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Random walkers in one-dimensional random environments: Exact renormalization
group analysis
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Sinai’s model of diffusion in one dimension with random local bias is studied by a real space renormaliza-
tion group, which yields exact results at long times. The effects of an additional small uniform bias force are
also studied. We obtain analytically the scaling form of the distribution of the positionx(t) of a particle, the
probability of it not returning to the origin, and the distributions of first passage times, in an infinite sample as
well as in the presence of a boundary and in a finite but large sample. We compute the distribution of the
meeting time of two particles in the same environment. We also obtain a detailed analytic description of the
thermally averaged trajectories by computing quantities such as the joint distribution of the number of returns
and of the number of jumps forward. These quantities obey multifractal scaling, characterized by generalized
persistence exponentsu(g) which we compute. In the presence of a small bias, the number of returns to the
origin becomes finite, characterized by a universal scaling function which we obtain. The full statistics of the
distribution of successive times of return of thermally averaged trajectories is obtained, as well as detailed
analytical information about correlations between directions and times of successive jumps. The two-time
distribution of the positions of a particle,x(t) andx(t8) with t.t8, is also computed exactly. It is found to
exhibit ‘‘aging’’ with several time regimes characterized by different behaviors. In the unbiased case, for
t2t8;t8a with a.1, it exhibits a lnt/ln t8 scaling, with a singularity at coinciding rescaled positionsx(t)
5x(t8). This singularity is a novel feature, and corresponds to particles that remain in a renormalized valley.
For closer timesa,1, the two-time diffusion front exhibits a quasiequilibrium regime with a ln(t2t8)/ln t8
behavior which we compute. The crossover to at/t8 aging form in the presence of a small bias is also obtained
analytically. Rare events corresponding to intermittent splitting of the thermal packet between separated wells
which dominate some averaged observables are also characterized in detail. Connections with the Green
function of a one-dimensional Schro¨dinger problem and quantum spin chains are discussed.
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PACS number~s!: 64.60.Ak
fu
he
c
am
in
y

p
r
ic
u
fo
a
o

to
on
te
re

are
u-

tion
tems

l so-
els
e
e-

rge-
es
ss

ing
-

s of
red
se

ated
I. INTRODUCTION

Studying nonequilibrium dynamics provides a use
route to elucidate the properties of systems with quenc
disorder. In addition it is very relevant for experiments, sin
most such systems form glassy states with ultraslow dyn
ics and usually do not reach full thermal equilibrium with
the accessible time scales. This is the case for a variet
experimental systems such as spin glasses@1#, random field
systems@2,3#, vortex lines in superconductors@4,5#, and do-
main growth in the presence of quenched disorder. Des
decades of extensive work, there are still a number of un
solved issues in the theoretical description of the dynam
of systems with quenched disorder. This uncertainty is d
to a large extent, to the lack of physically relevant models
which analytical solutions can be obtained, providing cle
cut answers to well posed questions. The need for such m
els is all the more acute since it is prohibitively difficult
obtain unambiguous answers from numerical simulati
when the dynamics is ultraslow, especially since the in
pretation is often blurred by the absence of precise theo
PRE 591063-651X/99/59~5!/4795~46!/$15.00
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cal predictions. Solvable models, where the answers
known, should also provide a useful testing ground for n
merical methods by giving clues to the necessary simula
time scales and averaging procedures in disordered sys
which are often dominated by rare events.

Some progress has been made in obtaining analytica
lutions for the large-time behavior of mean field type mod
@6#. Although it is still extremely unclear how much thes
mean field results will carry through to short range, finit
dimensional systems, one outcome of these works@6–8# has
been to demonstrate the existence of several possible la
time regimes and to attempt to classify them. This provid
further motivation to study aging dynamics in a larger cla
of models, in particular, to study the possible ways of tak
the large-timet,t8→` limits for correlations between con
figurations of the system at a waiting timet85tw after a
quench att50, and a later observation timet.

Other types of approaches, such as droplet description
the statics and the nonequilibrium dynamics of disorde
systems@3#, make use of domain growth arguments. The
approaches emphasize the leading role of thermally activ
4795 ©1999 The American Physical Society
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processes, which should play an important role in short ra
models, while mean field dynamics may be dominated
other types of collective processes@9#. The ‘‘coarsening’’ of
domain structures evolving towards equilibrium has be
studied extensively in pure models@10# but little is known
rigorously for domain growth with quenched disorder. Th
these approaches are still to a large extent phenomenolo
and one would like to find models where solid results ab
aging in the presence of activated dynamics can be obta
analytically. A natural hope for that would be to study on
dimensional~1D! models which could be used as testi
grounds for more complexD.1 cases which have resiste
analytic attack.

A celebrated 1D model for glassy activated dynamics
the Sinai model, which describes the diffusion of a rand
walker in a 1D random static force field—equivalent to
random potential which itself has the statistics of a 1D r
dom walk@11#. Although this model~with or without a bias!
has been much studied, the known analytical results@11–16#
usually concern single-time and single particle quantities
are technically hard to obtain. It is known that this mod
without a bias exhibits nontrivial ultraslow logarithmic b
havior, as the walker typically moves asx;(ln t)2, as well as
several dynamical phases with anomalous diffusion as
bias is increased from zero. By contrast, there were until n
no exact results about two-time aging dynamics, despite
eral mostly qualitative and numerical studies@17,16# that
found interesting aging behavior in this model. In additio
the Sinai model has interesting extensions to many inter
ing particles, and via domain walls, to the Glauber dynam
of 1D random field Ising ferromagnets and spin glasses
magnetic field.

Recently we have proposed an approach, based on a
space renormalization group~RSRG! method, which allows
us to obtain many exact results for the nonequilibrium d
namics of several 1D disordered systems@18#. We have
shown that it applies to the Sinai model as well as to
disordered spin models and diffusion-reaction processe
Sinai’s type of energy landscapes. This RSRG method
closely related to that used to study disordered quantum
chains @19–24#. The crucial feature of the RG is coars
graining the energy landscape in a way that preserves
long-time dynamics. In Sinai’s model the way to impleme
the RSRG is very direct: one decimates iteratively thesmall-
est energy barrierin the system, stopping when the time
surmount the smallest remaining barrier is of the order of
time scale of interest. Despite its approximate character,
RSRG yields for many quantities asymptotically exact
sults. As in@21# it works because the iterated distribution
barriers grows infinitely wide, consistent with@11#.

The aim of the present paper is to show in detail how
RSRG method applies to the Sinai model, allowing one
obtain in a simple way a large number of exact results.
obtain a host of quantities such as return and first pass
probabilities, and single-time correlations as well as tw
time correlations of the type that are probed in aging exp
ments. Given the long history of Sinai’s model, some of
results obtained here have been derived previously, by c
pletely different methods. These methods include those f
probability theory @25,11,26–28#, as well as conventiona
methods of the physics of disordered systems, such as
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Dyson-Schmidt method, replica methods, supersymme
transfer matrix, etc.@29#. Despite that, a large number of ou
results are, to our knowledge, novel. Indeed, as we aim
illustrate in this paper, the most interesting feature of
RSRG, besides being simple to apply, is that it allows one
obtain all these results~new and old! from a singlemethod,
while other methods usually allow access to only spec
types of exact results. As we will explain, the only limita
tions are the ones usually associated with any RG meth
First, almost by definition, it only addresses and obtains
actly the universal quantities, i.e., the ones which are in
pendent of the short-scale details of the model. Second
does rely on the global assumption that the starting mode
within the basin of attraction of the zero temperature fix
point studied here, and is thus not ‘‘exact from first pri
ciples.’’ This is not a restriction in the case of the Sin
model because rigorous results already exist from probab
theory, this last assumption can be considered establish

In the future@30,31#, we plan to detail the applications o
the RSRG, given as a short account in@18#, to the Glauber
dynamics of disordered spin models and to diffusion-react
processes in the presence of quenched disorder. These w
rely heavily on the Sinai model and the present work. Th
we here give a detailed presentation of the results for
Sinai model.

An interesting feature of the RSRG is that it demonstra
in a simple and operational way how the Sinai model
related to other one-dimensional disordered models. M
formal derivations of such mappings can also be made
some cases via free fermion models. For instance, the q
tum XX spin chains with disorder and the random transve
field Ising chain ~RTFIC! are related via Jordan-Wigne
transformations to free fermion models near half filling wi
disorder in the hopping term. This problem is in turn relate
via its expression as a random Dirac problem, to a supers
metric random Schro¨dinger operator@32# identical to the
Fokker-Planck diffusion operator associated with the Si
model @14,33#. Most of these relations have been detail
previously in various contexts~see, e.g., for a review@34–
36#!. These disordered fermion models have been much
investigated recently as they provide examples of quan
delocalization transitions. It may sometimes be useful to
cast them in terms of the Sinai model where some quant
have a straightforward physical interpretation~e.g., the loga-
rithmic Arrhenius diffusion over barriers growing as a ra
dom walk gives the logarithmic energy dependence of
local density of states!. The RSRG demonstrates such ma
pings for the low energy~large-time! properties in a very
direct way, as we will illustrate. Zero drift in Sinai’s mode
corresponds to the self-dual critical case in the RTFIC@21#
and to the antiferromagneticXX chain @20,19#, while the
zero velocity biased phase@13,14# corresponds to the Grif-
fiths phase of the RTFIC@21# and a dimerizedXX chain. As
we show here, magnetization properties correspond to
sistence properties in Sinai’s model.

Although the idea of studying the random diffusion pro
lem via real space decimation techniques has been used
viously, it has been mostly applied to fractal or hierarchic
landscapes~see, e.g.,@37#! which are designed for suc
methods. By contrast, here the RSRG emerges from
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structure of the zero temperature fixed point itself, as
natural way to treat diffusion in a statistically translationa
invariant disordered system, with noad hoc assumptions.
Interestingly, a similar property arises in the problem of t
coarsening of the pure 1DF4 model at zero temperature
which can be treated exactly by successive elimination of
smallest domains in the system@38#, a method reminiscent o
the RSRG studied here. Finally note that since@18# appeared,
several new papers have been devoted to the Sinai m
@39–42#.

Outline

The outline of this paper is as follows. Section II contai
a pedagogical introduction to the real space renormaliza
group approach for the Sinai model. It terminates with
explicit expressions for the fixed points of the RSRG~Sec.
II C!. In Sec. III we compute the averaged single-time dif
sion front for the symmetric Sinai model in Sec. III A an
with a bias in Sec. III B. In Sec. IV we study the returns
the origin ~persistence properties! of the thermally averaged
motion, as well as the statistics of the jumps, in the symm
ric and biased case. In Sec. V, we study returns to the or
of a single walker, distributions of first passage time and
the maximum position, as well as the probability of tw
walkers meeting. Section VI is devoted to the aging prop
ties of the Sinai model and contains a general discus
~Sec. VI A!, calculations of singular parts of the diffusio
front ~Sec. VI B!, the full two-time probability distribution
~Sec. VI D!, and the analysis of a simpler case~Sec. VI E!.
The section terminates with the analysis of rare events
calculation of the front in the quasiequilibrium regime~Secs.
VI F and VI G! and fluctuations in the single-time diffusio
front ~Sec. IV H!. In Sec. VII the RSRG is studied in a finit
size system; equilibration properties, first passage times
boundaries, and finite size diffusion fronts are computed.
nally, in Sec. VIII we obtain the Green function of the ass
ciated Schro¨dinger operators in Sec. VIII B. Section IX con
tains the conclusions. Further technicalities are relegate
various Appendixes.

II. MODELS AND REAL SPACE
RENORMALIZATION PROCEDURE

A. Diffusion models

Diffusion in one-dimensional random media has be
modeled in three ways, which usually lead to equival
classes of behavior in the large-time limit. Probabilists ha
often studied models discrete in timeandspace; for instance
a particle on points of a one-dimensional lattice,n, which
jumps to the right (n11) with probabilitypn and to the left
with probability 12pn . Physicists, on the other hand, ha
often considered random hopping models, continuous in t
but discrete in space, described by the master equation:

dPn~ t !

dt
52~Jn11,n2Jn,n21!,

Jn11,n5Wn11,nPn2Wn,n11Pn11 . ~1!

Wn11,n and Jn11,n are, respectively, the transition rate a
the current fromn to n11, and Wn,n11 and Jn,n115
e
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2Jn11,n from n11 to n. Finally, fully continuum models,
with the Fokker-Planck equation

] tP~x,t !5HFPP5]xD~x!@T]xP2F~x!P#, ~2!

have also been studied@with D(x).0].
It is useful to distinguish three classes of disorder~within

each description! leading to different types of generic 1D
large-time behavior~for uncorrelated disorder!.

( i ) Detailed balance, random diffusion coefficient.This
corresponds toWn,n115Wn11,n[Dn,n11 in Eq. ~1! or to
F(x)50 and D(x) a random positive function. It is wel
known that the large-time diffusion coefficient isDeff
5^1/W&21 for uncorrelated disorder and thus that this mod
exhibits asymptotic ‘‘normal diffusion’’ unless theDn,n11
have a broad distribution, with a tail near the origin,P(D)
;D2a (0<a,1).

( i i ) Random traps.This corresponds toWn,n1151/tn11
and Wn11,n51/tn . Each site is characterized by a relea
time, but the exit is with the same probability 1/2 to the le
or to the right ~the jump probability depends only on th
starting point!. Again this model exhibits asymptotic ‘‘nor
mal diffusion’’ unless the release times have an algebraic
broad distribution.

( i i i ) Generic case: Sinai model.In the generic case on
can always parametrize the hopping rates as

Wn,n115t0
21ebEn,n11e2~1/2!b~Un2Un11!,

Wn11,n5t0
21ebEn,n11e2~1/2!b~Un112Un!, ~3!

whereb51/T and T is the temperature. This can be illus
trated as in Fig. 1; there is a symmetric barrierEn,n11 be-
tween sitesn and n11, plus an additional potential differ
ence. The barrierEn,n11 gives the average diffusion
coefficient~or attempt frequency! on the bond. The ‘‘forces’’

FIG. 1. ~a! General hopping model;~b! interpretation of~a! with
a barrier between each site and a potential difference~local bias!;
~c! model studied here.
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4798 PRE 59Le DOUSSAL, MONTHUS, AND FISHER
on the bonds aref n11,n52(Un112Un), which represent a
local bias. In a finite size system~periodic in theUn) the
expressions~3! correctly lead to the Gibbs zero current equ
librium measure,e2bUn/Z.

The main case of interest here and studied by Sinai is
of independent random forces. The generic case, for unco
related disorder and for distributions off n and En,n11 with
fast enough decay~e.g., faster than exponential! all belong to
the class of Sinai’s model, which is a discrete time model
similar potential can be introduced for this model:Un2U0

5T( i 51
n21 ln@pi /(12pi)#. One can most easily visualize the

as Arrhenius motion in a random potentialUn which itself
performs a random walk, either symmetric or biased. T
motion has been studied extensively and it is known t
diffusion is logarithmic,x; ln2 t, in the symmetric case, sub
linear, x;tm, for a small bias (m,1), and with a finite
velocity x;Vt for m.1, wherem is related to the asymme
try of the force distributions as defined later.

For convenience and to be specific in what follows
will mostly study, as our basic model, the random hopp
model with the choiceEn,n1150. We will also compare with
the discrete time model originally studied by Sinai. Ho
ever, our results are much more general and apply to
model within the locally random force class~with short
range correlations!.

B. Renormalization method

1. Definitions and RG equations

As described above, we consider models of diffusion
1D landscapes in which walkers perform Arrhenius diffusi
in a potentialUn (n is a site index!. A ‘‘force’’ variable
f n5Un2Un11 is defined on each bond (n,n11) ~indexed
as bondn) and as in the Sinai model, thef n are independen
random variables with distributionQ( f )d f . The long-time
dynamics in such landscapes are primarily determined by
large barriers and deep valleys. Thus we need to be ab
focus on these aspects of the landscape while eliminatin
much as possible the effects of the finer-scale structure.

We therefore introduce a renormalization procedure, fo
given landscape, which will allow us, in this way, to stud
the asymptotic dynamics. We should emphasize that we
apply it mainly to the case of forces independent from bo
to bond, but it can in principle be applied to any 1D lan
scape. The crucial feature which is needed for the RG
yield asymptotically exact results is that the landscapes h
extremal values of the potential which grow with leng
scale. This will make the distributions of the renormaliz
barriers broader and broader. In the case of the Sinai mo
it is possible to follow exactly the RG flow~because the
forces remain uncorrelated under the RG! and thus to check
a posteriorithat at large scales the distributions of renorm
ized barriers are indeed very broad. However, the proced
is much more general and would also lead to asymptotic
exact results for correlated landscapes in which the renorm
ized barriers become higher and higher. The difficulty
such correlated cases is to follow the distributions. Of cou
there are 1D landscapes for which the RSRG would not g
exact results for the diffusion behavior: in particula
bounded potentials which have normal diffusive behavio
at
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The RSRG procedure on a given landscape is imp
mented as follows. One can first group the bonds with
same sign of the force@see Fig. 1~c!#, and then can start, with
no loss of generality, from an ‘‘antiferromagnetic’’ land
scape~see Fig. 2! with the f n8 alternatively positive and nega
tive but with a distribution of bond lengthsl i . Our starting
model is thus defined byf n85(21)nFn where theFn5uUn

2Un11u are the useful variables—called here ‘‘barriers’’—
and the two bond variablesF,l are chosen independentl
from bond to bond with an initial distributionP(F,l ). In the
presence of a bias one needs two distinct distributi
P1(F,l ) for ‘‘descending bonds’’ andP2(F,l ) for ‘‘ascend-
ing bonds’’ ~opposing the mean force!, both normalized to
unity. Note that the combining of consecutive descend
bonds in this way naturally leads to an exponential tail in
distributionP2 and likewise inP1. Such exponential tails in
barrier distributions will play an important role in the physi
and in our analysis.

We are interested in long times when the behavior will
dominated by large barriers and it is on these that we m
focus. Our RG procedure is conceptually simple: in a giv
energy landscape it consists of iterative decimation of
bond with thesmallest barrierG5Fmin , say F25U32U2
5G as illustrated in Fig. 2. At time scales much longer th
exp(F2 /T), local equilibrium will be established betwee
sites 2 and 3 and the rate for the walker to get from 4 to
will be essentially the same as it would be if sites 2 and 3
not exist but 1 and 4 were instead connected by a bond w
barrier

F85F12F21F3 ~4!

and length

l 85 l 11 l 21 l 3 . ~5!

We thus carry out exactly this replacement. This preser
the zigzag structure~the model remains alternating ‘‘up
down’’! and the larger-scale extrema of the potential sin
the total length and the extrema ofU in the segments are
exactly preserved. Furthermore, if the starting distribution
independent forces from bond to bond, this remains so un
the RG. One then keeps on iteratively eliminating barri

FIG. 2. ~a! Energy landscape in the Sinai model.~b! Decimation
method; the bond with the smallest barrierFmin5F2 is eliminated as
three bonds are grouped into one~see text!.
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G,F,G1dG thereby gradually decreasing the minimu
remaining barrier heightG. Note that there is no ambiguit
in the case of continuous distributions as considered here
one can always neglect the unlikely events when two ne
bors or next nearest neighbors are withindG.

The above rules forF and l define the RSRG transforma
tion for arbitrary landscapes. In the case of the Sinai la
scape where bonds remain statistically independent one
define

zn[Fn2G,

and introducePG
1(z5F2G,l ) and PG

2(z5F2G,l ) which
denote the probabilities that a6 renormalized bond at scal
G has a barrierF5G1z.G and a lengthl, each normalized
by *0

`dz*0
` dl PG

6(z,l )51. One can then explicitly write
closed RG equations for these two distributions describ
their evolution under the decimation represented in Fig.

~]G2]z!PG
6~z,l !5PG

7~0,• !* l PG
6~•,• !* z,l PG

6~•,• !

22PG
6~z,l !E

0

`

dl8PG
7~0,l 8!

1PG
6~z,l !E

0

`

dl8@PG
6~0,l 8!1PG

7~0,l 8!#,

~6!

where* z denotes a convolution with respect toz only and
* z,l with respect to bothz and l with the variables to be
convoluted denoted by dots. The first term on the right ha
side represents the new renormalized bonds, the secon
bonds which are decimated as neighbors of the smallest
rier, and the last comes from keeping the distribution n
malized. The total numbernG of bonds in the system evolve
as

]GnG52nGE
0

`

dl8@PG
1~0,l 8!1PG

2~0,l 8!#. ~7!

We need also to introduce the average lengths

l̄ G
65E

0

`

dzE
0

`

dl lPG
6~z,l !

of a 6 bond, and the total average lengthl̄ G5 l̄ G
11 l̄ G

2 of a
valley that evolves as

]G l̄ G5 l̄ GE
0

`

dl8@PG
1~0,l 8!1PG

2~0,l 8!#. ~8!

We have of course thatnG;1/l̄ G .
The RG equations~6! derived here for Sinai’s model ar

identical to those derived to study the low energy proper
of the random transverse field Ising chain in@21# ~we choose
notations and conventions as in@21#! using a perturbative
analysis of the effects of the strongest bonds and fields.
reason for this is that the two models are in fact forma
related, as mentioned in the Introduction. At the level of
RSRG equations, the mapping appears in a very simple w
the local random fieldshk and the random exchangesJk in
as
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the RTFIC correspond to the ascending and descending
riers, respectively, through the relationsF2k /T52 ln hk and
F2k11 /T52 ln Jk . We can also identify the renormalizatio
scaleG in both models. For the diffusion model it corre
sponds to an Arrhenius time scalet5t0 exp(G/T) to go over a
barrierF5G, whereas in the quantum model it correspon
to the minimal energy scale of the levels which have be
eliminated,V5V0e2G. The duality betweenJ andh in the
RTFIC simply corresponds to reversing the average fo
~i.e., x→2x) in Sinai’s model. As will be discussed below
the deviation from criticality parameter 2d in the RTFIC
corresponds to the parameterm/T in Sinai’s model ~see
@13,14#! which controls the long-time properties and the va
ous phases and is defined for the original model with u
length bonds by

exp~2m f n /T!51.

Zero drift corresponds to criticality in the RTFIC@21#, while
the biased phase with zero velocity@13,14# corresponds to
the Griffiths phase of the RTFIC@21# as will be discussed
below. Note, however, that the physical quantities of inter
in the two models can be different.

2. Effective dynamics and validity of the method

Throughout the paper, we define the ‘‘effective dyna
ics’’ as the dynamics which consists in putting the particle
time t at the bottom of the renormalized valley at scaleG
5T ln(t/t0) which contains the starting point att50 ~see Fig.
2!. Thus in the effective dynamics the particle does not mo
unless one of the bonds which are the sides of the renorm
ized valley to which it belongs is decimated, in which case
jumps to the bottom of the new renormalized bond as in F
2. Here,t0 is a nonuniversal microscopic time scale, whi
throughout the paper we set to unity by appropriate redefi
tion of time units; we can then useG andT ln t interchange-
ably.

Symmetric case.This effective dynamics is an approxima
tion of the true dynamics. But within the RG approach it c
be seen that this approximation becomes better and bett
G5T lnt increases since the distribution of barriersPG(F)
becomes broader and broader, as is detailed below. Thu
renormalized landscape consists entirely of deep vall
separated by high barriers and with high probability the p
ticle will be near the bottom of the valley in which it bega
Upon rescaling of space asX5x/G2 the effective dynamics
of the diffusion front becomes exact asG tends to` as was
proven in Ref.@11#. Indeed, the probability that the walker
close—in a precise sense that we discuss later—to its p
tion given by the effective dynamics approaches one at l
times. This stronger result has also been rigorously es
lished @11,12,26#.

There is clearly a source of error in the approximation
the true dynamics by the effective dynamics when t
neighboring bonds have barriersF that are within orderT of
each other. However, the error introduced by assignin
particle to one of two almost-equal-depth neighboring v
leys rather than splitting its distribution between the two v
leys will occur more and more rarely at long scales. Furth
more, any such error is wiped out by a later decimat
which eliminates the two valleys in favor of a deeper valle
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These errors thus lead only to subdominant contribution
the quantities that we will compute—with the exception
tails of certain distributions which are dominated by ra
configurations of the lansdscape. These subdominant co
tions can themselves be estimated via the RG. For insta
the rescaled mean square thermal width of a pac
(1/G4)^x(t)2&2^x(t)&2 ~with overbars denoting averagin
over landscapes! tends to 0 for largeG which is its value in
the effective dynamics, but has 1/G corrections coming from
barrier degeneracies, estimated in Sec. VI H.

Strong differences between the real dynamics and the
fective dynamics can appear in some quantities, such as
persistence properties studied in Secs. IV and V. These q
tities are usually in some way nonlocal in time and depe
on the behavior of the system over time. Even in these ca
though, as we show in Secs. IV and V, it is possible
compute some of these quantities by a proper interpreta
and examination of the RG procedure.

Biased case.In the biased case with a biasd.0 one finds
within the RG that the distribution of barriers against t
drift is no longer infinitely broad. However, ifd is small the
barriers remain large enough so that the RSRG remain
good approximation. Again, this approximation remains
act, in the same sense as above, in the appropriate sc
limit fixed dG andx/G2 ~corresponding to the critical regio
of the RTFIC!. For a fixedd one expects that the therm
packet is spread over several deep wells, but whend→0 the
contributions of these few additional wells become subdo
nant.

To conclude this section, we stress that despite its
proximate character, our RSRG method allows us to ob
exact results for many quantities both for the symmetric a
the weakly biased Sinai model.

3. RG with one boundary: reflecting or absorbing

We now consider the problem of diffusion in a sem
infinite one-dimensional medium defined asx.0. In practice
there are two main types of boundary conditions for the d
fusing particle:~i! reflecting~the current at the boundary i
zero! and~ii ! absorbing~the probability is zero at the bound
ary!. We show in this section how both boundary conditio
can be treated by adding to the bulk RSRG specific ru
near the boundary, which we call boundary RSRG.

Let us start with the zero bias case and a reflecting bou
ary. This condition can be represented by placing a bar
with infinite potentialU051` at x50 with U1 finite, as is
illustrated in Fig. 3.

When grouping bonds with the same sign as in the p
ceding section, the first bond will always be descending w
an infinite barrierF151` and a lengthl 1 . The decimation
of the landscape then proceeds as in the bulk case excep
now the first bond is never decimated and when the sec
bond gets decimated~at G5F2) it simply increases the
length of the first bondl 185 l 11 l 21 l 3 . One can easily see
that starting from a landscape where bonds are statistic
uncorrelated—with a distributionEG( l ) for the first bond and
PG(F,l ) for all the other bonds—they remain so under t
boundary RSRG. Upon increase inG, the bulk distributionP
obeys the same RG equation~6! while E satisfies
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]GEG~ l !52PG~G!EG~ l !1EG~• !* l PG~G,• !* l PG~• !.
~9!

The case of an absorbing boundary can be treated in
same way since it amounts to setting the potential of the
x50 to U052`. This is illustrated in Fig. 3. Thus the firs
bond will always be ascending with an infinite barrierF15
1` and a lengthl 1 ~and thus cannot be decimated!. The
rules are thus the same as above with the same RG equ
~9! for the distributionEG( l ) of the length of the first bond
The interpretation is, however, different: the first bond re
resents an ‘‘absorbing zone’’ such that any particle start
from a point within this zone will be absorbed by the boun
ary before timeG5T ln t, while the particles starting outsid
this zone are still ‘‘alive’’ ~and outside this zone! at G
5T ln t ~with probability asymptotically close to one!.

We note at this stage that this equation coincides with
RG equation for the end point magnetization in the RTF
i.e., with the first exchange beingJ050. Conversely, a re-
flecting boundary corresponds to the first transverse field
ing h150. The equivalence is reversed on the other end
the chain@21#.

In the case of a bias, the probability distribution of th
first renormalized bondEG

6( l ) (1 when the bond is along
the bias, and2 when it is against! satisfies

]GEG
6~ l !5PG

7~0,• !* lEG
6~• !* lE

0

`

dz8PG
6~z8,• !

2EG
6~ l !E

0

`

dl8PG
7~0,l 8!, ~10!

which generalizes Eq.~9! of the zero bias case.

FIG. 3. Illustration of the RG in the presence of a boundary.~a1!
Reflecting boundary conditions; the boundary at sitex50 can be
represented by settingU051`. ~a2! Renormalized landscape.~b1!
Absorbing boundary conditions; the boundary at sitex50 can be
represented by settingU052`. ~b2! Renormalized landscape wit
the absorbing zone~see text!.
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C. General analysis of the RSRG equations

In this section we recall some results from Re
@20,21,18,22# which will be used extensively in this pape
about the largeG behavior of the solutions of the RSR
equations~6! and~10! and discuss them in the context of th
Sinai model.

1. Symmetric model

We start with the symmetric Sinai model~zero bias, self-
dual! and thus the RG of a single distributionP15P2. One
first defines the large-scale variances of the potential as

~Ui2U j !
2'2su l i 2 j u,

with l i 2 j the distance fromi to j. Since bothl i 2 j and Ui
2U j are preserved by the RG,s is also preserved and de
termined by the initial model as 2s5*d f f2Q( f ). In the
remainder of the paper we will absorbs in l and simply
study the cases51. The units of length are then 1/s. To
obtain the full results one must changel→s l ~and dl
→s dl) in the following formulas. The rescaled probabili
PG(h,l)[G3PG(hG,lG2) in terms of the rescaled vari
ables

h5z/G, l5 l /G2

satisfies, when Laplace transformed inl→p,

@G]G2~11h!]h12p]p21#PG~h,p!

5PG~0,p!PG~•,p!* hPG~•,p!.

The fixed point solution@21# is found to be

P̃~h,p!5a~p!e2hb~p!,

with a~p!5
Ap

sinh~Ap!
, b~p!5Ap coth~Ap!.

~11!

Thus, takingp50, one finds the physically natural resu
that, due to the occurrence of long regions which are p
dominantly up or predominantly down, the coarse-grain
probability distribution of barriers in Sinai’s model isexpo-
nential,

PG~F !.
u~F2G!

G
e2~F2G!/G, ~12!

with a width that grows aŝF&;G;T ln t. The total number
of bonds satisfies Eq.~7! and thus decays asymptotically a
nG;G22 and the average bond length~8! grows as;G2.
SinceG; ln t, one recovers Sinai’s scaling@11#

x; ln2 t. ~13!

In the following we will need the explicit form of the
distributionP(l)5*0

`dh P(h,l),
.

-
d

P~l!5LTp→l
21 S a~p!

b~p! D5LTp→l
21 S 1

cosh~Ap!
D ~14!

5 (
n52`

` S n1
1

2Dp~21!ne2p2l~n11/2!2

5
1

Apl3/2 (
m52`

`

~21!mS m1
1

2De2~1/l!~m11/2!2
. ~15!

It was shown in@21# that the convergence towards th
fixed point solutionP* (h)5e2h on the critical manifold
~i.e., symmetric perturbations! is like 1/G with eigenvector
PG

(1)(h)5(h21)e2h—corresponding simply to a shift in
G—plus other parts that decay exponentially inG and de-
pend on tails in the initial distributions.

2. Biased model

In the case of the biased model one must follow the
scending bond distributionP1 and the ascending bond dis
tribution P2 , which are different. Contrary to the precedin
section, it is more convenient in this case to use the un
scaled distributions and variables. In terms of the Lapla
transformsPG

6(p,l )5*0
1`dl e2plPG

6(z,l ), Eq. ~6! reads

~]G2]z!P
6~z,p!5P7~0,p!P6~•,p!* zP

6~•,p!

1@P6~0,0!2P7~0,0!#P6~z,p!.

~16!

As was shown in@21#, for large G the distributionsP6

take the following form, in the scaling regime of smalld and
small p with dG fixed andpG2 fixed:

PG
6~z,p!5UG

6~p!e2zuG
6

~p!, ~17!

uG
6~p!5Ap1d2 coth@GAp1d2#7d, ~18!

UG
6~p!5

Ap1d2

sinh@GAp1d2#
e7dG. ~19!

~Note that here we useU rather than theY of @21#.! We will
also use the evolution equations obtained by substituting
~22! in the RG equation~16!:

]GuG
6~p!52UG

1~p!UG
2~p!, ~20!

]GUG
6~p!52uG

7~p!UG
6~p!. ~21!

The distributions of barriers alone are

P2~z!5
2d

12e22Gd
expS 2z

2d

12e22GdD , ~22!

P1~z!5
2d

e2Gd21
expS 2z

2d

e2Gd21
D , ~23!

and the average lengths of the (6) bonds are, respectively
given by
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l̄ 15
1

2d2
@edG sinh~dG!2dG#, ~24!

l̄ 25
1

2d2
@dG2e2dG sinh~dG!#. ~25!

When d→0 one hasl̄ 6→ 1
2 G2, and thus the total averag

length of a valley is

l̄ G5 l̄ 11 l̄ 25S sinh~Gd!

d D 2

;nG
21 , ~26!

wherenG is the total number of bonds.
The convergence towards the solution~22! has been dis-

cussed in@21#. The above solution~22! thus depends on a
‘‘integration constant’’ 2d5uG

2(p50)2uG
1(p50) which is

determined by the initial condition, and is proportional to t
drift. In @21# it was identified for smalld as the ratio of the
mean to the variance of theoriginal distributionQ( f ) of the
initial independent bonds of unit length 1; i.e., before grou
ing the bonds together:

d5
f̄

f̄ 22 f̄ 2
. ~27!

It is useful to introduce a parameterm defined by the
unique nonzero solution of the equation

e2m f /T5E
2`

1`

d f Q~ f !e2m f /T51. ~28!

This parameterm has been introduced previously in@25# and
is known to determine exactly the various phases of the
namics of the Sinai model with a bias (x;tm for m.1, x
;t for m.1). Indeed it is also known in random wal
theory @43# to control the probability of large excursion
against the bias. We now show that we can interpret th
properties within the RG as associated with the exact d
mation of the landscape~6!.

The distributionsP0
6(F) of the barriersF.0 of the zig-

zag landscape~see Fig. 2! obtained by grouping together th
consecutive ascending or descending bonds of the orig
discrete model are related to the originalQ( f ) distribution
through

E
0

`

dF e2sFP0
6~F !5

Q7~0!

Q6~0!

Q6~s!

12Q6~s!
, ~29!

where Q1(s)5*0
1`d f e2s fQ( f ) and Q2(s)

5*2`
0 d f es fQ( f ). The difference of potential (F12F2) of

the boundaries of a valley of the initial zigzag potential h
Laplace transform

E
0

`

dF1 e2sF1P0
1~F1!E

0

`

dF2 esF2P0
2~F2!

5
Q1~s!Q2~2s!

12Q~s!1Q1~s!Q2~2s!
, ~30!
-

y-

se
i-

al

s

where Q(s)5Q1(s)1Q2(2s)5*2`
1`d f Q( f )e2s f. The

definition of m, Eq. ~28!, for the original model is thus
equivalent for the initial zigzag landscape to definingm as
the unique nonzero solution of the equation

^e2mF1 /T&P
0
1^emF2 /T&P

0
251.

But since the renormalized valleys at scaleG are constructed
from the valleys of the initial zigzag potential and are stat
tically uncorrelated, this implies that for the probability di
tributionsPG

6(F) of the renormalized barriers at any scaleG,

^e2mF1 /T&P
G
1^emF2 /T&P

G
2

[E
G

`

dF1 e2mF1 /TPG
1~F1!E

G

`

dF2 emF2 /TPG
2~F2!51.

~31!

Using the explicit solutions~22! for the distributions of
barriers, we obtain, in terms ofuG

65uG
6(p50), the follow-

ing equation form:

15S uG
1

uG
11

m

T
D S uG

2

uG
22

m

T
D

5
1

11~m/TuG
1uG

2!@~uG
22uG

1!2m/T#
, ~32!

and we thus obtain that the parameter 2d5uG
22uG

1 param-
etrizing the RG solutions~22! indeed corresponds to the pa
rameterm/T. Note, however, that the expression~27! is only
valid for smalld.

Thus even away from smallm, the RSRG allows one to
obtain exact information on the structure of the landscape
particular, the behavior of the probability of large barrie
impeding the drift. For largeG we have from Eq.~22! that
~for positive d) P2(z)'2de22dz, implying that the prob-
ability of a large barrier,F, is ;exp(2mF/T). As we will see
shortly, this controls the anomalous drift exponentm.

3. Boundary fixed point solutions

The RG equation for the distribution of lengths of th
boundary bondE7( l ) defined in Sec.~II B 3! was given in
Eq. ~10!. In the Laplace variable with respect to length t
RG equation~10! reads

]GEG
6~p!5EG

6~p!@PG
7~0,p!PG

6~p!2PG
7~0,p50!#.

~33!

For largeG using the properties of the fixed point solutio
~22! for P6 and the properties~20! of the functionsU andu,
this can be rewritten as

]G ln EG
6~p!5

UG
1~p!UG

2~p!

uG
6~p!

2uG
7~0!

5]G@ ln UG
6~0!2 ln uG

6~p!#. ~34!

Finally we find
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EG
6~p!5

uG
6~0!

uG
6~p!

5
de7dG

sinh~dG!~Ap1d2 coth@GAp1d2#7d!
.

~35!

In the symmetric cased50 we get

EG~p!5
sinh~GAp!

GAp cosh~GAp!
, ~36!

whose inverse Laplace transform in the rescaled variable

l[
l

G2

is

E~l!5 (
n52`

1`

e2lp2~n11/2!2
5

1

Apl
(

m52`

1`

~21!me2m2/l.

~37!

III. SINGLE-TIME DIFFUSION PROPERTIES
IN SINAI MODEL

In this section we study the diffusion front using the e
fective dynamics introduced in Sec. II B 2.

A. Single-time diffusion front for the symmetric model

We now consider the~single-time! diffusion front, i.e., the
probability Prob(x,tux0,0) that a particle starting atx0 at t
50 is located atx at time t, for the symmetric, zero bia
case. At large timet the effective~renormalized! dynamics
corresponds to moving the particle from its starting pointx0
to the lower-potential end of the renormalized bond at sc
G5T ln t that containsx0 . This is illustrated in Fig 2. In a
singleenvironment Prob(x,tux0,0) is thus localized near th
bottom of the bond—i.e., the bottom of a valley—and t
rescaled positionx/ ln2 t has ad-function shape at large time

One can compute averages over environments, or equ
lently over initial conditionsx0 ~with a spatially uniform
measure! in a single environment. The average diffusio
front Prob(x01x,tux0,0) is obtained as follows. The prob
ability that a given bond has lengthl is PG( l )
5*dh PG(h,l ) and the probability density thatx0 belongs
to a renormalized bond of lengthl at scale G is
lPG( l )/* l lPG( l ). Taking into account that the distanceuxu
between the starting pointx0 and the bottom of the bond i
uniformly distributed on@0,l #, one finds, after averagin
over l,

Prob~x,tu0,0!5
1

2E
l
lPG~ l !

E
uxu

`

dl PG~ l !. ~38!

Using the fixed point solution~11!, ~14! with G5T ln t,
we find that the diffusion front takes the scaling form

Prob~x,tu0,0!5
s

T2 ln2 t
qS sx

T2 ln2 t
D , ~39!
le

a-

with

q~X!5
4

p (
n50

`
~21!n

2n11
e2~1/4!p2uXu~2n11!2

, ~40!

where we have reinserteds. This coincides with the Kesten
Golosov rigorous result@12,27# for a Brownian potential, as
it should@11# since our method gives exact results for pro
erties of the rescaled walksx(t)/ ln2 t.

B. Single-time diffusion front for the biased model

The case of a global bias^ f &Q.0 is described by the RG
equations~6! with P1ÞP2. The fixed point~22! was ana-
lyzed in the preceding section. It shows that at large scaleG
the barriers impeding the drift have an exponential distrib
tion that does not continue to broaden:

PG
2~F !;2de22d~F2G!u~F2G!. ~41!

On the other hand, the bonds along the drift become v
long with large barriers:

PG
1~F !;

1

FG
e2~F2G!/FGu~F2G!, ~42!

where FG;(1/2d)e2dG;(1/2d)tm. Asymptotically in the
RG only barriers impeding the drift are decimated, since
barriers to go against the bias are very large. The distribu
Eq. ~41! is then simply that of potential drops between t
impeding barriers. One thus recovers the physical pict
@14# that Sinai’s biased diffusion renormalizes onto a
rected model with traps~ascending bonds! of release timest
with distribution r(t);t2(11m). The average lengthl̄ G

1 of
the descending bond distribution Eq.~24! yields the anoma-
lous diffusion scalingx;tm.

We now compute the average diffusion fro
Prob(x,tu0,0) in the case of a small average potential dr
per unit length 2d.0. The argument is as in the symmetr
case, except that one must distinguishx.0 from x,0,
which correspond, respectively, to the starting point being
a descending (P1) or ascending (P2) renormalized bond a
scaleG. One thus uses the formula

Prob~x,tu0,0!5
1

l̄ G
Fu~x!E

x

1`

dl PG
1~ l !

1u~2x!E
2x

1`

dl PG
2~ l !G . ~43!

This yields, in the scaling limit whereG is large while
l5 l /G2 andg[Gd are both fixed but arbitrary, the gene
alization of Eq.~39!:

Prob~x,tu0,0!5
s

T2~ ln t !2
qS X5

sx

T2~ ln t !2
,g5Td ln t D ,

~44!

with
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q~X,g!5S g

sinhg D 2Fu~X!LTs→X
21 1

sS 12
ke2g

k coshk2g sinhk D
1u~2X!LTs→2X

21 1

sS 12
keg

k coshk1g sinhk D G ,
~45!

with k[As1g2. From this expression we can compute t
moments. One finds

^x~ t !&5
1

8d2 sinh@g#2
~sinh@4g#26g cosh@2g#

1sinh@2g#!, ~46!

^x~ t !2&5
1

16d4 sinh@g#2
~cosh@6g#210g sinh@4g#

13 cosh@4g#118g2 cosh@2g#212g sinh@2g#

1cosh@2g#12g225!. ~47!

Note that̂ x(t)&' 3
5 dG3 for smallg5dG, a form implied by

scaling and analyticity ind.
One can also perform the Laplace inversion. Forg,1 let

us introduce the rootsan
6(g) (n50,1, . . . ) of theequation

an
6~g!cot@an

6~g!#56g with np,an
6~g!,~n11!p.

~48!

For g.1, the roota0
1(g) does not exist, but is replaced b

the positive rootã0
1(g) of the equationã0

1(g)coth@ã0
1(g)#

5g. In terms of these roots, the Laplace inversion gives

q~X,g!5u~X! (
n50

`

cn
1~g!e2Xsn

1
~g!

1u~2X! (
n50

`

cn
2~g!e2uXusn

2
~g!, ~49!

where

sn
6~g!5g21@an

6~g!#2, ~50!

cn
6~g!5S g

sinhg D 2 2~21!n11@an
6~g!#2e7g

Ag21@an
6~g!#2$g21@an

6~g!#27g%
,

~51!

except for the termn50 in the domainX.0 andg.1 for
which

s0
1~g.1!5g22@ã0

1~g!#2, ~52!

c0
1~g.1!

5S g

sinhg
D 2 2@ã0

1~g!#2e2g

Ag22@ã0
1~g!#2$g1@ã0

1~g!#22g2%
.

~53!
Note thats0
1(g) is an analytic function ofg despite its defi-

nition by two domains. In the limit of smallg, we recover of
course the symmetric case Eq.~39! using an

6(g→0)5(1

12n)p/2. For largeg@1, i.e.,T ln t@1/d, we haveã0
1(g)

.g(122e22g1•••) and thus

s0
1~g@1!.4g2e22g, ~54!

c0
1~g@1!.4g2e22g, ~55!

whereas all other coefficients in exponentials are much b
ger sincesn

6(g).g2. In the regimeg@1, the distribution is
thus heavily concentrated to the right of the origin and
duces to the simple exponential:

Prob~x,tu0,0!'u~x!exp@2x/x~ t !#/x~ t !̄, ~56!

with the mean displacement

x~ t !'t2dT/~4d2!.

We can now compare with known results@11,14#: for
fixed 0,m,1 the variablex̃5x/tm is distributed with a
half-sided Levy probability densityLm( x̃21/m)dx̃21/m, where
Lm(z)5LTs→z

21 e2Cmsm
. Our asymptotic result~56! correctly

reproduces the smallm limit of this Levy front @11,14# with
the correct prefactorCm .

IV. MOTION OF THERMAL AVERAGES:
RETURNS TO THE ORIGIN AND JUMPS

We now study ‘‘recurrence’’ properties of the Sin
model. One must carefully distinguish between theeffective
dynamics~i.e., the walker jumping between valley bottom!
and thereal dynamics. In this section we concentrate on t
effective dynamics. This amounts, as we will see, to studyin
the fine structure of the motion of the~thermal! packet. Ask-
ing similar questions for a single particle requires a study
the presence of absorbing walls and will be discussed in
next section. We will also study the zero crossings of
‘‘running average’’

J~ t ![
1

t E0

t

x~t!dt, ~57!

which is an approximation to the thermal average.
While in a single ‘‘run’’ in a given environment the

walker typically crosses its starting point many times wh
trapped in a valley, averaging over many runs in the sa
environment yields âx(t)& which crossesx0 exactly once
each time the bond on whichx0 lies is decimated, since thi
causes its valley bottom to crossx0 .

We will first ask what is the fractionMk(t) of starting
points, x0 , for which the thermally averaged position
^x(t)ux(0)5x0& has crossedx0 exactlyk times up to timet.
Since the effective dynamics consists in putting the part
at the lowest point of the decimated bond, the origin and
particle remain in the same bond at all times. The probabi
of crossing the origin—i.e., the starting point—between
and t exactly k times is thus the fraction of sites which be
long to bondswhich have changed orientationexactly k
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times between 0 andt. In particular, the probability of no
return to the origin isM0(t) and is equal to the probability
that the bond containing the origin has never been d
mated.

A. Number of returns to the origin: Symmetric case

To computeMk(t) we use two equivalent methods, bo
of which we describe, as they will be useful in the remaind
of the paper.

First method. Let NG(k,h) be the probability that the
bond containing the origin has a rescaled barrierh5(F
2G)/G at G and has switched its orientationk times up to
scaleG. It is normalized as(k50

1` *0
1`dh NG(k,h)51 and it

satisfies

@G]G2~11h!]h21#NG~k,h!

52PG~0!NG~k,• !* hPG~• !22PG~0!NG~k,h!

1NG~k21,0!PG~• !* hPG~• !. ~58!

Introducing the generating function N̂G(z,h)
5(k50

1` NG(k,h)zk, we obtain, using the fixed point solutio
PG(h)5e2h,

@G]G2~11h!]h21#N̂G~z,h!

52N̂G~z,• !* he2h22N̂G~z,h!1zN̂G~z,0!he2h. ~59!

We look for a solution of the form

N̂G~z,h!5G2F~z!
„a~z!1b~z!h…e2h ~60!

and find a quadratic equation@F(z)21#@F(z)22#511z
so that

F~z!5
32A514z

2
. ~61!

Second method. This consists of associating with eac
bond a set of auxiliary variablesm(k) counting, respectively
the number of sites on the bond which have changed or
tation exactlyk times sincet50. The RG rules for these
variables upon decimation of bond~2! read~see Fig. 2!

m8~k!5m1~k!1m2~k21!1m3~k!, ~62!

m8~0!5m1~0!1m3~0!. ~63!

Introducing the generating functionm(z)5(k50
` m(k)zk one

finds, for a fixedz, the RG rule

m8~z!5m1~z!1zm2~z!1m3~z!. ~64!

A method to analyze such rules is to write the RG equat
for the bond joint distributionP(h,m). This is hard to solve,
however, the RG equation for the first momentc(h)
5*mmP(h,m) can be solved. Interestingly, the type of com
bination rule~64! under RSRG has been studied in@21# in
the context of quantum spin chain models. We have reca
that analysis in Appendix A, and generalized it to the rec
sion relationm85am11bm21cm3 , which we will use ex-
i-

r

n-

n

d
-

tensively in the present problem. In particular, forz50,
which corresponds to computing the probability of no retu
to the origin M0(t), the rule is simplym85m11m3 . Re-
markably, this is exactly the same as the one for the mag
tization in the RTFIC@21#. Thus there is an interesting rela
tion between the magnetization of the RTFIC and persiste
properties in the Sinai model.

Since we are interested in the fraction of initial conditio
with k crossings, we need the ratiom(z)/ l̄ G where the char-
acteristic lengthl̄ G grows asG2. The result from@21# and
Appendix A is that the ratiom(z)/ l̄ G decays asG2F(z) with
F(z)5(32A514z)/2 in agreement with the first metho
~61!.

Results: returns to the origin and multifractality. From
the above result we can extract several consequences.
settingz50 we directly find that the probability that a the
mally averaged trajectory does not return to its starting po
decays, in terms ofl̄ (t);(T ln t)2, as

M0~ t !; l̄ ~ t !2 ū, with ū5
32A5

4
. ~65!

Second, it is natural to introduce the rescaled number
returns to the origin,

g5
k

ln G
5

k

ln~T ln t !
, ~66!

and to define the generalized persistence exponentū(g),
characterizing the asymptotic decay of the probability dis
bution of g:

Prob~g!; l̄ ~ t !2 ū~g!. ~67!

We now computeū(g) from the above generating func
tional ~60!. By definition,

E
0

`

dh N̂G~z,h!} ln GE
0

`

dgzg ln GG22ū~g!

5 ln GE
0

`

dge2 ln G[2 ū~g!2g ln z] . ~68!

Since we know thatNG(z);G2F(z) we then obtain, using
the saddle point method, thatF(z)52ū„g* (z)…2g* (z)ln z

whereg* (z) is the solution of 2ū8„g* (z)…5 ln z. Properties
of Legendre transforms thus give that, reciprocally, the
ponent ū(g) is given by 2ū(g)5F„z* (g)…1g ln z* (g)
wherez* (g) is the solution ofF8„z* (g)…52g/z* (g). We
find z* (g)52g„g1Ag215/4… and thus

ū~g!5
g

2
lnF2gS g1Ag21

5

4D G1
3

4
2

g

2
2

1

2
Ag21

5

4
.

~69!

The exponentū(g) is a positive convex function: it decay
from ū(g50)5(32A5)/4 ~for g50 we of course recove
the value found previously when studying the probability
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no return to the origin up toG) to ū( 1
3 )50, and then grows

again forg.1/3. This implies that

g5
k

ln~T ln t !
→

1

3
, with probability 1 at large time.

~70!

All of the moments ofg will be dominated by the typica
behavior; i.e.,̂ gm&[32m for all m. The full dependence on
g of the ū(g) function describes thetails of the probability
distribution of the number of returns of^x(t)&, i.e., the large
deviations.

Returns to the origin for the running average.For a given
walker, J(t)[(1/t)*0

t x(t)dt will typically behave like
^x(t)&. We conjecture that the probability ofk5g ln(ln t)
sign changes ofJ(t) up to time t decays with the same
exponentū(g) for g< 1

3 . For largerg, the behavior is domi-
nated by rare valleys with closely spaced and almost deg
erate minima on opposite sides of the origin which yie
extra sign changes inJ(t). We now estimate the contribu
tion of these rare events.

We are interested in situations in which the number
zero crossingsN(t) of y(t)5*0

t x(t)dt is much greater than
those of̂ x(t)& whose statistics we know. The dominant co
tributions are from configurations of the random potential
which the valley bottom in which the origin lies is split i
two halves on opposite sides of the origin for a very lo
time. In such configurations the valley has two minima
x1.0 andx2,0 with a small free-energy differenceTe,
separated by a barrier of some heightG0 . The key point is
that if the mean rate of changêdy/dt&'^x&valley'(x1

1x2e2e)/(11e2e) happens to be very close to zero,y(t)
will change sign an anomalously large number of times.
estimate the corresponding number of crossings, one
consider, crudely, thaty(t) performs a biased random walk
with steps of order x6eG0 /T and an average drif
eG0 /T^x&valley ~since the typical time between jumps
eG0 /T). Using well-known results for biased random walk
we can estimate that if the particle is trapped in the dou
valley for a timet@eG0 /T, the typical number of zero cross
ings of y(t) in that time interval will be

N~t!;minS x6

^x&valley
,Ate2G0 /TD , ~71!

i.e., with t cutting off a quantity inversely proportional t
^x&valley. But the distribution ofw5^x&valley/x6 is constant
near zero, with density of order 1/G0 , because of the distri
bution of e. Thus we can focus on valleys with the smalle
G0 since these will produce the largest number of crossin

We must now estimate also the probability that such
atypical valley survives for a long timet. For that, we need
that neither segment on either side of the origin be decima
in the RG for timet, which happens with probability 1/ln2 t.
For the contribution of these to the distribution ofN(t) we
thus have, ignoring constants,
n-

f

-
r

t

o
an

,
le

t
s.
n

ed

Prob„N~ t !5N…;E t dt

t~ lnt!3F Et21/2
dwdS N2

1

wD
1E

0

t21/2

dwd~N2At!G
;

1

N2~ ln N!2
u~At2N!, ~72!

the dominant contribution coming from the first term in th
square brackets. The first moment ofN is ~barely! finite, but
higher moments grow with time as

N~ t !a;
t ~a21!/2

~ ln t !2
. ~73!

Thus these types of events completely dominate the distr
tion of the more-than-typicalN(t) tail. For g[N/ ln, ln t
.1/3 the distribution is thereforenot multifractal.

On the anomalously smallN side of the distribution, the
type of events which might be troublesome appear to be
enough not to cause Prob(g) for g,1/3 to differ from that
using ^x(t)& instead ofJ(t). The result ~69! for ^x(t)&
should thus hold also forJ(t) for g,1/3.

B. Distribution of the sequence of returns to the origin:
Symmetric case

We now study a more refined quantity concerning t
statistics of returns to the origin of the thermal avera
^x(t)& in the Sinai model. It turns out to be possible to obta
the full probability distribution of the complete sequenceof
the timesG15T ln t1, . . . ,Gk5T ln tk of successive returns
to the origin. This is possible because of the remarka
property that every time the thermal packet crosses the
gin, it ‘‘loses its memory’’ of the past.

We consider the probabilityDG,G8(h) that a bond has
barrier h at G and has had its last change of orientation
scaleG8. Its evolution equation reads

@G]G2~11h!]h21#DG,G8~h!

52PG~0!DG,G8~• !* hPG~• !22PG~0!DG,G8~h!,

~74!

with the initial condition atG5G8 given by DG8,G8(h)
5PG8(•)* hPG8(•). As stated above, this initial condition i
independent of previous history because, at each decima
the bond is chosen afresh. SincePG(h)5e2h, it is natural to
look for a solution of the form DG,G8(h)5(AG,G8
1BG,G8h)e2h. This is found in terms ofa5G/G8 as

AG,G85
1

l12l2
~a2l22a2l1!, with l65

36A5

2
,

~75!

BG,G85
1

l12l2
@~l121!a2l21~12l2!a2l1#. ~76!
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The probability for a bond to be decimated atG given that its
last decimation occurred at G8 is r(G,G8)5
2]G*0

`dh DG,G8(h)5(1/G)r(a5G/G8) with

r~a!5
1

a

1

l12l2
~a2l22a2l1!. ~77!

Thus we have obtained the probability distributionP t8(t)
for the time t of next return to the origin~in the effective
dynamics! given that the last return was at a timet8; this
exhibits ‘‘aging behavior’’ ina5 ln t/ln t8,

P t8~ t !dt5
dt

t ln t

1

l12l2
F S ln t

ln t8D
2l2

2S ln t

ln t8D
2l1G .

~78!

For the sequence of successive returns, the picture
obtain is therefore very simple: the sequence of scales$Gk%
at which the successive changes of orientation of a gi
bond occur isa multiplicative Markovian processcon-
structed with the simple ruleGk115akGk where $ak% are
independent identically distributed random variables
probability distribution r(a). As a consequence,Gk
5ak21ak22•••a2G1 is simply the product of random vari
ables, so that we obtain, using the central limit theorem,

lim
k→`

S ln Gk

k D5^ ln a&53, ~79!

and we thus recover that the numberk of changes of orien-
tation grows as lnG5ln ln t and that the rescaled variableg
5k/ ln(T ln t) is equal to 1/3 with probability 1, as in Eq
~70!.

C. Number of jumps up to time t for the effective dynamics

In this section we study the behavior of the total numb
of jumps of the thermal averaged position^x(t)& at large
times. We introduce the numberm(n) of starting points on a
bond such that the effective—i.e.,^x(t)&—walker jumps ex-
actly n times between 0 andt for the effective dynamics. We
will use m to denote various auxiliary variables and trust th
such local varying usage will not be confusing. The RG ru
for these auxiliary variables upon decimation of bond 2 re
~see Fig. 2!

m8~n!5m1~n21!1m2~n21!1m3~n!, ~80!

m8~0!5m3~0!. ~81!

Introducing the generating functionm(z)5(n50
` m(n)zn one

finds the RG rulem8(z)5zm1(z)1zm2(z)1m3(z). We
thus find~see Appendix A! that the ratiom(z)/ l̄ G decays as
G2F(z) whereF(z) is now the solution of the equation:

05S F~z!

2 DU„2z,F~z!,1…2U„2z,11F~z!,1… ~82!

in terms of the hypergeometric functionU(a,b,z).
e

n

f

at

r

t
s
d

Performing the same saddle point analysis as in the
ceding section we find that the rescaled variableG5n/ ln G
5n/ln(T ln t) for the numbern of jumps up to timet has a
multifractal distribution

Prob~G!; l̄ ~ t !2v~G!, ~83!

where the exponentv(G) is given by Legendre transform a
2v(G)5F„z* (G)…1G ln z* (G) where z* (G) is the solu-
tion of F8„z* (G)…52G/z* (G). Note that forG50 ~which
corresponds toz50) one hasv(G50)5F(z50)52. As in
the preceding section, the asymptotic valueGa that G takes
with probability one at large times is determined by the mi
mum of v(G) where v8(Ga)50 which corresponds to
z* (Ga)51. Thus Ga52z* (Ga)F8„z* (Ga)…52F8(z
51). Differentiating Eq.~86! and usingF(z51)50, we
find

Ga5
U1~21,1,1!

U~21,0,1!/22U2~21,1,1!
54/3, ~84!

where U1(a,b,z)[]aU(a,b,z) and U2(a,b,z)
[]bU(a,b,z).

A similar method can be used to compute thejoint distri-

bution P(G,g); l̄ (t)2 ū(G,g) of the two rescaled variable
G5n/ ln(T ln t) andg5k/ ln(T ln t) wheren andk are, respec-
tively, the total number of jumps and the number of retur
to the origin, and hence the associated decay expo
ū(G,g). As an example of this application, we give th
large-time limit ~valid with probability 1! of the the total
rescaled number of jumpsGg , conditioned ona fixed re-
scaled numberg of returns to the origin:

Gg5
11z~g!

322F„z~g!…FU1~21,11F„z~g!…,1!

1
12z~g!2F„z~g!…

11z~g!
U1~21,F„z~g!…,1!G , ~85!

where z(g)52g(g1Ag21 5
4 ) and F(z)5(32A514z)/2.

Note that forg51/3 one recoversG1/354/3 as expected.

D. Correlations of the jumps

In this section we will obtain some information about th
statistical properties of the sequence of the directions
times of successive jumps. We will define ajump forwardas
a jumpin the same directionas the previous one, and ajump
backwardas a jump in theopposite directionthan the previ-
ous one. Note that a jump backward necessarily involve
return to the origin due to the properties of the RG pro
dure. The directions of successive jumps exhibit strong c
relations since we have found in the previous sections
the total number of jumps behaves asn; 4

3 ln ln t, whereas
the number of backward jumps~returns to the origin! be-
haves ask; 1

3 ln ln t. Thus in the effective dynamics th
walker is substantially more likely to jump in the same d
rection as the previous jump. This is simply because
barrier of a bond which has just been created by decima
and the resulting combination of three bonds is higher th
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that of a typical bond at that scale and thus it is less likely
be decimated than the other bond encompassing the valle
which the walker rests.

We first compute the stationary distribution of the numb
of jumps forward made since the last return to the origin, i
the probabilities$cp% that a walker~at a given time! has
madep successive jumps forward since its last jump ba
ward. This can be obtained by introducingm(p) as the num-
ber of initial points on a bond such that the walker h
jumped exactlyp times since the last passage over the ori
for the effective dynamics, normalized as(p50

` m(p)5 l
where l is the length of the bond. The RG rules upon de
mation of bond 2 read~see Fig. 2! m8(p)5m1(p21)
1m3(p), m8(0)5 l 21m3(0). Thegenerating function thus
has the rules m8(z)5zm1(z)1 l 21m3(z) where l 2

5(p50
` m2(p)5m2(z51) is the length of bond~2!. Similar

methods as above then yield the generating functionc(z)
5(p50

` cpzp:

c~z!5
U~2z,21,1!1U~12z,0,1!

3@U~2z,0,1!1U~2z,1,1!#
~86!

in terms of hypergeometric functions, normalized
c(z51)51. From Eq. ~86! one gets thecp , e.g., c0
5@11U(1,0,1)#/650.233 94 . . . , c150.174 92 . . . , c2
50.133 56 . . . , c350.1029 . . . , c450.079 58 . . . , etc.
Sincec(z) has a pole forz'1.2884, we obtain that

cp;exp~20.253 43p!

for largep. Also, at any given~large! time theaverage num-
ber of jumps forwardmade since the last jump backward
Nforward

av 5c8(z51)53.397 564 9 . . . .
Next, we study the jump time dependence of backw

and forward jumps. In Appendix C1 we compute the con
tional probabilitiesrG,G8

f ~respectively,rG,G8
b ) to make a for-

ward jump~respectively, backward! at G given that the last
jump occurred atG8. These are scaling functions of the rat
a5G/G85 ln t/ln t8, i.e., rG,G8

f ,b dG5r f ,b(a)da with

r f~a!5
1

2a3
@52~a12!e2~a21!#, ~87!

rb~a!5
1

2a3
@52~a212a12!e2~a21!#. ~88!

Integrating overa we recover, as expected from Eqs.~70!
and~84!, the total probabilities of the next jump beginning
forward or a backward jump asr f5*1

`da r f(a)5 3
4 and

rb5 1
4 . Note thatr(a)5r f(a)1rb(a) gives the total prob-

ability that the next jump (f or b) occurs atG5aG8.
We now study the statistical properties of the full s

quence of the times of successive jumps (G1
5T ln t1, . . . Gk5T ln tk). Contrary to the sequence of th
times of backward jumps studied in Sec. IV B which wa
simply a multiplicative Markovian process, there are pers
tent correlations in the full sequence of jumps which ma
it much harder to analyze. Indexing each sequence
whether each jump is forward~f! or backward~b! we need to
introduce the following set of conditional probabilities:
o
in

r
.,

-

s
n

-

d
-

-

-
s
y

rk
b f . . . ,f b~Gk11 ,Gk , . . . ,G1uG0! ~89!

that, given that a backward jump occurred atG0 , there are
exactly k forward jumps occurring at timesGk , . . . ,G1 be-
fore the next backward jump occurs atGk11 . These condi-
tional probabilities are the elementary building blocks of t
full measure for the sequence of jumps, since once a ba
ward jump occurs, as was noted in Sec. IV B, the proc
starts afresh. Thus the full measure is simply a product of
above terms~89!. We have computed the first terms of th
set of conditional probabilities in Appendix C 2. We obtai
for instance, that, given that the previous jump was ba
ward, the probability that the next jump is backward
(2e/2)Ei(21)50.298 174 and forward is 0.701 826. Th
result is different from above where we did not assume t
the previous jump was backward.

E. Number of returns to the origin: Biased case

We now study the returns to the origin of the therm
averaged position̂x(t)& in the case where a small bias
applied. Then one expects that the number of returns is fin
since eventually the packet will leave the vicinity of the o
gin. However, if the bias is small the number of returns
large and universal results can be obtained in the limid
small, t large withg5dT ln t fixed.

The method consists again in introducing auxiliary va
ablesm6(k) to count the number of initial points on a (6)
renormalized bond atG5T ln t which have changed exactl
k times orientation up to timet. The RG rules for these
variables upon decimation of bond~2! are

m6~k!5m1
6~k21!1m2

7~k21!1m3
6~k! ~90!

for k>1 andm6(0)5m3
6(0) for k50. Introducing the gen-

erating functionsm6(z)5(k50
` m6(k)zk, one finds the RG

rule

m6~z!5m1
6~z!1zm2

7~z!1m3
6~z!. ~91!

The calculation of the mean value^m6(z)& is performed in
Appendix B and gives

^m6~z!&5d2c~z!
„Az~g!1e6g sinh~g!]gAz~g!…, ~92!

with g5dG, c(z)5 1
2 (11A514z), and Az(g)

5KzQc(z)21(cothg) in terms of the Legendre function
Qn(z). The constantKz dependsa priori on z in a nonuni-
versal way. From this we obtain the generating function
the probabilitiespg(k)5Mk(t) that the averaged positio
^x(t)& has returned exactlyk times to the origin up to timet.
It is simply given~since initial conditions are uniformly dis
tributed! as the generating function of the total number
initial conditions withk returns divided by the total length
and thus reads

(
k50

`

pg~k!zk5
^m1~z!&1^m2~z!&

l̄ G

5d22c~z!Mz~Gd!,

~93!

with the scaling function
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Mz~g!5
2Kz

sinh~g!2

3@Qc~z!21„coth~g!…2coth~g!Qc~z!218 „coth~g!…#,

~94!

and normalization implies thatKz5151/2. This function has
the following asymptotic behaviors. For smallg it behaves
as a power lawMz(g).KzAp212c(z)@G„c(z)…/G„c(z)
11/2…#@11c(z)#gc(z)22, which allows one to recover th
results of Sec. IV A in the limit of a vanishing biasd→0.
For largeg→` it goes to a constantMz(`)5Kz consistent
with a finite total number of returns.

Settingz50, we obtain the probability that^x(t)& has not
returned to the origin up to timet:

M0~ t !5pg~k50!;d2ūM0~g!, ~95!

where the exponent 2ū5(32A5)/2 coincides with the ex-
ponent b of the magnetization of the RTFIC@21#. Note,
however, that although the scaling functionM0(g) in the
particular case ofz50, which corresponds to the probabilit
of no return, is closely related to the scaling function of t
magnetization of the RTFIC, it is not identical to it. Th
probability of no returns of the running average ofx, J(t),
will have the same asymptotic behavior as^x(t)&.

It is interesting to estimate the distribution of the to
number of returns. This is achieved by studying the limitG
→` in Eq. ~93!. We obtain that the probabilitiesMk(t)
5pg5`(k), that the thermally averaged position^x(t)& re-
turn exactlyk times to the origin betweent50 andt51`
have generating function

(
k50

`

pg5`~k!zk5d22c~z!Mz~`!. ~96!

It is thus natural to introduce the rescaled variableg
5k/(2 ln d) and to look for the exponent characterizing t
behavior for smalld. One finds, by an analysis similar to th
of Sec. IV A,

Prob~g!;d2ū~g!, ~97!

with the same exponentū(g) and multifractal behavior as in
Eq. ~69!. The same reasoning as in Sec. IV A leads to
result thatg is equal to1

3 with probability one for smalld
and thus that the total numberk of returns to the origin in the
presence of a small bias is

k'
u ln du

3
. ~98!

F. Distribution of the sequence of returns to the origin:
Biased case

As in the symmetric case, it is possible to obtain the f
probability distribution of the sequence$G1 ,G2 , . . . % of suc-
cessive returns to the origin. However, in the case with d
in direction (1), this sequence is finite with probability
since there is a finite probability that the particle never
l

e

l

ft

-

turns to the origin if it is on the right of its starting poin
Therefore the probabilityPk(G1 , . . . ,Gk) that the particle
returns exactly~k! times to the origin fromt50 to t5` and
that these returns take place at scale (G1 , . . . ,Gk) can be
decomposed as the product

Pk~G1 , . . . ,Gk!

5r1~`,Gk!r
2~Gk ,Gk21!r1~Gk21 ,Gk22! . . . ,

~99!

where r6(G,G8) are the conditional probabilities that th
particle returns to the origin atG given that the last return to
the origin occurred at scaleG8 in the direction (6), and
wherer1(`,G8) represents the probability that the partic
never returns to the origin after the last passage to the or
occurred atG8 in the (1) direction,

r1~`,G8!512E
G8

`

dG r1~G,G8!. ~100!

We have computed these probabilities in Appendix
They are most naturally written in terms of the reduced va
ablesy5cothg, y85cothg8 with 1,y,y8 ~whereg5dG
5Td ln t andg85dG85Td ln t8) as

r6~G,G8!dG5 r̃6~y,y8!dy

5
y71

y861
@Qf21~y!Pf21~y8!

2Qf21~y8!Pf21~y!#dy, ~101!

with f5 1
2 (11A5) andPn andQn Legendre functions. One

finds, as expected, that*1
y8

dy r̃2(y,y8)51. On the other
hand, the probability that the thermally averaged posit
^x(t)& never crosses the origin again after having crosse
at G8 is

r1~`,G8!512E
G8

`

dGr1~G,G8!52
Pf21~y8!

y811
.

~102!

For g8→0 this probability vanishes as

r1~`,G8!52
G~f2 1

2 !

ApG~f!
g822f, ~103!

while it goes to 1 for largeg8 as

r1~`,G8!512
e24g8

4
512

1

4t82m
, ~104!

wherem52dT. The factor 1/t82m can be understood with a
simple argument. Since the particle having crossed the or
at t8 belongs to a renormalized bond just being c
ated, its barrier is distributed not withPG8

1 (z), Eq. ~22!,

but with PG8
new1(z)5PG8

1 (•)* zPG8
1 (•)5(uG8

1 )2ze2u
G8
1

z

;z/t82me2zm/(Tt8m); this is depleted near the origin which
the key point. For a return to occur aftert8, the new renor-
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malized bond has to be decimated in the future, and
dominant contribution comes from the times neart8, i.e., we
have to compute the probability that the two independ
barriers of the neighboring bonds each distributed withPG8

2

are bigger than the new~1! renormalized bond atG8: this
probability is simply (uG8

1 )2/(uG8
1

12uG8
2 )2 and thus behave

as 1/(4t82m) at larget8. These events are thus responsible
the dominant behavior ofr1(`,G8) found above.

V. RETURN TO THE ORIGIN OF A SINGLE WALKER,
FIRST PASSAGE TIMES, AND MEETING TIME

OF TWO WALKERS

A. Probability of no return to the origin for a single walker

We now compute, in the presence of a small bias,
probability N1(t) @respectively,N2(t)] that asinglewalker
has remained all the time to the right~respectively, to the
left! of its starting point—the bias being by convention to t
right. These probabilities are found by placing an absorb
boundary atx50 as discussed in Sec. II B 3. We note th
the probability distributionsEG

6( l ) of the lengthl of the ab-
sorbing zone satisfying the RG equation~10! have initial
conditiond( l 21) ~counting the first infinitely deep bond i
Fig. 3 as length 1 by convention! and it is the weight of this
d-function part that determines the desired no-return pr
ability. For finiteG, EG

6( l ) takes the form

EG
6~ l !5d~ l 21!E

0

1`

dz RG
6~z!1regular part, ~105!

whereRG
6(z) is the probability that the first descending bo

@in Fig. 3 for the~1! case# has never been decimated up
scaleG and has barrierF5G1z at G. The total weight of
thed functionr G

65*0
1`dz RG

6(z) decays to zero as the regu
lar part of EG

6( l ) converges towards the fixed point dete
mined in Sec. II C 3. We obtain the probabilitiesN6(t) from
N6(t);r G5T ln t

6 .
The evolution equation forRG

6(z) reads

~]G2]z!RG
6~z!52PG

7~0!RG
6~z!1PG

7~0!RG
6~• !* zPG

6~• !.
~106!

Setting RG
6(z)5r G

6PG
6(z) we obtain ]G ln(rG

6)52uG
6

5]G ln(uG
7) where we denoteuG

65uG
6(0) in Eq. ~19!. Thus

r G
6;uG

7 , which yields

N1~ t !;
2d

12e22dG
, ~107!

N2~ t !;
2d

e2dG21
. ~108!

In the biased case, one finds that there is a finite probab
N1(t);2d of never returning to the origin if the particl
starts in the direction of the drift, whereas if it starts agai
the drift, the probability of not returning to the origin up t
time t decays asN2(t);2de22dG}t2m. This corresponds to
the probability that the origin happens to belong to a ‘‘tra
impeding the drift of waiting time larger thant, as was dis-
e

t

r

e

g
t

-

ty

t

cussed in@14#. We note that the calculation of these pers
tent probabilities in the Sinai model is similar to the calc
lation of the end point magnetization in the RTFIC@21#.

In the symmetric cased50 we thus find that the prob
ability N(t) that asingle walkerhasnevercrossed its starting
point x(0)5x0 between 0 andt decays at large time as

N~ t !; l̄ ~ t !2u, with u5
1

2
, ~109!

with l̄ (t)5(T ln t)2. Note that the persistence exponent o
tained here in the presence of disorder is different from
result upure51 for the pure diffusion problem where th
probability of no return to the origin up to timet decays
simply as 1/l̄ (t);1/At. It is also significantly larger than the
persistence exponentū5(32A5)/450.190 983 . . . for ther-
mally averaged trajectories obtained in Sec. IV A.

B. First passage times in an infinite sample

We now compute the distribution of the first passage ti
Tx0

at x50 of a walker which starts atx5x0 at t50. The

method consists in placing an absorbing boundary atx50
and studying the probabilitySx0

(G) that this walker has sur

vived up to scaleG5T ln t as illustrated in Fig. 4. We use th
method of decimation in the presence of a boundary d
cussed in Sec. II B 3. The probabilitySx0

6 (G) that the walker

starting atx0 is still alive atG in the presence of a (6) drift
is equal to the probability that the lengthl 1 of the absorbing
zone in near the boundary~see Fig. 3! is smaller thanx0 at
G, which is

Sx0

6 ~G!5E
0

x0
dl1 EG

7~ l 1! ~110!

in terms of the functionEG
7( l 1) studied in Sec. II C 3. The

probability that the first passage timeTx0
is such thatG

,T lnTx0
,G1dG is equal to the probabilitysx0

6 (G) that the

walker is absorbed betweenG and G1dG and is simply
obtained:

sx0

6 ~G!52]GSx0

6 ~G!52]GE
0

x0
dl EG

7~ l !. ~111!

FIG. 4. First passage timeTx0
at x50 of a walker starting atx0

is obtained from the survival probability in the presence of an
sorbing boundary atx50.
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1. Symmetric case

In the symmetric cased50 we can rewrite Eq.~111! in
terms of the distributionE(l) of the rescaled variablel
5 l 1 /G2 given by Eq.~37!, and obtain

sx0
~G!52]GE

0

x0 /G2

dl E~l!5
2x0

G3
ES x0

G2D . ~112!

The distribution of first passage timeTx0
is naturally ob-

tained in terms of the rescaled variablew5T ln Tx0
/Ax0

which is a random variable distributed as

s~w!5
2

w3 ES 1

w2D5
2

w3 (
n52`

1`

e2~p2/w2!~n11/2!2

5
2

Apw2 (
m52`

1`

~21!me2m2w2
. ~113!

This distribution has the following asymptotic behavior.
behaves ass(w);(4/w3)exp@2p2/(4w2)# for small w as the
smaller passage times are strongly suppressed. Howev
has a broad tail for largew and decays ass(w);2/(Apw2).
In particular, its first moment diverges:w5T ln Tx0

/Ax05

1`. One can relate this tail to the result of the preced
section concerning the probabilityN(t) that the walker never
crosses 0. In general one expects thatN(t);C(x0)/G for a
walker starting atx0 , and thatC(x0) is nonuniversal for
fixed x0 . Here we find coming from the other limit in th
scaling regimex0 /G2 fixed but small, that the behavior o
C(x0) at largex0 should be universal asC(x0);Ax0 since
we find hereN(t);*G/Ax0

1` dw/w2;Ax0/G.

2. Biased case

The Laplace transform with respect tox0 of the survival
probability reads

E
0

`

dx0 e2px0Sx0

6 ~G!5
EG

7~p!

p
5

uG
7

puG
7~p!

. ~114!

Introducing again the scaling variablesg5dG, X0
5x0 /G2, the Laplace inversion gives

Sx0

6 ~G!512 (
n50

`

Cn
7~g!e2X0sn

7
~g!, ~115!

wheresn
6(g) have been introduced in Eq.~50!, and where

Cn
6~g!5S g

sinhg D 2@an
6~g!#2e7g

$g21@an
6~g!#2%$g21@an

6~g!#27g%
~116!

except for the termn50 in the domain (1) and g.1,
where

C0
1~g.1!5S g

sinhg D 2@ã0
1~g!#2e2g

$g22@ã0
1~g!#2%$g1@ã0

1~g!#22g2%
.

~117!
, it

g

For g@1, we find using Eq.~54! that the survival prob-
ability Sx0

2 (G) in the presence of a bias towards the absorb

boundary has a simple exponential dependence onx0 ,

Sx0

2 S G@
1

d D.12e2x04d2e22g
512e2x0m2/~T2tm!,

~118!

whereas in the case of a bias in the direction away from
absorbing boundary, we find

Sx0

1 S G@
1

d D.12e2x0d2

(
n50

`
4gn2p2

~g21n2p2!~g21n2p21g!

3e2~x0 /G2!n2p2
. ~119!

In the limit G→`, we obtain the probability that a par
ticle reaches the point at a distancex0 from its starting point
in the far region against the drift

lim
G→`

@12Sx0

1 ~G!#5
1

Ap~x0d2!3/2
e2x0d2

, ~120!

which coincides, in the limitm52dT→0, with the exact
result in the regime 0,m,2—corresponding to anoma
lous diffusion @28,44#—which reads ~for T51)
p3/2@G(m/2)2/G(m)#$1/@12cos(pm)#%x0

23/2e2m2x0/4.

C. Distribution of the maximum position

The above calculation also yields the distribution of t
maximum position xmax(t)5max0,t8,tx(t8) for a particle
starting fromx50 at t50 in the presence of a1 ~i.e., along
the positive direction! or 2 bias:

Prob6
„xmax~ t !<xm…5Sxm

7 ~G5T ln t !5E
0

xm
dl EG5T ln t

6 ~ l !,

~121!

and thus the boundary probabilities defined in Eqs.~37! and
~35!, EG5T ln t

6 (xm), correspond exactly to the distribution o
the maximum of the Sinai walk.

In the symmetric case we thus recover via the RG a re
derived by Golosov@27#. It is given in explicit form in Eq.
~37!. In addition we obtain, in the presence of a small bi
the explicit form

Prob6
„xmax~ t !5xm…

5EG5T ln t
6 ~xm!5 (

n50

1`

Cn
6~g!sn

6~g!e2xmsn
6

~g!, ~122!

with the conventions of the preceding section.

D. Probability that two particles do not meet up to time t

In this section we compute the distribution of the meeti
time TL for two particles starting, respectively, atx50 and
x5L. The RSRG method is well suited to compute th
quantity which may be hard to get by other means. We ca
and 2 the two particles, 1 starting fromx50 at t50 and 2
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from x5L. We compute the probabilityFL(G) that the two
particles have not yet met at timet with G5T ln t. The prob-
ability 12FL(G) that they have met is equal to the probab
ity that the segment@0,L# is included in a single renormal
ized valley atG. The distributionVG( l ) of the lengthl of the
valleys is given asVG( l )5PG

1
* l PG

2 . The probability that
both 0 andL belong to the same valley at scaleG is simply

12FL~G!5
1

l̄ G

E
L

1`

dl ~ l 2L !VG~ l !. ~123!

This leads to the following expression for the Laplace tra
form with respect toL:

E
0

`

dL e2pLFL~G!5
12PG

1~p!PG
2~p!

p2 l̄ G

5S d2

p sinh2~Gd!
D sinh2~GAp1d2!

p cosh2~GAp1d2!1d2
.

~124!

In the symmetric cased50, we find FL(G)5 f (l
5L/G2) with the scaling function

f ~l!5LTs→l
21 S tanh2~s!

s2 D
5E

0

l

dx(
2`

1` S 2x1
1

p2~n1 1
2 !2D e2xp2~n11/2!2

~125!

5(
2`

1` F3
12e2lp2~n11/2!2

p4~n1 1
2 !4

22
le2lp2~n11/2!2

p2~n1 1
2 !2 G .

~126!

The probability densityHL(G) that the two particles mee
betweenG andG1dG is HL(G)52]GFL(G). We thus ob-
tain that the meeting time isTL5exp@wAL/T#, where w
5GL /AL is a random variable distributed as

h~w!5
2

w3 f 8S 1

w2D
5

2

w3(
2`

1` S 2

w2 1
1

p2S n1
1

2D 2D e2~p2/w2!~n11/2!2
.

~127!

Note that in the effective dynamics, once the two partic
meet they remain together at all later times. In the real
namics, rare events, as explored in Sec. VI H, can ca
them to again split for a limited amount of time in distin
wells separated by a distance of order ln2 t, with a probability
of order 1/lnt.
-

s
-

se

VI. TWO-TIME DIFFUSION FRONT
IN THE SINAI MODEL AND AGING PROPERTIES

In this section we will study the two-time quantity

P~x,t,x8,t8![Prob~xt,x8t8u00!,

i.e., the probability, over the ensemble of random landsca
and thermal fluctuations, that a particle starting atx50 at t
50, be successively atx8 at t8 and atx at t. Note that it is
normalized as *dx8 dx P(x,t,x8,t8)51 and thus it is
different—due to the averaging over the landscape—fr
the conditional probabilityProb(xtux8t8,00) that the particle
be atx at t, knowing that it was atx8 at t8 and atx50 at t
50.

The average of the two-time probability contains a lot
information about the dynamics after letting the syste
evolve fromt50 to t5t8[tw , i.e., theaging dynamics. We
studyP(x,t,x8,t8) in the limit where botht andt8 are large.
There are several time regimes, according to the precise
that the double limitt8,t→` is taken, and we obtain analyti
expressions for the scaling form ofP(x,t,x8,t8) in each of
these regimes. We also study

Q~y,t,t8![E dx8P~x81y,t,x8,t8!,

i.e., the distribution of the displacementsy5x2x8 between
t8 andt. Finally, as explained below in Sec. VI A, we simu
taneously obtain results for a ‘‘two-temperature’’ evolutio

Some properties of the quantityP(x,t,x8,t8) were inves-
tigated previously in@16#, by a numerical simulation and
qualitative arguments. Here we obtain instead detailedexact
results for this quantity. Whenever they can be compar
these results are found in agreement with the conclusion
@16#.

Before presenting the analytical results, let us first giv
discussion of the various regimes studied in the followi
sections.

A. Discussion of the various regimes

One can distinguish two main regimes for larget and t8,
which we discuss in the symmetric case.

(i) ‘‘ Scaling regime’’: t2t8;t;t8a, with a.1. This first
regime is t;t8a with a fixed a5 ln t/ln t8.1. This regime
was called the ‘‘diffusion regime’’ in@16#. In this regime,
typically the bond containing the origin can be decimat
betweenG85T ln t8 and G5T ln t and thus motion can oc
cur. P(x,t,x8,t8), obtained below by iterating the RG from
G8 to G, takes a scaling form in the rescaled position va
ables. We thus define

X5
x

G2
,

and since there are two possible choices for the rescaledx8,
we define

X85
x8

G82
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and

X̃85
x8

G2
5X8a2.

Choosing to scalex andx8 by the same factorG2, the scaling
form Pa(X,X̃8) for the two-time probability distribution
reads

P~x,t,x8,t8!;
1

~T ln t !4

3Pa5 ln t/ ln t8S X5
x

~T ln t !2
,X̃85

x8

~T ln t !2D .

~128!

This diffusion front simplifies in the two limits lnt
'ln t8 (a51) and lnt@ln t8 (a→1`). First for G5G8 one
must have

Pa51~X,X̃8!5q~X̃8!d~X2X̃8!, ~129!

whereq(X̃8) is the Kesten distribution~39! obtained previ-
ously ~note thatX85X̃8 for a51). An interesting feature is
that the d-function component of the two-time diffusio
front at x5x8 persists even for lnt.ln t8:

Pa~X,X̃8!5Da~X̃8!d~X2X̃8!1 P̃a~X,X̃8!, ~130!

whereP̃ is a smooth function of its arguments. This prope
was suggested in@16#. Here we find that it arises naturally i
the RSRG, since there is a finite probability that the bo
which contains the origin~starting point! will have its lowest
point unchanged by the renormalization betweenG8 and G
~note that the bond can grow, but only on one side!. This
implies that a finite fraction of particles,D(t,t8)5Da

[* X̃8Da(X̃8), remain at the bottom of a valley~their renor-
malized valley atG8) and do not move appreciably@i.e., by
less thanO(ln2t)] betweent8 and t ~see Fig. 5!.

Finally, for very separated times, i.e., largea, the time
evolutions ofX at t andX8 at t8 decouple and one recove
again the Kesten distribution~39!. One has

Da→`~X̃8!→0, P̃a→`~X,X̃8!→a2q~a2X̃8!q~X!.
~131!

FIG. 5. Fraction of walkers which do not move betweent8 and
t.
d

In Sec. VI B we will explicitly computeDa(X̃8). In Sec.
VI D we will compute the full smooth part, which is mor
complicated.

(ii) ‘‘ Quasiequilibrium regime’’: t2t8;t8a, a,1. The
second regime is fort2t8;t8a with fixed a5 ln(t2t8)/ln t8
,1. ~This definition ofa is consistent with the previous on
in Ref. @16#.!

In the second regime, the typical situation is that the th
mal packet att8 is well equilibrated in a valley with the
packet of width ofO(1). In this regime, there is typically no
motion on scales larger thanO(1) betweent8 and t as the
particle is near the bottom of a valley. Motion on larg
scales will thus be dominated by rare events, which we n
analyze.

First, there is some probability that the valley to which t
origin belongs undergoes a decimation resulting in a ju
betweent8 andt. Although this jump is large@the walker will
jump to the bottom of a deeper valley a distance of or
l̄ (G8);G82 away# the probability that it occurs is of the
order of the probability that one of the barriers of the vall
at time t8 is less thanG, which is itself of order (G
2G8)/G8;t812a;exp@2(12a)G8# in this regime and thus
negligible. The behavior will instead be dominated by ra
configurations~but less rare than the previous ones! in which
the valley at timet8 has two almost degenerate minim
separated by a barrierG0 , as represented in Fig. 6. Jumpin
between such minima persists even fort8→`. The motion
between these minima is equilibrium motion, since typica
G0,G8 and the packets are already well equilibrated. In t
limit the statistics of the infinitely deep valley potential b
comes that of a random walk restricted to haveUi
2Uvalley2min.0 @11,16#.

Thus in this second regimet2t8;t8a with fixed a
5 ln(t2t8)/ln t8,1 we will find that the diffusion front for
relative displacementsQ(y,t,t8) has, in addition to a
d-function part for the rescaled variableỹ5y/ ln2(t2t8) ~of
weight almost equal to 1 which corresponds to the typi
valleys!, an additional—subdominant by 1/ln(t,t8) —smooth
part:

Q̃~y,t,t8!;
T

@T ln~ t2t8!#3
f aS y

@T ln~ t2t8!#2D , ~132!

where the functionf a is universal. This result is obtained i
Sec. VI F.

(iii) ‘‘ Crossover regime’’: t;t8, a51. Finally, the
matching between the regimes~i! and ~ii ! as t2t8;t8 is
studied in Sec. VI G.

FIG. 6. Well with two almost degenerate minima@potential dif-
ference of orderO(1)] and abarrierG0 which contribute to the in
well equilibrium dynamics.
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Before closing this section, it is interesting to note that
computing the two-time diffusion front, we obtain simult
neously the answer to the problem of evolution of two ind
pendent particles in the same environment, each seei
thermal noise with adifferent temperature T, for the first
particle with trajectoryx(t), andT8,T for the second with
trajectoryx8(t). If the two particles start from the same poi
0 at t50, it is clear from the considerations of the effecti
dynamics that the distribution of their respective resca
positions X5x/( ln t)2 and X̃85x8/( ln t)2 will be given by
P(x,x8,t);Pa5T/T8(X,X̃8) with the same scaling function
as in Eq.~128!. ~Although in the aging problem the therm
noises are identical betweent and t8, this does not make a
difference at large times for rescaled quantities.! Note that it
should be easier to measure the dependence onT rather than
ln t as the latter in practice cannot be varied over a w
range.

B. Singular part of the two-time diffusion front:
symmetric case

1. Probability Da of staying within a well from t8 to t

We start by computing the probability for a particle
stay within the bottom of a valley betweent8 and t:

Da5E
2`

`

dX̃8Da~X̃8!. ~133!

We compute the fraction of walkersDG,G8(z) which are
on a bondF5G1z at G and have not moved fromG8 to G.
This means that~i! this bond has not been decimated, and~ii !
one of its neighbors has not been decimated either~the
neighbor in the same valley, i.e., the right neighbor fo
descending bond and left neighbor for an ascending o!.
Thus the bond has been able to grow only on one side. A
resultD satisfies the RG equation:

~]G2]z!DG,G8~z!52PG~0!DG,G8~z!

1PG~0!@PG~• !z* DG,G8~• !2DG,G8~z!#.

~134!

The second and third terms on the right hand side come f
the allowed decimations of the neighbor. Integration ovez
shows the total loss of weight from the forbidden decim
tions: ~ii ! from the first term in the right hand side and~i!
from the boundary term atz50. We are interested in larg
G8, and thus we can assume thatPG has reached its fixed
point value~11!. Thus one obtains, in the rescaled variab
h5z/G anda5G/G8,

@a]a2~11h!]h11#Da~h!5E
0

h1
e2h1Da~h2h1!.

~135!

The initial conditionDa51(h) corresponds to the probabilit
that a walker be on a bond withF5G8(11h) at G8 and,
since this probability is proportional to the length of th
bond, it is obtained from Eq.~11! as
y

-
a

d

e

a

m

-

s

Da51~h!5
1

l̄
E

0

`

dl lP~h,l!5
1

3
~112h!e2h.

~136!

The solution of Eq.~135! reads

Da~h!5e2h
1

3a2S 51
2

a21
e12aD2e2ah

2

3~a21!
e12a.

~137!

We note that this barrier distribution is a combination of tw
exponential factors, the expected one, exp(2F/G), and the
other one, exp(2F/G8), which represents the ‘‘memory’
from the condition att8. This will be the typical form for
barrier distributions which we will encounter in all agin
calculations.

We then obtain from Eq. ~137! D(t,t8)5Da

5*0
`dh Da(h), i.e., the probability that a walker has no

moved fromt8 to t, which takes the remarkably simple un
versal form

D~ t,t8!5S ln t8

ln t D 2S 5

3
2

2

3
e2~ ln t/ ln t821!D . ~138!

The behavior of Eq.~138! for close timesa5 ln t/ln t8
near 1 is dominated by valleys about to be decimated atG8.
Expanding Eq.~138! yieldsD(t,t8);12 4

3 (a21). The fac-
tor 4/3 is consistent with the most probable number of jum
growing as (4/3)lnt found earlier. Let us note tha
2] t8D(t,t8), with D(t,t8) given in Eq. ~138!, also repre-
sents the scaled distribution of the first passage timet8 at the
bottom of the renormalized valley where the particle is at.
This is consistent with the result of Golosov@27#.

2. Weight Da„X̃8… of the d-function component of Pa„X,X̃8…

To compute the full singular partDa(X̃8) in Eq. ~130! we
simply have to extend the previous calculation keeping tr
of the length of the bond. Since we are not interested in
length atG the length only appears atG8 as a parameter in
the initial condition. The final results read

Da~X̃8!5a2da~a2uX̃8u!,

da~X8!5LTp8→uX8u
21 1

a2p8S 12
a~p8!

b2~p8!

1
a~p8!@12b~p8!#

b2~p8!
e2~a21!b~p8!D . ~139!

One can check that fora51, one recovers the Laplac
transform of the Kesten distribution~39!, d̂1(p8)5q̂(p8)
5(1/p8)@12a(p8)/b(p8)#. Also one recoversd̂a(p850)
5 1

2 Dt,t8 with D(t,t8) given in Eq. ~138! ~with a factor 1
2

corresponding to the total probability restricted to the h
axis x̃8.0).

This result~139! can be explicitly Laplace inverted in th
limit of a large a5 ln t/ln t8, where one can neglect the ex
ponential term, yielding
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da~X8!;
2

a2EX8

1`

dl8 l8P~l8!5DaC~X8!, ~140!

where Da;5/(3a2) from Eq. ~138! is the total weight of
particles remaining in their wells andC(X8) is the normal-
ized distribution of their positions:

C~X8!5
6

5 (
n52`

1`
~21!n

p3~n1 1
2 !3

3F11p2S n1
1

2D 2

uX8uGe2p2~n11/2!2uX8u.

~141!

We note that, compared to the Kesten distributionq(X8
5x8/G82), C(X85x8/G82) has more weight towards th
larger values ofx8/G82. This is a consequence of the fa
that the farther the particle goes the more likely it is to be
a deep well where it is likely to remain longer without fu
ther motion.

Finally, it is instructive to estimate also the singular p
of the averagedconditional probability Prob(xtux8t8,00).
Using a similar method it is found to be

D̂a
cond~X8!5

da~X8!

q~X8!
, ~142!

whereda(X8) is the function defined in Eq.~139!.

C. Probability of staying within a well: Biased case

Next we obtain the probabilityD(t,t8) tha‘t a walker does
not move substantially betweent and t8 ~i.e., does not jump
to a new valley bottom! in the presence of a small bias. Th
can be computed by extending to the biased case the d
method of Sec. VI B, or from the more general approa
presented in the next section. Here we only quote the
result:

DG,G85
1

sinh2 g
F ~2 sinh2 g8112g8cothg8!

2e2~g2g8!cothg8 coshgS coshg82
g8

sinhg8
D G ,

~143!
t

ect
h
d

where

g[dT ln t and g8[dT ln t8.

This formula is exact in the small bias scaling limitt,t8
→`, d→0, with fixedg andg8.

This formula~143! is interesting as it exhibits a crossov
between two different aging scaling functions correspond
to the symmetric model and the directed model, respectiv
In the limit d→0, i.e., g→0, g8→0 with a fixed ratio
g/g85a5 ln t/ln t8, Eq. ~138! is recovered. In the opposit
limit in which both g@1 and g8@1, a nontrivial scaling
limit exists wheng2g8 is kept fixed, i.e.,t/t8 fixed, and the
above expression simplifies to

D~ t,t8!;e22~g2g8!5
L~ t8!

L~ t !
, with L~ t !5 l̄ G;tm

~144!

usingm52dT. This coincides with the smallm limit of the
aging form of the directed model†formula ~51! of @16#‡
which can be written asD(t,t8)5H@(t8/t)m# with H@z#
5@sin(pm)/mp#*0

zdy(12y1/m)2m. When m→0 the function
H becomes exactlyH@z#5z, and one recovers Eq.~144!.

D. Two-time diffusion front: Full analysis

1. Sketch of the method

To compute the two-time diffusion frontProb(xt,x8t8u00)
in the general biased case, we need to introduce quant
associated with bonds which keep track of theirend
points and for which a RG equation can be written. W
thus define VG,G8

11 (z,xL ,xR ;xL8 ,xR8 ) @respectively,

VG,G8
21 (z,xL ,xR ;xL8 ,xR8 )] as the probability that the origin be

longs to a descending bond with ends@2xL8 ,xR8 # at G8 and to
a descending~respectively, ascending! bond of barrierz
5F2G and with ends@2xL ,xR# at G. Similar definitions
hold with V12 andV22 for an ascending bond atG8. From
these quantities one can recover the two-time diffusion fr
for x8.0:
Prob~x,t,x8.0,t8u0,0!5u~x!E
0

`

dzE
0

`

dxLE
0

`

dxL8 VG,G8
11

~z,xL ,xR5x;xL8 ,xR85x8!

1u~2x!E
0

`

dzE
0

`

dxRE
0

`

dxL8 VG,G8
21

~z,xL52x,xR ;xL8 ,xR85x8! ~145!

and similarly forx8,0:
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Prob~x,t,x8,0,t8u0,0!5u~x!E
0

`

dzE
0

`

dxLE
0

`

dxR8 VG,G8
12

~z,xL ,xR5x;xL852x8,xR8 !

1u~2x!E
0

`

dzE
0

`

dxRE
0

`

dxR8 VG,G8
22

~z,xL52x,xR ;xL852x8,xR8 !. ~146!

The four RG equations for the four quantitiesVG,G8
1e8 (z,xL ,xR ;xL8 ,xR8 ) and VG,G8

2e8 (z,xL ,xR ;xL8 ,xR8 ), with e8561 can be
written in a compact form:

~]G2]z!VG,G8
6e8 ~z,xL ,xR ;xL8 ,xR8 !522PG

7~0!VG,G8
6e8 ~z,xL ,xR ;xL8 ,xR8 !

1E
l 1.0,l 2.0,y.0

PG
7~0,l 2!PG

6~•,l 1!* zVG,G8
6e8 ~•,y,xR ;xL8 ,xR8 !d„xL2~y1 l 11 l 2!…

1E
l 2.0,l 3.0,y.0

PG
7~0,l 2!PG

6~•,l 3!* zVG,G8
6e8 ~•,xL ,y;xL8 ,xR8 !d„xR2~y1 l 21 l 3!…

1E
l 1.0,l 3.0,y1.0,y2.0

PG
6~•,l 1!* zPG

6~•,l 3!VG,G8
7e8 ~0,y1 ,y2 ;xL8 ,xR8 !

3d„xL2~y11 l 1!…d„xR2~y21 l 3!…. ~147!
ia

-

lie

F.
the

for

n

These equations must be solved with the following init
conditions atG5G8:

VG8,G8
ee8 ~z,xL ,xR ;xL8 ,xR8 !

5de,e8d~xL2xL8 !d~xR2xR8 !vG8
e8 ~z,xL8 ,xR8 !, ~148!

where vG8
e8 (z,xL8 ,xR8 ) is the probability that the origin be

longs atG8 to a bond~ascending ife8521 and descending
if e8511) with barrierz5F2G8 and of ends@2xL8 ,xR8 # at
G8:

vG8
e8 ~z,xL8 ,xR8 !5E

0

`

dl8
PG8

e8 ~z,l 8!

l̄ G8

d„l 82~xL81xR8 !…

5
1

l̄ G8

PG8
e8 ~z,xL81xR8 !. ~149!

Note that all of the primed quantities—those at the ear
time—enter only via the initial conditions on theV ’s. These
equations~147!, together with the initial condition~148! are
l

r

solved explicitly using Laplace transforms in Appendix
For the symmetric case the explicit expression for
Laplace transform of the full distributionProb(xt,x8t8u00)
with respect tox andx8 is given in Eqs.~F41! and~F42!. In
the next two subsections we give explicit expressions
some simpler quantities.

2. Some results for the symmetric case

We first give the explicit expression for the distributio
Q(y,t,t8) of relative displacementsy5x(t)2x(t8), with
Q(y,t,t8)5*dx8P(x81y,t,x8,t8u00). This distribution
takes the scaling form

Q~y,t,t8!;
1

~T ln t8!2
Qa5 ln t/ ln t8S Y5

uyu

~T ln t8!2D .

~150!

Note that we have chosenY5y/G82 as the scaling variable
here for convenience.

From Appendix F the Laplace transformQ̂a(p)
5*0

`dY e2pYQa(Y) is found to be
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Q̂a~p!5
tanh~Apa!

pa2 F2
1

2Ap
2Ap1S 5p

6
1

1

2D cothAp1sinhApS coshAp2
sinhAp

Ap
D G

1
coshAp

pa2 S Ap

sinhAp
1

sinhAp

Ap
2 coshApD 2

1

6pa2 cosh~Apa!
S 3

coshAp
1

Ap

sinhAp

p23

p21D
1e2~a21!

~12Ap cothAp!@11Ap tanh~Apa!#

3a2~p21!
1

e2~a21!ApcothAp

2pa2 cosh~Apa!
S coshAp1

1

coshAp
2

Ap

sinhAp
2

sinhAp

Ap
D .

~151!
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Several properties of this expression can be checked ex
itly. First, from normalization on the half spaceY.0 one
has Q̂a(p50)5 1

2 . Then, the initial condition att5t8 is
Q̂a51(p)5 1

2 sinceQ(y,t,t8)5d(y). One can also recove
the singular partD(t,t8)d(y) of the distribution correspond
ing to walkers which have not moved appreciably betweent8
and t. Indeed one findsQ̂a(p→1`);Da/2 whereDa is
given by Eq.~138!. Finally, for very separated timesa→
1` one recovers the Kesten distribution~39! since the ini-
tial condition atG8 has been forgotten:

Q̂aS p5
k

a2D→1

kS 12
1

coshAk
D . ~152!

From the above result~151! one obtains the moments of th
relative displacements which take the general scaling for

^ux~ t !2x~ t8!un&;~T ln t8!2nFnF ln t

ln t8
G ,

~153!
Fn@a#5an~a!1e12abn~a!.

We give explicitly the form of the second moment:

a2~a!5
61a4

180
2

4a

5
1

47

60
1

2

7a
2

409

378a2
, ~154!

b2~a!52
2

9
1

8

27a
1

2

5a2
, ~155!

while the first moment has a simpler expression:

^ux~ t !2x~ t8!u&;~T ln t8!2S 5

12
a22

6

5a
1

221

180a2

2
4

9a2
e2~a21!D . ~156!

At large a one recovers Sinai’s result@from Eq. ~39!#.
When t and t8 are not too separated, i.e.,a'1, one finds

F2@a#;
272

315
~a21!, ~157!
ic-and the motion is much slower, consistent with the aging
the system.

Again it is simple to recover the behavior for relative
close timesa'1. Expanding Eq.~151! one finds

2Q̂a~p!;12
4

3
~a21!1~a21!H~p!1O„~a21!2

…,

~158!

H~p!5
1

coshAp sinhAp
S Ap2

1

Ap
D 1

1

~sinhAp!2
.

The 124(a21)/3, p-independent term represents the pro
ability that the particle does not jump and has been discus
in Sec. VI B. The other term,H(p), is the Laplace transform
of the probability that the jump is over a scaled distancel

5Y, H(l)5*dl1(11l1 /l̄)P(0,l1)P(l2l1) where the
first term corresponds to the bond containing the origin be
decimated and the second term corresponds to the neigh
ing bond in the same valley being decimated. In Lapla
variables this gives H(p)5$@22]pP(h50,p)1P(h
50,p)#P(p)% which using Eq.~11! gives back the above
result ~158!.

We also give the explicit expression for the normaliz
dimensionless correlation:

^x~ t !x~ t8!&

A^x2~ t !&A^x2~ t8!&

5
72

61a
2

40

61a2
2

180

427a3
1

2045

1281a4

1e2~a21!S 20

61a2
2

80

183a3
2

36

61a4D ,

~159!

which decreases from 1 to 0 asa5 ln t/ln t8 goes from 1 to
1`. Note that the decay as 1/a for largea is characteristic
of the generic decay of corrections to asymptotics as 1/G.

3. Some results for the biased case

From Appendix F one has an exact expression for
Laplace transformed two-time diffusion front. It is, howeve
very complicated and thus we give here only a few simp
quantities.

Given that the bias is towardsx.0 and that the starting
point is x50, the probability that the particle is on the sid
x.0 both att8 and t has the aging behavior
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P11~G,G8!5^u„x~ t !…u„x~ t8!…&

5
1

16 sinh2 g sinh2 g8
@e2g~e2g822g821!

22g~e22g812g821!22e2g82e22g8

14g8212g813#, ~160!

with g5Gd andg85G8d, while P22(G,G8) is obtained by
d→2d. The other possibilities,P12,21(G,G8), are ob-
tained from the single-time identities

P11~G,G8!1P12~G,G8!5P1~G!5 l̄ G
1/ l̄ G

and

P11~G,G8!1P21~G,G8!5P1~G8!5 l̄ G8
1 / l̄ G8

where l̄ G8
6 are given in Eq.~24!.

The explicit expression for the correlation^x(t)x(t8)& is
given by Eq.~F43!.

E. Full two-time aging function in a semi-infinite system

There is one instructive situation where it is simpler
obtain explicitly the full two-time probability distribution
Prob(xt,x8t8u00), even in the presence of a bias. This is
case of Sinai diffusion on a semi-infinite axis (0,1`) with a
reflecting boundaryat x50 and possibly some drift in the
(1) direction.

In this case the single-time diffusion front is simp
ProbR

1(x8t8u00)5EG8
1 (x8), i.e., the probability distribution

of the lengthx8 of the first renormalized bond near th
boundary, whose Laplace transform is given in Eq.~35!.
Similarly, the two-time diffusion front is equal to
ProbR

1(xt,x8t8u00)5EG,G8
1 (x,x8), i.e., the probability that

the first bond near the boundary has lengthx8 at G8 and
lengthx at G. Its RG equation is given by Eq.~10!,

]GEG,G8
1

~x,x8!5PG
2~0,• !* xEG,G8

1
~•,x8!* xE

0

`

dz8PG
1~z8,• !

2EG,G8
1

~x,x8!E
0

`

dl8PG
2~0,l 8! ~161!

but with the initial condition

EG8,G8
1

~x,x8!5d~x2x8!EG8
1

~x8!

at G5G8. Note that within the effective dynamics th
system has the flavor of a directed model, sincex(t)
2x(t8) is always positive. It is thus convenien
to define the double Laplace transformÊG,G8

1 (p,p8)

5*0
1`dx8e2p8x8*x8

` dx e2p(x2x8)EG,G8
1 (x,x8) and using the

fixed point solution~22! for PG
6 together with the propertie

~20! the above RG equation simplifies into]G ln ÊG,G8
1 (p,p8)

5]G ln uG
1(0)/uG

1(p). Using the above initial condition, we ob

tain the factorized formÊG,G8
1 (p,p8)5EG8

1 (p8)QG,G8
1 (p) i.e.,

in real space,
e

ProbR
1~xt,x8t8u00!5EG8

1
~x8!QG,G8

1
~x2x8!, ~162!

where EG8
1 (x8) is by Eq. ~122! and the distribution of the

relative displacementsy5x(t)2x(t8) is

QG,G8
1

~y!5LTp→y
21 e2d~G2G8!

3
sinh~dG8!

sinh~dG!

Ap1d2 coth~G8Ap1d2!2d

Ap1d2 coth~GAp1d2!2d
.

~163!

In the symmetric cased50, Laplace inversion gives the
two-time front:

Q~y,t,t8!5
2

G2(n50

`

pS n1
1

2DG8

G
cotFpS n1

1

2DG8

G G
3e2~y2/G2!p2~n11/2!2

1
G8

G Fd~y!2
2

G82 (m51

`

pm tanS pm
G

G8
D

3e2y2/G82p2m2G , ~164!

with G5T ln t andG85T ln t8.
In the biased case one finds

QG,G8
1

~y!5
eg8sinh~g8!

eg sinh~g!
F 2

G2(n50

1`

dn~g,g8!e2~y/G2!sn
1

~g!

1d~y!2
2

G82 (m51

1`
p2m2

pm cot~pmg/g8!2g8

3e2~y/G82!~g821m2p2!G , ~165!

where thesn
1(g) are given in Eq.~50! and thedn(g,g8) are

given in terms of thean
1(g) defined in Eq.~48! via

dn~g,g8!5an
1~g!2

an
1~g!cot@~g8/g!an

1~g!#2g

an
1~g!21g22g

,

~166!

except for the termn50 in the domaing.1, where

d0~g,g8!5ã0
1~g!2

ã0
1~g!coth@~g8/g!ã0

1~g!#2g

ã0
1~g!22g21g

,

~167!

with ã0
1 given in Eq. ~48!. In the limit g5Gd5Td ln t

@1 g85G8d5Td ln t8@1, one finds the simple aging form

QG,G8
1

~y!;
t8m

tm
d~y!1S 12

t8m

tm D m2

T2tm
e2ym2/~T2tm!,

~168!
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with m52dT. Equation ~168! coincides exactly with the
small m limit of the two-time diffusion front in the directed
model@45#. As noted above, the model with a reflecting w
is in effect asymptotic to a directed model. In the presenc
a bias, in the long-time limitg,g8@1 it gives the same re
sults as the full model discussed in the preceding section
the influence of the wall vanishes in that limit.

F. Dynamics within a well

We now study the dynamics in the time regimet2t8
;t8a with fixed a,1. As was discussed in Sec. VI A this
dominated by renormalized valleys atG8 with two degener-
ate minimaU1 andU2 with U12U2 of orderO(T) as in Fig.
6. In a typical valley many such degeneracies may exist
small scalesy5x2x8 of order 1, with nonuniversal statis
tics, but we are interested in rare valleys where such deg
eracies exist on scalesy;G82 with barriersG0;G8; the dis-
tribution of these is universal.

We introduce the probability densityRG(z,l ,x,G0) that a
renormalized bond at scaleG has lengthl, barrierz5F2G
and has a secondary minimum, degenerate in energy with
absolute minimum~i.e., the lower edge of the bond! and
separated from it by a distancex and a barrierG0 . The cal-
culation of this quantity is performed in Appendix E. W
find the simple decoupled form:

RG~z,l ,x,G0!5u~G2G0!u~ l 2x!PG~z,l 2x!
1

G0
4
r̂ ~x/G0

2!,

~169!

with

r̂ ~X!54(
n51

`

n2p2~2Xn2p223!e2Xn2p2
. ~170!

We have written for simplicityR in unrescaled variables, bu
the expression is of course valid only in the scaling regi
z;G0;G, x; l;G2 ~see Appendix E for details!. Note that
its total normalization is

E
0

1`

dzE
0

G

dG0E
0

1`

dlE
0

l

dx RG~x,G0!;1/G

as expected since it corresponds to a rare event; witT
!G, the density with double minima withinT of each other
is TR.

We can now obtain the probability that a Sinai walker w
move byy betweent8 and t for t2t8;t8a with a,1. We
need first the probabilityKG8(y,G0) that the starting point
happens to belong to a renormalizedvalley at G85T ln t8
which possesses two degenerate minima separated by a
tancey and a barrierG0,G8. Taking into account that eac
of the two bonds forming the valley may be the one with t
degenerate minima~the probability that both have degenera
minima is negligible in the scaling regime of interest! one
gets, using Eq.~170!,
of

as

n

n-

he

e

is-

KG8~y,G0!5
1

G82El 1 ,l 2
~ l 11 l 2!@PG8~ l 1!RG8~ l 2 ,y,G0!

1PG8~ l 2!RG8~ l 1 ,y,G0!#

52S 11
y

G82D 1

G0
4
r̂ S y

G0
2D . ~171!

When the starting point belongs to such a valley~charac-
terized byy and G0) the walker atG8 is well equilibrated
~sinceG0,G8) and its thermal distribution is, in a scalin
sense, a sum of twod-function peaks separated by a distan
y.0 with weightsp51/(11e2w/T) ~at the absolute mini-
mum! and 12p ~at the secondary minimum!, wherew rep-
resents the~free-! energy difference@of orderO(T)# between
the two minima. When estimating the distribution ofy
5ux(t)2x(t8)u one probes this equilibrium distribution att

andt8. DenotingĜ5T ln(t2t8) it is clear thaty can be larger
than O(1) only if Ĝ.G0 in which case it is equal to the
separationy of the two minima with probability 2p(12p)
and small otherwise. Thus to obtain the distributi
Q̃(y,t,t8) for y in the scaling regime, one must sum over
barriers smaller thanĜ5T ln(t2t8) @the larger ones contrib
ute only to the already dominantd-function part of
Q(y,t,t8)]. Thus, using Eq.~170!, we find in the scaling
regime of fixeda5 ln(t2t8)/ln t8,1 andy/(T ln t8)2

Q̃~y,t,t8!5C~T!E
0

Ĝ
dG0 KG8~y,G0! ~172!

52F11
y

~T ln t8!2G T

@T ln~ t2t8!#3

3GF y

@T ln~ t2t8!#2G , ~173!

where we have defined

G~X!54p2(
n51

`

n2e2Xn2p2

5
1

ApX3/2
(

m52`

1` S 11
2m2

X
D e2m2/X. ~174!

Note that the factorC(T)52*0
1`dw e2w/T/(11e2w/T)2

5T arises from the fact that the distribution ofw is constant
aroundw50.

The above result is consistent with previous observati
in the case of finite, but large,t2t8 where moments
*dy ykQ̃(y,t,t8) were argued @16# to grow as @T ln(t
2t8)#2k21 for k.1/2 and be bounded fork,1/2. Here we
obtain, in addition, the behavior for more separated tim
with positive @ ln(t2t8)/ln t8#,1.

In the biased case we find similarly~see Appendix E 1!



ilit
a

-

m

-
i

in
a

-
g

th

sed
rate

.

ns
n

ich
the
nt,

ob-
the

e

ing
m-

a
m
ase

ey
the

een
ui-

4820 PRE 59Le DOUSSAL, MONTHUS, AND FISHER
RG
6~z,l ,x,G0!5u~G2G0!u~ l 2x!PG

6~z,l 2x!

3
1

G0
4
r̂ ~x/G0

2!e2xd2
, ~175!

where r̂ (X) is the samefunction ~170! as in the symmetric
case. From this we obtain, as above, the probab
KG8

6 (y,G0) that the starting point happens to belong to
renormalized valley atG85T ln t8 which possesses two de
generate minima separated by a distancey and a barrierG0 .
We find

KG8
6

~y,G0!52S 11
y

l̄ G8
D 1

G0
4
r̂ S y

G0
2D e2yd2

and thus, integrating over the barriersG0,Ĝ yields the dis-
tribution of displacementsy5ux(t)2x(t8)u in the presence
of a small bias. We thereby obtain that in the scaling regi
where the three scaling variablesy/„T ln(t2t8)…2, dT ln t8,
and a5 ln (t2t8)/ln t8 are held fixed, the distribution of dis
placements is dominated by the rare events with valleys w
two degenerate minima and with

Q̃6~y,t,t8!;2S 11
d2y

sinh2~dT ln t8!
D T

@T ln~ t2t8!#3

3GS y

@T ln~ t2t8!#2D e2yd2
, ~176!

where, interestingly,G is the same function~174! as in the
symmetric case. This is because the rare events that dom
are those in which the relevant part of the landscape is
most symmetric.

G. Crossover att;t8

So far we have studied separately the regimet2t8
;t8a (a.1) and the regimet2t8;t8a (a,1). For com-
pleteness let us mention what happens~for the symmetric
case! in the crossover regimet2t8;t8. In this regime, the
distribution of displacementsy5ux(t)2x(t8)u takes the
form of a sum of two contributions.

First, it was found in Eq.~158! that in the limit a→11

this distribution is controlled by barriers of orderG8'G. For
closer times,G2G8;O(T) one must consider more pre
cisely the jumping process over the barrier. Associatin
single relaxation timet5e(G81e)/T with the barrier of height
G81e one finds that the contribution of these events to
distribution of y takes the form@in addition to a piece pro-
portional tod(y)]

Q1~y,t,t8!5 f ~ t,t8!
1

~T ln t8!3
HS Y5

y

~T ln t8!2D ,

~177!

where the Laplace transform ofH(Y) was defined in Eq.
~158!. The coefficientf (t,t8) is obtained by noting that the
probability that the particle jumps betweent8 and t is
y

e

th

ate
l-

a

e

(e2t8/t2e2t/t) and that the distribution ofe is uniform
arounde50 with density 1/G:

f ~ t,t8!5E
2`

1`

deFexp~2e2e/T!2expS 2
t

t8
e2e/TD G

5T ln
t

t8
. ~178!

The second contribution comes from the events discus
in the preceding subsection, corresponding to degene
wells ~Fig. 6!. These are dominant fora,1 and they also
give a contribution fora51, which must be added to Eq
~177!. The corresponding contributionQ2(y,t,t8) to the dis-
tribution of displacements is simply given by the limita
→1 of Eq. ~173! which corresponds to setting ln(t2t8)
'ln t8.

Putting this all together we give the explicit expressio
for the second moment ofy in the various regimes that ca
be obtained fromQ5Q11Q2:

^„x~ t !2x~ t8!…2& ' ~179!

T@T ln~ t2t8!#3F 8

45
1

48

945S ln~ t2t8!

ln t8
D 2G ,

t2t8;t8a, a,1, ~180!

T~T ln t8!3F 8

35
1

272

315
lnS t

t8
D G , t2t8;t8, ~181!

~T ln t8!4F2F ln t

ln t8
G , t2t8;t8a, a.1, ~182!

where the functionF2@a# is given in Eq.~153!.

H. Rare events in the single-time diffusion front

In this section we examine further the rare events wh
produce subdominant corrections to the results from
RSRG. As discussed in Sec. II B 2, although subdomina
these corrections give the principal contribution to some
servables when the leading contribution vanishes. This is
case for thethermal widthof the diffusion front analyzed in
Sec. III A, since this is zero in the effective dynamics. W
now examine this in the symmetric model.

The possible rare events which contribute to the splitt
of the thermal packet are indicated in Fig. 7. The most i
portant ones, all occurring with probabilities of order 1/G,
are the following. In case~a! the starting point belongs to
valley with two degenerate minima: this is the equilibriu
situation already considered in the preceding section. In c
~b! the splitting is due to the starting point being in a vall
with two almost degenerate barriers: at scales when
packet overcomes the barriers, the packet will split betw
the two wells located on either side, an intrinsically noneq
librium phenomenon. Note that if the packet is split att @as in
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FIG. 7. Rare events that contribute to the thermal width of the diffusion front. The starting point is indicated by a cross.~a! A valley with
two degenerate minima.~b! Almost degenerate barriers.~c! A valley just being decimated with a barrierG1e. ~d! A rare event of higher
order with the starting point near the upper edge of a bond.
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~b!# the probability that it remains split until a later timet̃
decays as (lnt/ln t̃)2. In case~c! the walker atG belongs to a
valley with a barrierG1e, with e;O(T) positive or nega-
tive. In this case the thermal packet is already split atG
between two valleys. There are of course other rare eve
for instance, the one illustrated as case~d!, when the starting
point is near the upper edge of a bond; this also correspo
to an out of equilibrium situation, but it occurs with a small
probability O(1/G2).

Let us estimate in more detail the probabiliti
QG

(a)(y), QG
(b)(y), andQG

(c)(y) associated, respectively, wit
events~a!, ~b!, and~c! in Fig. 7, that the packet be split atG
with a fixed separationy between the two parts of the packe
Let us start with events~a! and ~b! which can be treated
similarly.

Events of type (a).We have already computed in Eq
~171! the probabilityKG(y,G0) that the origin belongs atG
to a renormalized valley having two degenerate mini
separated by a distancey and a barrierG0 . Integrating over
the barrierG0 one gets

QG
~a!~y!5E

0

G

dG0KG~y,G0!52S 11
y

G2D 1

G3
GS y

G2D ,

~183!

where the scaling functionG has been introduced in Eq
~174!.

Events of type (b).Here we need to compute the probab
ity QG

(b)(y) that the origin belongs to a configuration of typ
~b! with a distancey between the two minima. We first com
pute the probabilityRG( l 1 ,y1) that a bond at scaleG has a
lengthl 1 and two degenerate minima separated by a dista
y1 , Eq. ~170!,

RG~ l 1 ,y1!5E
0

`

dzE
0

G

dG0 RG~z,l 1 ,y1 ,G0!

5PG~ l 12y1!
1

G3
GS y1

G2D , ~184!

and thus

QG
~b!~y!5

2

G2E0

`

dl1E
0

`

dl2E
0

l 1
dy1 y1RG~ l 1 ,y1!PG~ l 2!

3d„y2~ l 11 l 2!…

5
2

G3E0

y/G2

dY1 Y1G~Y1!@P~• !* P~• !#l5y/G22Y1

~185!
ts:

ds

a

ce

in terms of the scaledP from Eq. ~14!.
In either case~a! or ~b! the packet is split between tw

wells and the thermal distribution can be written, in a scal
sense, as a sum of twod-function peaks, of the formpd(x
2x1)1(12p)d(x2x2) centered at each minimumx1 and
x2 with x1,x2 , ux22x1u5y. In case ~a!, as beforepa
51/(11e2w/T) where w is the free-energy difference be
tween the two minima, while in case~b! a simple estimate of
the relative escape rates in Fig. 7 also leads topb51/(1
1e2v/T) wherev is now the~effective free-! energy differ-
ence between the maxima.

Thus we can estimate the dominant large-time behavio
the moments of the thermal width coming from the cont
butions of~a! and ~b!, which simply add to give

Šux~ t !2^x~ t !&uk‹~a!1~b!

'ck~T!~T ln t !2k21E
0

1`

dY YkQ ~a!1~b!~Y!, ~186!

where the scaled distribution is

Q ~a!1~b!~Y!52~11Y!G~Y!12E
0

Y

dY1 Y1G~Y1!

3@P~• !* P~• !#l5Y2Y1
, ~187!

with Y[y/G2. The coefficientsck(T) can be computed
based on the fact that the distributions ofw and of v have
constant density near 0. This gives

ck~T!5E
2`

1`

dw~e2kw/T1e2w/T!/~11e2w/T!k115
2

k
T.

Using the Laplace transformed expression,

E
0

1`

dYYQ ~a!1~b!~Y!e2sY

52]sFAs coth~As!

1
11cosh2~As!

sinh~2As!
S 2

sinh~2As!
2

1

As
D G .

~188!

We must now consider the events~c! as shown in Fig. 7.
The barrier that the particle must overcome to leave the
ley is G1e. This corresponds to a single relaxation timet
5e(G1e)/T. Thus the probability that the particle is sti
in the valley at time t5eG/T is simply pc5exp(2t/t)
5exp(2e2e/T). The thermal distribution can then again b



d

,

,

th

u
e

nu

d
k
te

n-

ion

-

e

ich
the
the

t
-

.

ite
ex-
nti-

ze
pre-

s.

-

m,

his
not
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written, in a scaling sense, aspcd(x2x1)1(12pc)d(x
2x2) wherex1 is the bottom of the valley being decimate
and x2 the bottom of the new valley. The distribution ofy
5ux22x1u is simply

QG
~c!~y!5

2

G2E0

`

dl1E
0

`

dl2E
0

`

dl3~ l 11 l 2!PG~ l 1!

3PG~z50,l 2!PG~ l 3!d„y2~ l 21 l 3!…

5
1

G3E0

y/G2

dl2~112l2!P~h50,l2!PS y

G2
2l2D .

~189!

The contributions of~c! to the moments thus read

Šux~ t !2^x~ t !&uk
‹~c!'dk~T!~T ln t !2k21E

0

1`

dY YkQ ~c!~Y!,

~190!

where the scaled distribution reads, in Laplace transform

E
0

1`

dY e2sYQ ~c!~Y!5
2

sinh~2As!
S cothAs1As2

1

As
D .

~191!

Using the fact that the distribution ofe is constant near zero
one obtains the coefficientsdk(T) for k>1 as

dk~T!5E
2`

1`

de$exp~2ke2e/T!@12exp~2e2e/T!#

1exp~2e2e/T!@12exp~2e2e/T!#k%

5TF lnS 11
1

kD1 (
p51

k

~21!11pCk
p ln~11p!G .

~192!

Note that the above argument can be made identically in
regione,0 and thus we have integratede from 2` to 1`.

Our final results for the moments are obtained as the s
of Eqs. ~186! and ~190! and can be computed using th
Laplace transforms in Eqs.~188! and ~191!. Let us give the
explicit resulting expression for the the lowest moments:

Šux~ t !2^x~ t !&u‹'
2

45
~68141 ln 2!T~T ln t !, ~193!

^x~ t !2&2^x~ t !&2'
4

315
~95168 ln 2!T~T ln t !3.

~194!

It would be interesting to measure these quantities in
merical simulations and test these predictions.

Note that the above formulas~186!,~190! give the leading
behavior for moments withk.1/2 which grow with time,
while the moments fork,1/2 are expected to be finite an
nonuniversal as in@16#. This can be compared with the wor
of Golosov @26#, who showed the existence of an infini
time limit distribution for y(t)5x(t)2^x(t)& and gave an
e

m

-

explicit formula in the case of a continuum Brownian pote
tial U(x) ~which corresponds here to the limits→0 where
additional universality holds!. It is easy to see from@26#, as
well as from more general arguments, that this distribut
has a tail 1/y3/2 at largey. Indeed, from Eqs.~174!, ~183!,
and ~185!, we see that fort→` so that 1!y!G2,

QG
~a!1~b!1~c!~y!'QG

~a!~y!'
2

Apy3/2
. ~195!

Thus momentŝy(t)k& for k,1/2 should be finite and deter
mined from short scales, while moments fork.1/2 should
diverge ast→`. Our results include the large but finite tim
behavior and thus go beyond those results of@26#.

To conclude, note that the rare events in Fig. 7 wh
contribute to the width of the thermal packet are also
ones which play a dominant role in the aging dynamics in
regimesa<1. We have seen that~a! and ~c! are the ones
which contribute toQ(y,t,t8) in these regimes. The even
~b! does not contribute toQ(y,t,t8) ~since the particle can
not jump back to the degenerate valley! but would have to be
considered to evaluateP(x,t,x8,t8) in these regimes as well

VII. FINITE SIZE PROPERTIES OF SINAI’S MODEL

In this section we apply the RSRG procedure to a fin
size system with various boundary conditions and obtain
act results for the approach to equilibrium of several qua
ties.

A. RG for a finite size system

In order to follow the general measure for a finite si
landscape one needs to introduce the set of functions re
senting probabilities NG,L

b ( l 1 ;z2 ,l 2 ;z3 ,l 3 ; . . . ;zb21 ,
l b21 ; l b) in an ensemble of systems of lengthL with b the
number of bonds and with barriersz i5Fi2G and lengthsl i .
Note that we will not keep track ofz1 and zb as these will
effectively be6` depending on the boundary condition
The normalization condition reads

ZL5(
b
E

z i ,l i

NG,L
b ~ l 1 ;z2 ,l 2 ; . . . zb21 ,l b21 ; l b!51.

~196!

Note that under decimation one follows separatelyb
52,4, . . . orb51,3,5. . . , depending on the type of bound
ary conditions studied here, either reflecting~R! or absorbing
(A). Let us write the RG equation for a finite size syste
choosing for definiteness the case, denotedRRbelow, of two
reflecting boundaries—as explained in Sec. II B 3, in t
case the first and last bonds have infinite barrier and can
be decimated:
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S ]G2 (
k52

b21

]zkDNG,L
b ~ l 1 ;z2 ,l 2 ; . . . zb21 ,l b21 ; l b!

5E
z,l 1 l 81 l 95 l 1

NG,L
b12~ l ;0,l 8;z,l 9;z2 ,l 2 ; . . . ;zb21 ,l b21 ; l b!

1 (
k52

b21 E
z,l 1 l 81 l 95 l k

NG,L
b12~ l 1 ;z2 ,l 2 ; . . . ;zk21 ,l k21 ;z,l ;0,l 8;zk2z,l 9;zk11 ,l k11 ; . . . ;zb21 ,l b21 ; l b!

1E
z,l 1 l 81 l 95 l b

NG,L
b12~ l 1 ;z2 ,l 2 ; . . . ;zb21 ,l b21 ;z,l ;0,l 8; l 9!. ~197!

There exists a quasidecoupled solution—for Laplace transformed distributions—of this Eq.~197! ~as was also found in the
case of the RTFIC@22#!, which reads

NG,L
b ~ l 1 ;z2 ,l 2 ; . . . zb21 ,l b21 ; l b!5EG

1~ l 1!PG
2~z2 ,l 2!PG

1~z3 ,l 3!•••PG
2~zb22 ,l b22!PG

1~zb21 ,l b21!EG
2~ l b! l̄ GdS L2(

i 51

b

l i D
b even and>2, ~198!
g
,

pl

l

-

ch

e

in
ted

n

en
-

where we have allowed for a bias towards the right, andb is
restricted to be even since we are dealing with theRR case
~see Fig. 8!. In this formula~198! PG

6(z,l ) are the bulk dis-

tributions satisfying Eq.~6!, l̄ G the average length satisfyin
Eq. ~8!, and theEG

6( l ) satisfy the semi-infinite boundary RG
Eq. ~10!. The integral of the measureZL over all variables in
Eq. ~196! satisfies

E
0

1`

dL e2pLZL5 l̄ G

E2~p!E1~p!

12P2~p!P1~p!

5 l̄ G

u1~0!u2~0!

u1~p!u2~p!2U1~p!U2~p!
5

1

p
,

~199!

where we have used Eqs.~22! and ~35!, and thusZL51 so
the finite size measure is correctly normalized.

In the case of two absorbing boundariesAA, the solution
of the corresponding RG equations is obtained by sim
exchanging1 and2 in Eq. ~198! (b remains even!. In the
caseRA the solution reads

FIG. 8. Schematic of a finite size system of fixed lengthL with
reflecting boundaries~caseRR).
y

NG,L
b ~ l 1 ;z2 ,l 2 ; . . . zb21 ,l b21 ; l b!

5EG
1~ l 1!PG

2~z2 ,l 2!PG
1~z3 ,l 3! ~200!

•••PG
1~zb22 ,l b22!PG

2~zb21 ,l b21!EG
1~ l b! l̄ G

3dS L2(
i 51

b

l i D , b odd and>3, ~201!

together with the termb51, which corresponds to the fina
state with a single (1) bond over the whole system~all
particles having been absorbed by the right boundary!, and
has for probability

NG,L
1 5E

0

G

dG8E
l 1 ,l 2 ,l 3

NG8,L
3

~ l 1 ;z250,l 2 ; l 3!. ~202!

Finally, the solution in theAR case can be obtained by ex
changing1 and2 in Eq. ~200!.

B. Evolution towards equilibrium in a system
with reflecting boundaries

Let us start by studying the equilibrium and the approa
to equilibrium in the system of sizeL with two reflecting
boundaries. The equilibrium state corresponds to the largG
limit of the measure~196!. In that limit only the termb
52, ~Eq. 198!, survives and it corresponds to equilibrium
a single renormalized valley. It will be reached, as illustra
in Fig. 8, when the last bulk bond is decimated at someG
5Geq5T ln teq, with a certain sample to sample distributio
for the equilibrium timeteq, which we now compute.

1. Distribution of equilibration time

The probability for a sample to reach equilibrium betwe
Geq andGeq1dGeq, i.e., the probability that the slowest re
laxation timeteq be such thatGeq,T ln teq,Geq1dGeq, is
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rL~Geq!5]Geq
E

l 1 ,l 2

NGeq,L
2 ~ l 1 ,l 2!

5]Geq
@ l̄ Geq

EGeq

1 ~• !* LEGeq

2 ~• !# ~203!

and using Eq.~35!, the Laplace transform with respect to th
system sizeL is

E
0

`

dL e2pLrL~Geq!

5]GeqS 1

~p1d2!coth2@GeqAp1d2#2d2D .

~204!

For zero bias, one introduces the scaling variable

w5
T ln teq

AL
,

and finds that it is distributed as

P~w!5
2

w3 (
n52`

1` F2p2S n1
1

2D 2 1

w2
21Ge2~p2/w2!~n11/2!2

~205!

5
2

Apw2 (
m52`

1`

~21!m~122m2w2!e2m2w2
. ~206!

In the presence of a bias one can compute, e.g., the a
age

T ln teq5Geq52AL

pE0

1

du e2d2Lu2
lnS 1

uD . ~207!

2. Distribution of equilibrium position xeq

The probability that the bottom of the single remaini
equilibrated valley is atx5xeq can be obtained as

QL~xeq!5NG→`,L
2 ~xeq,l 2!5@ l̄ GEG

1~xeq!EG
2~L2xeq!#G→` ,

~208!

which leads simply to

QL~xeq!5e1~xeq!e
2~L2xeq!, ~209!

where

e6~x!5LTp→x
21 S 1

uG5`
6 ~p!

D 5LTp→x
21 1

Ap1d27d
.

~210!

Thus we gete1(x)5e2(x)12d with

e2~x!5
1

Apx
e2xd2

2
2d

p E
0

`

dv
e2xd2~11v2!

11v2
. ~211!

At small x one hase6(x);1/Ax while for largex, e1(x)
'2d and e2(x);e2xd2

. Thus in the biased case withL
er-

@1/d2 in equilibrium the particle is confined within a dis
tancey5L2xeq;1/d2 near the left boundary distributed a
2de2(y). In the symmetric cased50 the equilibrium posi-
tion is distributed over the whole system as

QL~xeq!5
1

pAxeq~L2xeq!
, ~212!

which has a simple probabilistic interpretation in terms of t
landscape random walk confined toU(x).Umin5U(xeq) on
both sides ofxeq.

Finally, we obtain the joint distribution of equilibrium
positionxeq and equilibrium timeGeq5T ln teq:

PL~Geq,xeq!5]Geq
@ l̄ Geq

E1~xeq!E
2~L2xeq!#, ~213!

whereE6 was computed in Eqs.~35! and ~37!.

C. First passage times

1. With a reflecting boundary

Let us compute the probabilitySx0 ,L(G) that a walker

starting atx0 is still alive atG in the presence of an absorb
ing boundary atx50 and a reflecting boundary atx5L. It
can be expressed as an average over the measureAR, Eqs.
~196! and ~200!, Sx0 ,L(G)5^u(x02 l 1)&. Thus its Laplace
transform with respect toL reads

E
0

`

dL e2pLSx0 ,L~G!5
PG~p!

pEG~p!
E

0

x0
dl1 e2pl1EG~ l 1!.

~214!

In the particular case where the starting point coincid
with the reflecting boundary (x05L) it is simpler to obtain
the first passage timeTLL at x50. In that case, the probabil
ity to be absorbed coincides with the probabilityrL(G) that
the last decimation occurs in theAR system atG; from Eq.
~202!,

rL~G!5]GNG,L
1 5 l̄ GEG

1~• !* LPG
2~0,• !* LEG

1~• !.
~215!

In the symmetric case we thus obtain that the scaled
passage time variablew5T ln TLL /AL is distributed as

s~w!5
2p

w3 (
n52`

`

~21!nS n1
1

2De2~p2/w2!~n11/2!2

5
2

Ap
(

m52`

`

~21!mS m1
1

2De2w2~m11/2!2
. ~216!

We note that the distribution ofTLL was obtained previ-
ously by a completely different method in@46#. Here we also
recover ln@(TLL)

q#;q2L, i.e., that the first passage time is
strongly fluctuating quantity@47#.

2. With an absorbing boundary

Let us now consider an absorbing boundary atx5L. We
first compute the probabilityp0(x0 ,L) that the walker start-
ing at x0 reachesx50 beforex5L. Since the final state o
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the AA system consists of two absorbing zones associa
with each boundary, the first one@0,xeq# and the second
@xeq,L# wherexeq is distributed as in Eq.~212!. Thus, in the
presence of a bias applied in the direction6 the result reads

p0
6~x0 ,L !5E

x0

L

dx e7~x!e6~L2x!, ~217!

wheree7(x) was computed in Eq.~211!. In the symmetric
case this givesp0(x0 ,L)5(1/p)arccos(2x0 /L21).

One can also compute the survival probabilitySx0 ,L(G) of

a walker starting atx0 in the presence of two absorbin
boundaries atx50 andx5L. It is obtained as an averag
over the measure~E5! of the finite size systemAA as

Sx0 ,L~G!5^u~x02 l 1!u~L2 l 12x0!&, ~218!

and thus reads

Sx0 ,L~G!5LTp→L/G2,q→x0 /G2
21 tanh~Ap1q!tanh~Ap!

qApAp1q

3S 1

sinh2~Ap!
2

1

sinh2~Ap1q!
D . ~219!

Note that the distribution of timest last at which all particles
have left a givenAA sample is identical to the one compute
in Eq. ~206! as lntlast5 ln teq.

D. Averaged diffusion front

We first discuss a system bounded by two reflecting w
at x50 and x5L. The full averaged diffusion fron
Prob0L(x,tux0,0) for a walker starting atx0 at t50 is com-
puted in Appendix G for both biased and symmetric case

In the symmetric case it takes a scaling for
Prob0L(x,tux0,0)5(1/G2)ql(XuX0) as a function of the re-
scaled variablesX5x/G2, X05x0 /G2 and the rescaled
length of the systeml5L/G2 whereG5T ln t. The Laplace
transform

q̃~p,p0 ,q!5E
0

1`

dlE
0

l

dXE
0

l

dX0

3e2~pX1p0X01ql!ql~XuX0!

of the rescaled front is

q̃~p,p0 ,q!5
P̃p1p01qP̃p1q2 P̃p01qP̃q

p0q~p1p01q!Ẽp1p01qẼq

1
1

p0q

Ẽq1p

Ẽq

2
1

p0~p1p01q!

Ẽp01q

Ẽp1p01q

, ~220!

where P̃p51/cosh(Ap) and Ẽp5tanh(Ap)/Ap. In the limit
L→1` we can obtain the averaged front in a semi-infin
space with a reflecting wall atx50 as
d

ls

.

lim
q→0

@qq̃~p,p0 ,q!#5
P̃p1p0

P̃p2 P̃p0

p0~p1p0!Ẽp1p0

1
1

p0
Ẽp . ~221!

The corresponding formulas forAA andRA are given in
Appendix G.

There is a case where the diffusion front in a finite sam
takes a particularly simple form. This is when the starti
point coincides with the reflecting boundaryx050. The cal-
culation of Appendix G simplifies as one then has thax
5 l 1 where l 1 is the length of the first bond. In theRR ~or
RA) case

Prob0L~x,tux050,0!5EG
1~x!fG

R,A~L2x!, ~222!

with

fG
R~x!5LTp→x

21 1

pEG
1~p!

, ~223!

fG
A~x!5LTp→x

21
PG

2~p!

pEG
2~p!

. ~224!

In the symmetric case one finds simply

fG
R~x!5LTp→x

21 G coth~GAp!

Ap
52(

n50

`

e2n2p2x/G2
,

~225!

fG
A~x!5LTp→x

21 G

Ap sinh~GAp!
52(

n50

`

~21!ne2n2p2x/G2
.

~226!

VIII. RESULTS FOR FOKKER-PLANCK
AND ASSOCIATED SCHRÖDINGER OPERATOR

It is also interesting to obtain results, via the RSRG,
the random Schro¨dinger operator associated with the Sin
diffusion problem. We first recall the connection betwe
these two problems. In this section we setT51.

A. From Fokker-Planck to Schrödinger operator

In a given environmentU(x) the probability distribution
for the position of a particleP(x,tux0,0) satisfies the Fokker
Planck equation~in the continuum!:

] tP~x,tux0,0!5]x@]x1U8~x!#P~x,tux0,0!

52HFPP~x,tux0,0!,

with the initial conditionP(x,t→0ux0,0)→d(x2x0). As is
well known, setting

G~x,tux0,0!5e[U~x!2U~x0!]/2P~x,tux0,0!, ~227!

one obtains the following imaginary time Schro¨dinger equa-
tion for the Green functionG(x,tux0,0),
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] tG~x,tux0,0!5S ]x
21

1

2
U9~x!2

1

4
U8~x!2DG~x,tux0,0!

52HSG~x,tux0,0!, ~228!

with the initial conditionG(x,tux0,0)→d(x2x0). This is the
standard form for the Schro¨dinger operatorHS associated
with a diffusion process. It can be factorized asHS5Q†Q
with

Q5]x1U8~x!/2

and

Q†52]x1U8~x!/2,

and thus has a real positive spectrumEn . The Fokker-Planck
operatorHFP is non-Hermitian but has the same real posit
spectrum, with right and left eigenfunctionsFn

R(x) and
Fn

L(x) associated withEn . They are related to the eigen
functions cn(x) of the Schro¨dinger operator byFn

R(x)
5e2U(x)/2cn(x) andFn

L(x)5eU(x)/2cn(x).
In the next two sections we use some of the results

tained previously for the Sinai diffusion process to obta
results for the Schro¨dinger and Fokker-Planck operators.

B. Averaged Green’s function for the Schrödinger operator

Interestingly, one can obtain the averaged Greens func
of the Schro¨dinger operator~227! from a slight variation of
the previous calculation for the dynamics inside a well
Sec. VI F. The physical reason is that in Sinai’s model
particle tends to jump to and occupy lower accessible we
with weight e2U(x) near the bottom. As a result one ca
show that, due to the the exponential factor in Eq.~227!, the
dominant contribution in the average over disorder of E
~227! comes from rare configurations in which the pointx
and the point 0 are at about the same potential. The calc
tion is sketched in Appendix E. The result is

G~x,0,t !̄5
2

G5 GS x

G2D , ~229!

with G5 ln t with the scaling functionG(X) given by Eq.
~174!.

In the case of a small biasd.0 the result becomes

G~x.0,0,t !5G~x,0,0,t !

5
2

G5S Gd

sinh~Gd! D
2

e2d2uxuG~ uxu/G2!, ~230!

which is valid in the usual scaling regimeGd andx/G2 fixed
with G5 ln t large. Note that this averaged Green’s functio
Eq. ~230!, is closely related to the average Green’s functio
of a one-dimensional lattice fermion problem with rando
nearest neighbor hopping,tn5 t̄ 1dtn as computed recently
by Balents and Fisher@32#. In particular, the inverse Laplac
transform of Eq.~230!, G(x,x0 ,E) which is a function of the
wave functions ofHs at energyE, is equivalent to the Green
function of the Fermi problem at energye5AE with x2x0
[n2n0 even, ~corresponding tocR1cL in terms of the
-

n

f
e
s,

.

la-

,
s

right and left moving fermions of Ref.@32#!. This is related,
in the Sinai problem, to the dominance of the averag
Green function byx andx0 both at bottoms of valleys which
correspond to even sites. The random hopping, (21)ndtn ,
corresponds toU8(x)/2 in the Sinai problem.

By methods similar to those used in the present paper,
can obtain much more information about the statistical pr
erties of eigenfunctions and Green’s functions of both pr
lems. These will be analyzed in Ref.@48#.

IX. CONCLUSIONS

In this paper we have developed a powerful real sp
renormalization group~RSRG! method procedure for model
of diffusion in one-dimensional random potentials which b
long to the universality class of the Sinai model. This meth
is simple to implement, physically transparent, and allo
one to obtain exact results for universal quantities.

The RSRG was first applied to recover, as a check of
validity, the single-time diffusion front for the the rescale
position x(t)/(T ln t)2 obtained previously by Kesten an
Golosov@12,27#. In addition we obtained the diffusion fron
in presence of a small bias in the crossover region.

The study of persistence properties, i.e., probabilities
return to the origin and their associated decay expone
showed that in disordered systems distinctions must be m
between recurrence properties of thermally averaged tra
tories ^x(t)& ~exponentū) and single particle trajectorie
~exponentu). Nontrivial exponents@e.g., ū5(32A5)/4]
were obtained for thermally averaged trajectories, a no
and unexpected feature of the Sinai model. The distribut
of number of returnsk was found to be strongly peaked i
the rescaled variableg at g5k/ ln(T ln t)51/3 but with mul-
tifractal tails characterized by an exponentu(g). It was
shown that single-run averages (1/t)*0

t x(t8)dt8 obey the
same scaling forg,1/3, but with deviations on the large
than typical (g.1/3) side of the distribution due to rar
events which were analyzed. We found that at each retur
the origin, the thermally averaged trajectory loses so
memory of the past. This allowed us to compute exactly
probability distribution of the complete sequence of retu
times. By contrast the successive jumps of^x(t)& exhibit
persistent correlations which we have studied in detail. Mu
of the analysis was extended to the case of a small app
bias.

Single particle properties, such as return probabilities,
distributions of first passage times and of maximum d
placement, were obtained by studying the RSRG in the p
ence of boundaries. The first meeting time distribution
two independent particles was also obtained. Extension
large but finite size systems was studied, for reflecting
absorbing boundary conditions. The distributions of equ
bration time and position, of the first passage times in
presence of boundaries, and the finite size diffusion fr
were all obtained.

A second set of results concerned aging dynamics.
scaling form of the joint distribution of positionsx(t8) and
x(t) at two timest8,t was obtained explicitly in Laplace
transforms. This two-time diffusion front was found to po
sess an overall lnt/ln t8 scaling, with an interesting singular
ity at x(t)5x(t8). Explicit expressions of several momen
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and correlation functions were obtained. In the presence
bias, our single-time diffusion results~the distribution of
x/tm being related to a Levy distribution! and our two-time
aging results~with a t/t8 scaling! are consistent with known
exact results and with the phenomenological description
terms of an effective directed model with an algebraic dis
bution of waiting times. But in addition we have obtained t
full crossover between the symmetric and biased aging s
ing forms. Our aging results are also consistent with the
merical simulations and qualitative arguments of@16#.

We have also obtained several quantities which are c
trolled by rare events such as renormalized valleys with
generate minima or degenerate barriers. These can be st
systematically as subdominant contributions in the RSR
From them, we computed the fluctuations in the therm
width of the single-time diffusion front@i.e., moments such
as ^x2(t)&2^x(t)&2;T(T ln t)3], and the two-time diffusion
front in the quasiequilibrium regime~for t2t8;t8a, a
,1).

This work exhibits the relationships which exist betwe
the Sinai model and problems such as quantum spin ch
with disorder: both can be treated via very similar RSR
methods. Although observables of physical interest are o
different in each of these models, some interesting conn
tions have appeared—e.g., between persistence properti
the Sinai model and magnetization in the random transv
field Ising model. The RSRG methods enable one to cons
this class of models in a unified way. Since the method
lows one to check its own range of validity, it may shed lig
on different universality classes. The averaged imagin
time Green function of a related random Schro¨dinger prob-
lem was found as a side benefit.

In conclusion, the model studied here provides an all
rare explicit example of a zero temperature glassy fixed p
where detailed nonequilibrium quantities can be obtain
Qualitatively similar behavior should be expected in syste
where, as in Sinai’s model, the dynamics consists of jum
over large barriers between partially equilibrated configu
tions. The detailed understanding of physics in the sim
one-dimensional case studied here perhaps encourages
that new methods—exact or approximate—based on sim
ideas can be developed for more complex glassy systems
a start, we have already applied the methods introduced
to more complex one-dimensional models, in particular,
nonequilibrium dynamics of the classical random field Isi
model @30#, as well as reaction-diffusion models with diso
der@31#. Furthermore, recent work on random quantum Is
models in two and three dimensions@49# suggests that in a
least some systems the type of behavior found here is
particular to one dimension.
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APPENDIX A: AUXILIARY VARIABLE RG RULE,
SYMMETRIC CASE

In this appendix we study the general RG rulem85am1
1bm21cm3 upon decimation of link 2~see Fig. 1!. We
a

in
-

l-
-

n-
-
ied
.
l

ns

n
c-
of

se
er
l-
t
ry

o
nt
d.
s
s
-

le
ope
ar
As
re
e

g

ot

d

introduce the rescaled variablem5m/Gc wherec is an un-
kown exponent and look for the fixed point joint probabili
distributionP(h,m) that is a solution of

05@~11h!]h111c~m]m11!#P~h,m!

1E
0

`

dm1E
0

`

dm2E
0

`

dm3 P~0,m2!

3P~•,m1!* hP~•,m3!d„m2~am11bm21cm3!….

~A1!

We have of courseP(h)5*0
`dm P(h,m)5e2h. The equa-

tion for the first momentC(h)5@1/P(h)#*0
`dm mP(h,m)

reads

05~11h!]hC~h!2~h1c!C~h!1~a1c!E
0

h
dh1 C~h1!

1bC~0!h. ~A2!

It is useful to differentiate this equation with respect toh to
obtain

05~11h!]h
2C~h!1~12h2c!]hC~h!1~a1c21!C~h!

1bC~0!, ~A3!

and to keep the boundary conditionC8(0)5C(0)c at h
50.

For a1c21Þ0 ~the case for all the physical quantitie
discussed in this paper!, it is convenient to sety511h and
T(y)5C(h)1@b/(a1c21)#C(0) so thatT(y) satisfies the
confluent hypergeometric equation

05y]y
2T1~B2y!]yT2AT~y!, ~A4!

whereB522c andA512a2c, together with the bound-
ary condition T8(y51)5c@A/(A2b)#T(y51). Since we
are looking for a well-behaved~i.e., not exponentially grow-
ing! solution ath5`, we find thatT(y) has to be propor-
tional to the confluent hypergeometric functionU(A,B,y).
To satisfy the boundary condition aty51, we obtain, using
the functional relation U8(A,B,1)5U(A,B,1)2U(A,B
11,1), that the exponentc has to satisfy the equation

05S 12c
a1c21

a1b1c21DU~12a2c,22c,1!

2U~12a2c,32c,1!. ~A5!

Note that in the particular case whereA512a2c521, the
function U(21,B,y) reduces to the linear function2B1y,
and the equation forc is simply quadraticc(c21)511b
yielding c5(11A514b)/2 as in@20#.

In the text we use the ratiom/ l̄ G which decays asm/ l̄ G

;G2F with F522c. Both exponentsc and F depend
explicitly on the coefficientsa,b,c, of the RG rule.
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APPENDIX B: AUXILIARY VARIABLE RG RULE,
BIASED CASE

We consider the auxiliary variablesm6 that evolve with
the RG rulesm15a1m1

11b1m2
21c1m3

1 upon decimation
of an ascending link 2 andm25a2m1

21b2m2
11c2m3

2

upon decimation of a descending link 2. We introduce
joint probability distributionsPG

6(z,m) that evolve as

~]G2]z!PG
6~z,m!

5PG
6~z,m!E

0

`

dm2@PG
6~0,m2!2PG

7~0,m2!#

1E
0

`

dm1E
0

`

dm2E
0

`

dm3 PG
7~0,m2!

3PG
6~•,m1!* zPG

6~•,m3!

3d„m2~a6m11b6m21c6m3!…. ~B1!

We havePG
6(z)5*0

`dm PG
6(z,m)5uG

6e2zuG
6

. The equation
for the first moments

CG
6~z!5@1/PG

6~z!#*0
`dm mPG

6~z,m!

is

~]G2]z!CG
6~z!5uG

1uG
2Fz@b6CG

7~0!2CG
6~z!#

1~a61c6!E
0

z

dz8 CG
6~z8!G , ~B2!

with uG
1uG

25d2/sinh2(Gd)51/l̄ G .
We study the simpler particular case whena11c152,

a21c252, b15b25b. Then the solutions CG
1(z)

5CG
2(z)5CG(z) are simply linear in z: CG(z)5AG

1zBG and the coefficients satisfy

BG5]GAG , ~B3!

]G
2AG5~11b!uG

1uG
2AG5~11b!

d2

sinh2~Gd!
AG . ~B4!

For d50 we have already seen in Appendix A that t
auxiliary variable m grows as Gc(b) with c(b)5(1
1A514b)/2. Indeed ford50, AG}Gc(b) is a solution of
Eq. ~B4!. For d.0 following @21# we thus look for a solu-
tion of the scaling form

AG5d2c~b!A~b!~g5dG!, ~B5!

whereA(b)(g) satisfies the equation

]g
2A~b!~g!5

11b

sinh2~g!
A~b!~g!, ~B6!

with the boundary conditionA(b)(g)}gc(b) asg→0. Intro-
ducing the new variabley5cothg, we obtain the differential
equation for the Legendre functions:
e

~y221!
d2A~b!

dy2 12y
dA~b!

dy
2~11b!A~b!50. ~B7!

The solution forA(b)(g) with the above boundary conditio
is

A~b!~g!5KQc~b!21~cothg!

5K8 tanh~g!c~b!FS c~b!11

2
,
c~b!

2
,

c~b!1
1

2
,tanh~g!2D , ~B8!

with K85KAp22c(b)@G„c(b)…/G„c(b)11/2…# whereK is a
nonuniversal constant. The asymptotic behaviors
A(b)(g).K8gc(b) at small g, and A(b)(g)52K8G„c(b)
11/2…/(G„@c(b)11#/2…G„c(b)/2…)g at large g. We can
now compute the mean values of the variablesm6,

^m6&5E
0

`

dzE
0

`

dm mPG
6~z,m!E

0

`

dz PG
6~z!CG

6~z!

5AG1
]GAG

uG
6 , ~B9!

yielding Eq.~92! in the text.

APPENDIX C: CORRELATION OF TIMES
AND DIRECTIONS OF SUCCESSIVE JUMPS

1. Conditional probabilities of times of jumps forward
and backward

In this appendix we compute the conditional probabiliti
rGG8

( f ) to make a jump forward atG ~respectively, a jump
backward! given that the last jump occurred atG8. We define
DG,G8(F) as the probability to be on a descending bond
barrierF given that the last jump of the effective dynami
occurred atG8 @this jump was necessarily in the~1! direc-
tion since the walker is on a descending bond#. The initial
condition is thus given by

DG8,G8~F !5KE
G

`

dF1E
0

`

dl1E
0

`

dl2E
G

`

dF3

3E
0

`

dl3~ l 11 l 2!PG~F1 ,l 1!PG~G,l 2!

3PG~F3 ,l 3!d„F2~F11F32G!…. ~C1!

Indeed, the bond must be a new bond made, atG8, out of
three bonds, and the origin of the random walk must ha
been on either the first or the second bond in order to sat
the condition that the last jump occurred at scaleG8. The
normalization constantK has to be choosen to ensure th
*G

`DG8,G8(F)51. Introducing the rescaled variablesh5(F
2G)/G and a5G/G8, we obtain thatDa(h) evolves ac-
cording to
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@a]a2~11h!]h21#Da~h!

522Da~h!1E
0

h
dh8 Da~h8!e2~h2h8!,

~C2!

with the initial condition ata51 given from Eq.~C1! by
Da51(h)5(h/21h2/4)e2h. The solution reads

Da~h!5Aae2h1~Ba1Cah!e2ah, ~C3!

Aa5
1

2a2F51
~a212a22!

~a21!2 e2~a21!G , ~C4!

Ba52
1

2S a

a21D 2

e2~a21!, ~C5!

Ca52
1

2S a

a21De2~a21!. ~C6!

The probability to make a forward jump atG @i.e., in the~1!
direction# given that the last jump occurred atG8 @and by
convention was in the~1! direction# is

rG,G8
~ f !

5PG~G!E
G

`

dFDG,G8~F !5
1

GE0

`

dh Da~h! ~C7!

since the probability that the neighboring bond is decima
at G is PG(G)51/G. On the other hand, the probability t
make a backward jump atG @i.e., in the (2) direction# given
that the last jump occurred atG8 is
d

rG,G8
~b!

5DG,G8~G!5
1

G
Da~0!, ~C8!

which is the probability to decimate the bond we are int
ested in. The total probability to jump atG in any direction
given that the last jump occurred atG8 must satisfyrG,G8
5rG,G8

( f )
1rG,G8

(b)
52]G*G

`dF DG,G8(F). These expressions
after substituting the above solution~C6! yield the formulas
~88! given in the text.

2. Correlations in the sequence of times of successive forward
and backward jumps

A full calculation of all terms is quite involved and goe
beyond the present paper. Here we indicate only the re
for the two first elementary building blocks for the man
jump correlations. The first one is

r0
bb~G1uG0!dG15r0

bb~a1!da1

5
da1

a1
3 @22~11a1!e2~a121!#, ~C9!

which is a scaling function ofa15G1 /G0 . Intermediate cal-
culations also yield the probability that the second jump
curs atG1 and is a forward jump given that the first on
occurs atG0 and is backward.

r0
f b~G1uG0!dG15r0

f b~a1!da15
da1

a1
3 ~22e2~a121!!.

~C10!

The second elementary building block is given by
r1
b f b~G2 ,G1uG0!dG2 dG15r1

b f b~a1 ,a2!da1 da25
da1 da2

a1
3a2

3

3S 42e2~a121!22~a211!e2~a221!2~a211!
e2~a21a122!

a121
1~a2a111!

e2~a2a121!

a121 D ,

~C11!
which is a scaling function ofa15G1 /G0 anda25G2 /G1 .

APPENDIX D: DISTRIBUTION OF SEQUENCES
OF RETURNS TO THE ORIGIN: BIASED CASE

To compute the conditional probabilitiesr6(G,G8) of re-
turns to the origin defined in the text~Sec. IV F! we consider
the probabilityDG,G8

6 (z) that a bond has barrierz at G and
has not changed orientation since the scaleG8 where it was
created. Its RG equation is

~]G2]z!DG,G8
6

~z!52PG
7~0!DG,G8

6
~• !* zPG

6~• !

22PG
7~0!DG,G8

6
~z!, ~D1!
with the initial conditionDG8,G8
6 (z)5(uG8

6 )2ze2zu
G8
6

. Since

PG
6(z)5uG

6e2zuG
6

, the solution has the form

DG8,G8
6

~z!5~AG,G81zBG,G8!
uG

7

uG8
7 ~uG

6!2e2zuG
6

, ~D2!

where the coefficients are

AG,G85d21
„Qf21~cothg!Pf21~cothg8!

2Qf21~cothg8!Pf21~cothg!…, ~D3!
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BG,G85
1

sinh2 g
„Pf218 ~cothg!Qf21~cothg8!

2Pf21~cothg8!Qf218 ~cothg!…, ~D4!

where g5dG, g85dG8, f5(11A5)/2, and Qn(y) and
Pn(y) are associated Legendre functions: they are two
early independent solutions of Eq.~B7! @with (11b)→n(1
1n)].

The probability for a (6) link to be decimated atG given
that its last decimation occurred atG8 is therefore

r6~G,G8!52]GE
0

`

dz DG,G8
6

~z!5
uG

1uG
2

uG8
7 uG

6AG,G8 .

~D5!

This leads to Eq.~101! given in the text in terms of the
reduced variablesy5cothg andy85cothg8.
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APPENDIX E: DYNAMICS WITHIN A WELL

1. Probability that a bond has degenerate minima

Let us introduce the probabilitySG(z,l ,x,w) that a given
point ~denotedx0 in Fig. 9! belongs atG to a bond of barrier
F5G1z, of lengthl, is at a distancex from the minimum of
the bond and is at a potentialw above the potential of the
minimum of the bond. One has that by definition 0,x, l
and its normalization with respect tox and w is
*0

l dx*0
G1zdw SG(z,l ,x,w)5 lPG(z,l )/* l PG( l ), which is the

probability that a given point belongs to a bond withF,l .
The RG equation forSG(z,l ,x,w) reads

FIG. 9. Different terms that contribute to the RG equation forS.
~]G2]z!SG~z,l ,x,w!522PG~0!SG~z,l ,x,w!1PG~0,• !* l PG~•,• !* z,lSG~•,•,x,w!

1E
z1 ,l 1 ,x1 ,w1 ,l 2 ,z3 ,l 3

SG~z1 ,l 1 ,x1 ,w1!PG~0,l 2!PG~z3 ,l 3!

3d„z2~z11z3!…d„l 2~ l 11 l 21 l 3!…d„x2~x11 l 21 l 3!…d„w2~w11z3!…

1E
z1 ,l 1 ,x2 ,w2 ,l 2 ,z3 ,l 3

PG~z1 ,l 1!SG~0,l 2 ,x2 ,w2!PG~z3 ,l 3!

3d„z2~z11z3!…d„l 2~ l 11 l 21 l 3!…d„x2~ l 11 l 22x2!…d„w2~w21z1!…, ~E1!
osi-
s
the
-

t
te

lso

to
te
where each term is described in Fig. 9. We notice that
evolution equation forSG(z,l ,x,w50) decouples and lead
to the form

SG~z,l ,x,w50!5
2

G2
@d~x!PG~z,l !1RG~z,l ,x!#,

~E2!

where thed-function part represents the probability that t
point x0 happens to be exactly at the bottom of the renorm
ized bond, in which casew50 by definition. The function
RG(z,l ,x) is the probability that a renormalized bond at sc
G has (z,l ) and a distinct degenerate minimum at a fin
distancex. For smallx @x5O(1)# this function is nonuni-
versal. We compute this function in the scaling regimex
;G2 where it is universal and of order 1/G. We use the
rescaled variablesh5z/G, l5 l /G2, andX5x/G2 such that
RG(z,l ,x)5G26R(h,l,X) and obtain the following fixed
point RG equation forR:
e

l-

05G]GRG~h,l,X!

5@~11h!]h12l]l12X]X16#R~h,l,X!

1P~0,• !* lP~•,• !* h,lR~•,•,X!

12P~h,l2X!@P~0,• !* l5XP~0,• !#. ~E3!

This equation was obtained by substituting the decomp
tion ~E2! into Eq.~E1! in the spirit of an expansion in power
of 1/G, where the zeroth-order equation is satisfied by
d-function part. The orderO(1/G) equation yields the equa
tion for RG(z,l ,x) where thed-function part acts now as a
source in the last two terms of Eq.~E1! leading to the last
term in Eq. ~E3!. This term describes the probability tha
betweenG and G1dG a new bond with one degenera
minimum~a distance of orderG2 away from the lowest edge!
is created via the decimation of a bond whose neighbor a
hasz;0—cases~b! and ~c! in Fig. 9 with w5w150—the
probability of this is of order 1/G.

Before proceeding further, we notice that it is also easy
keep track of the barrierG0 between the two degenera
minima. We defineRG(z,l ,x,G0) as the probability that a
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renormalized bond at scaleG has (z,l ) and a distinct degen
erate minimum at a finite distancex separated from the mini
mum by a barrier G0 . It takes the scaling form
RG(z,l ,x,G0)5G27RG(h,l,X,u) with u5G0 /G. The nor-
malization isRG(h,l,X)5*0

1du RG(h,l,X,u). The scaling
form satisfies the fixed point RG equation:

05G]GR~h,l,X,u!

5@~11h!]h12l]l12X]X1u]u17#R~h,l,X,u!

1P~0,• !* lP~•,• !* h,lR~•,•,X,u!12P~h,l2X!

3@P~0,• !* l5XP~0,• !#d~u21!, ~E4!

where the last term corresponds to barriersG05G created
upon decimation.

Remarkably, one can find the complete solution of t
equation in a factorized form:

R~h,l,X,u!5P~h,l2X!r ~X,u!, ~E5!

wherer (X,u) satisfies

05~2X]X1u]u14!r ~X,u!12@P~0,• !* l5XP~0,• !#

3d~u21! ~E6!

whose solution is

r ~X,u!5u~12u!u24r̂ ~X/u2!, ~E7!

r̂ ~X!52@P~0,• !* l5XP~0,• !#, ~E8!

which, using Eq.~11!, yields formula~170! given in the text.
The biased case can be studied similarly. The correspo

ing quantities~as usual6 designate descending and ascen
ing bonds, respectively! also satisfy SG

6(z,l ,x,w50)

5(1/l̄ G)@d(x)PG
61RG

6(z,l ,x)# and one finds that the RG
equation forRG

6(z,l ,x,G0) is

~]G2]z!RG
6~z,l ,x,G0!5@PG

6~0!2PG
7~0!#RG

6~F,l ,x,G0!

1PG
7~0,• !* l PG

6~•,• !* z,l

3RG
6~•,•,x,G0!12PG

6~z,l 2x!

3PG
7~0,• !* xPG

6~0,• !d~G2G0!.

~E9!

The solution again factorizes into

RG
6~z,l ,x,G0!5PG

6~z,l 2x!r G~x,G0!, ~E10!

where r G(x,G0)52u(G2G0)PG0

1 (0,•)* xPG0

2 (0,•) does not

depend on the direction of the bias. Its Laplace transform
simply
s

d-
-

is

E
0

`

dx e2pxr G~x,G0!5u~G2G0!2UG0

1 ~p!UG0

2 ~p!

52u~G2G0!
p1d2

sinh2~G0Ap1d2!
,

~E11!

so that, finally,

r G~x,G0!5u~G2G0!
1

G0
4
r̂ S x

G0
2D e2xd2

, ~E12!

wherer̂ is the function for the symmetric case introduced
Eq. ~170!.

2. Relationship to the associated Schro¨dinger operator
Green function

The disorder averaged Green function defined in S
VIII B is exactly related to the probabilitySG(z,l ,x,w) in-
troduced above. In the symmetric case, one can restric
x.0, and one has

G~x,0,t !5
1

2E0

`

dzE
0

z1G

dw e2w/2E
x

`

dl SG~z,l ,x,w!.

~E13!

The factor1
2 is simply the probability to be on a descendin

bond (x.0). This can be expressed using the rescaled v
ablesz5Gh, w5Gu, l 5G2l, x5G2X and simplified using
that for largeG, we may replacee2Gu/2 by (2/G)d(u). Us-
ing Eq. ~E2! one obtains

G~x,0,t !5
2

G5E
0

`

dhE
X

`

dl R~h,l,X!. ~E14!

Using Eq.~E5! one finds the result of the text, Eq.~229!.
In the biased case we obtain an expression for the a

aged Green function in terms of the functionsSG
6(z,l ,x,0),

G~x.0,0,t !52E
0

`

dzE
uxu

`

dl SG
1~z,l ,uxu,0!, ~E15!

G~x,0,0,t !52E
0

`

dzE
uxu

`

dl SG
2~F,l ,uxu,0!. ~E16!

Using Eq.~E10! we finally getG(x.0,0,t)5G(x,0,0,t)
5G(uxu,t) with

G~ uxu,t !5
2

l̄ G

E
0

G

dG0 r G~ uxu,G0!5
2

l̄ G

1

G3
GS uxu

G2D e2uxud2
,

~E17!

where the functionG has been introduced in Eq.~174!, lead-
ing to formula~230! in the text.
s the
APPENDIX F: SOLUTION OF THE TWO-TIME RG EQUATIONS

In this appendix we solve explicitly the RG equations~147! for the quantitiesVG,G8
ee8 (z,xL ,xR ;xL8 ,xR8 ),e561 e8561

from which we can obtain the two-time diffusion frontProb(xt,x8t8u00). We consider the general biased case and discus
particular limit of the symmetric case.
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We first introduce the Laplace transforms:

V̂G,G8
ee8 ~z,m,n;m8,n8!5E

xL8.0,xR8.0,xL.0,xR.0
e2m8xR8e2n8xL8e2m~xR2xR8 !e2n~xL2xL8 !VG,G8

ee8 ~z,xL ,xR ;xL8 ,xR8 !. ~F1!

Since we consider largeG8 we can use the fixed point solution~22!:

PG
6~z,m!5E

0

`

dl e2m l PG
6~z,l !5UG

6~m!e2zuG
6

~m!. ~F2!

The RG equations~147! can then be written in Laplace variables as

~]G2]z!V̂G,G8
6e8 ~z,m,n;m8,n8!522UG

7~0!VG,G8
6e8 ~z,m,n;m8,n8!

1UG
1~m!UG

2~m!E
0

`

dz1 e2~z2z1!uG
6

~m!V̂G,G8
6e8 ~z1 ,m,n;m8,n8!

1UG
1~n!UG

2~n!E
0

`

dz1 e2~z2z1!uG
6

~n!V̂G,G8
6e8 ~z1 ,m,n;m8,n8!

1V̂G,G8
7e8 ~0,m,n;m8,n8!UG

6~m!UG
6~n!E

0

`

dz1 e2~z2z1!uG
6

~m!e2z1uG
6

~n!, ~F3!

together with the initial conditions atG5G8 given in Eq.~148!, which become

V̂G8,G8
ee8 ~z,m,n;m8,n8!5dee8E

0

`

dxL8E
0

`

dxR8 e2m8xR8e2n8xL8vG8
e8 ~z,xR8 ,xL8 !

5dee8

1

l̄ G8

1

m82n8
@UG8

e8 ~n8!e2zu
G8
e8

~n8!2UG8
e8 ~m8!e2zu

G8
e8

~m8!#. ~F4!

We look for solutions of the form

V̂G,G8
ee8 ~z,m,n;m8,n8!5AG,G8

ee8 ~m,n;m8,n8!e2zuG
e

~m!1BG,G8
ee8 ~m,n;m8,n8!e2zuG

e
~n!

1CG,G8
ee8 ~m,n;m8,n8!e2zu

G8
e8

~m8!1DG,G8
ee8 ~m,n;m8,n8!e2zu

G8
e8

~n8!. ~F5!

It is useful to introduce the functions

uG,G8
ee8 ~m,n;m8,n8!5VG,G8

ee8 ~z50,m,n;m8,n8!

5AG,G8
ee8 ~m,n;m8,n8!1BG,G8

ee8 ~m,n;m8,n8!1CG,G8
ee8 ~m,n;m8,n8!1DG,G8

ee8 ~m,n;m8,n8!

sG,G8
ee8 ~m,n;m8,n8!5E

0

`

dz VG,G8
ee8 ~z,m,n;m8,n8!

5
AG,G8

ee8 ~m,n;m8,n8!

uG
e ~m!

1
BG,G8

ee8 ~m,n;m8,n8!

uG
e ~n!

1
CG,G8

ee8 ~m,n;m8,n8!

uG8
e8 ~m8!

1
DG,G8

ee8 ~m,n;m8,n8!

uG8
e8 ~n8!

. ~F6!

For each initial condition indexed by one ofe8561 it is most convenient to work with the eight functionsuee8, see8, Cee8,
andDee8 with e561.

We first consider the equations forCee8 andDee8. These equations are homogeneous and thus easier to solve. The equ
for Cee8 read
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]GCG,G8
ee8 ~m,n;m8,n8!5S 22UG

2~0!de,1122UG
1~0!de,212uG8

e8 ~m8!1
UG

2~m!UG
1~m!

uG
e ~m!2uG8

e8 ~m8!

1
UG

2~n!UG
1~n!

uG
e ~n!2uG8

e8 ~m8!
D CG,G8

ee8 ~m,n;m8,n8!, ~F7!

with initial conditions atG5G8 indexed bye8:

CG8,G8
ee8 ~m,n;m8,n8!52dee8

1

l̄ G8

UG8
e8 ~m8!

m82n8
. ~F8!

Similarly, the equations forD6 read

]GDG,G8
ee8 ~m,n;m8,n8!5S 22UG

2~0!de,1122UG
1~0!de,212uG8

e8 ~n8!1
UG

2~m!UG
1~m!

uG
e ~m!2uG8

e8 ~n8!
1

UG
2~n!UG

1~n!

uG
e ~n!2uG8

e8 ~n8!
D

3DG,G8
ee8 ~m,n;m8,n8!, ~F9!

with initial conditions atG5G8 are indexed bye8:

DG8,G8
ee8 ~m,n;m8,n8!5dee8

1

l̄ G8

UG8
e8 ~n8!

m82n8
. ~F10!

To find the solution one notices that each matrix elementCee8 andDee8 satisfies its own differential equation. Thus, sin
the initial condition is diagonal inee8, the solution is also diagonal. It is found to be

CG,G8
ee8 ~m,n;m8,n8!5

2dee8

l̄ G8

UG
e8~0!2

UG8
e8 ~0!2

UG8
e8 ~m8!

~m82n8!

@~uG8
e8 ~m8!2uG8

e8 ~m!#@uG8
e8 ~m8!2uG8

e8 ~n!#

@uG8
e8 ~m8!2uG

e8~m!#@uG8
e8 ~m8!2uG

e8~n!#
e2~G2G8!u

G8
e8

~m8!,

~F11!

DG,G8
ee8 ~m,n;m8,n8!5

dee8

l̄ G8

UG
e8~0!2

UG8
e8 ~0!2

UG8
e8 ~n8!

~m82n8!

@uG8
e8 ~n8!2uG8

e8 ~m!#@uG8
e8 ~n8!2uG8

e8 ~n!#

@uG8
e8 ~n8!2uG

e8~m!#@uG8
e8 ~n8!2uG

e8~n!#
e2~G2G8!u

G8
e8

~n8!.

For eache8 the four remaining functionsu6,e8 ands6,e8 satisfy the following system of four differential equations:

]Gu1e852@2uG
2~0!1uG

1~m!1uG
1~n!#u1e81uG

1~m!uG
1~n!s1e81pG,G8

1 de8,1 , ~F12!

]Gu2e852@2uG
1~0!1uG

2~m!1uG
2~n!#u2e81uG

2~m!uG
2~n!s2e81pG,G8

2 de8,2 , ~F13!

]Gs1e85S 22uG
2~0!1

UG
1~m!UG

2~m!

uG
1~m!

1
UG

1~n!UG
2~n!

uG
1~n!

D s1e82u1e81
UG

1~m!UG
1~n!

uG
1~m!uG

1~n!
u2e8, ~F14!

]Gs2e85S 22uG
1~0!1

UG
1~m!UG

2~m!

uG
2~m!

1
UG

1~n!UG
2~n!

uG
2~n!

D s2e82u2e81
UG

2~m!UG
2~n!

uG
2~m!uG

2~n!
u1e8. ~F15!

We note that the system fore8511 and the system fore8521 are identical except for the inhomogeneous part, which
have defined as

pG,G8
e8 52

1

uG8
e8 ~m8!

@uG
e8~m!2uG8

e8 ~m8!#@uG
e8~n!2uG8

e8 ~m8!#CG,G8
e8e8 2

1

uG8
e8 ~n8!

@uG
e8~m!2uG8

e8 ~n8!#@uG
e8~n!2uG8

e8 ~n8!#DG,G8
e8e8 .

~F16!

To exhibit explicitly theG dependence, it is useful to rewrite

pG,G8
1

~m,n;m8,n8!5
1

l̄ G~m82n8!
@ f G8

1
~m,n;m8!e2~G2G8!u

G8
2

~m8!2 f G8
1

~m,n;n8!e2~G2G8!u
G8
2

~n8!#, ~F17!
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pG,G8
2

~m,n;m8,n8!5
1

l̄ G~m82n8!
@ f G8

2
~m,n;m8!e2~G2G8!u

G8
1

~m8!2 f G8
2

~m,n;n8!e2~G2G8!u
G8
1

~n8!#, ~F18!

where we have introduced the twoG-independent functions

f G8
e8 ~m,n;m8!5

UG8
e8 ~m8!

uG8
e8 ~m8!

@uG8
e8 ~m8!2uG8

e8 ~m!#@uG8
e8 ~m8!2uG8

e8 ~n!#. ~F19!

The first step is to obtain the solutions of the above two~identical! homogeneous systems~F15!. Remarkably, these can b
constructed from the functionsUG

6(p) anduG
6(p) using the differential equations~20!. We find the four independent solution

of the homogeneous system to be

H u1
15nGUG

1~m!,u1
252nGUG

2~n!,s1
15nG

UG
1~m!

uG
1~m!

,s1
252nG

UG
2~n!

uG
2~n!

J , ~F20!

H u2
15nGUG

1~m!uG
1~n!,u2

25nGUG
2~n!uG

2~m!,s2
15nG

UG
1~m!

uG
1~m!uG

1~n!
@uG

1~n!22UG
1~n!UG

2~n!#,

s2
25nG

UG
2~n!

uG
2~m!uG

2~n!
@uG

2~m!22UG
1~m!UG

2~m!#J , ~F21!

H u3
15nGUG

1~n!, u3
252nGUG

2~m!,s3
15nG

UG
1~n!

uG
1~n!

,s3
252nG

UG
2~m!

uG
2~m!

J , ~F22!

H u4
15nGUG

1~n!uG
1~m!,u4

25nGUG
2~m!uG

2~n!,s4
15nG

UG
1~n!

uG
1~m!uG

1~n!
@uG

1~m!22UG
1~m!UG

2~m!#,

s4
25nG

UG
2~m!

uG
2~m!uG

2~n!
@uG

2~n!22UG
1~n!UG

2~n!#J , ~F23!

wherenG51/l Ḡ5d2/sinh2(Gd) and with]GnG52(uG
11uG

2)nG .
It will be useful to consider the matrix formed by these solutions:

NG5S u1
1 u2

1 u3
1 u4

1

u1
2 u2

2 u3
2 u4

2

s1
1 s2

1 s3
1 s4

1

s1
2 s2

2 s3
2 s4

2

D .

From the usual properties of systems of linear equations the WronskianWG5det@NG# satisfies the simple equation,]GWG

5Tr@MG#WG whereM is the matrix formed by the coefficients of the homogeneous part of the linear system. One can
integrate this equation, or one can compute directly the determinant, and use the definitions~F23! to simplify the result~after
a tedious calculation!. Both give the same, remarkably simple, result:

WG52nG
4~m2n!2

UG
1~m!UG

2~m!UG
1~n!UG

2~n!

uG
1~m!uG

2~m!uG
1~n!uG

2~n!
. ~F24!

Since this is not zero, this shows that the four solutions given above are linearly independent. Thus we are now in a
to write the solutions of the two linear differential systems~F15! with the inhomogeneous terms. It is found, as usual, a
linear combination of the four independent solutions~F23! of the homogeneous system:
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S u1e8

u2e8

s1e8

s2e8

D 5(
i 51

4

lG
i e8S u i ,G

1 ~m,n!

u i ,G
2 ~m,n!

s i ,G
1 ~m,n!

s i ,G
2 ~m,n!

D [NGS lG
1e8

lG
2e8

lG
3e8

lG
4e8

D , ~F25!

where lG
i e8[lGG8

i e8 (m,n,m8,n8) are the coefficients of the linear combinations. Using the standard method one find
following equations for the coefficients:

NGS ]Gl11

]Gl21

]Gl31

]Gl41

D 5S pG,G8
1

0

0

0

D ,

~F26!

NGS ]Gl12

]Gl22

]Gl32

]Gl42

D 5S 0

pG,G8
2

0

0

D .

The initial condition for thelG
i e8 at G5G8 are fixed by the initial conditions

uG8,G8
ee8 ~m,n;m8,n8!5(

i 51

4

lG8,G8
~ i !,e8 ~m,n;m8,n8!u i

e~G8,m,n!5V̂G8,G8
ee8 ~z50,m,n;m8,n8!

5dee8

1

l̄ G8

1

m82n8
@UG8

e8 ~n8!2UG8
e8 ~m8!#, ~F27!

sG8,G8
ee8 ~m,n;m8,n8!5(

i 51

4

lG8,G8
~ i !,e8 ~m,n;m8,n8!s i

e~G8,m,n!5E
0

`

dz V̂G8,G8
ee8 ~z,m,n;m8,n8!

5dee8

1

l̄ G8

1

m82n8S UG8
e8 ~n8!

uG8
e8 ~n8!

2
UG8

e8 ~m8!

uG8
e8 ~m8!

D . ~F28!

Finally, we find, fore8511, the solution of Eq.~F15! with the above initial conditions:

uG,G8
61

5(
i 51

4

u i ,G
6 F E

G8

G

dG̃~NG̃
21

! i ,1pG̃,G8
1

1~NG8
21

! i ,1uG8,G8
11

1~NG8
21

! i ,3sG8,G8
11 G , ~F29!

sG,G8
61

5(
i 51

4

s i ,G
6 F E

G8

G

dG̃~NG̃
21

! i ,1pG̃,G8
1

1~NG8
21

! i ,1uG8,G8
11

1~NG8
21

! i ,3sG8,G8
11 G , ~F30!

and, fore8521,

uG,G8
62

5(
i 51

4

u i ,G
6 F E

G8

G

dG̃~NG̃
21

! i ,2pG̃,G8
2

1~NG8
21

! i ,2uG8,G8
22

1~NG8
21

! i ,4sG8,G8
22 G , ~F31!

sG,G8
62

5(
i 51

4

s i ,G
6 F E

G8

G

dG̃~NG̃
21

! i ,2pG̃,G8
2

1~NG8
21

! i ,2uG8,G8
22

1~NG8
21

! i ,4sG8,G8
22 G . ~F32!

The next step is to evaluateNG
21 , the inverse of the matrixNG . Remarkably, the inverse admits a simple explicit form

terms of the functionsuG
6 andUG

6 , which can be found after some tedious calculations using the form~19!. It reads
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NG
215

1

nG~n2m!1
2

m

UG
1~m!

2
n

UG
2~n!

uG
1~n!uG

1~m!uG
2~m!

UG
1~m!

uG
2~m!uG

1~n!uG
2~n!

UG
2~n!

2
uG

1~m!

UG
1~m!

uG
2~n!

UG
2~n!

uG
1~m!uG

1~n!

UG
1~m!

2
uG

2~m!uG
2~n!

UG
2~n!

n

UG
1~n!

m

UG
2~m!

2
uG

1~m!uG
1~n!uG

2~n!

UG
1~n!

2
uG

2~n!uG
1~m!uG

2~m!

UG
2~m!

uG
1~n!

UG
1~n!

2
uG

2~m!

UG
2~m!

2
uG

1~m!uG
1~n!

UG
1~n!

uG
2~m!uG

2~n!

UG
2~m!

2 . ~F33!

We have thus obtained the quantities of interest, namely, thesG,G8
ee8 (m,n;m8n8)5*zVG,G8

ee8 (m,n;m8n8). The two-time
probability can then be obtained from thes as follows.

The Laplace transforms in the different sectors (x.0, x8.0), (x,0, x8,0), (x,0 and x8.0), and (x.0 and x8
,0), are, respectively,

P̂G,G8
11

~p,p8!5E
0

`

dxE
0

`

dx8 e2p8x8e2p~x2x8!Prob~xt,x8t8u00!5sG,G8
11

~m5p,n50;m85p8,n850!, ~F34!

P̂G,G8
22

~p,p8!5E
2`

0

dxE
2`

0

dx8 ep8x8ep~x2x8!Prob~xt,x8t8u00!5sG,G8
22

~m50,n5p;m850,n85p8!, ~F35!

P̂G,G8
21

~p,p8!5E
2`

0

dxE
0

`

dx8 e2p8x8ep~x2x8!Prob~xt,x8t8u00!5sG,G8
21

~m50,n5p;m85p1p8,n85p!, ~F36!

P̂G,G8
12

~p,p8!5E
2`

0

dx8E
0

`

dx ep8x8e2p~x2x8!Prob~xt,x8t8u00!5sG,G8
12

~m5p,n50;m85p,n85p1p8!. ~F37!

From these one can compute the distributionQ(y,t,t8)5*2`
1`dx8 Prob„(x81y),t,x8,t8u0,0… of the relative deplacementy

5x(t)2x(t8). Its Laplace transforms in the sectorsy.0 andy,0 are, respectively,

QG,G8
1

~p!5E
0

`

dy e2pyQ~y,t,t8!5E
0

`

dx8E
x8

`

dx e2p~x2x8!Prob~xt,x8t8u00!1E
2`

0

dx8E
0

`

dx e2p~x2x8!Prob~xt,x8t8u00!

5sG,G8
11

~m5p,n50;m850,n850!1sG,G8
12

~m50,n5p;m85p,n85p!, ~F38!

QG,G8
2

~p!5E
2`

0

dy epyQ~y,t,t8!5E
2`

0

dx8E
2`

0

dx ep~x2x8!Prob~xt,x8t8u00!1E
2`

0

dxE
0

`

dx8ep~x2x8!Prob~xt,x8t8u00!

5sG,G8
22

~m50,n5p;m850,n850!1sG,G8
21

~m5p,n50;m85p,n85p!. ~F39!

In order to compute these distributions, we have explicitly evaluated the sums and integrals in Eqs.~F30! and~F32!. As an
example, let us examine

sG,G8
11

~m,n;m8,n8!5(
i 51

4

s i ,G
1 ~m,n!S E

G8

G

dG̃~NG̃
21

! i ,1~m,n!pG̃,G8
1

~m,n;m8,n8!

1~NG8
21

! i ,1~m,n!uG8,G8
11

~m8,n8!1~NG8
21

! i ,3~m,n!sG8,G8
11

~m8,n8! D . ~F40!

It turns out that all integrals that appear in this expression are simple exponentials. This remarkable property remains
all other elements and is the reason the calculation, though tedious, can be carried out explicitly for this problem.
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Explicit results for the symmetric cased50. Here we give the explicit expression for the Laplace transform
Prob(xt,x8t8u00) in the different sectors defined in Eq.~F37!. For the sector where the productxx8.0, we find

P̂G5aG8,G8
11 S p5

s2

G82
,p85

r 2

G82D 5 P̂G5aG8,G8
22 S p5

s2

G82
,p85

r 2

G82D
5

coths

a2r 2s
S 12

1

coshr D1
1

a2r 2s cosh~as!
F2S 12

1

coshr D coshscoths1S 12
r

sinhr D sinhs

1
~rcothr 21!~rcothr 2scoths!

coshr ~s22r 2coth2 r !
$2s coshs2r cothr sinhs1e2~a21!rcothr@s cosh~as!

1r cothr sinh~as!#%G1
tanh~as!

a2r 2s
F r

sinhr
211scothsS 12

1

coshr D
2

~rcothr 21!~rcothr 2scoths!tanhr

r coshr
~12e2~a21!rcothr !G . ~F41!

For the sector wherexx8,0, we find

P̂G5aG8,G8
12 S p5

s2

G82
,p85

r 22s2

G82 D 5E
2`

0

dx8er 2x8/G82E
0

1`

dxe2s2x/G82
Prob~xt,x8t8u00!

5
1

a2~s22r 2!s
F S coshs

coshr
21D coths1s2r

sinhs

sinhr G
1

1

a2~s22r 2!s cosh~as!
F 1

sinhsS 12
coshs

coshr D1
~rcothr 21!~rcothr 2scoths!

coshr ~s22r 2coth2 r !

3$2s coshs2r cothr sinhs1e2~a21!rcothr@s cosh~as!1r cothr sinh~as!#%G
1

tanh~as!

a2~s22r 2!s
FcoshsS r

sinhr
2

s

sinhsD112
coshs

coshr
1

~rcothr 21!~rcothr 2scoths!

coshr ~s22r 2coth2 r !

3$rcothr coshs1s sinhs2e2~a21!rcothr@r cothr cosh~as!1s sinh~as!#%G , ~F42!

and the same expression forP̂21.
We have performed a similar calculation in the biased case, but the corresponding full expression for the Laplace t

is too lengthy to give here. Some particular limits are discussed in the text. We give here the explicit expression
two-time correlator:

^x~ t !x~ t8!&5
1

32d4 sinh2 g8 sinh2 g
@A~g,g8!1B~g,g8!e2~g2g8!coth~g8!#

with
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A~g,g8!5cosh~2g!@sinh~2g!2g#@sinh~4g8!1sinh~2g8!26g8 cosh~2g8!#

1cosh~2g!F2g8 sinh~4g8!1
cosh~4g8!

2
14g82 cosh~2g8!22g8 sinh~2g8!2

1

2G
1sinh~2g!@2g8 cosh~4g8!1sinh~4g8!2g8 cosh~2g8!1sinh~2g8!12g826g82 cothg8#

1g$22g8„cosh~4g8!14 cosh~2g8!22…13@sinh~4g8!1sinh~2g8!#212g82 cothg8%

12g8 sinh~6g8!22 cosh~6g8!2S 6g821
5

2D cosh~4g8!19g8 sinh~4g8!

1~6g8222!cosh~2g8!14g8 sinh~2g8!24g83 coth~g8!18g821
13

2
, ~F43!

B~g,g8!5cosh~3g1g8!@sinh~2g8!22g8#2

1cosh~g1g8!@sinh~2g8!22g8#

3S 28g8 cosh~2g8!15 sinh~2g8!14~g2g8!
g82

sinh~g8!2
24gg8 cothg822g8D

1sinh~g1g8!4g82@sinh~2g8!22g8#

1coshg@sinh~2g8!22g8#Fsinh~3g8!14g cosh~g8!1sinh~g8!24g
g8

sinhg8
G . ~F44!

APPENDIX G: DISORDER AVERAGED PROBABILITY DISTRIBUTION FOR A FINITE SIZE SYSTEM

In this appendix we consider a finite size system 0,x,L using results of Secs. VII A and II C 3. We start with aRR
system, i.e., reflecting boundaries on each end.

We will denote byb52k12, k50,1,2, . . . ,1`, the number of renormalized bonds in the system. The disorder aver
distribution can be written as a sum:

P0L~x,tux0,0!5 (
k50

k51`

(
N51

2k12

P2k12
N,L ~x,tux0,0!, ~G1!

whereP2k12
N,L (x,tux0,0) corresponds to the contribution of the case where the starting pointx0 is on theNth bond~see Fig. 8!.

One must distinguish betweenN52n11 odd, when the particle starts on a descending bond andx.x0 andN52n12 even
when it starts on an ascending bond andx,x0 . Thus, in addition to Eq.~G1! above we will also be interested in the explic
decomposition:

P0L~x,tux0,0!5u~x2x0!P0L
1 ~x,tux0,0!1u~x02x!P0L

2 ~x,tux0,0!, ~G2!

u~x2x0!P0L
1 ~x,tux0,0!5 (

k50

k51`

(
n50

k

P2k12
2n11,L~x,tux0,0!. ~G3!

One has~see Fig. 8!, for n50, . . . ,k,

P2k12
2n11,L~x,tux0,0!5K dS x2 (

i 51

2n11

l i D uS (
i 51

2n

l i,x0,xD L
2k12

, ~G4!

where^ &2k12 denotes the average over the 2k12 bond sector of the finite size measureRR in Eq. ~198!. There is a similar
formula for an even number of initial bonds. Throughout we will define Laplace transformsx→p,x0→p0 ,L→q as follows:

P2k12
N ~p,p0 ,q!5E

0

1`

dLE
0

L

dxE
0

L

dx0 e2~px1p0x01qL!P2k12
N,L ~x,tux0,0!. ~G5!

One finds
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P2k12
2n11~p,p0 ,q!5

l̄ G

p0
Ep1p01q

1 ~Pp1p01q
2 Pp1p01q

1 !n21Pp1p01q
2 ~Pq1p

1 2Pp1p01q
1 !~Pq

2Pq
1!k2nEq

2 , ~G6!

P2k12
2n12~p,p0 ,q!5

l̄ G

p0
Ep1p01q

1 ~Pp1p01q
2 Pp1p01q

1 !n~Pq
22Pp01q

2 !Pq
1~Pq

2Pq
1!k2n21Eq

2, ~G7!

the first formula being valid for 1<n<k ~andk>1) and the second for 0<n<k21 ~andk>1). Finally for the two edge
bonds one has

P2k12
1 ~p,p0 ,q!5

l̄ G

p0
~Eq1p

1 2Ep1p01q
1 !~Pq

2Pq
1!kEq

2 , ~G8!

P2k12
2k12~p,p0 ,q!5

l̄ G

p0
Ep1p01q

1 ~Pp1p01q
2 Pp1p01q

1 !k~Eq
22Ep01q

2 ! ~G9!

for any k. Resumming and using the identities~199! yields

P1~p,p0 ,q!5
1

p0q

Eq1p
1

Eq
1

1
1

l̄ Gp0q~p1p01q!

Pp1p01q
2 Pp1q

1 21

Ep1p01q
2 Eq

1
, ~G10!

P~p,p0 ,q!5
1

l̄ Gp0q~p1p01q!

Pp1p01q
2 Pp1q

1 2Pp01q
2 Pq

1

Ep1p01q
2 Eq

1
1

1

p0q

Eq1p
1

Eq
1

2
1

p0~p1p01q!

Ep01q
2

Ep1p01q
2

. ~G11!

A simpler expression holds at coinciding points:

E
0

1`

dLE
0

1`

dx0 e2p0x02qLP0L~x0 ,tux0,0!5
1

l̄ Gq~p01q!Ep01q
2 Eq

1
. ~G12!

A similar calculation in the case of absorbing boundaries (AA case! gives

P~p,p0 ,q!5
~Pq1p

1 Pq
22Pp1p01q

1 Pp01q
2 !

l̄ Gp0q~p1p01q!Ep1p01q
1 Eq

2
, ~G13!

as well as the semi-infinite limitL5` with an absorbing boundary atx50,

P0`~p,p0!5
~Pp

12Pp1p0

1 Pp0

2 !

l̄ Gp0~p1p0!Ep1p0

1
. ~G14!

At coinciding points in a semi-infinite system this becomes simply

E
0

1`

dx0 e2p0x0P~x0 ,tux0,0!5
Pp0

1

l̄ Gp0Ep0

1
.

In the RA case the result is

P~p,p0 ,q!5
~Eq1p

1 !Pq
2

p0qEq
2

1
~Pq

2Pp1p01q
2 Pq1p

1 2Pq1p0

2 !

l̄ Gp0q~p1q1p0!Ep1p01q
2 Eq

2
. ~G15!

The AR case is obtained by the global exchange of1 and 2 as well asx→L2x and x0→L2x0 ~i.e., p→2p, p0→
2p0 , andq→q1p1p0).
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