus

s (y>1)=4y%"2, (54)

Co (y>1)=4y%e 27, (55)
whereas all other coefficients in exponentials are much big-
ger sinces, (y)> 2. In the regimey>1, the distribution is
thus heavily concentrated to the right of the origin and re-
duces to the simple exponential:

Prolix,t|0,0)~ 6(x)exy — x/x(t) ]/x(t), (56)

with the mean displacement

x(t)~t2%T/(45?).

We can now compare with known result$l,14: for
fixed 0<u<1 the variablex=x/t* is distributed with a
half-sided Levy probability density ,(x~**)dx~**, where
L.(2)=LTg 1 e S, Our asymptotic result56) correctly
reproduces the small limit of this Levy front[11,14] with
the correct prefactoC,, .

IV. MOTION OF THERMAL AVERAGES:
RETURNS TO THE ORIGIN AND JUMPS

We now study “recurrence” properties of the Sinai
model. One must carefully distinguish between #iffective
dynamics(i.e., the walker jumping between valley bottoms
and thereal dynamics. In this section we concentrate on the
effective dynamicsThis amounts, as we will see, to studying
the fine structure of the motion of thitherma) packet. Ask-
ing similar questions for a single particle requires a study in
the presence of absorbing walls and will be discussed in the
next section. We will also study the zero crossings of the
“running average”

(57)

which is an approximation to the thermal average.

While in a single “run” in a given environment the
walker typically crosses its starting point many times while
trapped in a valley, averaging over many runs in the same
environment yields gx(t)) which crosses, exactly once
each time the bond on which lies is decimated, since this
causes its valley bottom to crosg.

We will first ask what is the fractiom(t) of starting
points, Xy, for which the thermally averaged position
(x(1)|x(0)=xq) has crossed, exactlyk times up to timet.
Since the effective dynamics consists in putting the particle
at the lowest point of the decimated bond, the origin and the
particle remain in the same bond at all times. The probability
of crossing the origin—i.e., the starting point—between 0
andt exactlyk times is thus the fraction of sites which be-
long to bondswhich have changed orientatioaxactly k
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times between 0 antl In particular, the probability of no tensively in the present problem. In particular, fpr0,
return to the origin isMo(t) and is equal to the probability Which corresponds to computing the probability of no return

that the bond containing the origin has never been decit® the originMq(t), the rule is simplym’=m;+m;. Re-
mated. markably, this is exactly the same as the one for the magne-

tization in the RTFIC21]. Thus there is an interesting rela-
tion between the magnetization of the RTFIC and persistence
_ properties in the Sinai model.

To computeM,(t) we use two equivalent methods, both  Since we are interested in the fraction of initial conditions
of which we describe, as they will be useful in the remalnderwith k crossings, we need the ratin(z)/1 - where the char-

of the paper. . —
Firstp n?ethod Let N(k, ) be the probability that the acteristic lengthl - grows asI'?. The result from[21] and

bond containing the origin has a rescaled barrige(F  Appendix A is that the_ratiam(z)/l_r decays af—_q’(z) with
—I)/T atT and has switched its orientatidntimes up to ~ P(2)=(3—y5+42)/2 in agreement with the first method

A. Number of returns to the origin: Symmetric case

scalel". It is normalized as£, >,/ ¢ “dy Np(k,7)=1 and it ~ (6D). o _ _

satisfies Results: returns to the origin and multifractalitf-rom
the above result we can extract several consequences. First,

[I'or—(1+ 75)d,— LINp(k,77) settingz=0 we directly find that the probability that a ther-
mally averaged trajectory does not return to its starting point

=2Pr(0)Nr(k,-)* ,Pr(-)=2Pr(0)Nr(k, 7) decays, in terms of(t)~(T Int)? as
+Np(k=1,00Pr(-)* ,Pr(-). 58
r( )Pr(-)*,Pr(-) (58) 3-\5

Mo(H)~T()~%  with 9= (65)

Introducing the generating function Np(z,7) 4

=E;£°0Nr(k,77)zk, we obtain, using the fixed point solution o )
Pr(n)=e"", Second, it is natural to introduce the rescaled number of
returns to the origin,

[Tor—(1+ 5)d,— 1IN (z,7) ) )

. - R ==, 66
=2Np(z,-)* .6~ 7—2N(z,7)+zNp(z,0) e~ 7. (59) 95T IN(TInt) (66)
We look for a solution of the form and to define the generalized persistence expoigég},
. o B characterizing the asymptotic decay of the probability distri-
Np(z,7)=T ( (a(z)+b(z)n)e " (60) bution of g:
and find a quadratic equatidnb(z) —1][®(2)—2]=1+2z Prot(g)~l_(t)*§(9). 67
so that
3—./5+4z We now compute?(g) from the above generating func-
®(z)= — (61)  tional (60). By definition,
Second methquhis cgnsists of assqciating with each fxdnlilp(z,n)oclnl“fxdgzg'" I -26(9)
bond a set of auxiliary variables(k) counting, respectively, 0 0

the number of sites on the bond which have changed orien- .
tation exactlyk times sincet=0. The RG rules for these =Ian dge " T[26(9)~gInZ] (69)
variables upon decimation of borig) read(see Fig. 2 0

m’ (k) =my (k) +my(k—1) +mz(k), (62 since we know thaNp(z)~I'~®®@ we then obtain, using
the saddle point method, thdt(z)=26(g* (z))—g* (z)Inz
whereg* (2) is the solution of 2’ (g* (z))=Inz Properties
Introducing the generating functian(z)zzfzom(k)zk one Of Legendre transforms thus give that, reciprocally, the ex-

m’(0)=m;y(0) +mg(0). (63

finds, for a fixedz, the RG rule ponent 6(g) is given by 29(g)=®(z*(g))+glnz(g)
wherez*(g) is the solution of®’(z* (g))=—g/z*(g). We
m’(z)=my(2) +zmp(2) + m(2). (64 find z* (g) = 29(g+ Vg?+5/4) and thus
A method to analyze such rules is to write the RG equation g 5 3 g 1 5
for the bond joint distributiorP (7%, m). This is hard to solve, 0(g)==In[2g| g+ \/g?+ = | |+-—=—= g2+ -
however, the RG equation for the first momeots) 2 4/ 4 2 2 ‘}69)

= [ »mP(7,m) can be solved. Interestingly, the type of com-
bination rule(64) under RSRG has been studied[R1] in _
the context of quantum spin chain models. We have recalledhe exponen®(g) is a positive convex function: it decays
that analysis in Appendix A, and generalized it to the recurfrom 6(g=0)=(3—/5)/4 (for g=0 we of course recover
sion relationm’ =am; +bm,+cmg, which we will use ex- the value found previously when studying the probability of
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1
f d W5< N— —)
L2 w

k 1 + J Ofmdwa(N - ﬁ)}

g= m% 3 with probability 1 at large time.

no return to the origin up t&) to 6(%)=0, and then grows t
again forg>1/3. This implies that Prot(N(t)zN)~f

7'(|nT)3

(70 1

~——————0(\Jt—N), 72)
TR (Vt=N) (
All of the moments ofg will be dominated by the typical

behavior; i.e.{g™)=3"" for all m. The full dependence on the dominant contribution coming from the first term in the

g of the 4(g) function describes theails of the probability ~ square brackets. The first momenthtfs (barely) finite, but
distribution of the number of returns ¢%(t)), i.e., the large higher moments grow with time as
deviations.

Returns to the origin for the running averageor a given tla=1)12
walker, Z(t)=(1k)[ix(7)d7 will typically behave like N(t)“~ 02
(x(t)). We conjecture that the probability &f=gIn(Int)
sign changes oE(t) up to timet decays with the same

exponent?(g) for g=3. .For largerg, the behavior is domi- tion of the more-than-typicaN(t) tail. For g=N/In,Int
nated by rare valleys W't.h clqsely spaced anq almqst degerglls the distribution is thereforeot multifractal. ’
erate minima on opposite sides of the origin which yield On the anomalously small side of the distribution, the

;ai;(tnraéﬁs It%r(;sceh?er\]%ez\/l:n(tts).. We now estimate the contribu- type of events which might be troublesome. appear to be rare
We are interested in situations in which the number ofﬁ 2::] ug(hx(n;))'; t%;g;ze cl;rég()t()for_r%: 1553(& (cgge:cof:og(ttf;;\t

zero crossingd(t) of y(t):f})x(r)dr is much greater than shojlld thus hold also fou:z(t).for g<1/3

those of(x(t)) whose statistics we know. The dominant con- '

tributions are from configurations of the random potential for

which the valley bottom in which the origin lies is split in ~ B. Distribution of the sequence of returns to the origin:

two halves on opposite sides of the origin for a very long Symmetric case

time. In such configurations the valley has two minima at  \we now study a more refined quantity concerning the

X;>0 andx_<0 with a small free-energy differencBe,  statistics of returns to the origin of the thermal average

separated by a barrier of some heidhy. The key pointis  (x(t)) in the Sinai model. It turns out to be possible to obtain

that if the mean rate of chang@ly/dt)~(X)vaiey(X+  the full probability distribution of the complete sequena

+x_e )/(1+e ) happens to be very close to zesdt)  the timesI';=TInt,,... I',=TInt, of successive returns

will change sign an anomalously large number of times. Tao the origin. This is possible because of the remarkable

estimate the corresponding number of crossings, one castoperty that every time the thermal packet crosses the ori-

consider, crudely, that(t) performs a biased random walk, gin, it “loses its memory” of the past.

with steps of orderx.e'o’T and an average drift ~ we consider the probabilitpr - (7) that a bond has

e'0/T(X)\aiey (since the typical time between jumps is barrier » atT and has had its last change of orientation at
e'oT). Using well-known results for biased random walks, scalel’. Its evolution equation reads

we can estimate that if the particle is trapped in the double
valley for a timer>e'o/T, the typical number of zero cross- [I'dr—(1+75)d,—1]Dr r/(7n)

ings ofy(t) in that time interval will be
gs ofy(t) — 2P (0)Dy /()% ,Pr(-)~ 2Pr(0)Dy (),
(74)

(73

Thus these types of events completely dominate the distribu-

X+

<X>valley

NTE FO/T)’ 7D with the initial condition atI’=I"" given by Dy, 1/ (7)
=Pr/(-)*,Pr/(-). As stated above, this initial condition is
independent of previous history because, at each decimation,

i.e., with 7 cutting off a quantity inversely proportional to the bond is chosen afresh. Sirg(#)=e" 7, it s natural to

(X)valley- But the distribution ofv=(X),ey/X~ is constant look for a solution of the form Dy (7)=(Ar

near zero, with density of orderIl§, because of the distri- +Br r/n)e” 7. This is found in terms otv=I'/T"" as

bution of e. Thus we can focus on valleys with the smallest

N(T)~min(

I';, since these will produce the largest number of crossings. 1 N N _ 3+.5
We must now estimate also the probability that such an Arr'=3———(a " —a %), with Ao =——,
atypical valley survives for a long time For that, we need o (75)

that neither segment on either side of the origin be decimated
in the RG for timer, which happens with probability 1/m. 1
For the contribution of these to the distribution NH{t) we Brri=———[(\s—1)a M +(1-\_)a M]. (76
thus have, ignoring constants, D W) W
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The probability for a bond to be decimatedagiven that its Performing the same saddle point analysis as in the pre-
last decimation occurred atI'’ is p(I',\[')= ceding section we find that the rescaled variaBle n/InT'
—drfodn Dy r/(7)=(1/T)p(a=TIT") with =n/In(TInt) for the numbem of jumps up to timet has a

multifractal distribution
1 1 N N o
P(a):;—)\Jr_)L(a “—a ). (77) Prol(G)~1(t)~“©®), (83)

Thus we have obtained the probability distributidn () ~ Where the ex*ponenb(G) is*given by Le%endre_ transform as
for the timet of next return to the origir(in the effective Z_w(G):fb(f (G)+G lni (G) where z*(G) is the solu-
dynamics$ given that the last return was at a timg this ~ ton of ®'(z"(G))=—G/z*(G). Note that forG=0 (which
exhibits “aging behavior” ina=Int/Int’, corresponds ta=0) one hasy(G=0)=d(z=0)=2. Asin

the preceding section, the asymptotic vateigthat G takes

dt 1 Int\ A\ Int\ A+ with probability one at large times is determined by the mini-
Ht,(t)dtzl—— (I_’> —(l—,) } mum of w(G) where o' (G,)=0 which corresponds to
tint A =x-[lint nt (G =1. Thus G,=—2*(G)® (z*(G.))=—P'(z

(78) =1). Differentiating Eq.(86) and using®(z=1)=0, we

. . find
For the sequence of successive returns, the picture we

obtain is therefore very simple: the sequence of scdlgs Uy(—1,1,1)
at which the successive changes of orientation of a given Ga,= ! i =4/3, (84)
bond occur isa multiplicative Markovian processon- U(-101)/2-U;(-1,1.1)

structed with the simple rulé€',, ;= o, [y where{q,} are
independent identically distributed random variables ofvhere — U,(a,b,z)=d.U(a,b,2) and  Uy(a,b,2)
probability distribution p(e). As a consequencel,  =d9U(a,b.2). o
=ay_jay_,- - a,l'; is simply the product of random vari- A similar met@d can be used to compute jbiat distri-
ables, so that we obtain, using the central limit theorem, thalpution P(G,g)~1(t)~%©9 of the two rescaled variables
G=n/In(TInt) andg=k/In(T Int) wheren andk are, respec-
~{InTy tively, the total number of jumps and the number of returns
lim (T) =(Ina)=3, (79 to the origin, and hence the associated decay exponent

koo 0(G,g). As an example of this application, we give the
large-time limit (valid with probability 1 of the the total
rescaled number of jump&,, conditioned ona fixed re-
scaled numbeg of returns to the origin:

and we thus recover that the numbeof changes of orien-
tation grows as Iih'=InInt and that the rescaled varialde
=k/In(TInt) is equal to 1/3 with probability 1, as in Eq.

(70). 1+2(g)

9=3-20(x(g)) Ui(—1,1+®(2(9)),1)

C. Number of jumps up to time t for the effective dynamics

In this section we study the behavior of the total number N 1-2(g)—P(z(9)) Uy~ 10Gg)D | @5
of jumps of the thermal averaged positiér(t)) at large 1+2z(9) v ek
times. We introduce the numbet(n) of starting points on a
bond such that the effective—i.€x(t))—walker jJumps ex-  where z(g)=2g(g+ Vg?+32) and ®(z)=(3—5+42)/2.

actly ntimes between 0 antfor the effective dynamics. We  Note that forg=1/3 one recover&,,;=4/3 as expected.
will use mto denote various auxiliary variables and trust that

such local varying usage will not be confusing. The RG rules

for these auxiliary variables upon decimation of bond 2 read D. Correlations of the jumps

(see Fig. 2 In this section we will obtain some information about the
statistical properties of the sequence of the directions and
m’(n)=my(n—1)+my(n—1)+mg(n), (80)  times of successive jumps. We will definguap forwardas
a jumpin the same directioms the previous one, anduanp
m’(0)=m5(0). (81 backwardas a jump in thepposite directiorthan the previ-

ous one. Note that a jump backward necessarily involves a
Introducing the generating function(z)=3;._,m(n)z" one  return to the origin due to the properties of the RG proce-
finds the RG rulem’(z)=zmy(z)+zmy(z)+ms(z). We dure. The directions of successive jumps exhibit strong cor-

s s Append At ()T ey [SBLO TGSV Dve (41 1 e pevous Sectons
I'~®®@ where®(z) is now the solution of the equation: jump 3 :

the number of backward jumpseturns to the origin be-
haves ask~3InInt. Thus in the effective dynamics the
®(2) . | _ ctive. g
0= ——|U(-z,®(2),)-U(-z1+®(2),1) (82 walker is substantially more likely to jump in the same di
2 rection as the previous jump. This is simply because the
barrier of a bond which has just been created by decimation
in terms of the hypergeometric functidn(a,b,z). and the resulting combination of three bonds is higher than
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that of a typical bond at that scale and thus it is less likely to PARRRRLLI( NPT AR W1 WS (89)

be decimated than the other bond encompassing the valley in

which the walker rests. S that, given that a backward jump occurredlg, there are
We first compute the stationary distribution of the numberexactly k forward jumps occurring at timeE,, . .. ,I'; be-

ijumpS forward made since the last return to the Origin, i.e.fore the next backward Jump occurs E’ltJrl' These condi-
the probabilities{c,} that a walker(at a given time has tional probabilities are the elementary building blocks of the
madep successive jumps forward since its last jump back+yll measure for the sequence of jumps, since once a back-
ward. This can be obtained by introducingp) as the num-  \ard jump occurs, as was noted in Sec. IV B, the process
ber of initial points on a bond such that the walker hasstarts afresh. Thus the full measure is simply a product of the
jumped exactlyp times since the last passage over the originghove termg89). We have computed the first terms of the
for the effective dynamics, normalized a;_om(p)=|  set of conditional probabilities in Appendix C 2. We obtain,
wherel is the length of the bond. The RG rules upon deci-for instance, that, given that the previous jump was back-
mation of bond 2 readsee Fig. 2 m'(p)=my(p—1)  ward, the probability that the next jump is backward is
+mg(p), m’'(0)=1,+mj3(0). Thegenerating function thus (—e/2)Ei(—1)=0.298174 and forward is 0.701826. This
has the rules m'(z)=zm(z)+I1,+ms(z) where |, resultis different from above where we did not assume that
=3,_oMy(p) =my(z=1) is the length of bond2). Similar  the previous jump was backward.

methods as above then yield the generating functtr)

=2 _oCpz” E. Number of returns to the origin: Biased case
U(-z—-1,1)+U(1-20,1) We now study the returns to the origin of the thermal
c(z)= 3[U(=201)+U(—21.0)] (86)  averaged positiorfx(t)) in the case where a small bias is

applied. Then one expects that the number of returns is finite,

in terms of hypergeometric functions, normalized to Since eventually the packet will leave the vicinity of the ori-
c(z=1)=1. From Eq.(86) one gets thec,, e.g., Co gin. However, if the bias is small the number of returns is

—[1+U(1,0,1)]/6=0.233% ..., ¢,=0.1742 ..., c, large and universal results can be obtained in the lifnit
=0.133%..., c3=0.108..., c,=0.0798..., etc. Smalltlarge withy=24TInt fixed. _ . ,
Sincec(z) has a pole foz~1.2884, we obtain that The method consists again in introducing auxiliary vari-
ablesm™ (k) to count the number of initial points on a-()
Cp~exp(—0.2534p) renormalized bond df =T Int which have changed exactly

. _ k times orientation up to time. The RG rules for these
for largep. Also, at any giver{large) time theaverage num- variables upon decimation of borid) are
ber of jumps forwardnade since the last jump backward is

& ard=C'(z=1)=3.3975649 ... . m*(k)=mj (k—1)+mj; (k—1)+mj (k) (90)
Next, we study the jump time dependence of backward . .
and forward jumps. In Appendix C1 we compute the condi-for k=1 andm*(0)=m3 (0) for k=0. Introducing the gen-
tional probabilitiesp;. ., (respectivelypy. .,) to make a for- ~ €rating functionsm* (2) ==¢_om~ (k)Z", one finds the RG
ward jump(respectively, backwajdat I' given that the last rule

jump occurred at’’. These are scaling functions of the ratio e - .
a=T/T"=Intnt, ie., p"5,dl'=p"()da with m=(2)=my (2) +zm; (2) + M5 (2). 9D

1 The calculation of the mean valyen™(z)) is performed in
pl(a)= F[S_(CH 2)e (e~ D, (87)  Appendix B and gives
o

(M*(2))=6""D (A7) +e"7sinh(7)d,AL 7)), (92)

1
p°(a)= 5[5—(a2+2a+ 2)e” @ D). (88) with y=oT, W2)=1(1+5+42), and Ayy)
=K,Qyz-1(cothy) in terms of the Legendre function
Q.(2). The constanK, dependsa priori on z in a nonuni-
versal way. From this we obtain the generating function of
the probabilitiesp, (k) =M,(t) that the averaged position
(x(t)) has returned exactlytimes to the origin up to timé

Integrating overa we recover, as expected from Eqg0)
and(84), the total probabilities of the next jump beginning a

forward or a backward jump ag'=[jdap/(a)=% and

b_1 _ f b :
= 7. Note that = + ives the total prob- NS . . e . ! .
p 3 pla)=p(a)+p*(a) g P It is simply given(since initial conditions are uniformly dis-

ability that the next jump f( or b) occurs atl’=al"’'. . X .
We now study the statistical properties of the full Se_fmbutec) as the generating function of the total number of

quence of the times of successive jumpsTy ( initial conditions withk returns divided by the total length

=TInt,, ... [,=TInt). Contrary to the sequence of the 2"d thus reads
times of backwardjumps studied in Sec. IV B which was o

simply a multiplicative Markovian process, there are persis- > p.(k)Z<= (m*(z))i(m‘(z» = 62 VDM (T 6)
tent correlations in the full sequence of jumps which makes K=o " ” Ip z '
it much harder to analyze. Indexing each sequence by (93

whether each jump is forwar(d) or backwardb) we need to
introduce the following set of conditional probabilities: with the scaling function
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turns to the origin if it is on the right of its starting point.

Ay)=— 5 Therefore the probabilityI,(T"¢, ... I'y) that the particle
sinh(y) returns exactlyk) times to the origin front=0 tot=c« and
X[Quiz)-1(60t 1)~ COU ) Qs 1(COtTY)], s (Moo &t 2k place at scala (... .[h) can be

(94)
M(Ty, ... Ty
and normalization implies tha€,_,=1/2. This function has N _ 4
the following asymptotic behaviors. For smallit behaves =p (2o (Mo T-1)p” (Ne-1.T-2) -
as a power lawM,(y)=K /a2 YO[T (y(2))IT ((2) (99

+1/2)][1+ #(2)]y"P~2, which allows one to recover the . , - .
results of Sec. IV A in the limit of a vanishing bia$—0. where p=(I',I'") are the conditional probabilities that the
For largey—x it goes to a constanit,(«) =K, consistent Particle returns to the origin dt given that the last return to

with a finite total number of returns. the origin occurred at scalE’ in the direction (), and
Settingz=0, we obtain the probability thak(t)) has not wherep*(»,I'") represents the probability that the particle
returned to the origin up to time never returns to the origin after the last passage to the origin

B occurred afl”’ in the (+) direction,
Mo(t)=p,(k=0)~6*Mq(7), (95 .
_ p+(00,1—”)=1—j dr p™(T',T"). (100
where the exponent@=(3—/5)/2 coincides with the ex- r’

ponent 8 of the magnetization of the RTFI21]. Note, We have computed these probabilities in Appendix D.

how_ever, that although the scaling functigo(y) in th?_ They are most naturally written in terms of the reduced vari-
particular case oz=0, which corresponds to the probability ablesy=cothy, y'=cothy’ with 1<y<y’ (where y= &
of no return, is closely related to the scaling function of the_+ 51t and 'y;= sT'=TsInt') as

magnetization of the RTFIC, it is not identical to it. The

probability of no returns of the running averagexof = (t), ST TdT =5 "d
will have the same asymptotic behavior {gt)). pr (LI p(y.y)dy
It is interesting to estimate the distribution of the total y¥1

number of returns. This is achieved by studying the lifhit == [Qu-1()Py-1(y")

—oo in EqQ. (93). We obtain that the probabilitieM,(t) y'*1

=p,-=(K), that the thermally averaged positi¢r(t)) re- —0. (VP dy, 101

turn exactlyk times to the origin between=0 andt= +o Qu-1(Y")Py-2(y)1dy (103

have generating function with ¢=3(1+5) andP, andQ, Legendre functions. One
0 finds, as expected, that] dyp (y,y’)=1. On the other
> P, —w(K)ZK= 827D My (). (96)  hand, the probability that the thermally averaged position
k=0 (x(t)) never crosses the origin again after having crossed it

atl'' is

It is thus natural to introduce the rescaled varialge
=k/(—In é) and to look for the exponent characterizing the

o P _ !
behavior for smalb. One finds, by an analysis similar to that pt(eI")=1— f de+(F,F’)=2w.
of Sec. IVA, r' y'+1
_ (102
~ §206(9)
Prob(g)~ 6™, o7 For y'—0 this probability vanishes as
with the same exponeﬁg) and multifractal behavior as in T(p—1)
Eg. (69). The same reasoning as in Sec. IV A leads to the p+(oc,1"’)=2—2 y'2=9 (103
result thatg is equal to3 with probability one for smalls \/;F((Z))
and thus that the total numbkeof returns to the origin in the o ,
presence of a small bias is while it goes to 1 for largey’ as
|In & . s 1
k%T' (99 p (e, I'")=1— 7 =1- P (104

whereu=245T. The factor 1t ?* can be understood with a
simple argument. Since the particle having crossed the origin
at t' belongs to a renormalized bond just being cre-

As in the symmetric case, it is possible to obtain the full jtaq its barrier is distributed not witR’, (), Eq. (22
probability distribution of the sequen¢€,,I',, . ..} of suc- ’ rss '

. newt ; on o+ + N2,
cessive returns to the origin. However, in the case with drifPut ~ with P (O =Py, (-)* P, (-)=(up)"¢e U
in direction (+), this sequence is finite with probability 1 ~ ¢/t’?#e~ /(T this is depleted near the origin which is
since there is a finite probability that the particle never re-the key point. For a return to occur aftgr, the new renor-

F. Distribution of the sequence of returns to the origin:
Biased case
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malized bond has to be decimated in the future, and the - (a)
dominant contribution comes from the times ntari.e., we
have to compute the probability that the two independent -,
barriers of the neighboring bonds each distributed WAth X
are bigger than the newt) renormalized bond af’: this o
probability is simply @1",)%/(u;, +2up,)? and thus behaves 0
as 1/(4'2*) at larget’. These events are thus responsible for
the dominant behavior g5 " («,I"’) found above.

FIG. 4. First passage '[im“éx0 atx=0 of a walker starting at,
V. RETURN TO THE ORIGIN OF A SINGLE WALKER, is obtained from the survival probability in the presence of an ab-
FIRST PASSAGE TIMES, AND MEETING TIME sorbing boundary at=0.
OF TWO WALKERS

cussed in14]. We note that the calculation of these persis-
) i tent probabilities in the Sinai model is similar to the calcu-
We now compute, in the presence of a small bias, theation of the end point magnetization in the RTHIZL].
probability N (t) [respectivelyN™ ()] that asinglewalker In the symmetric casé=0 we thus find that the prob-
has remained all the time to the rigtrespectively, to the apility N(t) that asingle walkethasnevercrossed its starting

left) of its starting point—the bias being by convention to the yoint x(0)=x, between 0 and decays at large time as
right. These probabilities are found by placing an absorbing

boundary atx=0 as discussed in Sec. Il B 3. We note that
the probability distribution€ - (1) of the lengthl of the ab-
sorbing zone satisfying the RG equati¢h0) have initial
condition (1 — 1) (counting the first infinitely deep bond in
Fig. 3 as length 1 by conventipand it is the weight of this

s-function part that determines the desired no-return probwith 1(t)=(TInt)?. Note that the persistence exponent ob-
ability. For finiteI", Ej(l) takes the form tained here in the presence of disorder is different from the

result ,,=1 for the pure diffusion problem where the
probability of no return to the origin up to timedecays

simply as 1T(t)~1/\/f. It is also significantly larger than the

. - _ . persistence exponefit=(3— /5)/4=0.19098 . . . forther-
whereRy ({) is the probability that the first descending bond mally averaged trajectories obtained in Sec. IV A.
[in Fig. 3 for the(+) casg has never been decimated up to

scalel” and has barrieF=I"+¢ atI". The total weight of _ _ _ o
the & functionr = [ “dZ Ry (¢) decays to zero as the regu- B. First passage times in an infinite sample
lar part of E;-(I) converges towards the fixed point deter- We now compute the distribution of the first passage time
mined in Sec. Il C 3. We obtain the probabilitiss (t) from Ty, atx=0 of a walker which starts at=x, att=0. The
N_(t)NrI::TIr)t' _ . method consists in placing an absorbing boundary=a0
The evolution equation foRy- (¢) reads and studying the probabilitg, (I') that this walker has sur-
o OF + 3 + + vived up to scald’ =T Int as illustrated in Fig. 4. We use the
(Ir=d )Ry ()= Pr(O)RF(g)JrPF(O)RF(')*pr((l'éé) method of decimation in the presence of a boundary dis-
cussed in Sec. 11 B 3. The probabilifsfo(l“) that the walker

Setting Ry (Z)=rpPr({) we obtain dpin(ri)=—uy  starting atxo is still alive atI" in the presence of a¥() drift
=drIn(ut) where we denoteir =uy(0) in Eq. (19). Thus is equal to the probability that the lengthof the absorbing

A. Probability of no return to the origin for a single walker

N(O~1(t)"% with 6==, (109

N -

Er()=6(1— 1)fo+md§ Ry ({)+regular part, (105

rs~up , which yields ;onehi.n hnt.aar the boundafgee Fig. 3 is smaller thark, at
, Which is
+ — " X0 -
N (O~ T =z (107 s;o(r)zfo dlL Ef (1) (110
_ 26 _
t)’vm- (108  in terms of the functiorE[ (I,) studied in Sec. I C 3. The

probability that the first passage tim'l'g<O is such thatl’

In the biased case, one finds that there is a finite probability~ T INTx,<I'+dI" is equal to the probability-, (I') that the
N*(t)~25 of never returning to the origin if the particle walker is absorbed betweehh and I'+dI’ and is simply
starts in the direction of the drift, whereas if it starts againstobtained:

the drift, the probability of not returning to the origin up to

timet decays atN~ (t) ~28e 2" ot ~#. This corresponds to

fche prqbability that the qr!gin happens to belong to a “t'rap” o (D)= — pSE () = _&FJxodl EX(). (11D
impeding the drift of waiting time larger than as was dis- 0 0 0
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1. Symmetric case

In the symmetric casé=0 we can rewrite Eq(112) in
terms of the distributiorE(\) of the rescaled variabla
=|,/T'? given by Eq.(37), and obtain

%o /T? 2Xg [ Xo
O'XO(F):_ﬁI* 0 dx E()\):FE F . (112)

The distribution of first passage tim‘éx0 is naturally ob-
tained in terms of the rescaled variable=TInT, /\Xo
which is a random variable distributed as

+ oo

2 1 2 21,2 2
= — | = — —(m/w?)(n+1/2)
s(w) W3E(W2> W3n:2_w ©
2 =
== 3 (~Me ™ (113
5 .
WS m=—c

This distribution has the following asymptotic behavior. It

behaves as(w)~ (4w exd — #%(4w?)] for smallw as the

smaller passage times are strongly suppressed. However, it

has a broad tail for larger and decays as(w)~ 2/(y/7w?).
In particular, its first moment divergesi=TInT, /\Xo=

+o. One can relate this tail to the result of the precedin
section concerning the probabiliN(t) that the walker never

crosses 0. In general one expects tRét) ~C(xq)/T" for a
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For v>1, we find using Eq(54) that the survival prob-
ability SX_O(F) in the presence of a bias towards the absorbing

boundary has a simple exponential dependencgy,on

~1— e Xo46%e % _ 1 _ g~ xou?l(T?tH)

B 1
Sx0 rs> 5
(118
whereas in the case of a bias in the direction away from the
absorbing boundary, we find

o0

1 2
| I'> —) =1—e X0?
SxO( ) HZO (yz-l- nzwz)(yz-l- n2m2+ v)

4yn?m?

x g~ (Xo/T%n?n? (119

In the limit ' —o, we obtain the probability that a par-
ticle reaches the point at a distanggfrom its starting point
in the far region against the drift

e—x052

1
Vm(xg8?)¥2

which coincides, in the limitu=26T—0, with the exact
esult in the regime & u<2—corresponding to anoma-
ous diffusion [28,44—which reads (for T=1)

a3 T (l2)?/T (1) {11 — cosr) Tix, 2+,

lim[1-S, (I)]= (120

IS

walker starting atxy, and thatC(Xy) is nonuniversal for
fixed xg. Here we find coming from the other limit in the
scaling regimex,/I'? fixed but small, that the behavior of

C. Distribution of the maximum position

The above calculation also yields the distribution of the

C(xo) at largex, should be universal a8(x,)~ vXo since
we find hereN(t) ~ /1 z-dw/w?~ WXo/T .
2. Biased case

The Laplace transform with respect xg of the survival
probability reads

Ef(p)  uf
P pus(p)

Introducing again the scaling variableyy=24I", Xq
=X,/I"?, the Laplace inversion gives

f:dxo e Pos; ()= (114

SN =1- 3 Cr(y)e Xon ', (119

wheres, () have been introduced in E¢0), and where

2[ay (y)]%e7

{V?+[an (NIPHY+ay (DIPF v}
(116

Y
sinhy

Cf(v)=(

except for the termn=0 in the domain {) and y>1,
where
2lag(y))%e”

Y
Sinhv){yz—[aay)]z}{maa(mz— v
(117

C§(7>1)=(

maximum  position Xy(t) =maxy-y X(t') for a particle
starting fromx=0 att=0 in the presence of & (i.e., along
the positive directiopor — bias:

PrOb* (Xpa ) <Xm) =Sy (I=TInt)= foxmm Ef_rindD),
(121)

and thus the boundary probabilities defined in E§3) and
(35), Ef_1n¢(Xw), correspond exactly to the distribution of
the maximum of the Sinai walk.

In the symmetric case we thus recover via the RG a result
derived by Golosoy27]. It is given in explicit form in Eq.
(37). In addition we obtain, in the presence of a small bias,
the explicit form

Prob™ (Xmax(t) = Xir)

+ oo

—Ef_tindXm= 2 Cr(ysy(y)e ), (122
with the conventions of the preceding section.

D. Probability that two particles do not meet up to time t

In this section we compute the distribution of the meeting
time T, for two particles starting, respectively, =0 and
x=L. The RSRG method is well suited to compute this
quantity which may be hard to get by other means. We call 1
and 2 the two particles, 1 starting from=0 att=0 and 2
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from x=L. We compute the probabilitiF, (I') that the two
particles have not yet met at timevith '=T Int. The prob-

ability 1—F(T") that they have met is equal to the probabil-
ity that the segmenitO,L] is included in a single renormal-

ized valley afl”. The distributionV(l) of the lengthl of the
valleys is given asvVp(l)=P{* Py . The probability that
both 0 andL belong to the same valley at scdleis simply

1 (+=
L$gm:fﬁ_mu—uwmy (123
r
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VI. TWO-TIME DIFFUSION FRONT
IN THE SINAI MODEL AND AGING PROPERTIES

In this section we will study the two-time quantity
P(x,t,x’,t")=Prolxt,x't’|00),

i.e., the probability, over the ensemble of random landscapes
and thermal fluctuations, that a particle startingcatO att

=0, be successively at’ att’ and atx att. Note that it is
normalized as fdx’ dx P(x,t,x’,t')=1 and thus it is
different—due to the averaging over the landscape—from

This leads to the following expression for the Laplace transihe conditional probabilitfrobt|x’t",00) that the particle

form with respect td_:

w 1-P(p)Py
J‘ dL e PLF,(T') = r(P)Pr(p)
0

p?lr
_( 52 ) sink?(T'p+ 6%)
| psint’(r'8)) pcosR(T'p+ 62 + 82
(1249

In the symmetric cases=0, we find F (I')=f(\
=L/I"?) with the scaling function

tantf(s
fON=LTS2, 2( ))
N 2 2
= dx> | 2x+ ————|e x™(n+12
ooz |2

(125

m2(n+3)>2

il I e—>\772(n+1/2)2
2
m*(n+3)%

)\e—mz(m 1/2)21

(126

The probability densityH, (I') that the two particles meet

betweenl” andI'+dI" is H (I')=—drF (I"). We thus ob-
tain that the meeting time i, =exgdwy/L/T], wherew
=I', /L is a random variable distributed as

2
h(W):W—gf’ V?)
2 [ 2 1 2,2 2
= — —+ —(m4Iw?)(n+1/2) )
W3Zw we 1.2 |€
T I"H-E

(127

be atx att, knowing that it was ak’ att’ and atx=0 att
=0.

The average of the two-time probability contains a lot of
information about the dynamics after letting the system
evolve fromt=0 tot=t'=t,,, i.e., theaging dynamicsWe
studyP(x,t,x’,t") in the limit where botht andt’ are large.
There are several time regimes, according to the precise way
that the double limit’,t— < is taken, and we obtain analytic
expressions for the scaling form &f(x,t,x’,t") in each of
these regimes. We also study

Q(y,t,t’)zf dx'P(x'+y,t,x’,t"),

i.e., the distribution of the displacements-x—x’ between
t’ andt. Finally, as explained below in Sec. VI A, we simul-
taneously obtain results for a “two-temperature” evolution.
Some properties of the quantiB(x,t,x’,t") were inves-
tigated previously in16], by a numerical simulation and
qualitative arguments. Here we obtain instead detagbeatt
results for this quantity. Whenever they can be compared
these results are found in agreement with the conclusions of
[16].
Before presenting the analytical results, let us first give a
discussion of the various regimes studied in the following
sections.

A. Discussion of the various regimes

One can distinguish two main regimes for latgendt’,
which we discuss in the symmetric case.

() “ Scaling regimg; t—t'~t~t'%, with a>1. This first
regime ist~t'* with a fixed a=Int/Int’>1. This regime
was called the “diffusion regime” in16]. In this regime,
typically the bond containing the origin can be decimated
betweenI'’=TInt" andI'=TInt and thus motion can oc-
cur. P(x,t,x’,t"), obtained below by iterating the RG from
I'" to I", takes a scaling form in the rescaled position vari-
ables. We thus define

Note that in the effective dynamics, once the two particlesand since there are two possible choices for the rescédled
meet they remain together at all later times. In the real dy:

. . we define

namics, rare events, as explored in Sec. VIH, can cause

them to again split for a limited amount of time in distinct ,
wells separated by a distance of ordéftjwith a probability X'=_—

of order 1/Int. r’?
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1—*1

I

) _ FIG. 6. Well with two almost degenerate minirfgotential dif-
FIG. 5. Fraction of walkers which do not move betwegerand  ference of orde(1)] and abarrierI"y which contribute to the in

t. well equilibrium dynamics.
and In Sec. VI B we will explicitly computeD ,(X'). In Sec.
VI D we will compute the full smooth part, which is more
?(’—X—,—x’ ) complicated.
Tz (i) “Quasiequilibrium regimé t—t'~t'®, a<1. The

second regime is for—t’'~t’'* with fixed a=In(t—t")/Int’

Choosing to scale andx’ by the same factdF?, the scaling iilég—h[IfG??ﬁm“on ofa is consistent with the previous one

form P,(X,X") for the two-time probability distribution In the second regime, the typical situation is that the ther-

reads mal packet att’ is well equilibrated in a valley with the
packet of width ofO(1). In this regime, there is typically no
motion on scales larger thad(1) betweent’ andt as the

P(X!t!X,lt,)N

(TInt)* particle i_s near the bo'_ttom of a valley. Motion_on larger
scales will thus be dominated by rare events, which we now
X NG analyze.
XPoyeimiine| X= 5 = 5| First, there is some probability that the valley to which the
(Tint) (Tint) origin belongs undergoes a decimation resulting in a jump

(128  betweert’ andt. Although this jump is largéthe walker will
jump to the bottom of a deeper valley a distance of order

This diffusion front simplifies in the two limits Ih  1(I'")~T'2 away] the probability that it occurs is of the
~Int’ (e=1) and Int>Int’ (a—+=). First forT=T"" one  order of the probability that one of the barriers of the valley
must have at time t’ is less thanI', which is itself of order I
—T)T'~t'1"*~exd —(1—a)I''] in this regime and thus
I\ — (T _x negligible. The behavior will instead be dominated by rare
Pa=1(X,X)=q(X") 8(X=X), (129 configurationgbut less rare than the previous ohswhich
~ . o i ~ the valley at timet’ has two almost degenerate minima,
whereq(X’) is the Ifesten distributio39) obtained previ- separated by a barridt,, as represented in Fig. 6. Jumping
ously (note thatX’ =X’ for @=1). An interesting feature is between such minima persists even for%. The motion
that the §-function component of the two-time diffusion between these minima is equilibrium motion, since typically
front atx=x' persists even for It>Int’: I'o<TI'’ and the packets are already well equilibrated. In this
limit the statistics of the infinitely deep valley potential be-
P (X, X)=D (X')8(X-X")+P,(X,X"), (130 comes that of a random walk restricted to haug
- Uvalleyfmin>0 (11,16
Thus in this second regim¢—t'~t'“ with fixed «
In(t—t")/Int'<1 we will find that the diffusion front for
Jelative displacementQ(y,t,t’) has, in addition to a
s-function part for the rescaled variabje=y/In?(t—t’) (of
weight almost equal to 1 which corresponds to the typical
valleys, an additional—subdominant by 1/tii() —smooth

whereP is a smooth function of its arguments. This property _
was suggested ifl6]. Here we find that it arises naturally in
the RSRG, since there is a finite probability that the bon
which contains the origistarting poin} will have its lowest
point unchanged by the renormalization betwé&nand I
(note that the bond can grow, but only on one sidéhis

implies that a finite fraction of particlesp(t,t’y=D, P&

=[%'D4(X"), remain at the bottom of a vallggheir renor-

malized valley af"’) and do not move a_ppreciab[ye., by Q(y tt)~ £ y ) (132
less thanO(In%t)] betweent’ andt (see Fig. 5. v [TIn(t—t)]® “\[TIh(t—t")]?/)’

Finally, for very separated times, i.e., large the time
evolutions ofX att and X’ att’ decouple and one recovers ynere the functiorf,, is universal. This result is obtained in

again the Kesten distributiof89). One has Sec. VIF.
~ 5 5 ~ (i) *“ Crossover regimé t~t’, a=1. Finally, the
D, ..(X)=0, P, . .(X,X)—a?q(a’X")q(X). matching between the regiméd and (i) ast—t'~t’ is

(131 studied in Sec. VI G.



4814 Le DOUSSAL, MONTHUS, AND FISHER PRE 59

Before closing this section, it is interesting to note that by 1 (= 1
computing the two-time diffusion front, we obtain simulta- D, -1(7)= :f dANAP(p,N)=5(1+27p)e 7.
neously the answer to the problem of evolution of two inde- AJo 3
pendent particles in the same environment, each seeing a (136
thermal noise with aifferent temperature ,Tfor the first
particle with trajectoryx(t), andT’'<T for the second with
trajectoryx’(t). If the two particles start from the same point
0 att=0, it is clear from the considerations of the effective D.(n)=e ”i(5+ iel a) Cean 2 ol
dynamics that the distribution of their respective rescaled a—1 3(a—1)
positions X=x/(Int)?> and X’ =x’/(Int)> will be given by (137
P(x,x",t)~P,_17(X,X') with the same scaling function
as in Eq.(128. (Although in the aging problem the thermal
noises are identical betwed¢randt’, this does not make a
difference at large times for rescaled quantiji®éote that it
should be easier to measure the dependencErather than
Int as the latter in practice cannot be varied over a wid

The solution of Eq(135) reads

| We note that this barrier distribution is a combination of two
exponential factors, the expected one, expll’), and the
other one, exp{F/T""), which represents the “memory”
from the condition at’. This will be the typical form for
éaarrler distributions which we will encounter in all aging
calculations.

range.

g We then obtain from Eq. (137 D(t,t')=D,
) ) o . =[odnD,(7), ie., the probability that a walker has not
B. Singular part of the two-time diffusion front: moved fromt’ to t, which takes the remarkably simple uni-

symmetrlc case versal form
1. Probability D, of staying within a well from t to t | 5
. . . nt'\</5 2 ,
We start by computing the probability for a particle to D(t,t")= ( Int) (5_ 3 e (nt/nt’—1) (139

stay within the bottom of a valley betwe¢h andt:

" The behavior of Eq(138 for close timesa=Int/Int’
D“:f dX'D(X"). (133  near 1 is dominated by valleys about to be decimatdd’at
- Expanding Eq(138) yieldsD(t,t')~1—3(a—1). The fac-
tor 4/3 is consistent with the most probable number of jumps
We compute the fraction of walkeBr /({) which are  growing as (4/3)ln found earlier. Let us note that
on a bond==T"+¢ atI" and have not moved froi’ toI". —dpD(t,t"), with D(t,t’) given in Eq.(138), also repre-
This means thati) this bond has not been decimated, &iNd  sents the scaled distribution of the first passage tinat the
one of its neighbors has not been decimated eiftle¢  bottom of the renormalized valley where the particle is. at
neighbor in the same valley, i.e., the right neighbor for aThis is consistent with the result of Golosf®7].
descending bond and left neighbor for an ascending.one
Thus the bond has been able to grow only on one side. As a2, weight D,(X’) of the é-function component of P,(X,X")

resultD satisfies the RG equation; _
To compute the full singular paR ,(X') in Eq. (130 we

I— 9D v 1 (&)= —Pr(0)Dr s simply have to extend the previous calculation keeping track
(9r=37Drr(0) r(O)Br.r(0) of the length of the bond. Since we are not interested in the
+PF(O)[PF(-)zDF'F,(-)—Dr’F,(g)]. length atl” the length only appears &' as a parameter in
(134 the initial condition. The final results read

Y'Y — 2 21
The second and third terms on the right hand side come from Do(X")=a*da(a®[X"]),

the allowed decimations of the neighbor. Integration ofer

shows the total loss of weight from the forbidden decima- d(X')=LT", _( 1— a(p’)

tions: (ii) from the first term in the right hand side afid P’ ﬂ|x’\ ’p’ b?(p’)

from the boundary term af=0. We are interested in large , ,

['’, and thus we can assume ti¢ has reached its fixed a(p’)[1-b(p )]e(al)b(p’)> (139
point value(11). Thus one obtains, in the rescaled variables b*(p’) '

=T anda=T/T"',
One can check that foit=1, one recovers the Laplace

(o transform of the Kesten distributiot89), d;(p’)=q(p’)
[a&“_(1+77)&’7+1]D“(77)_fo e "Du(n= ). =(1/p")[1—a(p’)/b(p’)]. Also one recovers (p’=0)
(135  =3Dyy with D(t,t’) given in Eq.(138 (with a factor;

corresponding to the total probability restricted to the half

The initial conditionD ,- (%) corresponds to the probability axisx'>0).

that a walker be on a bond with=T""(1+#) atT'’ and, This result(139) can be explicitly Laplace inverted in the
since this probability is proportional to the length of the limit of a large @=Int/Int’, where one can neglect the ex-
bond, it is obtained from Eq11) as ponential term, yielding
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2 [+=
da(X’)~—2f d\' N P(N)=D, ¥(X'), (140
a“JX’'

where D ,~5/(3a?) from Eq. (138 is the total weight of
particles remaining in their wells ar®f(X') is the normal-
ized distribution of their positions:

6

_1ﬂ
X)-2 S

n==e wi(nt3)?

+ oo

e~ 72(n+1/2)2X'|

x| 1+ 72

12
n+§) |X|

(142

We note that, compared to the Kesten distributip{X’
=x'IT'2), ¥(X'=x'/T"'?) has more weight towards the

larger values of’/T"’2. This is a consequence of the fact
that the farther the particle goes the more likely it is to be in

a deep well where it is likely to remain longer without fur-
ther motion.

Finally, it is instructive to estimate also the singular part

of the averagectonditional probability Probxt|x't’,00).
Using a similar method it is found to be

da(X")
ax’)
whered,(X") is the function defined in Eq139).

DX )= (142

C. Probability of staying within a well: Biased case

Next we obtain the probabilitl (t,t") tha't a walker does
not move substantially betwedrandt’ (i.e., does not jump
to a new valley bottomin the presence of a small bias. This
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where

vy=6TInt and y'=46TInt’.

This formula is exact in the small bias scaling linit’
—oo, §—0, with fixedy andy’.

This formula(143) is interesting as it exhibits a crossover
between two different aging scaling functions corresponding
to the symmetric model and the directed model, respectively.
In the limit §—0, i.e., y—0, v"—0 with a fixed ratio
vly'=a=Int/nt’, Eqg. (138 is recovered. In the opposite
limit in which both y>1 and y'>1, a nontrivial scaling
limit exists wheny— vy’ is kept fixed, i.e.t/t’ fixed, and the
above expression simplifies to

D(t,t/)we—2(7—7'):_

i — [ tH
0K with L(t)=Ip~t

(144

L(t')
(1

using u=24T. This coincides with the smajt limit of the
aging form of the directed moddiformula (51) of [16]]
which can be written aD(t,t")=H[(t'/t)#*] with H[Zz]
=[sin(mu)/ wr]f5dy(1—y**)~#. When u—0 the function
H becomes exactli[ z]=z, and one recovers E¢l44).

D. Two-time diffusion front: Full analysis
1. Sketch of the method
To compute the two-time diffusion frofrobt,x’t’|00)

can be computed by extending to the biased case the diregf \ho general biased case, we need to introduce quantities

method of Sec. VI B, or from the more general approac

result:
1 .
Drpri=—75—1(2 sintf y'+1—y'cothy’)
sink? y
—e (r= y")cothy’ COShY( COSh)” - !
sinhy’
(143

presented in the next section. Here we only quote the er:'gssouated with bonds which keep track of theind

oints and for which a RG equation can be written. We
thus  define Q1 ({,X . XriX{ .Xp)  [respectively,
Q;},(g,xL Xr:X| ,Xg)] as the probability that the origin be-
longs to a descending bond with erjdsx| ,x] atT'" and to
a descendingrespectively, ascendingoond of barrier?
=F—T and with endq —x, ,xg] atI". Similar definitions
hold with Q)" ~ andQ ™~ for an ascending bond &t'. From
these quantities one can recover the two-time diffusion front
for x'>0:

PFOHX,LX’>OI’|0,0)=0(X)f dff def dX{ Q[ (4X0 XR=XX] X =X")
0 0 0 ’

+0(_X)f dgf ‘dXRJ dx{ Qp 1 (EXL= =X, Xg X XR=X")
0 0 0 '

and similarly forx’ <O0:

(145
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Prot{x,t,x’<0,t’|0,0)=a(x)f ng dx,_f dx&Q;;,(g,xL,xR=x;xL=—x’,x,§)
0 0 0 :

+0(—X)J ng def AXg Qp 1/ (£ X ==X, XR; X[ = — X' ,Xg). (1406
0 0 0 '

The four RG equations for the four qu(';\ntiti$+}’,(§,xL XR; X[ ,Xg) and Q;fr’,(g,xL XR:X[ ,XR), with ' ==*1 can be
written in a compact form;

(I =3 QT (LX0XRXXR)= = 2PF (0) Q1 T (£,X0 XR5X] XR)

+ f PE(0J)PF(- 1)*g9;,6p( SYXR XU XR) S — (Y11 +15))
1,>0/,>0y>0

+f Pr(0J2) P (-, 13)* Q0 T (XU YiX{ XR) S — (Y + 15+ 13))
1,>0)3>0y>0

+f P 10% PEC 1) Q0 50 (0y1,Y2i X XR)
11>0l3>0y1>0y,>0

X O(XL— (y1+11))6(Xg— (Y2 +13)). (147

These equations must be solved with the following initial solved explicitly using Laplace transforms in Appendix F.
conditions att’=T1"": For the symmetric case the explicit expression for the
Laplace transform of the full distributioRrobxt,x’t’|00)
with respect tax andx’ is given in Eqs(F41) and(F42. In
the next two subsections we give explicit expressions for

ee’ . . .
Qp p(EXXR X[, XR) some simpler quantities.

= 8e.er (XL —X[) S(Xp—Xp) @p/ ({,X[ XR), (148

2. Some results for the symmetric case

, We first give the explicit expression for the distribution
where wr.,({,X[ ,Xg) is the probability that the origin be- Q(y,t,t") of relative displacementy=x(t)—x(t"), with
longs atl'’ to a bond(ascending ife’=—1 and descending Q(y,t,t")=fdx'P(x’'+y,t,x’,t’|00). This distribution
if €’ =+1) with barrier{=F—T" and of end$ —x| ,x5] at  takes the scaling form

I’
: = PRI ho 1 _
w;/(QX(_,X(q)ZJ'O dl'rl_—’5(|’—(xl'_+xﬁ)) Q(y't’t ) (Tlnt,)zQa=|nt/|nt’(Y_ (Tlntl)Z ’
r (150
1 € ' ’
=I_—PF,(§,XL+XR). (149
I‘/

Note that we have choseri=y/I''? as the scaling variable

Note that all of the primed quantities—those at the earliefere for convenience. .
time—enter only via the initial conditions on tif&¢'s. These From Appendix F the Laplace transfornQ,(p)
equationg147), together with the initial conditioi148 are = [5dY e PYQ,(Y) is found to be
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N tani \/Ea)[ 1 \/B

Qu(p)= 0a? { 25 coth\/_+smh\/—(cos p— sw:/hﬁ\/ﬁﬂ
+cosh/_{ Jp smh\/_ SW_) 1 / 3 . Jp p—3)
pa?® \smh\/— Jp 6pa’cosh\pa)\| cosh/p sinhyp P—1
- (1—/p coth/p)[1+ \/—tanr(\/—a)] g~ (@~ 1)Jpcoth/p / 1 Jp  sinh/p
(a-1) cosh/p+ —— - -
3a%(p—1) 2pa2cosr(\/6a)\ cosh/p sinhyp  Vp

(151)

Several properties of this expression can be checked expli@nd the motion is much slower, consistent with the aging of
itly. First, from normalization on the half space>0 one the system.

has Q,(p=0)=%. Then, the initial condition at=t' is Aga?n it is simple to recover the beha\(ior for relatively
O._1(p)=1 smceQ(y,t,t )=5(y). One can also recover close timesa=~1. Expanding Eq(151) one finds

the singular parD(t,t") 8(y) of the distribution correspond- A 4

ing to walkers which have not moved appreciably between 2Q,(p)~1- g(a— 1)+ (a—1)YH(p)+O(a—1)?),

andt. Indeed one find@a(pa+w)~Da/2 whereD, is

given by Eq.(138. Finally, for very separated times— 1 (158
+ 0 one recovers the Kesten distributi¢89) since the ini- H( ):—< Jp— _) I
tial condition atl'’ has been forgotten: P= cos p sinhy/p P Jp/  (sinhyp)?
R k 1 1 The 1-4(a—1)/3, p-independent term represents the prob-
Q4| P=— K 1-——|. (152 ability that the particle does not jump and has been discussed
a coshyk in Sec. VI B. The other tern#{(p), is the Laplace transform

of the probability that the jump is over a scaled distaice

=Y, H\)=JdA(L+NX{/N)P(ON)P(N—\7) where the

first term corresponds to the bond containing the origin being
decimated and the second term corresponds to the neighbor-

I ’1

From the above resu({tl51) one obtains the moments of the
relative displacements which take the general scaling form

(X)) —x(t) [N~ (T Int")2"F [ — ing bond in the same valley being decimated. In Laplace
variables this gives H(p)={[—2d,P(»=0,p)+P(%
(153  =0,p)]P(p)} which using Eq.(11) gives back the above

Fla]l=a,(a)+el b, (a). result(158).
We also give the explicit expression for the normalized
We give explicitly the form of the second moment: dimensionless correlation:
(@) 6la* 4a 47 2 409 (154 (x(t)x(t")) 72 40 180 2045
)= —+ =+ 07— —, = — - +
180 5 60 7a 378,2 f F 61 2 3 4

2 8 2 20 80 36
b= 5t 27 T e (159 veren| o)
¢ Sa 6la® 183%° 6la*
while the first moment has a simpler expression: (159

which decreases from 1 to 0 as=Int/Int’ goes from 1 to

{Ix(t) =x(t")|)~(T Int") <_a - i+ 221 +o0. Note that the decay asdlfor large « is characteristic
Sa  180a° of the generic decay of corrections to asymptotics &s 1/
4 .
- e (a—1) ) (156 3. Some results for the biased case
9a? From Appendix F one has an exact expression for the

o Laplace transformed two-time diffusion front. It is, however,
At large @ one recovers Sinai's resulfrom Eqg. (39)].  very complicated and thus we give here only a few simpler

Whent andt’ are not too separated, i.ex~1, one finds quantities.
Given that the bias is towards>0 and that the starting
272 point is x=0, the probability that the particle is on the side
Fala]~ ooz(a—1), (157 ) : :
315 x>0 both att’ andt has the aging behavior
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PTH(I,T")=(0(x(1)0(x(t"))) Prokg(xt,x’t’|00)=EF,(X’)Q;F,(X—X’), (162
_ 1 [eZy(eZy'_z,yr_l) where E;,(x’) is by Eg. (122 and the distribution of the
16 sintt y sint?f v’ relative displacementg=x(t)—x(t') is
—2v' ’ 2y’ -2y _ _ _r!
—2y(e Y +2y'—1)—2e7 —e” 77 Q;’F’(y):LTp—l»ye sIr-r")
12 ’

Taytr2y 3, (160 sinh(8r") Jp & cotT" \p 5°) —
with y=T'6 andy'=T"46, while P~ (I',I'’) is obtained by sinh(48T") Jp+ &2 coth T Jp+ &%) -6 '
8— — 6. The other possibilitiesP* -~ *(I',['’), are ob-
tained from the single-time identities (163

_ — In the symmetric casé=0, Laplace inversion gives the
++ ’ + NN_pTt —1+
PTLIT)+ P (I T) =P =Ir /I two-time front:

and ) . .
P*H(II)+P (I, I")=PHT")=17/1p Q(y.tt ):ﬁnzo mnt 5 ?CO\{W n+ > ?}
wherel_ri, are given in Eq(24). % o AT m3(n+ 122

The explicit expression for the correlatigr(t)x(t')) is
given by Eq.(F43.

2 < r
5(y)— —E wmtar‘( wmr—)
E. Full two-time aging function in a semi-infinite system

There is one instructive situation where it is simpler to Xeyz/r'Zmezl, (164)
obtain explicitly the full two-time probability distribution

Prob(xt,x’t’|00), even in the presence of a bias. This is the

case of Sinai diffusion on a semi-infinite axis {0¢) witha ~ With '=TIntandl""=TInt".

reflecting boundanat x=0 and possibly some drift in the !N the biased case one finds
(+) direction. . , -

In this case the single-time diffusion front is simply ’(y):ey sinh(y’) 32 A, (. )e- 0TS
Prok} (x't’|00)=E,(x'), i.e., the probability distribution nr e”sinh(y) | I'27=0
of the lengthx’ of the first renormalized bond near the e L
boundary, whose Laplace transform is given in E85). _ 2 Tm
Similarly, the two-time diffusion front is equal to +aly) = amcot mmyly')—y'

Prok (xt,x't'|00)=E . ,(x,x'), i.e., the probability that
the first bond near the boundary has lengthat I'’ and

*(y/F’z)( ’2+m2772)
lengthx atI'. Its RG equation is given by Eq10), xe 7 '

(165

FEF’F,(X,X’)= PF(O,-)*XE;’F,(',X')*XJ ‘dg’PF(g’,.) where thes (y) are given in Eq(50) and thed,(y,y’) are
0 given in terms of thex, (y) defined in Eq.(48) via

EF,rr(X'X’)j dI'Pr(0l") (161 o san(neol (Y y)ag (V]—y
0 da(7, 7 )= an () — :
: iy a (y)°ty —vy
but with the initial condition (166)
Err o (X,X) = 8(x—X")EL (X') except for the terrm=0 in the domainy>1, where
at I'=T"". Note that within the effective dynamics this _ ad (y)cot (v Iy)ad (y)]— v
system has the flavor of a directed model, singg) do( 7,7 )=ag ( )2 %o 0 ,
—x(t') is always positive. It is thus convenient ag (72— ¥ +y
to define the double Laplace transfor& . (p,p’) (167

=g dx'e P [Ldx e P IEL r,r(X,x") and using the ity ao given in Eq. (48). In the limit y=T'8§=T4&Int
fixed point solution(22) for P together with the properties 1 /=I"5=TsIn t'>1, one finds the simple aging form
(20) the above RG equation simplifies ing In EF’F,(p,p)

— + + . « e e i t/M

t ar Inup (O)/ur_ (p). US|rlg+the abcl)vilnTaI (,:onciltlon, V\_/e ob QF,F,(y)~ s+ ( -
ain the factorized fornk. ,(p,p")=E,(p")Qp . (p) i.e., te

in real space, ' ' (168

2
NPT LT
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with ©=26T. Equation (168 coincides exactly with the

1
small w limit of the two-time diffusion front in the directed Kr(y.I'o)=—5 (Ie+ 1) [P (1)Rp:(12,y,Io)
model[45]. As noted above, the model with a reflecting wall i,
is in effect asymptotic to a directed model. In the presence of + P ()R (11, To)]

a bias, in the long-time limity,y'>1 it gives the same re-
sults as the full model discussed in the preceding section, as
the influence of the wall vanishes in that limit. =2

1.

rg

y

1+ﬁ

y
rg) . (172
F. Dynamics within a well When the starting point belongs to such a vallelyarac-
We now study the dynamics in the time regimet’  terized byy andT,) the walker atl'’ is well equilibrated
~1"“ with fixed @<<1. As was discussed in Sec. VI A this is (sincel'y<I'') and its thermal distribution is, in a scaling
dominated by renormalized valleys lat with two degener-  sense, a sum of twé-function peaks separated by a distance
ate minimalJ; andU, with U;— U, of orderO(T) asinFig.  y>0 with weightsp=1/(1+e ") (at the absolute mini-
6. In a typical valley many such degeneracies may exist ofnum) and 1—p (at the secondary minimumwherew rep-
small scalesy=x—x" of order 1, with nonuniversal statis- resents théfree) energy differencof orderO(T)] between
tics, but we are interested in rare valleys where such degefihe two minima. When estimating the distribution gf
eracies exist on scalgs-T"'? with barriersI'o~T"'; the dis- = |x(t)—x(t')| one probes this equilibrium distribution &t

trib\;l\ltviaoinnt?gétiseetfeunri(\)/gglsl‘a?lli.t densiBy (2.1 x Tq) that & andt’. Denotingl’ =T In(t—t') it is clear thaty can be larger
P y (2,1, x.Io than O(1) only if I'>T, in which case it is equal to the

renormalized bond at scale has length, barrier{=F—T" ﬁeeparatiory of the two minima with probability (1 p)
and has a secondary minimum, degenerate in energy with t and small otherwise. Thus to obtain the distribution

absolute minimum(i.e., the lower edge of the bopdind 2 _ _ .
separated from it by a distaneeand a barrief’,. The cal- ~ Q(Y,t,t") foryin the scaling regime, one must sum over all
culation of this quantity is performed in Appendix E. We barriers smaller thah'=T In(t—t’) [the larger ones contrib-
find the simple decoupled form: ute only to the already dominan®-function part of
Q(y,t,t")]. Thus, using Eq(170, we find in the scaling

1. ) regime of fixeda=In(t—t')/Int'<1 andy/(T Int’)?
Rr(Z,1,x,I'g)=6(I'=I'g) 6(1 =x) Pr({,1 =X) Fr(xll“o),

(169 - P
Q(y:t!t ):C(T) OdFO KF’(y!FO) (172)
with
-
* 22{1-1- y ,2 —
F(X)=4 n2a?(2Xmm2—3)e X7 (170 (TInt)][TIn(t—t")]
n=1
% ) (173
We have written for simplicityR in unrescaled variables, but [TIn(t—t")]

the expression is of course valid only in the scaling regime
[~To~T, x~1~T? (see Appendix E for detailsNote that  \where we have defined
its total normalization is

)

L e G(X)=47"Y, n%e X"
d¢| drg dl | dx Rp(x,T'g)~ 1T n=1
0 0 0 0
1z 2m?
o _ - > 1+ —]e™X (174

as expected since it corresponds to a rare event; With Jrx¥2m="e X
<TI, the density with double minima withif of each other
is TR.

We can now obtain the probability that a Sinai walker will Note that the factorC(T)=2/5“dw e "7/(1+e™"'T)?
move byy betweent’ andt for t—t’~t'® with a<1. We =T arises from the fact that the distributionwfis constant
need first the probabilityy(y,I'y) that the starting point aroundw=0. . _ _ _ _
happens to be|0ng to a renorma”zed”ey atl'’'=TInt The above result is consistent with previous observations

which possesses two degenerate minima separated by a di8- the _case of finite, but large{—t' where moments
tancey and a barriel’,<I"'. Taking into account that each [dy y*Q(y,t,t') were argued[16] to grow as [T In(t

of the two bonds forming the valley may be the one with the—t')]%"* for k>1/2 and be bounded fdk<1/2. Here we
degenerate minimdhe probability that both have degenerate obtain, in addition, the behavior for more separated times
minima is negligible in the scaling regime of inteneshe  with positive[In(t—t')/Int"]<1.

gets, using Eq(170), In the biased case we find similarigee Appendix E 1L
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RE(Z,1,%,To)=6(T' =T o) 8(1 —x) P (£,1—X) (e""/"—e Y7 and that the distribution of is uniform
arounde=0 with density 1T'":
1. 2y o= x82
xFr(x/FO)e X0 (175 . .

0 f(t,t’)=J de exp(—e‘E’T)—exp( —t—,e‘f’TH
where?(X) is the samefunction (170 as in the symmetric
case. From this we obtain, as above, the probability _T1 t
K?,(y,I‘o) that the starting point happens to belong to a =T nt—,. 178
renormalized valley al’’ =T Int’ which possesses two de-
\g/\t/an(?raée minima separated by a distaynesd a barriel’,. The second contribution comes from the events discussed

e fin

in the preceding subsection, corresponding to degenerate
wells (Fig. 6). These are dominant fax<<1 and they also
1F y e give a contribution fore=1, which must be added to Eq.
3 FS (1_77)._ The correspondmg cqntrl_t)utldaz(_y,t,t’) to the _d|§-
tribution of displacements is simply given by the limit
—1 of Eq. (173 which corresponds to setting tn{t’)
~Int’.
Putting this all together we give the explicit expressions

1+

r’

K (y,Tg)=2

and thus, integrating over the barrid?§<f“ yields the dis-
tribution of displacementy=|x(t) —x(t')| in the presence
of a small bias. We thereby obtain that in the scaling regim . : .

where the three scaling variablgé(T In(t—t))?, &TInt’, eLoer ;Z?a?ﬁecgr;goxi\gntﬁgn. the various regimes that can
anda=In(t—t')/Int’ are held fixed, the distribution of dis- 102

placements is dominated by the rare events with valleys with

N2\
two degenerate minima and with (1) =x(t")%) ~ 179
2
- 82y ) T J| 8 48(In(t—t)
Sy tt)~2] 1+ TTINE—t) ¥ =t o ——| |,
Qlytt) ( sinf(STInt")/[TIn(t—t")]° 45 943 Int
G y )eyﬁz w76 t—t'~t'%, a<l, (180
[TIn(t—t")]? ’
48 272 [t o
where, interestinglyG is the same functioti174) as in the T(TInt")% 5o+ gen| /|, t=t'~t", (18D
symmetric case. This is because the rare events that dominate t

are those in which the relevant part of the landscape is al-
most symmetric.

!

. t—t'~t'?, a>1, (182

4 Int
(TInt")*F,
Int
G. Crossover att~t’

So far we have studied separately the regimet’ where the functiorF,[ «] is given in Eq.(153).
~t'* (a>1) and the regimé¢—t'~t'* (a<1). For com-
pleteness let us mention what happdfa the symmetric

case in the crossover regime-t’'~t’. In this regime, the ) ) ) ]
distribution of displacements/=|x(t)—x(t')| takes the In this section we examine further the rare events which

form of a sum of two contributions. produce subdominant corrections to the results from the

First, it was found in Eq(158) that in the limita—1*  RSRG. As discussed in Sec. Il B 2, although subdominant,
this distribution is controlled by barriers of ordBf~TI". For ~ these corrections give the principal contribution to some ob-
closer times,T—I''~O(T) one must consider more pre- servables when the leading contribution vanishes. This is the

cisely the jumping process over the barrier. Associating fase for thet_hermal_w?dthof th_e diffusion f_ront analyz_ed in
inale relaxation time— e’ 9T with the barrier of heiaht Sec. Il A, since this is zero in the effective dynamics. We

S'Pg € relaxation timer=¢ W € barrier of helg now examine this in the symmetric model.

I'' + € one finds that the contribution of these events to th

e . . . _
o ) i~ X The possible rare events which contribute to the splittin
distribution ofy takes the forn{in addition to a piece pro- of the tﬁermal packet are indicated in Fig. 7. The mopst im%]

portional to5(y)]

portant ones, all occurring with probabilities of ordel” 1/

H. Rare events in the single-time diffusion front

1 are the following. In caséa) the starting point belongs to a
Ql(y,tt’):f(t,t’)—’}.{(Y: L) valley with two degenerate minima: this is the equilibrium
(Tint")3 (TInt")? situation already considered in the preceding section. In case

(177 (b) the splitting is due to the starting point being in a valley
with two almost degenerate barriers: at scales when the
where the Laplace transform @gi(Y) was defined in Eq. packet overcomes the barriers, the packet will split between
(158. The coefficientf (t,t") is obtained by noting that the the two wells located on either side, an intrinsically nonequi-
probability that the particle jumps betwedarh and t is  librium phenomenon. Note that if the packet is split Es in
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(2) ® (©) @

FIG. 7. Rare events that contribute to the thermal width of the diffusion front. The starting point is indicated by éagsslley with
two degenerate minimdb) Almost degenerate barrier&) A valley just being decimated with a barri€r+ €. (d) A rare event of higher
order with the starting point near the upper edge of a bond.

(b)] the probability that it remains split until a later tinte in terms of the scale® from Eq. (14). .

decays as (ItnH)2 In case(c) the walker afi’ belongs to a In either caseg@a) or (b) the packet is split between two
valley with a barriel + e, with e~O(T) positive or nega- wells and the thermal distribution can be written, in a scaling
tive. In this case the thermal packet is already splifat SENSE: as @ sum of mdfunction peaks, of the formpa(x

between two valleys. There are of course other rare events: Xl).+h(1_ P)o(x=X2) ce_ntereld at each mmm;)ur;nl and
for instance, the one illustrated as c&dg when the starting Xp With x;<Xp, [X;—Xg|=Yy. In case (@), as beforep,

- 2wt - -
point is near the upper edge of a bond: this also corresponds /(11 &™) wherew is the free-energy difference be-

to an out of equilibrium situation, but it occurs with a smallert‘r’:"""er'Ithfa two minima, Wh",e in pa$b) alsimlpledestima/te of
probability O(1/T'2). the relative escape rates in Fig. 7 also leadgpge- 1/(1

Let us estimate in more detail the probabilities +e—ug) wherez;] is now the(effective free} energy differ-

(a) (b) (© : : .. ence between the maxima.
S\/Fer(w)t/s)(’a)(g(ll;)();gﬁ dézz)d fg F|:i(gy)fiﬁg?;f%;gf;egg\gﬁ{ g{'th Thus we can estimate the dominant large-time behavior of
with a fixed separatiog between the two parts of the packet, ', moments of ine thermal width coming from the conri-
Let us start with event$a) and (b) which can be treated k Ply 9
similarly. Ut — (e (115 Ky

t) —(x(t

Events of type (a)We have already computed in Eg. (X0 =0+
(171) the probabilityK(y,I'g) that the origin belongs dt +oo
to a renormalized valley having two degenerate minima ~ck(T)(TInt)2k‘1J dy YXQ@*t®y), (186
separated by a distangeand a barrief”y. Integrating over 0
the barrierl’ one gets where the scaled distribution is

y
1+ 5

1
1oy
s \r2

r
Q(ra)(y)=f0 dloKp(y.Tg)=2 , Q<a)+(b)(Y)=2(1+Y)G(Y)+ZdeYl Y,G(Yy)
0

(183
X[P()*P()Ix-v-v,, (187

where the scaling functiol has been introduced in Eq.
(174). with Y=y/I'?>. The coefficientsc,(T) can be computed

Events of type (b}ere we need to compute the probabil- based on the fact that the distributionswfand ofv have
ity Q{P(y) that the origin belongs to a configuration of type constant density near 0. This gives
(b) with a distancey between the two minima. We first com-
pute the probabilityRp(141,Y1) that_ a bond at scalk has_ a c(T) = f+°°dw(e—kw/T+e—w/T)/(1+e—w/T)k+1:zT_
lengthl; and two degenerate minima separated by a distance k
Y1, Eq (170)1

Using the Laplace transformed expression,

B r
Rr(ly,y1)= Jo d(fo dl'oRr({11,y1.10) j+deYQ(a)+(b)(Y)e’SY
0

VN B2
=Pr(l; Y1)F3G(r2), (184 ~20, \/gcoﬂ,(\/g)
and thus S cosk(ys)[ 2 ~ i”
T sinf25) | sinh2\5) Vs
QP(y)= FL dllJO d'zfo dy1yiRr(l1,y1)Pr(l2) (188)
Xo(y—(1+12) We must now consider the ever{ty as shown in Fig. 7.

The barrier that the particle must overcome to leave the val-
2 (ym2 ley isT'+ €. This corresponds to a single relaxation time
:Ffo dY1 Y1G(YD[P(-)*P() Lx=ymr2-v, =el'*9'T Thus the probability that the particle is still
in the valley at timet=e"'T is simply p.=exp(-t/7)
(185 =exp(—e “"). The thermal distribution can then again be
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written, in a scaling sense, as.8(Xx—X;)+(1—p.)d(x  explicit formula in the case of a continuum Brownian poten-
—X,) wherex, is the bottom of the valley being decimated tial U(x) (which corresponds here to the limit—0 where
andx, the bottom of the new valley. The distribution »f  additional universality holds It is easy to see frorfi26], as

=|X,—X,| is simply well as from more general arguments, that this distribution
has a tail 1y®? at largey. Indeed, from Eqs(174), (183,
2 © o0 © s =2 z 2
:_f d|1f dlzf dly(l,+1,)Pr(ly) and (185, we see that fot—o so that ky<I'?,

XPr({=0J2)Pr(l3)d(y—(l,+13))

QPP y)~ Qi (y)~ (195

2
Jy32’

1 (yr? y
=)0 M1 2P(r=0A)P| -0,
riJo

(189  Thus momentgy(t)¥) for k<1/2 should be finite and deter-
mined from short scales, while moments for1/2 should
diverge ag— . Our results include the large but finite time

4o behavior and thus go beyond those result§2a.
<|X(t)—<X(t))|k)(c)~dk(T)(TInt)z"’lf dy YQO(v), To conclude, note that the rare events in Fig. 7 which
0 contribute to the width of the thermal packet are also the
(190 : : . : o
ones which play a dominant role in the aging dynamics in the
where the scaled distribution reads, in Laplace transform, regimesa<1. We have seen thd#) and (c) are the ones
which contribute toQ(y,t,t') in these regimes. The event
(b) does not contribute tQ(y,t,t") (since the particle can-
sinh(2 \/—) cothy/s+ \/s— \/— not jump back to the degenerate va)léyt would have to be
(191) considered to evalua(x,t,x’,t’) in these regimes as well.

The contributions ofc) to the moments thus read

+ 00
f dy e—sYQ(C)(Y)_
0

Using the fact that the distribution efis constant near zero,

one obtains the coefficients(T) for k=1 as VII. FINITE SIZE PROPERTIES OF SINAI'S MODEL
d(T)= J+wd6{exq_kefe/T)[l_eXF(_efe/T)] In this section we apply the RSRG procedure to a finite
—o size system with various boundary conditions and obtain ex-

act results for the approach to equilibrium of several quanti-
_‘_exq_e—elT)[l_qu_e—E/T)]k} fies pp q g

Tl In 1+

+ E (—1)PCPIn(1+p)|.

A. RG for a finite size system

(192 In order to follow the general measure for a finite size

Note that the above argument can be made identically in thlandscape one needs to introduce the set of functions repre-
regione<0 and thus we have integratedrom —« to +%.  senting  probabilities Nr L(I1582:025830085 - 3 p-1,

Our final results for the moments are obtained as the sum),_,:|,) in an ensemble of systems of Ienglh/vlth b the
of Egs. (186 and (190 and can be computed using the nymber of bonds and with barriefs= F;— T and lengths; .
Laplace transforms in Eq$188) and(191). Let us give the  Note that we will not keep track of, and ¢, as these will
explicit resulting expression for the the lowest moments: effectively be+= depending on the boundary conditions.

The normalization condition reads

(x(O) = (x(D)])~ 7z(68+41IN2T(TInt), (193

— 4 ZL_E f NFL(Il Calor o lp—1alp—1ilp) =1,
(x(1)%) = (x(1))*~ 57(95+68IN2)T(T Int)°. 196
(194

It would be interesting to measure these quantities in nuNote that under decimation one follows separatdly
merical simulations and test these predictions. =24,... orb=1,3,5..., depending on the type of bound-

Note that the above formuld486),(190) give the leading ary conditions studied here, either reflectii®) or absorbing
behavior for moments wittk>1/2 which grow with time, (A). Let us write the RG equation for a finite size system,
while the moments fok<<1/2 are expected to be finite and choosing for definiteness the case, den®é&tbelow, of two
nonuniversal as ifl16]. This can be compared with the work reflecting boundaries—as explained in Sec. 11 B 3, in this
of Golosov[26], who showed the existence of an infinite case the first and last bonds have infinite barrier and cannot
time limit distribution for y(t)=x(t) —(x(t)) and gave an be decimated:
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b-1
b . . .
<0r—k§_‘,2 07gk) Np (15820025 -+ db-1.lb-131p)

_ b+2/y. . . . . .
_f NDE2(1:0) 5205 o o - i1l 1il)
zI+1"+1"=14
b—1

E b+2 . . . . . . . . . .
+ J’ NF,L (|11§21|21--'1§k711|k71121|101|,1§k_21|"1§k+lv|k+11"'vgbflilbflvlb)
k=2 Jzl+I"+1"=1y

+f NE 2(1: 20,000 o ilp—1.lp-1;2,0;0)7;17). (197
I+ +1"=1y

There exists a quasidecoupled solution—for Laplace transformed distributions—of this%g(as was also found in the
case of the RTFIC22]), which reads

b
NP L(1: 80025 - dom1lbo13l0) =Ef (1) Pr (L2012 PL (L3, 13) - "Pr(gvalbz)PF(gb1u|b1)EF(|b)I_F5<L_i_El Ii)

b evenand=2, (198

where we have allowed for a bias towards the right, bl NF NPT 2 P (NP I N

restricted to be even since we are dealing with Rfe case ’

(see Fig. 8 In this formula(198 P1(¢,1) are the bulk dis- =Er (1P (2,12 P (£3,13) (200
tributions satisfying Eq(6), | - the average length satisfying

Eq.(8), and theE[ (1) satisfy the semi-infinite boundary RG, P (Lp—2:lp—2) PE(Zb—lJb—l)EF('b)'_r

Eqg. (10). The integral of the measuig over all variables in

L b
Eq. (196 satisfies

a. (199 xol L= |i), b odd and=3, (201)

_ i=1

0 “ 1P (p)P*(p) together with the ternb=1, which corresponds to the final
state with a single ) bond over the whole systertall
— ut(0)u=(0) 1 particles having been absorbed by the right boungamd
=1 - N 2
Ut (p)u—(p)—U*(p)U—(p) P has for probability

(199

where we have used Eg®2) and (35), and thusZ, =1 so
the finite size measure is correctly normalized. : L .
In the case of two absorbing boundarieg, the solution F;]nally_, the SO'(;‘“OF‘ in theAR case can be obtained by ex-
of the corresponding RG equations is obtained by simplf anging+ and - in Eq. (200.
exchanging+ and — in Eq. (198 (b remains even In the
caseRA the solution reads B. Evolution towards equilibrium in a system
with reflecting boundaries

Let us start by studying the equilibrium and the approach
to equilibrium in the system of size with two reflecting
boundaries. The equilibrium state corresponds to the |BErge
limit of the measure(196). In that limit only the termb
=2, (Eg. 199, survives and it corresponds to equilibrium in
a single renormalized valley. It will be reached, as illustrated
in Fig. 8, when the last bulk bond is decimated at sdme
=I'¢q=TIntgq, with a certain sample to sample distribution
for the equilibrium timet.y, which we now compute.

I
N%’L=J dF’J N2, [(11:4,=0J5;15). (202
0 l1.05.05 '

1. Distribution of equilibration time

The probability for a sample to reach equilibrium between
FIG. 8. Schematic of a finite size system of fixed lengtivith [eqandl'gqtdl'eq, i.e., the probability that the slowest re-

reflecting boundariecaseRR). laxation timeteq be such thal' ¢ <T Inte<[gqt dleq, is
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Nf,L(l2l2)

pTeg=ar,,|

11,5
= B + . - .

=ar I Er (¥ Er ()] (203
and using Eq(35), the Laplace transform with respect to the
system sizd. is

|Caverarag
0

1
el (p+ ) ot T oqp+ 62— 62)
(204
For zero bias, one introduces the scaling variable
Tinteg
W= 1
JL

and finds that it is distributed as

= 1\21
— 2 il —(m3w3)(n+1/2)2
PwW) == > |27 n+3 = 1}e
(209
2 =
:7m2 (_1)m(1_2m2w2)e—m2w2_ (206)
T =—o

In the presence of a bias one can compute, e.g., the aver-

age

Tint —F_—Z\/Efldu e P n = (207
ed ted 7Jo u/’
2. Distribution of equilibrium position
The probability that the bottom of the single remaining
equilibrated valley is ak= X4 can be obtained as

QL(Xeg =NE_ ... (Xequl2) =[1TEf (Xeq Er (L —Xe) Ir = »
(208

which leads simply to

QL(Xeg =€ (Xeg€ (L—Xgq), (209
where
e (x)=LT,* (#>= L
uim) P s
(210
Thus we gee™ (x)=e (x)+ 24 with
1 , 25 (= e X (1+v?)
e (x)=ﬁe’x‘s “ s 2 (217

At small x one hase™ (x)~ 1/y/x while for largex, e*(x)
~26 and e‘(x)~e‘X52. Thus in the biased case with
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>1/8% in equilibrium the particle is confined within a dis-
tancey =L —Xgq~ 1/6% near the left boundary distributed as
26e”(y). In the symmetric casé=0 the equilibrium posi-
tion is distributed over the whole system as

(212

1
QL(Xeq) = ﬂ_mn

which has a simple probabilistic interpretation in terms of the
landscape random walk confined Wx) > U yi,=U(Xeg) ON
both sides 0.

Finally, we obtain the joint distribution of equilibrium
positionxeq and equilibrium timel" =T Inte:

PL(TeqXed = r 11, E" (Xed E™(L=Xeg], (213
whereE* was computed in Eq%35) and (37).

C. First passage times
1. With a reflecting boundary

Let us compute the probabilitﬁ(o,L(F) that a walker

starting atxg is still alive atI' in the presence of an absorb-
ing boundary ak=0 and a reflecting boundary at=L. It
can be expressed as an average over the measRiréqgs.
(196) and (200, S, (I')=(68(xo—11)). Thus its Laplace
transform with respect tb reads

Pr(p) [
PEr(p) Jo

“dly e PHEL(,).
(214

[Cacers, -
0

In the particular case where the starting point coincides
with the reflecting boundaryxg=L) it is simpler to obtain
the first passage timg ; atx=0. In that case, the probabil-
ity to be absorbed coincides with the probability(T") that
the last decimation occurs in theR system afl’; from Eq.
(202,

pL(D)=arNF | =TrEf ()% P (0, )% Ef(-).
(215

In the symmetric case we thus obtain that the scaled first
passage time variable=T In T, /\/L is distributed as

[

S(w)zz_ﬂ- E (_1)n I‘H—E ef(vrzlwz)(n4r1/2)2
W3n=7oc 2
2 o 1
:\/——mz (—1)m(m+§ e WM 12% (01
a7 m=—x

We note that the distribution of | was obtained previ-
ously by a completely different method [i46]. Here we also
recover If(T,)9~dL, i.e., that the first passage time is a
strongly fluctuating quantity47].

2. With an absorbing boundary

Let us now consider an absorbing boundaryxatL.. We
first compute the probabilitpy(xgy,L) that the walker start-
ing atxy reachex=0 beforex=L. Since the final state of
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the AA system consists of two absorbing zones associated P P_P 1
with each boundary, the first onex.,] and the second |im[qa(p'p0,q)]:p+p°—p~p°+_ﬁ . (22D
[Xeq,L ] Wherexgq is distributed as in Eq212). Thus, in the q—0 Po(p+ pO)Ep+p0 Po "

presence of a bias applied in the directibnthe result reads

. The corresponding formulas féxA andRA are given in
* _ ¥ 0 Appendix G.
Po (Xo.L) fxodx e 00em(L—x), (219 There is a case where the diffusion front in a finite sample
takes a particularly simple form. This is when the starting

wheree= (x) was computed in Eq211). In the symmetric  point coincides with the reflecting boundaxy=0. The cal-

case this givepy(Xq,L)=(1/m)arccos(Xy/L—1). culation of Appendix G simplifies as one then has tkat
One can also compute the survival probabifify ( (') of =11 wherel, is the length of the first bond. In tHeR (or
a walker starting a, in the presence of two absorbing RA) case
boundaries ak=0 andx=L. It is obtained as an average . B A
over the measuréEb) of the finite size systemA as Proly, (x,t[xo=0,0=Ef (X)¢r"(L—x), (222
Sy, LM =(0(xo—11) O(L~11=X0)), (218  with
and thus reads _ 1
Pr()=LT,2, B (223
r
S, (T)=LT tanh(\/p+q)tani(\/p)
oL T = p—LiT2,g—xg /T2 -
qVpVp+q . Pr(p)
PR =LT L ———. (224
1 1 PEr(p)
X| — —— . (219
sintP(\p)  sinkP(\/p+aq) In the symmetric case one finds simply
Note that the distribution of timeg,g at which all particles r r o
have left a giverAA sample is identical to the one computed ¢§(x) = LTEiXM =2 E e nzwzx/Fz,
in Eq. (206) as Int,s= N teg. Jp n=0
(229
D. Averaged diffusion front "
r
We first discuss a system bounded by two reflecting walls ¢A(x)=LT; 1, ———— =2 (—1)"e "mxT?
. . p—X .
at x=0 and x=L. The full averaged diffusion front psinT\p)  #=0
Proly, (x,t|X,,0) for a walker starting ax, att=0 is com- (226
puted in Appendix G for both biased and symmetric cases.
In the symmetric case it takes a scaling form VIIl. RESULTS FOR FOKKER-PLANCK
Proky, (X,t|Xo,0)=(1"?)q,(X|X,) as a function of the re- AND ASSOCIATED SCHRODINGER OPERATOR

scaled variablesX=x/T'?, Xq=x/I'? and the rescaled
length of the system =L/I"2 whereI'=T Int. The Laplace
transform

It is also interesting to obtain results, via the RSRG, for
the random Schdinger operator associated with the Sinai
diffusion problem. We first recall the connection between
these two problems. In this section we 3et 1.

- + o A A
Q(p,po,q)=J dkf dXJ dXo
0 0 0

A. From Fokker-Planck to Schrodinger operator

@~ (PX+poXptar) . . .. L .
e A (X[ Xo) In a given environment (x) the probability distribution

for the position of a particl®(x,t|x,,0) satisfies the Fokker-

of the rescaled front is Planck equatioriin the continuuni

3 ) ﬁp+po+qpp+q_Ppo+q'3q 1 Egsp 9 P(X,t|X0,0) = d,[ 5+ U’ (X) JP(X,t|X0,0)
a(p,pPo,q)= ~ — +t—— —=
pOQ(p+pO+Q)Ep+p0+qEq Pod Eq = —HgpP(X,t|X0,0),
1 Ep0+q with the initial conditionP(x,t— 0]Xg,0)— 8(X—Xg). As is

- = ; 220 well known, settin
Po(P+Potq) Ep+pyta (220 J
G(X,1]X0,00=elV V2P (x t|x,,0), (227
where P,=1/cosh(/p) and E,=tanh/p)/\/p. In the limit
L— +c we can obtain the averaged front in a semi-infiniteone obtains the following imaginary time Schinger equa-

space with a reflecting wall a¢=0 as tion for the Green functioii(x,t|xq,0),
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1 1 right and left moving fermions of Ref32]). This is related,
HG(X,t|X0,0)= | o5+ U () ZU'(X)2 G(X,[%o,0) in the Sinai problem, to the dominance of the averaged
Green function by andx, both at bottoms of valleys which
= —HgG(X,t[X0,0), (228 correspond to even sites. The random hoppingl)"ét,,
corresponds t&J ' (x)/2 in the Sinai problem.
with the initial conditiong(x,t|Xo,0)— 8(x—Xo). This is the By methods similar to those used in the present paper, one

standard form for the Schdinger operatorHg associated can obtain much more information about the statistical prop-
with a diffusion process. It can be factorized H§=Q'Q erties of eigenfunctions and Green’s functions of both prob-
with lems. These will be analyzed in R¢#8].
Q=dx+tU'(x)/2 IX. CONCLUSIONS
and In this paper we have developed a powerful real space
Q'=—9,+U"(x)/2 renormalization groupRSRG method procedure for models
x ' of diffusion in one-dimensional random potentials which be-

long to the universality class of the Sinai model. This method
is simple to implement, physically transparent, and allows
one to obtain exact results for universal quantities.

and thus has a real positive spectriEm The Fokker-Planck
operatorH p is non-Hermitian but has the same real positive

spLectrum, W!th ”gh,t and left elgenfunctlon@ﬁ(x) a.nd The RSRG was first applied to recover, as a check of its
@ (x) associated witlg, . They are related to the 198N validity, the single-time diffusion front for the the rescaled
functions ¢,(x) of the Schrdinger operator by®;(x)  position x(t)/(T Int)? obtained previously by Kesten and
=e Y02y(x) and dp(x)=e"2y(x). Golosov[12,27]. In addition we obtained the diffusion front
In the next two sections we use some of the results Obm presence of a small bias in the crossover region_
tained previously for the Sinai diffusion process to obtain  The study of persistence properties, i.e., probabilities of
results for the Schiinger and Fokker-Planck operators.  return to the origin and their associated decay exponents,
showed that in disordered systems distinctions must be made
B. Averaged Green'’s function for the Schralinger operator between recurrence properties of thermally averaged trajec-

Interestingly, one can obtain the averaged Greens functiotPries (X(t)) (exponent¢) and single particle trajectories
of the Schrdinger operatof227) from a slight variation of  (exponent#). Nontrivial exponents[e.g., 6=(3— \5)/4]
the previous calculation for the dynamics inside a well ofwere obtained for thermally averaged trajectories, a novel
Sec. VI F. The physical reason is that in Sinai's model theand unexpected feature of the Sinai model. The distribution
particle tends to jump to and occupy lower accessible wellspf number of returnk was found to be strongly peaked in
with weight e"Y™ near the bottom. As a result one can the rescaled variablg at g=k/In(TInt)=1/3 but with mul-
show that, due to the the exponential factor in &27), the tifractal tails characterized by an exponefitg). It was
dominant contribution in the average over disorder of Eqshown that single-run averages t)¥kx(t')dt’ obey the
(227 comes from rare configurations in which the point same scaling fog<1/3, but with deviations on the larger
and the point 0 are at about the same potential. The calculahan typical ¢>1/3) side of the distribution due to rare

tion is sketched in Appendix E. The result is events which were analyzed. We found that at each return to
the origin, the thermally averaged trajectory loses some
—" ] X ;
— <~ memory of the past. This allowed us to compute exactly the
G(x,00) I’SG(F2>’ (229 probability distribution of the complete sequence of return

. . . _ . times. By contrast the successive jumps(z(t)) exhibit
with T'=Int with the scaling functionG(X) given by Eq.  persistent correlations which we have studied in detail. Much

(174. of the analysis was extended to the case of a small applied
In the case of a small bia&>0 the result becomes bias.
Single particle properties, such as return probabilities, and
G(x>0,01)=g(x<0,0%) distributions of first passage times and of maximum dis-
> rs \2 placement, were obtained by studying the RSRG in the pres-
:_5(—> e "MG(|x|/T?), (230  ence of boundaries. The first meeting time distribution of
[\ sinh(I"6) two independent particles was also obtained. Extensions to

L L , . - large but finite size systems was studied, for reflecting or
which is valid in the usual scaling regini& andx/I'" fixed  apgorhing boundary conditions. The distributions of equili-
with I'=Int large. Note that this averaged Green’s function,pation time and position, of the first passage times in the
Eq. (230, is closely related to the average Green's functionsresence of boundaries, and the finite size diffusion front
of a one-dimensional Iattice_fermion problem with random,,are all obtained.

nearest neighbor hopping,=t+ dt,, as computed recently A second set of results concerned aging dynamics. The
by Balents and FishdB2]. In particular, the inverse Laplace scaling form of the joint distribution of positiong(t’) and
transform of Eq(230), G(x,Xq,E) which is a function of the  x(t) at two timest’ <t was obtained explicitly in Laplace
wave functions ofHs at energyE, is equivalent to the Green transforms. This two-time diffusion front was found to pos-
function of the Fermi problem at energy= \E with x—x,  sess an overall lfint’ scaling, with an interesting singular-
=n-—ng even, (corresponding toyr+ ¢ in terms of the ity at x(t)=x(t"). Explicit expressions of several moments
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and correlation functions were obtained. In the presence of mtroduce the rescaled variable=m/T'¥ where is an un-
bias, our single-time diffusion result&éhe distribution of kown exponent and look for the fixed point joint probability
x/t* being related to a Levy distributiprand our two-time distribution P(#,u«) that is a solution of

aging resultgwith at/t’ scaling are consistent with known

exact results and with the phenomenological description i g=r(1+ 5)9 +1+ y(ud, +1)]P )

terms of an effective directed model with an algebraic distri- [ et W ndy 1Pt

bution of waiting times. But in addition we have obtained the * * *

full crossover between the symmetric and biased aging scal- + Jo d"’“ljo dﬂzfo dus P(Oz)

ing forms. Our aging results are also consistent with the nu-

merical simulations and qualitative argumentq b8]. XP(u)* ,P( ) d(u— (apqy+buy+Cug)).
We have also obtained several quantities which are con- (A1)

trolled by rare events such as renormalized valleys with de-

generate minima or degenerate barriers. These can be studied - B
systematically as subdominant contributions in the RSRG'e have of cours®(z)=Jqdu P(#,u)=€"". The equa-
From them, we computed the fluctuations in the thermafion for the first momenC(#)=[1/P(%)1fodu nP(n,u)
width of the single-time diffusion fronfi.e., moments such reads

as (x2(t))—(x(t))>~T(T Int)?], and the two-time diffusion

front in the quasiequilibrium regimdfor t—t'~t'*, « 7

<1). 0=(1+7)3,C(n) —(n+¢)C(n)+(at+c) OdmC(m)
This work exhibits the relationships which exist between

the Sinai model and problems such as quantum spin chains +bC(0) 7. (A2)

with disorder: both can be treated via very similar RSRG

methods. Although observables of physical interest are oftef js yseful to differentiate this equation with respecttdo

different in each of these models, some interesting connegsptain

tions have appeared—e.g., between persistence properties of

the Sinai model and magnetization in the random transverse, 2

field Ising model. The RSRG methods enable one to conside =1+ ma,Clm+(1=9=¢)d,C(n)+(a+c-1)C(7)

this class of models in a unified way. Since the method al- (), (A3)

lows one to check its own range of validity, it may shed light

on different universality classes. The averaged imaginary e

time Green function of a related random Salinger prob- ind to keep the boundary conditidi'(0)=C(0)y at

lem was found as a side benefit. =0. h Il the phvsical o
In conclusion, the model studied here provides an all top, 70" @+ ¢—17#0 (the case for all the physical quantities

rare explicit example of a zero temperature glassy fixed poin?j's’m"_ss'EOI in this papeit is convenient to sey=1+ » and

where detailed nonequilibrium quantities can be obtained! (¥Y)=C(#)+[b/(a+c—1)]C(0) so thatT(y) satisfies the

Qualitatively similar behavior should be expected in system&onfluent hypergeometric equation

where, as in Sinai's model, the dynamics consists of jumps

over large barriers between partially equilibrated configura- 0=yd&;T+(B-y)d,T—AT(y), (A4)

tions. The detailed understanding of physics in the simple

one-dimensional case studied here perhaps encourages hQpgereg=2—  andA=1—a—c, together with the bound-
that new methods—exact or approximate—based on simila(glry condition T’ (y=1)=y{ A/(A—b)]T(y=1). Since we
ideas can be developed for more complex glassy systems. Agq looking for a well-behaved.e., not exponentially grow-
a start, we have already applied the methods introduced he[ﬁg) solution aty=oc, we find thatT(y) has to be propor-
to more complex one-dimensional models, in particular, thgj;41 to the confluent hypergeometric functiah(A,B,y).

nonequilibrium dynamics of the classical random field Isingr, satisfy the boundary condition gt=1, we obtain, using
model[30], as well as reaction-diffusion models with disor- .o s nctional relation U'(A,B 1)=U,(A B 1)—U,(A B

der[31]. Furthermore, recent work on random quantum Ising
models in two and three dimensiof¥#9] suggests that in at
least some systems the type of behavior found here is not

+1,1), that the exponent has to satisfy the equation

particular to one dimension. —(1_ L —a—co—
0=|1 ¢a+b+c—1 U(l—-a-c,2—4,1)
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_ and the equation foy is simply quadratia/(#—1)=1+b
APPENDIX A: AUXILIARY VARIABLE RG RULE, yielding ¢=(1+ /5+4b)/2 as in[20].

SYMMETRIC CASE e . —
In the text we use the ratio/I - which decays as/|

In this appendix we study the general RG rai¢=am;, ~I'~® with ®=2—4. Both exponentsy and ® depend
+bm,+cmy; upon decimation of link 2(see Fig. 1L We  explicitly on the coefficients,b,c, of the RG rule.
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APPENDIX B: AUXILIARY VARIABLE RG RULE,
BIASED CASE

We consider the auxiliary variables™ that evolve with
the RG rulesn* =a*m; +b*m, +c*m; upon decimation
of an ascending link 2 andn"=a " m; +b m,; +¢c m;

Le DOUSSAL, MONTHUS, AND FISHER

PRE 59

, 2p(0) dA®® ®)
(ye—=1) 0y +2y dy —(1+b)A™»=0.

(B7)

The solution forA(®)(y) with the above boundary condition
is

upon decimation of a descending link 2. We introduce the

joint probability distributionsP- (¢£,m) that evolve as

(dr—3,) Py (£,m)

=piem [ “dmiPi m,) - PF(0m)]

+f dmlj dmZJ dmg P (0,my)
0 0 0

X P (-, my)* P (-,mg)

X 8(m—(a*my+b m,+c my)). (B1)

We havePy (£)=[dm Pﬁ(g,m)=u§e*2“5. The equation
for the first moments

Cr($)=[1/P;(H)1fzdm mB:(¢,m)

(9r=39,)Cr (H)=urur|Z[b*C{(0)=Cr (9]

+<ai+ci>fozd§' clf(g')}, (B2)

with ufup = 8%/sinf(C8)=1/1 .
We study the simpler particular case whah+c*=2,
a +c =2, b"=b =b. Then the solutionsC{(¢)

=Cr({)=Cr({) are simply linear in¢: Cr({)=Ar
+ ¢{Bt and the coefficients satisfy
Br=drAr, (B3)

2
92Ar=(1+b)ufur Ap=(1+ b)mAr. (B4)

For 6=0 we have already seen in Appendix A that the

auxiliary variable m grows as I'’® with ¢(b)=(1
+5+4b)/2. Indeed for6=0, Ap=I'*® is a solution of
Eq. (B4). For §>0 following [21] we thus look for a solu-
tion of the scaling form

Ap= 5*1//(b)A(b)(7: or), (B5)
whereA(®)(y) satisfies the equation
1+b
2 A (b) - (b)

with the boundary conditioA®®)(y) < y¥(b) asy—0. Intro-
ducing the new variablg= cothvy, we obtain the differential
equation for the Legendre functions:

AP (y)= KQ v -1(cothy)

=K'’ tanhy)Wb)F(—w(b;Jrl,%b),

1
#(b)+ 5 tank y)z), (B8)

with K’ =K 72 YO T (4(b))/T (¢(b) + 1/2)] whereK is a
nonuniversal constant. The asymptotic behaviors are
A ()=K'y"®) at small y, and A®)(y)=2K'T (¥(b)
+1/2)/(I' ([ (b)+1]/2)I" ((b)/2)) y at large y. We can
now compute the mean values of the variabies,

<m_>:fo dgfo dm mPf(g,m)Jo d¢ Pi(OCE (D)

aFAF

r

yielding Eq.(92) in the text.

APPENDIX C: CORRELATION OF TIMES
AND DIRECTIONS OF SUCCESSIVE JUMPS

1. Conditional probabilities of times of jumps forward
and backward

In this appendix we compute the conditional probabilities
p(r?, to make a jump forward af’ (respectively, a jump
backward given that the last jump occurredlat. We define
Dr r/(F) as the probability to be on a descending bond of
barrier F given that the last jump of the effective dynamics
occurred afl’’ [this jump was necessarily in theg-) direc-
tion since the walker is on a descending bpnthe initial
condition is thus given by

DF!’F!(F):KJ' dFlf dllf dlzf dF3
r 0 0 r

><f:dls(lﬁ|2>PF<F1,I1>PF<F,|2>

XPr(F3,l3)0(F—(F1+F3—T)).  (C)

Indeed, the bond must be a new bond madd, ‘atout of
three bonds, and the origin of the random walk must have
been on either the first or the second bond in order to satisfy
the condition that the last jump occurred at scBle The
normalization constanK has to be choosen to ensure that
JtDr r/(F)=1. Introducing the rescaled variables=(F
—IN/T and «=T'/T"", we obtain thatD (7) evolves ac-
cording to
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[ady—(1+7)d,—1]D ()

7 '
:_ZDa(n)—’_f d’?’ Da(n,)e7<”777)1
0

(C2

with the initial condition ata=1 given from Eq.(C1) by
D,—1(n)=(n/2+ n?/4)e"". The solution reads

Do(n)=Ae” "+ (B, +C,n)e 7, (C3)
S R
ca=—% % e (a1, (C6)

The probability to make a forward jump Et[i.e., in the(+)
direction] given that the last jump occurred Bt [and by
convention was in thé+) direction] is

o0 1 Ioe)
pi_‘f’)r,: PF(F)J;-* dFDI"F/(F): Ffo d7’ Da( 77) (C?)

since the probability that the neighboring bond is decimated
atT" is Pp(I')=1/T". On the other hand, the probability to

make a backward jump &t [i.e., in the () direction given
that the last jump occurred &' is
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(b) _ _ 1
prr =Dr,r (1) = 5D, (0), (8
which is the probability to decimate the bond we are inter-
ested in. The total probability to jump &tin any direction
given that the last jump occurred Bt must satisfypr
=\ +pp = —rJ7dF Dr r/(F). These expressions,
after substituting the above soluti¢@6) yield the formulas
(88) given in the text.

2. Correlations in the sequence of times of successive forward
and backward jumps

A full calculation of all terms is quite involved and goes
beyond the present paper. Here we indicate only the result
for the two first elementary building blocks for the many
jump correlations. The first one is

pSP(T'y|To)dly=p5P(ay)da;

d
=2~ (1+aye V], (€9
@,

which is a scaling function of,=1",/T’g. Intermediate cal-
culations also yield the probability that the second jump oc-
curs atl'; and is a forward jump given that the first one
occurs afl’y and is backward.

dal _ _
po’(I1|To)dl's= pg(an)day =— (2~ (*172).
1

(C10

The second elementary building block is given by

daldaz
ngb(rz,rﬂro)drzdrlzplljfb(al,az)daldazz 3
a1
e—(a2+al—2) e‘(“zal_l)
X|4—e (1 D-2(a,+1)e (2 V= (a,+1) —— (@t ) ———|,
(C1)

which is a scaling function of;=T1"{/T'y and a,=T1,/T;.

APPENDIX D: DISTRIBUTION OF SEQUENCES
OF RETURNS TO THE ORIGIN: BIASED CASE

To compute the conditional probabilities (I',I"’) of re-
turns to the origin defined in the te¢®ec. IV B we consider
the probabilityDﬁF,(g) that a bond has barrierat I' and
has not changed orientation since the sd&dlevhere it was
created. Its RG equation is

(9r— 3Dy (O =2PF(0)D 1 (- )* Pr(+)

—2P{(0)Dy 1 (£), (D1)

with the initial conditionDﬁ,’F,(Z)=(u§,)2§e*§“f'. Since
PE({)=ure ¢r, the solution has the form

x

+ u]" 4+ _ +
Df/’rf(g):(AF,F’+§BF,F')U_-T-(UI:)2e gu[‘l (D2)
l"!
where the coefficients are
Arr = 5_1(Q¢—1(00th'}’)P¢71(C0th7')
—Qg-1(cothy")P,_1(cothy)), (D3)
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(@) (©

1
Br r/ :m(P(bfl(COth)’)qu—l(COth)’ )

—Py4-1(cothy’)Qg_;(cothy)), (D4) B

where y=6T", y'=6I"", ¢=(1+5)/2, andQ,(y) and

P,(y) are associated Legendre functions: they are two lin- £ 9. pifferent terms that contribute to the RG equationgor
early independent solutions of E@7) [with (1+b)—»(1

+)].
The probability for a ) link to be decimated df given APPENDIX E: DYNAMICS WITHIN A WELL
that its last decimation occurred Bt is therefore 1. Probability that a bond has degenerate minima

Let us introduce the probabilitg-(Z,l,x,w) that a given
. utus point (denotedx, in Fig. 9) belongs af” to a bond of barrier
+ N * __rer o+ F=TI+¢, of lengthl, is at a distance& from the minimum of
p (L) arjo d¢Drr(¢) = UrAre the bond and is at a potential above the potential of the
(D5) minimum of the bond. One has that by definitior<®<I
and its normalization with respect tx and w is
f'()dxfg+5dw S (g1, x,w)=1Pr(Z,1)/[Pr(l), which is the
This leads to Eq(101) given in the text in terms of the probability that a given point belongs to a bond wkhl.
reduced variableg=cothy andy’=cothy'. The RG equation foBr(Z,l,x,w) reads

T’

(3F_35)SF(51| ,X,W): _ZPF(O)SF(LI ,X,W)+ PF(Oy')*IPF(' ' )*g,ISF( Tyt vX:W)
+j Sr(&1,11,X1,Wq)Pr(0J5)Pr({s,l3)
f1l1x1 Wy lp,43.13
XO(L—(L1+83)0(— (I +15+13)) (X — (X1 + 15+ 13)) d(W— (Wq+{3))

+j Pr(£1,11)Sr(0)2,%2,W2) Pr({3,13)
{1.l1.x2.wW2,12.83.13

X 6(L—(L1+83)0(1 = (11 +15+13)) 8(x— (11 +1,— X)) S(W— (W + 1)), (E1)
T
where each term is described in Fig. 9. We notice that the 0=T"9rRp(7,\,X)
evolution equation folSp(Z,l,x,w=0) decouples and leads
to the form =[(1+n)d,+2Nd\+2Xdx+6]R(7,\,X)
+ P(o! )*)\P( Tt )* 77,)\R( Tyt ,X)

2 +2P(7,A=X)[P(0,-)*,-xP(0,-)]. (E3

Sr(§:| 1X1W:0): F[‘S(X) PF(L')"" Rr(§:| 1X)]!

(E2) This equation was obtained by substituting the decomposi-
tion (E2) into Eq.(E1) in the spirit of an expansion in powers
of 11", where the zeroth-order equation is satisfied by the

y . . S-function part. The orde®(1/1") equation yields the equa-
where thes-function part represents the probability that thetion for Rp(£,1,x) where thes-function part acts now as a

!oointxo hap.pens to be exactly at the t_)o.t.tom of the ren(.)rmal'source in the last two terms of E¢E1) leading to the last
ized bond, in which case/=0 by definition. The function o, 'in Eq. (E3). This term describes the probability that
Rr(¢,1,x) is the probability that a renormalized bond at scaleponveenl” and T'+dT” a new bond with one degenerate
I' has (1) and a distinct degenerate minimum at a finite oinimum (a distance of order? away from the lowest edge
distancex. For smallx [x=0(1)] this function is nonuni- s created via the decimation of a bond whose neighbor also
versal. We compute this function in the scaling regime has;/~0—casegb) and(c) in Fig. 9 with w=w,=0—the
~TI'2 where it is universal and of orderIl/ We use the probability of this is of order 17.

rescaled variableg=¢/I", A=1/T'?, andX=x/T? such that Before proceeding further, we notice that it is also easy to
Rr(¢,1,X)=T"®R(#,\,X) and obtain the following fixed keep track of the barrief’, between the two degenerate
point RG equation foR: minima. We defineRr(Z,1,x,I'y) as the probability that a
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renormalized bond at scale has (,I) and a distinct degen-
erate minimum at a finite distangeseparated from the mini-
It takes the scaling form

mum by a barrier I'y.
Rp(Z,1,x,To)=T""Rp(5,\,X,u) with u=T'4/T". The nor-

malization isRp(7,\,X)=f3du Rq(7,\,X,u). The scaling

form satisfies the fixed point RG equation:
0=T3rR(7,\,X,u)
=[(1+7n)d,+2Nd)\+2Xdx+udy+ 7T]IR(7,\,X,u)
+P(0,)*\P(-,-)* ,\R(-,-,X,u) +2P(7,A = X)
X[P(0,-)*\-xP(0,-)]8(u—1), (E4

where the last term corresponds to barri€gs=1" created

upon decimation.

Remarkably, one can find the complete solution of this

equation in a factorized form:
R(7,X,X,u)=P(7,A =X)r(X,u), (ES)
wherer (X,u) satisfies

0=(2Xdx+ud,+4)r(X,u)+2[P(0, )*\-xP(0,-)]

X 8(u—1) (E6)
whose solution is
r(X,u)=6(1—u)u=*r(X/u?), (E7)
r(X)=2[P(0,)*,_xP(0,)], (E8)

which, using Eq(11), yields formula(170) given in the text.

The biased case can be studied similarly. The correspond-
ing quantities(as usuak- designate descending and ascend-

ing bonds, respectively also satisfy Sy (¢,l,x,w=0)

= (U )[8(X)PE +RE(Z,1,x)] and one finds that the RG

equation forRy (£,1,x,T'g) is
(dr—=3Rr (£,1,x,T0)=[Pr (0)—Pr (0)]Rr (F,1,x,T'o)
+PE(0, )% P, )%
XRE(+, X, T)+2PF(L,1—X)
XPr(0,)*<Pr(0,)8(I'=T).
(E9)
The solution again factorizes into

Ry (£,1,%,T0)=P5 (4,1 =x)rp(x,To), (E10

where rp(x,I'g)=26(I' —T'y) PFO(O,- )*XP;0(0,~) does not
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dex e Prp(x,Ig)= 0(F—Fo)2UFo(p)Ur_o(p)
=260(I'-T P il
=26 O)sinhz(l“ox/p+ &)
(E1D)

so that, finally,

1./ X 2
rr(xTo)=0("=To)r| —|e>,  (E12

1—‘O 1—‘0
wherer is the function for the symmetric case introduced in
Eqg. (170.

2. Relationship to the associated Schinger operator
Green function

The disorder averaged Green function defined in Sec.
VIII B is exactly related to the probabilityr(Z,l,x,w) in-
troduced above. In the symmetric case, one can restrict to
x>0, and one has

1 ¢+T o
— —wW/2
g(x,0t) ZJO dgfo dwe L dl Sp(Z,1,x,w).
(E13

The factor is simply the probability to be on a descending
bond x>0). This can be expressed using the rescaled vari-
ables¢=T"7, w=T"u, |=I'?\, x=I'?X and simplified using
that for largel’, we may replace "2 by (2/T') 5(u). Us-

ing Eq. (E2) one obtains

2 o0 o
G(x,01)= FJO dnfx d\ R(7,\,X).

(E14

Using Eq.(E5) one finds the result of the text, E29).
In the biased case we obtain an expression for the aver-
aged Green function in terms of the functioBs(¢,!,x,0),

—g(x>o,o¢)=zj:dgf|:d| SELIX0.  (E15

g(x<0,0l)=2j:dgjjdlSF(F,I,|X|,O). (E16)

Using Eq.(E10 we finally getG(x>0,0t) = G(x<0,0¢})

=G(|x|,t) with
_Eie(ﬁ> o 1%

2 T
g<|x|,t>=|_—rf0 drore( o)== 6| 13
E17)

depend on the direction of the bias. Its Laplace transform isvhere the functiorG has been introduced in E¢L74), lead-
simply ing to formula(230) in the text.

APPENDIX F: SOLUTION OF THE TWO-TIME RG EQUATIONS

In this appendix we solve explicitly the RG equatiofigt?) for the quantitiesﬂﬁf},(g",xL XriX| XR),e=*+1 €'=+1
from which we can obtain the two-time diffusion froRtob(xt,x’t’|00). We consider the general biased case and discuss the
particular limit of the symmetric case.
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We first introduce the Laplace transforms:

Q;frr(é.,u.V;M',V'):f e K e Mg KR THRIe T LTIV (£ X0 XRiXL XR)- (FD)

xl'_>0,x§> 0x_ >0xg>0

Since we consider largé’ we can use the fixed point solutidg?2):
Pi(tn)= [ dle HRE (L = Uf (e i ) &

The RG equation$l47) can then be written in Laplace variables as
(=) Q5 (& i )= =205 (O L (Lpvip' v')

+u;(muamf:dgle—<4—51>“?<“>ﬁ$}3<§1,u,vmhv’)

+u;muw)f:dgle—“—ﬂ)“ﬁ”fzﬁ;ﬁ(a,w:u',v'>

+ 075 (0, v’ v )UF () UF (v) f:dgl e~ (E-aur (W= faur (v, (F3)
together with the initial conditions dt=I"' given in Eq.(148), which become

~ ! * * ! ’ !
O p(Lpvip’ v = 5“']0 dx{fo dxpe™#re ™" XLa, (£,Xp X))

1
Ee!_

r’

1 ’ e ’ €
= b= [UE (v @)~ U, (e 9F ] (Fa)

We look for solutions of the form
O (G v ) = A (v v e ST+ BEL (v v e S
+C§ffr(,u,v;p«',V’)e_guf’“"”rD?ffr(/w,v;M’,V’)e_ZUF’(”')- (F5)
It is useful to introduce the functions

GIE‘TI,‘/(/-L,V;M,,V,):QIE‘TI,‘/(é’:OJ-L!V;M,’V,)

= AF L (i )+ BE (avip v+ CE (v’ )+ D (v v')

a;f’r,(u,v;w,m:fo A QL (Lo v

!

B A (v v . Brp (mvipm',v') . Crip(m, v, v') . D (v’ v")

Uf(u) uf(v) ug, () uf (v

(F6)

For each initial condition indexed by one &f= =1 it is most convenient to work with the eight functiod&’, o<’, Ce',
andD¢’ with e=*+1.

We first consider the equations f6r<’ andD¢’. These equations are homogeneous and thus easier to solve. The equations
for C*¢' read
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Ur (@) UL (w)

f7rC;frr(MyViM’yV')=<—ZUE(0)55,+1—2UF(0)5E,1—u§,(,u’)+ue(’u) )
r Y

Ur (v)Uf(v) o
e e oy | S (it F7
up(v)—up(u')
with initial conditions atl’=T"" indexed bye’:
Cee' 7 A S 1 Ule"’('u“,) F8
I‘/’F/(M!VIM WV )_ Ef’l_rr M/_V/ . ( )
Similarly, the equations fob~ read
e’ , _ ¢ Upr (Ui () Up(nUf(v)
(9I‘DF’F,(,LL,V;,U,,,V ): _2UI‘(0)55,+l_2UI+‘(0)56,71_u[‘/(V’)—'_ e ¢! , + B ¢! ,
UF(M)_urr(V ) UI‘(V)_UFI(V )
XD (v’ v"), (F9)
with initial conditions atl’=T"" are indexed by':
Dee' ( 1] I) 5 l UIE“,’(V,) (F]_O)
r Vs WV )= Oger—— ’ ’
r e A I m'—v

To find the solution one notices that each matrix elen@fit andD <’ satisfies its own differential equation. Thus, since
the initial condition is diagonal ire’, the solution is also diagonal. It is found to be

=60 US(0)? UR(r) [(uf () —us ()][Uf (1))~ uf (9)]
CF,F'(M’V;# Vv ): - €' 2( I __ /) €’ €' e’ €'
I U (002 (4 =) [ug (u) = uf (w)ITuf ()~ uf ()]

e (M=T"up(u'),

7 ! ! ’ ’ ’ (Fll)
e’ e UR(0)? Up(v") [up (v")—up ()lup (v') —up,(v)]
DI‘,F’(M’V;'U’ V)== € 2( g ’) € € € €
Irr UL, (0)2 W =) Tup (v') —uf (w) 1[up, (") —uf (v)]

e~ (T-Tug,(v)

For eache’ the four remaining functiong™ ¢ ando ™€ satisfy the following system of four differential equations:

ar0" ¢ =—[2up (0)+upf () +ug (»)]0° +uf (wuf (Vo< +pf oo s, (F12
ar0 ¢ =—[2uf (0)+up (u)+ur (»)]0 < +ur (WUr (V) o < +pppder (F13
) Ui (w)Urp Uf(»)Urp , , U (w)Uyf ,
ara”:(—zurmw HADr 2 F(V))"“_a“ § TR (F14
ur (u) ur(v) ur (wur (v)
, Ut (u)Ur Ui (v)Up , . Ur(w)Uyp ,
ara‘fz(—zmon rnBris) 2t F(V))"_e_a_e L) e (F19
up (w) ur(v) ur (m)ur (v)

We note that the system fef = + 1 and the system far’ = — 1 are identical except for the inhomogeneous part, which we
have defined as

er ’ Er , e; E’ , E,E, 1 E, E’ , E’ E’ , E,E,
Prr=——72 [ule“ (P«)_UFI(M )J[ur (V)_UF,(,U« )]Cr,rr_ g—[ul“ (M)_ur/(V )J[ur (V)_urr(V )]Dr'r/ -
Ur, ©) ur'(V,
(F16
To exhibit explicitly thel’ dependence, it is useful to rewrite
1 ! - ' ’ - '
prr(p i v == f (v e T ) £y, pi 07 )@ (T 0], (F17

Ir(p'=v")
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— 1 — ’ + ’ — r + !
p[‘ FI(M,V;Mr1yr):|_(,—,)[fr/(u,V;M!)e*(rfr )Ur/(,U« )_fl_‘,(,u,v;vl)e*(rfr )Ury(V )], (F18)
' r(p —

where we have introduced the twoindependent functions

e’ ’ U;,,(,LL/) e’ ’ €’ €’ ’ €’
frl(ﬂvV;/—L ):Er—,[urf(ﬂ )_UFI(#)][UFI(ILL )_ur/(V)]- (Flg)

up (u

The first step is to obtain the solutions of the above tidentica) homogeneous systeniB15). Remarkably, these can be
constructed from the functions (p) anduy (p) using the differential equatiorf0). We find the four independent solutions

of the homogeneous system to be

N N _ _ N Uf(p) _ Ur(v)
{lenpur(,u),&l=—nFUr(V),crl=nr#:),01=— Fuf(:) , (F20
I I
+ + + - - - + Ur (w) FooN2 -
92:”rUr(M)Ur(V),ez:”rUr(V)Ur(M),Uz:“r—w(ﬂ)w(v}[ur(’/) —Ur(»)Ur(»)],
T T
Ur(v)
73 =Nr———[up ()2~ Uf () U ()] (F2D)
ur (uup (v)
N N _ _ N Ut(v) Ur(w)
[03=HFUF(V), 03=—nFuF(M),a3=nruf—:),as=—nruf(:) : (F22
T T
r()
[ajznruﬁ(v)uﬁ(u),@=nFUF(,u)ur(v),UIZHFW[UF(M)Z—UF(M)UF(,U«)],
I I
Ur(u)
o= — ()2 U () UE (]} (F23
ur (u)ur (v)

wherenp= 1/-= §%/sint¥(I"8) and with drnp=— (uy +up)ny.
It will be useful to consider the matrix formed by these solutions:

0, 0, 6; 06,
0, 6, 0,

N + + + +

0-1 0-2 03 0'4

From the usual properties of systems of linear equations the Wrong¥jandef Ni-] satisfies the simple equatiosiyWr
=Tr[Mr]Wr whereM is the matrix formed by the coefficients of the homogeneous part of the linear system. One can easily
integrate this equation, or one can compute directly the determinant, and use the defiRR®rtse simplify the resultafter

a tedious calculation Both give the same, remarkably simple, result:

LU (U (w)UF (0 Up ()

. F24)
up (u)up (p)ur (v)ur (v) (

Wp=—n{(pu—v)

Since this is not zero, this shows that the four solutions given above are linearly independent. Thus we are now in a position
to write the solutions of the two linear differential syste(®45 with the inhomogeneous terms. It is found, as usual, as a
linear combination of the four independent solutigf23 of the homogeneous system:
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€' 1€’
6" O (p,v) Ayt
o | & L] e A
o =2 N =Nr| .|, (F25
o = o r(m,v) AT
O'_EI UEF(Mry) )\?;5’

where )\'E = FF,(,u v, ,v'") are the coefficients of the linear combinations. Using the standard method one finds the
following equations for the coefficients:

(7[‘)\1+ p;’l—,
&F)\2+ 0
N =
r 3r)\3+ 0 )
&r)\4+ O
(F26)
apNtT 0
N2~ Prr
Nr 3— =
Ir\ 0
I\t 0
The initial condition for the?\i;/ atI'’=T"" are fixed by the initial conditions
4
5% (i v = 2 N (v ) O ) = O 1 (£= 0, v ')
1 €' , €' ,
:556’| I_V/[U[‘/(V )_UF’(# )]: (F27)
1"!
4 ee]
Uprrr(,u viu' v')= 2 kp; M,V;M’,V’)Uf(l“',,uw):fo dZ O n(Guvip v
11 (UL UL(u)
= Spr = —— / T : (F28)
IF’ M v \ UF,(V’) UF;(/.L,)
Finally, we find, fore’ =+ 1, the solution of Eq(F15 with the above initial conditions:
4
Orr=2, Oir f AT (NE )i aPf p A+ (NED 205 0+ (N a0 1 |, (F29
4
Ur r/ E 0'| r f dF(NF )I 1pF Fr+(Nr/ )i 101*/ 1‘/+(Nr/ )i 30F+r/ ) (F30
and, fore'=—-1,
4 r
* = =1 - - - - ——
O 0 =2, 0 Ur,drmf >i,zpf,r,+(Nrbi,zem+<NF,1)i,4ar.r,}, (F3D)
4 r
Uf,;':i:El O-i::r J\F,dr(N’El)i,Zpi"Tvrr+(erl)i,20[‘"r’+(Nl"/l)i,4o-rrvrlj|- (F32)

The next step is to evaluatds;l, the inverse of the matrikl . Remarkably, the inverse admits a simple explicit form in
terms of the functionsiy andUy , which can be found after some tedious calculations using the b8 It reads
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om Ur (MUup (U (p)  Up ()Up (n)Up (v)
Ur(p)  Ur(») Uf (1) Ur(»)
LUt ur(v) up (Ut (v) up(wup(v)
L1 Ur(p)  Ur(») U (w) Ur ()
pl=—— . L . - (F33
e B UEWUEMUE () ur (DU (p)ur (w)
Uf(r)  Up(w) Ur(») Ur(w)
U ur(w) () up (w)ur (v)
Ur(») Ur (u) Ur(») Ur (p)

We have thus obtained the quantities of interest, namely,aﬁé,(u,v;u’v’)=f§Q§f£,(,u,v;M’v’). The two-time
probability can then be obtained from theas follows.

The Laplace transforms in the different sectoxs>Q, x’'>0), (x<0, x'<0), (x<0 andx’>0), and &>0 andx’
<0), are, respectively,

ﬁ;F/(p'p,):f dxf dX, efp’x’efp(X*X’)ProuXt,X,t,|00):U;:F’(M:p1v:0uu“,:p,!V,:O)r (F34)
: o %), :

A O 0 ! ! "n___ ... [

Pr,r'(p’p’):j dxf dx’ eP ¥ eP* X Prol{xt,x't'|00) = o [, (u=0,v=p;u’=0,v"=p’), (F35
~ 0 * ry! "N . -
P;},(p,p’)= f_ dxf0 dx’ e P X gPx—x >Prok1xt,x’t’|00)=omf,(,uzo,vz p;u' =p+p’,v' =p), (F36)

~ 0 *® ry!r N —
Prr(pp)= fﬁ dx’ fo dx &' e P IProl(xt,x't'|00) = o 1, (u=p,v=0;u'=p,»'=p+p’). (F37)

From these one can compute the distribut@y,t,t’)=f"2dx’ Prok(x’+y),t,x’,t’|0,0) of the relative deplacemert
=x(t)—x(t"). Its Laplace transforms in the sectyr>0 andy<O0 are, respectively,

© ) © , 0 g —————
Q;F,(p)zj dy e*pr(y,t,t’)zf dx’f dx e P(x=x )Protixt,x’t’|00)+f dx’f dx e P~ X)Prok(xt,x’t’|00)
’ 0 0 x’ —% 0

ZUF;,(MZD,VIO;,U«'ZO,V’=O)+0'1f’;,(,u=0,v=p;,u’=p,v’=p), (F39

0 0 0 (0 © —
Q;F,(p)ZJ dy epr(y,t,t’)zf dx’f dx e X )Prot(xt,x’t’|00)+f dxf dx’eP* X Prok(xt,x’t’|00)
' — — — 0 —® 0

=0 (p=0,r=p;pn'=0,v"=0)+0p 1 (u=p,r=0iu'=p,»' =p). (F39

In order to compute these distributions, we have explicitly evaluated the sums and integrals(if38gand (F32). As an
example, let us examine

4

F ~ —
ot tvin ) =3, (| [ AFONED o (i 1)

+(NF D a(a ) 0 1 (v ) + (NP () ol (v | (F40

It turns out that all integrals that appear in this expression are simple exponentials. This remarkable property remains true for
all other elements and is the reason the calculation, though tedious, can be carried out explicitly for this problem.
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Explicit results for the symmetric casé=0. Here we give the explicit expression for the Laplace transform of
Prob(xt,x’t’|00) in the different sectors defined in E&37). For the sector where the product’ >0, we find

s S S . s r?
Pr_arr pzr_/z’p =7 =Prear | P=52P =73

coths/ 1 ) 1 [ (
- 1- + ~1-
a?r2s\” coshr|  42r25cosh(as)| coshr

N (rcothr —1)(rcothr —scoths)

)sinhs

r
)coshscother ( 1-—
sinhr

coshr (2—r2cott? 1) {—scoshs—r cothr sinhs+e~ (¢~ g coshy as)

+r cothr sinh Lanhtas) * L eoths| 1
r cothr sinh(as)]} 22 | sinhr scoths coshr
(rcothr —1)(rcothr —scoths)tanhr o
_ p— (1—6 (a 1)rcothr) ) (F41)

For the sector wherex’ <0, we find

2 2 2
ALl S r—s 0 rpr2 [T 2
Pr+=ar,r,<p=—,p’= >=J dx/e ' ZJ dxe s> *Prol{xt,x't'|00)
: . o

FIZ F/Z
B 1 [ coshs 1) cothst sinhs
 &?(s?—r?)g| | coshr COMNSTS=T Snhr
1 [ 1 / coshs) (rcothr — 1)(rcothr — scoths)
+ |1 +
a?(s2—r?)scosh(as)| Sinhs| = coshr coshr (s2—r2cott?r)

X {—scoshs—r cothr sinhs+ e~ (¢~ 1N 5 cosh( as) +r cothr sinh(as)]}]

tanh( as) r s ) coshs (rcothr —1)(rcothr —scoths)
————{ coshs| ——— ——|+1— +
a?(s?—r?)s sinhr  sinhs coshr coshr (s2—r2cott?r)
x {rcothr coshs+ s sinhs—e™ (@~ Dreothi cothr cosh( as) + s sinh( as)]}l . (F42

and the same expression for *.
We have performed a similar calculation in the biased case, but the corresponding full expression for the Laplace transform

is too lengthy to give here. Some particular limits are discussed in the text. We give here the explicit expression of the
two-time correlator:

(X(Dx(t"))= [A(y,7")+B(y,y')e (r=v)eothy')]

3256% sint? ' sini? y

with
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A(y,y")=coshi2y)[sinh(2y) — y][sinh(4y") +sinh(2y")— 67y’ cosi{2y')]

cosh4vy')

+cosh2y)| — ' sinh(4y")+ 5

1
+4vy'2cosh2y’)—2y" sinh(2y")— >

+sinh(2y)[ — ¥’ cosi4y')+sinh4y’)—y' cosi2y')+sinh2y’)+2y" —6y'?cothy’]
+ y{—2y'(cosi{4y')+4 cosli2y’)—2)+3[sinn(4y")+sinh(2y")]— 12y’ 2 cothy'}

5
+27" sinh(6y’)—2 costi6y’)— ( 6y'°+ 5) cosi4y')+ 97y’ sinh(4y")

13
+(6y'2—2)cosi2y')+4y' sinh2y')—4y'3coth y')+8y'2+ —, (F43
2

B(y,y')=cosi3y+y')[sinh2y')—2y']?
+cosiy+y")[sinh(2y")—27y']

12
X| —8y' cosh2y')+5sinH2vy')+4(y—y' ) —————4yy' cothy’ -2y’
sinh(y")?

+sinh(y+y" )4y [sinh(2y')—2y']

+coshy[sinh(2y")—2v"]| sinh(3y')+ 4y cosiHy')+sinh(y')—4y );1 /1. (F44)
sinhy

APPENDIX G: DISORDER AVERAGED PROBABILITY DISTRIBUTION FOR A FINITE SIZE SYSTEM

In this appendix we consider a finite size systeriX3<L using results of Secs. VII A and Il C 3. We start withRR
system, i.e., reflecting boundaries on each end.

We will denote byb=2k+2, k=0,1,2 ... ,+%, the number of renormalized bonds in the system. The disorder averaged
distribution can be written as a sum:

k=40 2k+2
PoL(X,t[X0,0)= go N; PO 2(X,tX0,0), (GY)

WhereP’z\',;iz(x,t|x0,0) corresponds to the contribution of the case where the startingxypisiton theNth bond(see Fig. 8.

One must distinguish betwedh=2n+1 odd, when the particle starts on a descending bondkand, andN=2n+2 even

when it starts on an ascending bond amdx,. Thus, in addition to Eq(G1) above we will also be interested in the explicit
decomposition:

PoL(X,t]X0,0) = O(X—Xq) Pgp (X,t]X0,0) + 8(Xg— X) Poy (X,t]Xq,0), (G2
k=+o Kk
O(X—Xg) P (X,X0,0) = kzo 2 PRI 2N (X,t]X0,0). (G3)

One hagsee Fig. 8 for n=0, ... kK,

2n+1 2n
P%Ei%’L(x,t|xo,O)=<5(x— > Ii) 0(2 [ <Xq<X
=31 =1

> : (G9
2k+2

where( ).+, denotes the average over the22 bond sector of the finite size measR® in Eq. (199. There is a similar
formula for an even number of initial bonds. Throughout we will define Laplace transforays, xo— pg,L—q as follows:

+ 0 L L
P+ 2(P,Po,a) = fo deo d><f0 dxg e (Px*PoxotabpLL o (x,t[xo,0). (G5)

One finds
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P3i2(P.Po.0) = p+po+q(Pr;+po+qP;+po+q)n Pt py+q(Pasp= Ppipgra)(PgPg) "Eq (G6)
%Eif(p Po,q) = p+p0+q(P|;+p0+q p+p0+q) (Pgq— P;0+q)P;(Pq_Par)k_n_lE_, (G7)

the first formula being valid for £n<k (andk=1) and the second for9n<k—1 (andk=1). Finally for the two edge
bonds one has

I
P%k+z<p,po,q>=a< a+p~ Epipyr)(PqPg) Eq (G8
P2K3(p.Po.0)= p+p0+q<P,;+po+qP;+p +"(Eq —Ep o) (G9Y)

for any k. Resumming and using the identiti€k99) yields

4 +
Y Y P L pp— L (G10
od Eq  IrPod(P+Po+td)  Epip qEq
1 Pptpg+ P++ P7+ Pq 1 Ef 1 Ep,+
P(P.po.q)—— P+Pota’ p+g +p 9" q L qip Po+a (G11)
I +poa(pP+pPo+q) Eppy+qEq Pod EJ  Po(P+Pota) Ep+pota
A simpler expression holds at coinciding points:
e 1
f de dxg e PoXo~dLpy (Xg,t|X,0)= : (G12
FQ(pO+Q)EpO+q q
A similar calculation in the case of absorbing boundarig# case gives
(Pq+p g P;+p +qPpy+a)
P(p,po.) == - (G13
FDOQ(p+pO+q)Ep+p +qEq
as well as the semi-infinite limit =< with an absorbing boundary at=0,
(P+_ p+pg P )
Po=(P,Po) == (G149
FpO(p+pO)Ep+pO
At coinciding points in a semi-infinite system this becomes simply
Py
dx, e Po*oP(xg,t]Xp,0 .
f Xo 0.t[X0,0)= |rpoE+
In the RA case the result is
ES )P_ (PgqPoipg+ Pa+p— Pgsp,)
P(p,po,q)=( q+0)Pyq p+po+a g+p " a+pg G15

PodEq FPOQ(p+q+ Po)Ep+p, +qE(;

The AR case is obtained by the global exchangetofand — as well asx—L—x and x,—L—Xq (i.e., p——p, Po—
—Po, andg—q-+p+po).



4840

[1] E. Vincent, J. Hammann, and M. Ocio, Recent Progress in
Random Magnetsedited by D. H. RyanWorld Scientific,
Singapore, 1992

[2] See, e.g., S. R. Anderson, Phys. Rev3® 8435(1987).

[3] D. S. Fisher and D. A. Huse, Phys. Rev.3B, 373(1988.

[4] G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin,
and V. M. Vinokur, Rev. Mod. Phys6, 1125(1994).

[5] T. Giamarchi and P. Le Doussal, Phys. Rev.5B 1242
(1995.

[6] L. F. Cugliandolo and J. Kurchan, Phys. Rev. Létt, 173
(1993; J. Phys. A27, 5749(1994).

[7] H. Kinzelbach and H. Horner, J. Phy&rance | 3, 1329
(1993; 3, 1901(1993.

[8] L. Cugliandolo and P. Le Doussal, Phys. Rev.58 1525
(1996; L. Cugliandolo, J. Kurchan, P. Le Doussal, Phys. Rev.
Lett. 76, 2390(1996.

[9] J. Kurchan and L. Laloux, J. Phys. 29, 1929(1996.

[10] A. J. Bray, Adv. Phys43, 357 (1994.

[11] Y. G. Sinai, Theor. Probab. AppR7, 247 (1982.
[12] H. Kesten, Physica A38 299 (1986.

[13] B. Derrida, J. Stat. PhyS81, 433(1983.

[14] J. P. Bouchaud, A. Comtet, A. Georges, and P. Le Doussal

Europhys. Lett.3, 653 (1987; Ann. Phys.(N.Y.) 201, 285
(1990.

[15] A. Comtet, J. Desbois, and C. Monthus, Ann. Phiis.Y.)
239 312 (1995; C. Monthuset al, Phys. Rev. E54, 231
(1996.

[16] L. Laloux and P. Le Doussal, Phys. Rev.5F, 6296 (1998,
and references therein.

[17] M. Feigelman and V. M. Vinokur, J. Phy&-rance 49, 1713
(1988.

[18] D. S. Fisher, P. Le Doussal, and C. Monthus, Phys. Rev. Lett.

80, 3539(1998.

[19] C. Dasgupta and S. K. Ma, Phys. Rev2B 1305(1980.

[20] D. S. Fisher, Phys. Rev. B0, 3799(1994.

[21] D. S. Fisher, Phys. Rev. Bl1, 6411(1995.

[22] D. S. Fisher and A. P. Young, e-print cond-mat/9802246.

[23] R. A. Hyman and K. Yang, Phys. Rev. Le3, 1783(1997.

[24] C. Monthus, O. Golinelli, and T. Jolicoeur, Phys. Rev. Lett.
79, 3254(1997).

[25] H. Kesten, M. Koslov, and F. Spitzer, Compositio Math-
ematica30, 145(1975.

[26] A. O. Golosov, Sov. Math. DokR8, 19 (1983.

Le DOUSSAL, MONTHUS, AND FISHER

PRE 59

[27] A. O. Golosov, Commun. of the Moscow Math. Soc., 199
(1985.

[28] For review, see H. Tanakanpublished

[29] For review, see, e.g., Ref$14,35,34,32, and references
therein.

[30] D. S. Fisher, P. Le Doussal, and C. Montiuspublisheg

[31] P. Le Doussal and C. Monthus, e-print cond-mat/9901306.

[32] L. Balents and M. P. A. Fisher, e-print cond-mat/9706069.

[33] A. Comtet, A. Georges, and P. Le Doussal, Phys. Le20B
487 (1988.

[34] A. Comtet and C. Texier, e-print cond-mat/9707313.

[35] R. H. McKenzie, Phys. Rev. Lett.7, 4804(1996.

[36] F. Igloi and H. Rieger, e-print cond-mat/9709260, and refer-
ences therein.

[37] A. Maritan, Phys. Rev. Leti62, 2845(1989; A. Maritan, G.
Sartoni, and A. L. Stellabid. 71, 1027(1993; A. Giacometti,
A. Maritan, and H. Nakanishi, J. Stat. Phy§, 669(1994); A.
Giacometti and A. Maritan, Phys. Rev.4B, 227(1994; J. R.
Banavar and A. Maritanbid. 47, 769(1993.

[38] A. J. Bray, B. Derrida, and C. Godreche, Europhys. L2%.

175(1994; A. D. Rutenberg and A. J. Bray, Phys. Rev5g,

1900 (1994; A. J. Bray and B. Derridajbid. 51, R1633

(1995; B. Derrida, C. Godreche, and I. Yekutieli, Europhys.

Lett. 12, 385(1990; Phys. Rev. Ad4, 6241(1991]).

[39] F. Igloi and H. Rieger, e-print cond-mat/9804316.

[40] A. Comtet and D. Dean, e-print cond-mat/9809111.

[41] J. Chave and E. Guitter, e-print cond-mat/9809087.

[42] M. Stephen, Rutgers report, 1998.

[43] See e.g., Karlin and Altschulunpublishegt P. Bermel, R.
Bundschuh, R. Olsen, and T. Hwanpublishegdl and refer-
ences therein.

[44] A. Comtet, C.

cond-mat/9601014.

[45] See formulag43)—(50) in [16] given that in the smalk limit
(t—t")*~t*{1—exgdl/u(y—y')]}* can be replaced bt in
the exponential of Eq168).

[46] S. H. Noskowicz and I. G. Goldhirsh, Phys. Rev.4R®, 4
(1990; 42, 2047 (1990.

[47] P. Le Doussal, Phys. Rev. Le®2, 3097(1989; M. Raykin, J.
Phys. A26, 449 (1993.

[48] D. S. Fishernunpublished

[49] Mau, Motrunich, D. A. Huse, and D. S. Fishempublisheg
Bull. Am. Phys. Soc(to be publishef D. S. Fisher, Physica A
263 222(1999.

Monthus, and M. Yor, e-print



