PHYSICAL REVIEW E VOLUME 59, NUMBER 1 JANUARY 1999

Curvature dependence of the surface tension of liquid and vapor nuclei

V. G. Baidakov and G. Sh. Boltachev
Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
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The surface tension and the Tolman length have been presented as series in terms of the interface curvature
c. The expansion has been limited by a linear ternt dor the Tolman length and a square one for the surface
tension. In the framework of the van der Waals capillarity theory the expansion coefficients have been ex-
pressed in terms of the planar interface characteristics. The coefficients asymptotic behavior has been derived
in the vicinity of the liquid-vapor critical point. For the van der Waals fluid, the results of expansions have been
compared with the data of direct numerical calculations. A wide curvature interval of the suitability of derived
formulas has been stated. This fact allows the use of them in the homogeneous nucleation theory to calculate
the critical nucleus formation workS1063-651X99)02201-1]

PACS numbsdrs): 47.10+g

[. INTRODUCTION and bubble surface tensiphl,17-19 resulted in an inverse
value (6,<0) and demonstrated an extremely small curva-
The problem of the dependence of droplets and bubbléure region of suitability of Eq(1).
surface tensiowr on the dividing surface curvature=1/R is In capillarity theory the functional density methda0—
the subject of numerous theoretidd7] and experimental 24] has recently gained wide interest. This method is based
[8—11] investigations. The variability of the approaches andupon rigorously proven theorems that justify the theoretical
methods has not yet lead to a consensus even on the gugliessibility of describing the properties of systems in thermo-
tative character of this dependence. dynamic equilibrium merely in terms of the one-body den-
It is necessary to take the curvature effect into account tsity. When irregularities are weak the nonlocal expressions
explain the initial stage of a phase transition when the nevwof thermodynamic potentials may be transformed to the local
phase nuclei have a size of the order of several tens to huierm of the gradient expansiofil]. The last approach is
dreds of angstroms. Experimental data on the nucleation iknown as the van der Waals capillarity theory.
simple classical liquid$12] indicate that at temperaturds In this work a different approximation to the curvature
~0.9T., whereT, is the critical temperature, the surface dependence of the surface tension has been obtained. This
tension of bubbles having radii 35-45 A is some 5-7% be-approximation has a wider curvature region of suitability
low the planar surface tensian,. This result is confirmed than Eq.(1). Within the van der Waals capillarity theory all
by investigations of tensile stresses at the capillary conderthe arbitrary parameters of the equation obtained are defined.
sation of liquid between mica cylindef8] and conflicts with  The approach developed makes it possible to describe the
experiments on the mesopore absorption of organic liquidgroperties of phase nuclei at the borders of spontaneous boil-
[9] where the surface tension of a curved surface was founthg of a superheated liquid and condensation of a supersatu-
to exceed the planar limit by 5-30%. Computer simulationgated vapor, which is where the Tolman formula is unusable.
[13-19 of droplets indicate that the surface tension de-

creases with a reduption of Fhe curvature raditR  ( Il. SURFACE TENSION EXPANSION
~8-12 A). However, in these simulations the problem of
the asymptotic behavior of the quantityat R— o as well as In the framework of the van der Waals capillarity theory
R—0 remains unsolved too. [25] when a spherical irregularity appears within a uniform
Tolman [16] defined the curvature dependeneéR) at  isotropic system the change of the grand potential is given by
largeR as the relations
o=0o/(1+26xC), (1) % dp)?
° ° AQ=4wf Mo+ x| 50| |r7dr, @
0

where the coefficiend, is known as the Tolman length and
is the distance between the equimolecular dividing surface
and the surface of tension. A statistical calculation by Kirk- Aw=p'=p+p(u—pn’). ()]
wood and Buff{2] and the quasithermodynamic approach by

Hill [3] gave the quantity,>0. This implies that the surface Herep(r) is the local density at a distanceaway from the
tension decreases monotonically with a reductiorRofor  nucleus centerp and i are the pressure and the chemical
droplets and the dependenegR) has a maximum for potential for a fluid constrained to have a uniform dengity
bubbles. The axiz of a Cartesian coordinate system is im- and « is the influence parameter, which is assumed to be
plied to direct normally to the planar interface and aim awaydensity independent. Hereinafter, one prime indicates the ini-
from a liquid to a vapor. In the framework of the van der tial metastable phase and two primes indicate the incipient
Waals capillarity theory numerical calculations of the dropletphase. The density profile(r) corresponding to the saddle
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point of the functional2) determines the critical nucleus one d%p, dp; dpo  Mo— i)
and is deduced from the solution of Euler-Lagrange equation 92 +4— az 4ZE= o (16)
d’p 2dp p—u
== (4) d?p4 dpz dpq dpo M3 13
dr r dr 2k g} 2
92 PO TR T g T o (7

with the borderline conditiong—p’ at r—o and dp/dr
—.0 atr—0 andr—o. In this case, the critical nucleus Integrating Eq(14) yields an equation for the calculation of

formation work is the planar density profile
W=min maxAQ{p(r)}. 5 dpo|?
{p(1)} ®) K(E) =Aw(pg)=Awg. (18
The expression foW as given by the Gibbs dividing surface
approach 26] has the form From Eq.(8), taking Egs.(11)—(13) and (18) into account,
we obtain expressions for the coefficients of the expansion
W=47R%c+ (p'—p")4mR3/3. ® (),
The nucleus pressu and hence the densip/ are defined = [dpg) 2
by the condition of the metastable and incipient phases ZKJ (E) d (19
chemical potential equality
" — ’ o d
p(p"T)=p(p',T). @ 01:4Kf <d—0) zdz+f (pi—py)dz
From Eq.(6) and taking Eqs(2) and (5) into account it
follows that the expression for the curved interface surface = o , ,
tension is + | “oi=pudze | potu—m+patao )
R re - re dpo d
=| (- —dr+J' '—p) 5zdr —Po 2P
fo (P"=P) g2 (PP +2x— 47 |9z (20
f‘” ' o) r20| 8 d
* 0 plp—pm)tr{gr] | gedr ® 0'2:sz (dpzo> 2dz+2J (p]—py1)z dz
At a small dividing surface curvature can be presented w 1 (o
as a series in terms of the quanttty where the first term is +2f (p;—p1)z dz+ 2 f (p3—p,)dz
the planar surface tension. Keeping terms up to ocdewe 0 e
have 1 (= =
) + 5 f (pé—pz)dZ+2f [PO(Ml_Mi)
o=0g+ o1C+0,C°. (9) 0 -
; - ; dpg d
To obtain the coefficients,, o1, ando, we shall put into + pr( o~ ) +2x dpo dpl 7 dz
use the formuld8). Following Fisher and Wortig27], let us Z qz
introduce a variable=r—R and expand the quantities of 1 (=
the relationg4) and(8) in a Taylor series + > f {Po(ﬁ«z—l/«éﬁzpl(#l—#i)
lr=c—z2+2z%c3+--- (10
+ ol )+2de° doz
p=pot p1C+ paCel2+ pac¥6t- -+ | (11) 2lHo~ Ko dz dz
d
W= o+ pmqC+ moC22+ a6+ - (12 +2k dp Zl) dz. (21)
P=pPo+ P1C+ P,c2/2+ pac/6+--- . (13

Hereinafter, the limits of integration have been expanded to
+o. The validity of this results from the functions(z)
tending quickly to a constant far from the interface.

From the thermodynamic expressidp=pdu, the coef-

With Egs.(10)—(12), from Eqg.(4) we arrive at a system of
equations for the functiong;(z),

d%p0  Mo— i ficientsp; in Eqg. (13) and u; ,p; of the expansion§ll) and
d79: 5 O, (14 (12) have been connected by the relations
K
2 g o P1=pot1, P2=poms2tpPii1,
521 zﬂ: M' (15) (22
d 2K P3=porst2p1uo+ popry .
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An interconnection of the coefficients andp; can be found

by expanding the functiop(p) in a Taylor series in terms of

quantity p— po aboutp=p,. Making use of Eq.(11) and
comparing the result of expansion with Eq2) yield

duo dMo d Mo
:U'lzpl_dpoy M2= P23 dpo P1 dp? 2
(23
dio d®uo  5du0
Hs=Pag 3P1P2d—pz-+P1d—pe—-

The expression&0) and(21) involve the bulk phase values

of u; andp;. Multiplying Eq. (15) by dpy/dz, integrating
the relation derived, and taking E3) into account gives
p1=pi=200/(pg=po)- (24)

In a similar manner, multiplying Eq.15) by zdpy/dz and
Eq. (16) by dpy/dz and taking the relationél4), (23), and

(24) into account, we find, on integration of the expressions

derived,

7= 20 fc %zd
dz dz PO~ Po dz

—oo

= [dpo)?
_ZKJ_OC(E) Z dz (25)
! n ! * dpo 2 ! 14 !
(Po_Po)Mzstfix az) ¢ dz—(p1—p1) s
= dpo dpy
- 16KJLOO E Edz (26)
From Egs.(25) and(26), introducing designations
1 Jx dpo
Z.=— ——z dz (27
* po—pg )= dz
2k (= [dpg\?
Z, 0_—0 w(a z dz (28
for the coefficientu,= x5, we obtain
wa(po=po) + 1i(p1—p1) =800(Ze—2, ) + 00z, .
(29)

The relationg22)—(29) make it possible to simplify the ex-
pressions(20) and (21). From Eq.(20), taking Egs.(14),
(22), and(24) into account, we arrive at

0-1:20-0(2*_26)' (30)
In a similar manner, the expressi€2il) in combination with
Eqgs.(14), (15), and(22) gives

pP1—P1

0,=d1+23,+ 33— J4+Uoﬁ(ze_ z,)
0

Po
+300(Ze— 7, )2+ 0022 (32)

Here the following designations have been introduced:
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= [d 2
lezxj (%) (z—2,)2dz, (32)

_'U‘_i = dpo 2

Jy= 5 j_w 4z —(z—z,)°dz, (33

pi (= dpy
J3—7 f_w dZ(z z,)dz (39
J4:2Kfp,,opldpo- (39

Po

As is evident from Eqgs(31)—(35), to calculateo, it is
necessary to have, apart frgg(z), the functionp4(z) (in-
tegralsJ; andJ,). Integrating the Eq(15) yields

d 1
p1_ 1 po— ﬂop llf(po), 36
dpo 2 Awo A(.UO
where
Po~Po
‘/’(PO)—_Zh\/— \/Awodpo‘f‘o'oﬁ. (37)
0

Hereinafterh= +1 for a bubble pj<pg) andh=—1 for a
drop (pg>pg)- The solution of the inhomogeneous differen-
tial equation(36) can be represented as

pP1=P1pat CVAw,

where p, ,, is a particular solution of E(36) andC is a
constant of integration whose value depends on choosing the
dividing surface positiorR. When substituting the solution
(38) into Egs.(31)—(35) the constant is eliminated. Thus,

to calculate the coefficientr,, it is reasonable to use the
particular solutiorp, ,, rather than the general solutign .

(38

Ill. THE CHOICE OF A DIVIDING SURFACE

As is evident from Eqgs(19) and (30), the values ofo
and o; are independent of the location Bf and hence the
Tolman equation(1) holds at all choices of a dividing sur-
face. A different situation arises with the coefficiery. An
increase ofR by some constant causes a variation in the
value of the last term on the right-hand side of the expression
(31). Differentiating Eq.(31) with respect toR, we obtain

d20'2
dR?

d0'2

iR (39

—_20'026., :20'0.

Here the square brackets denote that the surface tension
variation is caused by a mathematical displacement of the
dividing surface if the external conditions are constant. Dif-
ferentiating the relatiot9) and taking Eq(39) into account
yields

d20'_
drR?|

20'0
R

dO' _20'02*
dr|- R?Z

(40)
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The dependence of the surface tension on the location of thHEhe relation(48) can be written in a more compact form.
dividing surface has a minimurr=0, whenz,=0. That Multiplying Eq. (15) by z°dp,/dz and integrating gives

is, the quantityz, introduced in Eq.(28) determines the

tension surface location at the planar interfg2#. Equation 4 f* dpidpo dz=0 49
(27) determines the surface of zero self-adsorption, namely, ®)_ . dz dz 272,)dz=0. (49)
the total amount of matter placed along the dividing surface

z. will not vary by replacing the transition region with the Substituting the expressiai38) in Eq. (49), we obtain
corresponding volumes of homogeneous phases. This surface

is known as the equimolecular dividing surface. In other _4 [ —0pipa,

words, the differencez,—z, is the Tolman length of the C*_oo e Awo =, (272)dz (50
planar interfaced,. Considering the preceding, from Eg.

(31) we have foro, » A knowledge of the constar@, makes it possible not only

to calculate the curvature dependence of the Tolman lefigth
at a loosely curved interface but also to find the coefficient
o, » from formulas(44) and (47) when the general expres-
sion (41) is not in use.

Gibbs [26] obtained a differential relation that connects

0 =1+ 2J2+J3—J4+ao% Sot+4agd2. (41)
0 0

o, to the tension surface curvatwwg = 1/R, . This relation, IV. THE VICINITY OF A CRITICAL POINT
as applied to a one-component system, was represented by
Tolman[16] as To calculate the curvature dependence of the surface ten-
sion by the Tolman equatiofil) as well as the extended
do, —28(1+éc, +6%c2/3)dc, expansion(9), it is necessary to know the planar density
on  1+25(1+0c, + BzciIS)c* , 6=Re—R,, profile pp(z). Given the equation of state, the solution of this

(42) problem requires integration of the differential equatit8),

which usually should be done numerically. However, in the

whereéis the Tolman length at a curved interface ddis  Vicinity of a critical point one can obtain an analytical solu-
the radius of the equimolecular dividing surface. Expandingion of Eq.(18) and hence connect the coefficientsto the

8in a Taylor series in terms of the valag , thermodynamic state conditions.
Let us represent the Helmholtz free energy denffpp)
0=080+ 8,1Cy +-- (43 as a series in terms of the reduced temperafurd/T,— 1

on substituting Eq(43) in Eq. (42) and integrating we arrive and densitypo=po/poc—1:

at the expressiof®), wherec=c, and %

f= u.."'-:‘rl-, 51
0-*2:0-0(35(2)_5*1)- (44) i,j2=0 ijPo (51

The parameteis, ; can be calculated independently of where the expansion coefficientsy=uz,=0, u,,>0, and
o,». To do this we take advantage of the definition of anu,,>0. Equal conditions of the pressures and the chemical
equimolecular dividing surface at a curved surface potentials give for the densities of coexisting phaggsind

3 %)
| =prrear

1/3 Po
. 45 -
p'—p" Jo 49 o Uz
~ni=%h
Po 2Uy0

e

I+

4ug 4“4210

U3zg Uzluso) 2

Introducing the variable=r —R, and taking the expansion

(12) written in terms of the tension surface curvatageinto a; 7a, 3a; 3a,

account, from Eq(45) we obtain Thhg| — 2716 8 16
J,+J p1—P1 as ba
RezR*+ze—c*( R e Ly S b psiad X3 (52)
Po™ Po 2 8
(46)
with
Comparing the result derived and E¢J3) yields
’ 17 = _’:‘I—, (53)
Jo+J;  , p1—pl
5*12—0——50— 7 60- (47) 2
0 Po~ Po Uz U21Usq U21Uep
alzu_v 2= A az= 2.
The calculation of the value df, ; as distinct from that of 21 40 40
o, requires a knowledge of the consta®yf . Substituting (54)
Egs.(47) and(41) into Eq.(44) results in a gauge condition a,= Us1 ' aszu_“l, a6:_2_u31u50.
for the functionp, 1(2): Uz1U40 Uso Uso

J;+3,—3,=0. (48 Introducing the variable
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®=h(2po—Po~Po)! (o~ Po), (55) P1pa _ [Uso F o [1
_3hp_(2m P =1-¢ 8(I)+3(1 () )In 1+

from the expressiofi3) we have

N (1- ®?)In(1— d?)
8A000“40 4 Uzi87 ol 384 5az “1\160 5
-2 28N gy, P g o &
21 40 3a2q)(1 ®2)] —(I))+89a2
- - n —=
—ag(1—Pd?)+2a5—4a,|. (56) 32 +o 80
19%; ag 5ay 67
Formulas(19) and (52)—(56) make it possible to calculate 20 2 8
the planar surface tension
) Now, from Eq.(50) we obtain for the constar@,
PocUz21
0o= 3uc V2kupe°. (57)
40 C, =he?{a,[198 In2) — 561+ 72]/160
On substituting in Eq(18) the nondimensional variableb —ag[12 In(2)—19]/10}. (68)
andx,
x=7l¢, _ -1 2k, 58 The relations(47), (55), and (59)—(68) make it possible to
£ TP PocNekTz 8 calculate the value of the coefficiedt, ; of the Tolman
one seeks a solution length expansion
(D:q)0+(bl¢+q)2¢2' (59) 5*1 _ 772 QDZ a17T2 a2 2 49
2 127473 "51" 16
Then
5 @2\ aym?
®y=h tanh(x), (60) ta 34| "3 (69
—Vay(1-®3)[g,+In(1—D3)]/8, 61
Vaql olgutIn o)l (6) and hence the value of the coefficien}, of Eq. (9).
®,  3hx[4a, ay agq)
102 8 |3 "% g| T3 Do V. NUMERICAL CALCULATIONS
a, Numerical calculations have been performed for the van
— 3—2<I> oln?(1—®3)— 3—2<I>O(g§+ 29,—6) der Waals fluid, the Helmholtz free energy density of which
is
——¢o(1+91)|n(1 ®F)+gy, (62)

——=70In - ——QZ+Q®(T) (70)
. . . pockeTc 3-p

where g, and g, are the constants of integration. Taking

advantage of the deduced solution and definitit®i4 and _ _
(28) makes it possible to calculate the locations of theHere 7=T/T., @=po/poc, and O(7) is the density-

equimolecular dividing surface and the tension surface  independent quantity. From Eq&7), (58), (66), and (69),
making use of Eq(70), we obtain

Ze=hep\a[g;+2In(2)—2]/8—hsp?g,, (63

00=8pocVkpockeTc@, (72)
z, =heg\a,[g,+2In(2)—7/6])/8—he p3g,. (64)
Settingz, equal to zero gives the constants of integration s _E [KPogc 79
079 VkgT (72
0,=7/6—2In(2), ¢g,=0. (65)
From Eqs.(63) and(64), for the Tolman lengths, we have Sx1_ 77_2+ ‘Lz @—67772 o= 4 L [KPoc
> 12 500\ 2 ’ ¢ VkgT.
S=—h 5 K Usgg 66 (73)
o=—hzV Unoliag”0¢ (66)

Figure 1 demonstrates the comparison of the droplet and
Integrating Eq.(36) and taking Eq(56) into account yields bubble dependence¥R) obtained when directly integrating
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FIG. 1. Tolman length vs the curvature of the tension surface FIG. 2. Surface tension vs the curvature of the tension surface
obtained via numerical integration of E@) with a calculation by  obtained via numerical integration of Ef) with a calculation by
Egs.(27) and(28) (solid line), prediction of the formulagd3), (72),  Eq. (8) (solid line), prediction of the formuld9) (dashed ling and
and (73 (dashed ling and the planar valug= g, (dotted ling: prediction of the Tolman equatiofotted ling: T=0.9T, for (b)
T=0.9T, for (b) bubbles andd) droplets. bubbles andd) droplets.

Eq. (4) and calculating by formul&43) and the expressions \yaals fluid numerical calculations indicate a wide region of
(72) and(73). Figure 2 demonstrates a similar comparison ofg jitahility of Eq.(9) with respect to the interface curvature.

the surface tension. At a surface tension deviation of 7% particular, the expansiofd) may be recommended for

EBO)TstT:sEI?r?:r: Igg(t)/:hi(ra] \(/ae;lrlcj)?. C,Zfrngglfguch;hzseﬁ?éﬁszgo?hi application when calculating thg .nucleus formation WOI’|'( a.t
becomes possible due to the presence of an extended rec ri]-e borders of spontaneous boiling of a superheated liquid
linear portion of the dependendR) (see Fig. 1 and condensation of a supersaturated vapor at a nucleation

ate up to 18° cm 3s™1. Here, as illustrated if10] and

The van der Waals equation of state is that of the mearE - S
field theory. Thus moving away from the critical point does [12] the critical bubble surface tension is less by 5-7% than
its planar limit. A deviation of the results of E¢9) and a

not result in any perceptible loss in accuracy. SoTat : . -

=0.5T, the values of5, ; given by Eq.(47) when directly ~ "gorous solution would be in the region of 0.2%. .

integrating Eq/(4) and from Eq.(73) differ by less than 5%. An approach analogous to that used by us when obtaining
the coefficiento, of the formula(9) was applied by Blokhuis

and BedeauX29]. However, as distinct from us, the ex-
VI. CONCLUSIONS panded value was not the excess grand poteatinbut the

A thermodynamic treatment leads to the differential equa—excess Helmholtz free energy for a unit interface, which is
the surface tension at an equimolecular dividing surface. The

tion (42), which defines the curvature dependence of the sur- . . )
face tension. This equation can be integrated if the valug of doubtiess advantage of Re29] is the introduction of a

is a known function oR. In the framework of the van der Sduared Laplacian term in the expansion of the free energy.
Waals capillarity theory numerical calculations indicate However, as distinct from the formuk@1), the expression
[18,19 that the dependend¥R) is nearly linear over a wide obtained by Blokhuis and Bedea{&9] makes it impossible
range of dividing surface curvatures. When the expansiof calculate the value- at an arbitrary dividing surface.

S(R) is limited by a linear term the surface tension depen- It must be noted that the gradient approach presented in
dence has the form of E¢9). The coefficients of expansions the paper is rigorous only at weak gradients, which is in the
(9) and (43) are defined in terms of planar interface charac-vicinity of the critical point. At low temperatures the appli-
teristics. In this work, these coefficients are calculated withincation of the functional density modg20-23 is more cor-

the van der Waals capillarity theory. Keeping terms up torect. However, as can be seen from the comparison of the
orderc?, the expression forr at an arbitrary dividing surface gradient expansion with the functional density model on the
is obtained Egs.(9), (19), (30), and(31)] and the linear term  Tolman lengths, [24], the results of both approaches are
of the Tolman length expansion with respect to the tensiomualitatively similar. The quantitative difference & is un-
surface curvature is calculated. The latter makes it possiblger 10%. This causes the curvature dependence of the sur-

to simplify the expressiort9) when writing it for a special  face tension to be only in negligible errors.
dividing surface, the surface of tensipgs.(9), (19), (30),

(44), and(47)].

The values of5,, o, and the asymptotic dependence of
coefficients, 1(T) have been calculated with the use of the
classical expansion of the Helmholtz free energy in the vi- The authors thank RFBR for support of this work through
cinity of the liquid-vapor critical point. For the van der Grant No. 96-02-19375.
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