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Curvature dependence of the surface tension of liquid and vapor nuclei

V. G. Baidakov and G. Sh. Boltachev
Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia

~Received 1 July 1998!

The surface tension and the Tolman length have been presented as series in terms of the interface curvature
c. The expansion has been limited by a linear term onc for the Tolman length and a square one for the surface
tension. In the framework of the van der Waals capillarity theory the expansion coefficients have been ex-
pressed in terms of the planar interface characteristics. The coefficients asymptotic behavior has been derived
in the vicinity of the liquid-vapor critical point. For the van der Waals fluid, the results of expansions have been
compared with the data of direct numerical calculations. A wide curvature interval of the suitability of derived
formulas has been stated. This fact allows the use of them in the homogeneous nucleation theory to calculate
the critical nucleus formation work.@S1063-651X~99!02201-1#

PACS number~s!: 47.10.1g
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I. INTRODUCTION

The problem of the dependence of droplets and bub
surface tensions on the dividing surface curvaturec51/R is
the subject of numerous theoretical@1–7# and experimenta
@8–11# investigations. The variability of the approaches a
methods has not yet lead to a consensus even on the q
tative character of this dependence.

It is necessary to take the curvature effect into accoun
explain the initial stage of a phase transition when the n
phase nuclei have a size of the order of several tens to
dreds of angstroms. Experimental data on the nucleatio
simple classical liquids@12# indicate that at temperaturesT
'0.9Tc , where Tc is the critical temperature, the surfac
tension of bubbles having radii 35–45 Å is some 5–7%
low the planar surface tensions0 . This result is confirmed
by investigations of tensile stresses at the capillary cond
sation of liquid between mica cylinders@8# and conflicts with
experiments on the mesopore absorption of organic liqu
@9# where the surface tension of a curved surface was fo
to exceed the planar limit by 5–30%. Computer simulatio
@13–15# of droplets indicate that the surface tension d
creases with a reduction of the curvature radiusR
'8 – 12 Å). However, in these simulations the problem
the asymptotic behavior of the quantitys at R→` as well as
R→0 remains unsolved too.

Tolman @16# defined the curvature dependences(R) at
largeR as

s5s0 /~112d0c!, ~1!

where the coefficientd0 is known as the Tolman length an
is the distance between the equimolecular dividing surf
and the surface of tension. A statistical calculation by Ki
wood and Buff@2# and the quasithermodynamic approach
Hill @3# gave the quantityd0.0. This implies that the surfac
tension decreases monotonically with a reduction ofR for
droplets and the dependences(R) has a maximum for
bubbles. The axisz of a Cartesian coordinate system is im
plied to direct normally to the planar interface and aim aw
from a liquid to a vapor. In the framework of the van d
Waals capillarity theory numerical calculations of the drop
PRE 591063-651X/99/59~1!/469~7!/$15.00
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and bubble surface tension@11,17–19# resulted in an inverse
value (d0,0) and demonstrated an extremely small curv
ture region of suitability of Eq.~1!.

In capillarity theory the functional density method@20–
24# has recently gained wide interest. This method is ba
upon rigorously proven theorems that justify the theoreti
possibility of describing the properties of systems in therm
dynamic equilibrium merely in terms of the one-body de
sity. When irregularities are weak the nonlocal expressi
of thermodynamic potentials may be transformed to the lo
form of the gradient expansion@11#. The last approach is
known as the van der Waals capillarity theory.

In this work a different approximation to the curvatu
dependence of the surface tension has been obtained.
approximation has a wider curvature region of suitabil
than Eq.~1!. Within the van der Waals capillarity theory a
the arbitrary parameters of the equation obtained are defi
The approach developed makes it possible to describe
properties of phase nuclei at the borders of spontaneous
ing of a superheated liquid and condensation of a supers
rated vapor, which is where the Tolman formula is unusab

II. SURFACE TENSION EXPANSION

In the framework of the van der Waals capillarity theo
@25# when a spherical irregularity appears within a unifor
isotropic system the change of the grand potential is given
the relations

DV54pE
0

`FDv1kS dr

dr D
2G r 2dr, ~2!

Dv5p82p1r~m2m8!. ~3!

Herer(r ) is the local density at a distancer away from the
nucleus center,p and m are the pressure and the chemic
potential for a fluid constrained to have a uniform densityr,
and k is the influence parameter, which is assumed to
density independent. Hereinafter, one prime indicates the
tial metastable phase and two primes indicate the incip
phase. The density profiler(r ) corresponding to the saddl
469 ©1999 The American Physical Society
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point of the functional~2! determines the critical nucleus on
and is deduced from the solution of Euler-Lagrange equa

d2r

dr2 1
2

r

dr

dr
5

m2m8

2k
~4!

with the borderline conditionsr→r8 at r→` and dr/dr
→0 at r→0 and r→`. In this case, the critical nucleu
formation work is

W5min maxDV$r~r !%. ~5!

The expression forW as given by the Gibbs dividing surfac
approach@26# has the form

W54pR2s1~p82p9!4pR3/3. ~6!

The nucleus pressurep9 and hence the densityr9 are defined
by the condition of the metastable and incipient pha
chemical potential equality

m~p9,T!5m~p8,T!. ~7!

From Eq. ~6! and taking Eqs.~2! and ~5! into account it
follows that the expression for the curved interface surf
tension is

s5E
0

R

~p92p!
r 2

R2 dr1E
R

`

~p82p!
r 2

R2 dr

1E
0

`Fr~m2m8!1kS dr

dr D
2G r 2

R2 dr. ~8!

At a small dividing surface curvatures can be presented
as a series in terms of the quantityc, where the first term is
the planar surface tension. Keeping terms up to orderc2, we
have

s5s01s1c1s2c2. ~9!

To obtain the coefficientss0 , s1 , ands2 we shall put into
use the formula~8!. Following Fisher and Wortis@27#, let us
introduce a variablez5r 2R and expand the quantities o
the relations~4! and ~8! in a Taylor series

1/r 5c2zc21z2c31¯ , ~10!

r5r01r1c1r2c2/21r3c3/61¯ , ~11!

m5m01m1c1m2c2/21m3c3/61¯ , ~12!

p5p01p1c1p2c2/21p3c3/61¯ . ~13!

With Eqs. ~10!–~12!, from Eq. ~4! we arrive at a system o
equations for the functionsr i(z),

d2r0

dz2 5
m02m08

2k
, ~14!

d2r1

dz2 12
dr0

dz
5

m12m18

2k
, ~15!
n

s

e

d2r2

dz2 14
dr1

dz
24z

dr0

dz
5

m22m28

2k
, ~16!

d2r3

dz2 16
dr2

dz
212z

dr1

dz
112z2

dr0

dz
5

m32m38

2k
. ~17!

Integrating Eq.~14! yields an equation for the calculation o
the planar density profile

kS dr0

dz D 2

5Dv~r0![Dv0 . ~18!

From Eq.~8!, taking Eqs.~11!–~13! and ~18! into account,
we obtain expressions for the coefficients of the expans
~9!,

s052kE
2`

` S dr0

dz D 2

dz, ~19!

s154kE
2`

` S dr0

dz D 2

z dz1E
2`

0

~p192p1!dz

1E
0

`

~p182p1!dz1E
2`

` Fr0~m12m18!1r1~m02m08!

12k
dr0

dz

dr1

dz Gdz, ~20!

s252kE
2`

` S dr0

dz D 2

z2dz12E
2`

0

~p192p1!z dz

12E
0

`

~p182p1!z dz1
1

2 E
2`

0

~p292p2!dz

1
1

2 E
0

`

~p282p2!dz12E
2`

` Fr0~m12m18!

1r1~m02m08!12k
dr0

dz

dr1

dz Gz dz

1
1

2 E
2`

` Fr0~m22m28!12r1~m12m18!

1r2~m02m08!12k
dr0

dz

dr2

dz

12kS dr1

dz D 2Gdz. ~21!

Hereinafter, the limits of integration have been expanded
6`. The validity of this results from the functionsr i(z)
tending quickly to a constant far from the interface.

From the thermodynamic expressiondp5rdm, the coef-
ficientspi in Eq. ~13! andm i ,r i of the expansions~11! and
~12! have been connected by the relations

p15r0m1 , p25r0m21r1m1 ,
~22!

p35r0m312r1m21r2m1 .
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An interconnection of the coefficientsm i andr i can be found
by expanding the functionm~r! in a Taylor series in terms o
quantity r2r0 about r5r0 . Making use of Eq.~11! and
comparing the result of expansion with Eq.~12! yield

m15r1

dm0

dr0
, m25r2

dm0

dr0
1r1

2 d2m0

dr0
2 ,

~23!

m35r3

dm0

dr0
13r1r2

d2m0

dr0
2 1r1

3 d3m0

dr0
3 .

The expressions~20! and~21! involve the bulk phase value
of m i and pi . Multiplying Eq. ~15! by dr0 /dz, integrating
the relation derived, and taking Eq.~23! into account gives

m185m1952s0 /~r092r08!. ~24!

In a similar manner, multiplying Eq.~15! by zdr0 /dz and
Eq. ~16! by dr0 /dz and taking the relations~14!, ~23!, and
~24! into account, we find, on integration of the expressio
derived,

22kE
2`

` dr0

dz

dr1

dz
dz5

s0

r082r09
E

2`

` dr0

dz
z dz

22kE
2`

` S dr0

dz D 2

z dz, ~25!

~r082r09!m2858kE
2`

` S dr0

dz D 2

z dz2~r182r19!m18

216kE
2`

` dr0

dz

dr1

dz
dz. ~26!

From Eqs.~25! and ~26!, introducing designations

ze5
1

r082r09
E

2`

` dr0

dz
z dz, ~27!

z* 5
2k

s0
E

2`

` S dr0

dz D 2

z dz ~28!

for the coefficientm285m29 , we obtain

m28~r082r09!1m18~r182r19!58s0~ze2z* !1s0z* .
~29!

The relations~22!–~29! make it possible to simplify the ex
pressions~20! and ~21!. From Eq. ~20!, taking Eqs.~14!,
~22!, and~24! into account, we arrive at

s152s0~z* 2ze!. ~30!

In a similar manner, the expression~21! in combination with
Eqs.~14!, ~15!, and~22! gives

s25J112J21J32J41s0

r182r19

r082r09
~ze2z* !

13s0~ze2z* !21s0ze
2 . ~31!

Here the following designations have been introduced:
s

J152kE
2`

` S dr0

dz D 2

~z2z* !2dz, ~32!

J25
m18

2 E
2`

` dr0

dz
~z2z* !2dz, ~33!

J35
m18

2 E
2`

` dr1

dz
~z2z* !dz, ~34!

J452kE
r09

r08r1dr0 . ~35!

As is evident from Eqs.~31!–~35!, to calculates2 it is
necessary to have, apart fromr0(z), the functionr1(z) ~in-
tegralsJ3 andJ4!. Integrating the Eq.~15! yields

dr1

dr0
5

1

2

m02m08

Dv0
r11

c~r0!

Dv0
, ~36!

where

c~r0!522hAkE
r09

r0ADv0dr01s0

r02r09

r082r09
. ~37!

Hereinafter,h511 for a bubble (r09,r08) andh521 for a
drop (r09.r08). The solution of the inhomogeneous differe
tial equation~36! can be represented as

r15r1,pa1CADv0, ~38!

wherer1,pa is a particular solution of Eq.~36! and C is a
constant of integration whose value depends on choosing
dividing surface positionR. When substituting the solution
~38! into Eqs.~31!–~35! the constantC is eliminated. Thus,
to calculate the coefficients2 , it is reasonable to use th
particular solutionr1,pa rather than the general solutionr1 .

III. THE CHOICE OF A DIVIDING SURFACE

As is evident from Eqs.~19! and ~30!, the values ofs0
and s1 are independent of the location ofR and hence the
Tolman equation~1! holds at all choices of a dividing sur
face. A different situation arises with the coefficients2 . An
increase ofR by some constant causes a variation in t
value of the last term on the right-hand side of the express
~31!. Differentiating Eq.~31! with respect toR, we obtain

Fds2

dR G522s0ze , Fd2s2

dR2 G52s0 . ~39!

Here the square brackets denote that the surface ten
variation is caused by a mathematical displacement of
dividing surface if the external conditions are constant. D
ferentiating the relation~9! and taking Eq.~39! into account
yields

Fds

dRG5
2s0z*

R2 , Fd2s

dR2G5
2s0

R2 . ~40!
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The dependence of the surface tension on the location o
dividing surface has a minimums5s* when z* 50. That
is, the quantityz* introduced in Eq.~28! determines the
tension surface location at the planar interface@28#. Equation
~27! determines the surface of zero self-adsorption, nam
the total amount of matter placed along the dividing surfa
ze will not vary by replacing the transition region with th
corresponding volumes of homogeneous phases. This su
is known as the equimolecular dividing surface. In oth
words, the differenceze2z* is the Tolman length of the
planar interfaced0 . Considering the preceding, from Eq
~31! we have fors* 2

s* 25J112J21J32J41s0

r182r19

r082r09
d014s0d0

2 . ~41!

Gibbs @26# obtained a differential relation that connec
s* to the tension surface curvaturec* 51/R* . This relation,
as applied to a one-component system, was represente
Tolman @16# as

ds*
s*

5
22d~11dc* 1d2c

*
2 /3!dc*

112d~11dc* 1d2c
*
2 /3!c*

, d5Re2R* ,

~42!

whered is the Tolman length at a curved interface andRe is
the radius of the equimolecular dividing surface. Expand
d in a Taylor series in terms of the valuec* ,

d5d01d* 1c* 1¯ , ~43!

on substituting Eq.~43! in Eq. ~42! and integrating we arrive
at the expression~9!, wherec5c* and

s* 25s0~3d0
22d* 1!. ~44!

The parameterd* 1 can be calculated independently
s* 2 . To do this we take advantage of the definition of
equimolecular dividing surface at a curved surface

Re5F 3

r82r9
E

0

`

~r82r!r 2drG1/3

. ~45!

Introducing the variablez5r 2R* and taking the expansio
~11! written in terms of the tension surface curvaturec* into
account, from Eq.~45! we obtain

Re5R* 1ze2c* S J21J3

s0
1d0

21
r182r19

r082r09
d0D 1¯ .

~46!

Comparing the result derived and Eq.~43! yields

d* 152
J21J3

s0
2d0

22
r182r19

r082r09
d0 . ~47!

The calculation of the value ofd* 1 as distinct from that of
s* 2 requires a knowledge of the constantC* . Substituting
Eqs.~47! and~41! into Eq. ~44! results in a gauge conditio
for the functionr* 1(z):

J11J22J450. ~48!
he

y,
e

ce
r

by

g

The relation~48! can be written in a more compact form
Multiplying Eq. ~15! by z2dr0 /dz and integrating gives

4kE
2`

` dr1

dz

dr0

dz
~z2z* !dz50. ~49!

Substituting the expression~38! in Eq. ~49!, we obtain

C* 5
4

s0
E

2`

`
ADv0

dr1,pa

dz
~z2z* !dz. ~50!

A knowledge of the constantC* makes it possible not only
to calculate the curvature dependence of the Tolman lengd
at a loosely curved interface but also to find the coeffici
s* 2 from formulas~44! and ~47! when the general expres
sion ~41! is not in use.

IV. THE VICINITY OF A CRITICAL POINT

To calculate the curvature dependence of the surface
sion by the Tolman equation~1! as well as the extende
expansion~9!, it is necessary to know the planar dens
profile r0(z). Given the equation of state, the solution of th
problem requires integration of the differential equation~18!,
which usually should be done numerically. However, in t
vicinity of a critical point one can obtain an analytical sol
tion of Eq. ~18! and hence connect the coefficientss i to the
thermodynamic state conditions.

Let us represent the Helmholtz free energy densityf (r0)
as a series in terms of the reduced temperatureT̃5T/Tc21
and densityr̃05r0 /r0,c21:

f 5 (
i , j 50

`

ui j r̃0
i T̃ j , ~51!

where the expansion coefficientsu205u3050, u21.0, and
u40.0. Equal conditions of the pressures and the chem
potentials give for the densities of coexisting phasesr̃08 and
r̃09

r̃08

r̃09
J 56hA u21

2u40
w1S u31

4u40
2

u21u50

4u40
2 Dw2

6hl1S 2
a1

2
1

7a2

16
2

3a3

8
1

3a4

16

1
a5

2
2

5a6

8 Dw3, ~52!

with

w5A2T̃, ~53!

a15
u22

u21
, a25

u21u50
2

u40
3 , a35

u21u60

u40
2 ,

~54!

a45
u31

u21u40
, a55

u41

u40
, a65

u31u50

u40
2 .

Introducing the variable
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F5h~2r̃02 r̃082 r̃09!/~ r̃082 r̃09!, ~55!

from the expression~3! we have

8Dv0u40

u21
2 ~12F2!2 52w41w5Au21a2

2u40
F1w6F 3a4

8l1
4 2

5a7

2
a2

2a3~12F2!12a624a1G . ~56!

Formulas~19! and ~52!–~56! make it possible to calculat
the planar surface tension

s05
2r0,cu21

3u40
A2ku21w

3. ~57!

On substituting in Eq.~18! the nondimensional variablesF
andx,

x5z/«, «5w21r0,cA2k/u21, ~58!

one seeks a solution

F5F01F1w1F2w2. ~59!

Then

F05h tanh~x!, ~60!

F152Aa2~12F0
2!@g11 ln~12F0

2!#/8, ~61!

F2

12F0
2 52

3hx

8 S 4a1

3
1a22a32

a4

8 D2
a3

4
F0

2
a2

32
F0ln2~12F0

2!2
a2

32
F0~g1

212g126!

2
a2

16
F0~11g1!ln~12F0

2!1g2 , ~62!

where g1 and g2 are the constants of integration. Takin
advantage of the deduced solution and definitions~27! and
~28! makes it possible to calculate the locations of t
equimolecular dividing surface and the tension surface

ze5h«wAa2@g112 ln~2!22#/82h«w2g2 , ~63!

z* 5h«wAa2@g112 ln~2!27/6#/82h«w2g2 . ~64!

Settingz* equal to zero gives the constants of integration

g157/622 ln~2!, g250. ~65!

From Eqs.~63! and ~64!, for the Tolman lengthd0 we have

d052h
5

24
A k

u40

u50

u40
r0,c . ~66!

Integrating Eq.~36! and taking Eq.~56! into account yields
23h
r1,pa

r0,c
2 Au40

k
512w

Aa2

16 F8F13~12F2!lnS 12F

11F D G
1w2F S 99a2

160
2

3a3

5 D ~12F2!ln~12F2!

2
3a2

32
F~12F2!lnS 12F

11F D1
89a2

80

2
19a3

20
1

a6

2
2

5a7

8 G . ~67!

Now, from Eq.~50! we obtain for the constantC*

C* 5hw2$a2@198 ln~2!25611p2#/160

2a3@12 ln~2!219#/10%. ~68!

The relations~47!, ~55!, and ~59!–~68! make it possible to
calculate the value of the coefficientd* 1 of the Tolman
length expansion

d* 1

«2 5
p2

12
1

w2

4 Fa1p2

3
1

a2

5 S p22
49

16D
1a3S 5

3
2

p2

4 D2
a4p2

8 G ~69!

and hence the value of the coefficients* 2 of Eq. ~9!.

V. NUMERICAL CALCULATIONS

Numerical calculations have been performed for the v
der Waals fluid, the Helmholtz free energy density of whi
is

f

r0,ckBTc
5t% lnS %

32% D2
9

8
%21%Q~t!. ~70!

Here t5T/Tc , %5r0 /r0,c , and Q~t! is the density-
independent quantity. From Eqs.~57!, ~58!, ~66!, and ~69!,
making use of Eq.~70!, we obtain

s058r0,cAkr0,ckBTcw
3, ~71!

d05
h

9
Akr0,c

kBTc
, ~72!

d* 1

«2 5
p2

12
1

w2

500 S 951

2
267p2D , «5

4

3w
Akr0,c

kBTc
.

~73!

Figure 1 demonstrates the comparison of the droplet
bubble dependencesd(R) obtained when directly integrating
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Eq. ~4! and calculating by formula~43! and the expression
~72! and~73!. Figure 2 demonstrates a similar comparison
the surface tension. At a surface tension deviation of
from the planar limit the value ofs given by the expression
~9! is less than 0.2% in error. An accuracy as high as
becomes possible due to the presence of an extended
linear portion of the dependenced(R) ~see Fig. 1!.

The van der Waals equation of state is that of the m
field theory. Thus moving away from the critical point do
not result in any perceptible loss in accuracy. So atT
50.5Tc the values ofd* 1 given by Eq.~47! when directly
integrating Eq.~4! and from Eq.~73! differ by less than 5%.

VI. CONCLUSIONS

A thermodynamic treatment leads to the differential eq
tion ~42!, which defines the curvature dependence of the s
face tension. This equation can be integrated if the valued
is a known function ofR. In the framework of the van de
Waals capillarity theory numerical calculations indica
@18,19# that the dependenced(R) is nearly linear over a wide
range of dividing surface curvatures. When the expans
d(R) is limited by a linear term the surface tension depe
dence has the form of Eq.~9!. The coefficients of expansion
~9! and ~43! are defined in terms of planar interface chara
teristics. In this work, these coefficients are calculated wit
the van der Waals capillarity theory. Keeping terms up
orderc2, the expression fors at an arbitrary dividing surface
is obtained@Eqs.~9!, ~19!, ~30!, and~31!# and the linear term
of the Tolman length expansion with respect to the tens
surface curvature is calculated. The latter makes it poss
to simplify the expression~9! when writing it for a special
dividing surface, the surface of tension@Eqs.~9!, ~19!, ~30!,
~44!, and~47!#.

The values ofd0 , s0 , and the asymptotic dependence
coefficientd* 1(T) have been calculated with the use of t
classical expansion of the Helmholtz free energy in the
cinity of the liquid-vapor critical point. For the van de

FIG. 1. Tolman length vs the curvature of the tension surf
obtained via numerical integration of Eq.~4! with a calculation by
Eqs.~27! and~28! ~solid line!, prediction of the formulas~43!, ~72!,
and ~73! ~dashed line!, and the planar valued5d0 ~dotted line!:
T50.9Tc for (b) bubbles and (d) droplets.
f
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Waals fluid numerical calculations indicate a wide region
suitability of Eq.~9! with respect to the interface curvatur
In particular, the expansion~9! may be recommended fo
application when calculating the nucleus formation work
the borders of spontaneous boiling of a superheated liq
and condensation of a supersaturated vapor at a nucle
rate up to 1020 cm23 s21. Here, as illustrated in@10# and
@12#, the critical bubble surface tension is less by 5–7% th
its planar limit. A deviation of the results of Eq.~9! and a
rigorous solution would be in the region of 0.2%.

An approach analogous to that used by us when obtain
the coefficients2 of the formula~9! was applied by Blokhuis
and Bedeaux@29#. However, as distinct from us, the ex
panded value was not the excess grand potentialDV but the
excess Helmholtz free energy for a unit interface, which
the surface tension at an equimolecular dividing surface.
doubtless advantage of Ref.@29# is the introduction of a
squared Laplacian term in the expansion of the free ene
However, as distinct from the formula~31!, the expression
obtained by Blokhuis and Bedeaux@29# makes it impossible
to calculate the values at an arbitrary dividing surface.

It must be noted that the gradient approach presente
the paper is rigorous only at weak gradients, which is in
vicinity of the critical point. At low temperatures the appl
cation of the functional density model@20–23# is more cor-
rect. However, as can be seen from the comparison of
gradient expansion with the functional density model on
Tolman lengthd0 @24#, the results of both approaches a
qualitatively similar. The quantitative difference ofd0 is un-
der 10%. This causes the curvature dependence of the
face tension to be only in negligible errors.
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e FIG. 2. Surface tension vs the curvature of the tension surf
obtained via numerical integration of Eq.~4! with a calculation by
Eq. ~8! ~solid line!, prediction of the formula~9! ~dashed line!, and
prediction of the Tolman equation~dotted line!: T50.9Tc for (b)
bubbles and (d) droplets.
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