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A finite volume scheme for the lattice Boltzmann method is developed for unstructured triangular meshes in
two dimensions. The accuracy of this new scheme is demonstrated by comparing the numerical results with the
exact solutions to the Navier-Stokes equations for Taylor vortex flow, shear flow between two parallel plates,
shear flow between two rotating cylinders, and Poiseuille flow. The agreement between the numerical and
analytical results is very good for each of these t§84063-651X99)07804-9

PACS numbefs): 47.10:+g, 47.11+j, 05.20.Dd

I. INTRODUCTION velocities—eight velocities pointing to the nearest neighbors
plus one rest velocity; in a two-dimensional triangular lattice
In recent years the lattice Boltzmann metha@BM) has  seven velocities are used—six directions for the velocities
attracted much interest in the physics and engineering conpoint to the nearest neighbors along with a rest velocity. This
munities. As a different approach from the conventionalarrangement of the discrete velocities prescribes that particle
computational fluid dynamic¢CFD), the LBM has been density distributions move exactly from one lattice point to
demonstrated to be successful in simulations of fluid flowan adjacent point.
and other types of complex physical systefis4]. In par- To remove this constraint, during the past few years sev-
ticular, this method is promising for simulations of multi- eral workers have extended the LBM models to use irregular
phase and multicomponent fluid flow involving complex in- lattices. Succi and his collaboratof&4] were the first to
terfacial dynamic$5-9]. Unlike the conventional CFD that propose a finite-volume formulation of the lattice Boltzmann
directly simulates evolution of the macroscopic Navier-equation(LBE) using the idea of a finite-volume method.
Stokes equations, the LBM is based on the mesoscopic kiFhey begin from the differential form of the LBE and apply
netic equation for the single particle distribution function. It Gauss’ theorem to a set of macrocells covering the spatial
has been proven that the Navier-Stokes equations can be r@emain. For each cell, a volume-averaged “coarse-grain”
covered from the LBM at the macroscopic ley&l2]. The particle distribution is defined. By using either piecewise lin-
obvious advantages of using LBM are the simplicity of pro-ear or piecewise constant interpolation procedures they ob-
gramming, the parallelism of the algorithm, and the capabiltain equations of the “coarse-grain” distribution. He, Luo,
ity of incorporating complex microscopic interactions. and Dembd 15] have proposed a model for an arbitrary but
Historically, the LBM was developed from the lattice gas logically rectangular mesh. In this model, collisions still take
automaton(LGA) [10] model. In an LGA model, the dynam- place on the grid nodes as in the ordinary LBM models.
ics of particles consists of two stefd4) particles at the same After a collision, the density distributions move along their
site collide according to a set of hard-sphere particle collitespective velocities to points which in general will not be
sion rules that conserve mass, momentum, and endogy exactly on the grid nodes. An interpolation step is thus intro-
multispeed modejsat each lattice sitef2) after collision, duced in this model to determine the density distributions at
particles advance to the next lattice site in the direction othe grid nodes for the next time step and the above proce-
their velocities. The small number of discrete velocities al-dures are repeated.
lowed in the LGA models is tightly coupled with the spatial  In the above-mentioned approaches of using nonuniform
lattice structure. At its earliest development stage, the LBMattices, the lattice connectivity is still restricted to be struc-
was a floating-point version of the LGA model where thetured. For example, in the two-dimensional simulations of
particle distribution function in the LBM was interpreted as previous workers, logically rectangular mesh structures were
the floating-number counterpart of the Boolean particle ocmostly used 14,15 in association with nine discrete veloci-
cupation in the LGA. Two important improvements to en-ties, though the meshes were not the regular square lattice.
hance the computational efficiency were made later. Theyhis is in contrast to the situation in the modern CFD tech-
were the linearization of the collision operafdrl] and the nigues which are generally capable of accommodating fairly
adoption of the single time relaxation approximatjd2] (or  complex meshes. In this paper we describe a computational
the BGK approximatioi13]). Nevertheless, the requirement scheme based on two-dimensional unstructured meshes from
of using uniform spatial lattice structure was still unchangedhe point of view of finite volume methods.
until very recently. This paper is organized as follows. In Sec. Il we specify
In the commonly used LBM models, as in their LGA the finite-volume LBM scheméa brief description of this
precursors, the discrete velocity directions are associatethodel was reported in Refl6]). As examples of tests of
with the structure of the underlining spatial lattice. For ex-this new scheme, numerical simulations for two-dimensional
ample, in a two-dimensional square lattice one uses nin&aylor vortex flow, shear flows between two parallel plates
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and two rotating cylinders as well as Poiseuille flow will be of different velocities in the model, ang; is the collision
presented in Sec. lll. Section IV contains some comparisonsperator. One commonly used model is the lattice BGK
with other methods and concluding remarks. model[13], which uses the single time relaxation approxi-
mation, i.e.,
Il. FINITE VOLUME LBM MODEL

1
Our starting point is the LBE. Recently, it is sho\7] Qi=——(fi= 179, @)
that the LBE can be directly derived from the Boltzmann
equation by discretization in phase space without borrowingvhere f£9 is the local equilibrium distribution and is the
the concept of particles jumping from site to site as in therg|axation time.f$9 is carefully constructed so that the ve-
LGA model. The commonly used LBM models can be re-|ocity moments of the LBE reproduce the Navier-Stokes
garded as specific discretizations of the LBE on regular Iat'equations.

tices. More general finite difference discretizations of the |1 should be pointed out that in the phase space the space
LBE were studied in Ref{18] and have been extended to \ariablex and the velocity variable are independent. In the
efficient parallel schemels.9]. The flexibility gained in un- | g only a small set of discrete velocities are used to ap-
locking the spatial and velocity lattices from each other pro-yoximate the Boltzmann kinetics of the continuum velocity.

vides us with an important degree of freedom in designingp, the original formulations of the LBM, it was understood

our finite-volume scheme. _ » _that the discretization of momentum space is coupled with
The LBE reads as follows after discretizing the velocity inat of real space. But as emphasized in Rg8,17,18, this

space. coupling is not necessary and both discretizations can be

: done independently. Here we will completely decouple these

- Vi Vii=Q;, (1) two discretization procedures by choosing the nine velocities

as in the nine-bit mod€l12] for the velocity discretization
wheref; is the particle distribution function associated with while using arbitrary triangular meshes for the spatial dis-
motion along theth direction in velocity spacey; the ve-  cretization.

locity in theith direction,i=1,2, ... m with mthe number The nine discrete velocities are defined by
(0,0, =0,
v (cog(i—1)m/2],siN(i—1)w/2]), i=1,2,3/4, 3)
I
J2(cog (i —5) w/2+ wl4],sir (i — 5) w/2+ w/4]), 1=5,6,7,8
|
and the equilibrium distributiofi’® is given by[12] standard interpolation procedurg2?] according to the ele-
ment types in use. For example, linear and bilinear interpo-
fE9=wip[ 1+ 3(vi-u)+ 3 (vi-u)?—3|ul?], (4 lations could be applied to the triangular and quadrilateral
elements, respectively.
where We choose the control volume as the polygon around the
p=2 f 5) nodeP as shown in Fig. (), known as the dual mesh. Two
(IR

7 sides of the polygonCE andED, are labeled in the figure.
Here E is the middle point of edg® P, and C is the geo-

u=>, fivi/p (6)  Mmetric center of elemer? P;P, with coordinates
i
are the density and velocity, respectively, and Xe=(XpH+Xp,)/2, Xc=(Xp+Xp, +Xp,)/3. C)
4/9, =0, Likewise,D is the center of elemem P,P. The integration
19 i=1234 volume consists of triangl@8CE, PED, etc., taken in coun-
wi= o T (7)  terclockwise order. In the following we focus on integration
1/36, 1=5,6,7,8. over the trianglePCE. Similar integrations would be done

over all such triangles centered Brand the results summed.
We choose two-dimensional triangular meshes to illus- The integration of the first term in E¢l) is approximated
trate how the finite-volume scheme is constructed. Figuras
1(a) shows a generic situation in which triangular elements
surround an interior grid node. The scheme we report here is f ‘7_fi :ﬁfi(P)
o . o ApcEe: 9
a finite-volume method of the cell-vertex typa1]. In this pce ot dat
type of formulation, thef;s at the nodes are the unknowns.
When we need to calculatigs at non-node positions, these whereApcg is the area of triangl® CE andf;(P) is thef;
values would be interpolated from tligs at the nodes using value at nodd>. From now on, the node index is indicated in
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P, Since we use triangular elemenfg(C) and f;(E) must

p be interpolated from the values at the three nodes of the
elementPP;P,. The values alC and E are then linearly
interpolated as

E fi(C)=[fi(P)+1i(P)+fi(P2)]/3, (12
D fi(E)=[fi(P)+fi(Pp)]/2. (13

) ¢ For other types of elements, the above interpolation would
P be replaced with an appropriate interpolation. For example,
3 ) one could use bilinear interpolation for a discretization into

quadrilateral elements.

The integration over the third term of EQ.) [i.e., Eq.(2)]
results in the following formula, assuming the linearityfof
and 79 over the triangular elememRCE,

o I e MR )

CET T
E +[f,(C)—fF%C)]
B +[f{(E)—fPYE)}3, (14

I wheref?9(C) and f7YE) are interpolated from the equilib-
rium values at the three nodes at elemei; P, as follows:
(b) B L c
FIG. 1. (a) Diagram of finite elements sharing one common
node. HereP,P,,P,, ..., P¢ stand for the mesh grid point&E
andED are two boundary edges of the control volupalygon
over which integration of the PDE of Edl) is performed.(b)

Diagram illustrating the half-covolume boundary condition method. . . .
A,B,C are three nodes at wallB,andE are two fluid interior nodes PCE is complete. The integration over the whole control

linked with wall nodeB. F, G, andH are the geometric center of volume is just the sum of all these terms °V.er different tri-
trianglesBDA, BED, andBCE, respectively, whild, J, K, andL angles S_’UCh aE)CE' PED, etc. Therefore, a f'rSt'order_ ac-
are the center points of the corresponding edges. The covolunfgdracy time-stepping scheme for the updaté; @it nodeP is
consists of the dashed triangles. given as follows:

fFYC)=[FFAP)+T7AP) +17API/3, (15
fFFYE) =[P+ 7Y(P2)1/2. (16)

With these, the integration of Eql) over the triangle

parentheses following thfevalues. In the above equation, we  f (p t+dt)=f,(P,t)+ ﬂ z coIIisions—Z fluxes
have made an approximation thatis constant over the tri- Ap
angle PCE to prevent us from solving a large set of equa- (17)
tions if f;s were assumed to be linear. This kind of “lump-
ing” is commonly used in the finite volume method
applicationd 21].

Integration of the convection term of E(L) gives fluxes
though the three edgd3C, CE, andEP:

whereAp is the total area of the control volume around node
P. The terms “collisions” and “fluxes” refer respectively to
the finite-volume-integrated contributions from the collision
term and the flux term. The summation is over different tri-
anglesPCE, PED, etc., associated with node
In all the computations we present in this paper, the up-
f vi-Vfida=vi-J fidl+1g (100  date of thef;s at boundary nodes is similar to that for interior
PCE CE nodes except at the boundary the corresponding covolumes
are half-covolumes. LeA,B,C in Fig. 1(b) boundary nodes
andD, E interior fluid nodes linked with nodB. We focus
on the update of;s at nodeB. As for interior fluid nodes, we
updatef;s atB by covolume integrals. However, the covol-
ume is now not complete in the2directions, as shown in
(fig. 1(b) whereF, G, andH are the geometric center of
rianglesBDA, BED, andBCE, respectively], J, K, andL
are the center points of the corresponding edges Fig.
1(b) and compare with Fig.(&)]. As for interior nodes, in-
J v;-Vido=v;-ncelcel fi(C)+f;(E)]/2+1¢ (11)  tegrals of Eq(1) over the covolume are carried out over the
PCE smaller trianglesBLH, BHK ... and BFI one by one.
There is only one difference, which occurs when integrating
wherencg is the unit vector normal to the ed@¥E, andlcg  the second term of Eq1) over triangleBLH andBFI. The
is the length of CE. flux terms over edgeBL andBI, which we omitted in the

wheredl is normal to the integration eddeE, andl is the
fluxes through internal edgés.g.,PC, PE). Since we will
sum over all the triangles lik€®CE, PED, the net flux
through internal edgeée.g., PC, PE) will cancel out and
not enter into the calculation. On the assumption that éach
varies linearly over each triangular element, the right han
side of Eq.(10) becomes
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case of interior nodef.e., I in Eq. (11)] as they were in-
ternal fluxes, must now be included in the calculation. They
are actually easy to evaluate as shown in @4) for fluxes

AVAVAVY
over edges. / \/\ / y

Ill. NUMERICAL TESTS A/
We have conducted simulations using the finite-volume

scheme for two-dimensional Taylor vortex flow, shear flows (a)
between two parallel plates and between two rotating cylin-
ders, and Poiseuille flow.

A. Two-dimensional Taylor vortex flow

As a first example, we simulate the evolution of the two-
dimensional Taylor vortex flow in a square domain with pe-
riodic boundary conditions in botk andy directions. The
system has an initial state with velocity at position () (®)
given by u,(x,y,0)= —ugcoskx)sinky) and uy(x,y,0) \
=ug(kq/ky)sin(kx)coskoy), wherek, andk, are given by
k,=2mm/L andk,=27n/W. HereL andW are the length
and width of the system anch and n can be any integers.
There is no driving force presented in the system and the
velocities will decay their magnitudes as a function of time
due to the viscous nature of the fluid. The velocity evolution
is characterized by

Uy(X,Y,t)=—ug exd — vt(k2+k3)] cog kyx)sin(kpy),
(18)

Uy(X,Y,t) =Ug(Ky /kp)exd — vt(ki+k3)] sin(klx)cos(k%y))
19

according to the Navier-Stokes equation. Heris the kine-
matic viscosity of the fluid.

Since the present model is expected to yield a faithful
solution to the continuous LBE, we expect it will give the ©
same viscosity as the LBE. From E(.8) one can see that
the decaying flow can be used to numerically determine th?ne
kinematic viscosity. We have simulated the flow using threth
different types of meshes, depicted in Fig$a)22(c). We
focus on the velocity change at one chosen node and plot its
velocity decaying in the course of time in Fig@ In this

FIG. 2. Three types of meshé&s triangular mesh(b) Cartesian
sh,(c) irregular mesh. Botha) and (b) are structured meshes
ile (c) is unstructured.

example, the mesh used is of the type of Figh)2 The B. Shear flows
system has a size &f=32 andW= 128 and the mesh size is o .
1.0. Here p=1.0, r=1.0 and dt=0.25. We usek; Shear flow between two parallel plates is simulated using

—(27/L), ky=4(27/W) anduy=0.01. The linearity in the the finite volume scheme. The system is a two-dimension

semilogarithmic plot shows clearly that the velocity decaysSquare domain with periodic boundary condition in the
exponentially and from the slope of the straight line in Fig.direction. Shear velocity along thedirection is applied at

3(a) one can obtain the viscosity. Here we have chosen #he two boundaries located yat=0 andy =W. We start from
node whose coordinates axe=L/4 andy=W/2. We find  an initial state where the velocity is zero everywhere in the
that the kinematic viscosity equal tg3 for all the meshes system. The system is then exposed the external shear and
we have used, independent of the mesh sizes and mesh typége velocity field is calculated. Figure 4 shows theompo-

One should note that this result is nontrivial since othement of velocity after the system reaches the steady state. We
finite-volume schemes may introduce some numerical visplot three sets of data corresponding to three types of meshes
cosity. Figure 8) shows the velocityu,(x) at timet=50  shown in Figs. 2a)—2(c) (they are collapsing on top of each
for all the nodes with coordinate=W/2 in a simulation with  othep. Here we perform the simulations with a system of
p=1.0,7=0.1, anddt=0.01. Here we take the same systemwidth W=31 and length. =31. The mesh size is in the order
sizes anK,K, as in Fig. 3a). The solid line in Fig. &) is  of 1.0 for all these meshes. The shear velocities are taken to
the analytical solutiojEq. (18)] with v= /3, showing ex- be 0.05 aty=W and —0.05 aty=0. We user=0.5 and
cellent agreement between the numerical and analytical redt=0.01, and find that the steady state is reached &fter
sults. =50000 time steps in the three cases. From Fig. 4 it is clear
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FIG. 4. u,(y) in the steady state for shear flow between two
parallel plates located gt=0 andy=W= 31 with shear velocities
u,(0)= —0.05 andu,(W)=0.05. Three sets of datdot, plus, and
circle) are collapsing on top of each other and they correspond to
the three types of meshes depicted in Figs)-22(c), respectively.
The straight line is the analytical solution to the Navier-Stokes
equation. For irregular mesh, each point is an average of velocity at
nodes whoseg-coordinates are betwegn-1/2 andy+ 1/2 with 'y
integers.
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finite difference scheme in cylindrical coordinates can also

handle it[18]. The finite volume scheme reported here needs

no assumption of symmetry and thus is capable of handling a

wide variety of complex geometries without modification. In

h s T 5 2 pm » Fig. 6 we show the velocity profile in the angular direction

(b) X from the simulation when the system reaches a steady state,
FIG. 3. () Semilogarithmic plot of the velocity, [10gy(t)] compared with the theoretical solution to the Navier-Stokes

decaying with time for one chosen nodexatL/4 andy=W/2. The (iqf(?(t)lon'd-r?ﬁ radii Olf the ':thcyllP?r?rs thZSOI_ang(’IZS

mesh used is of type Fig(/®. The system has a size b=32 and an e angg a.r Velocity of the ou gr C.y Inder

W=128 and the mesh size is 1.0. Here 1.0, 7= 1.0, dt=0.25, =0.0005 rad per unit time. The mesh spacing is at the scale
ky=2/L, k,=8m/W and uy=0.01. (b) u,(x,y=W/2) att=50 of 1 and the relaxation time is taken to be 0.1. The average
compared with exact solution E¢18). Here p=1.0, 7=0.1, dt  density po is set to be 1.0. We updated the system for 3
=0.01,ky=2m/L, ky=87/W with L=232 andW= 128. The mesh x 10° time steps withdt=0.01 and observed it to reach a

is of type Fig. 2b) with grid size of 1.0.»=17/3 was used in the Steady state. From Fig. 6 one can see the agreement between
solid line.

-0.006

—0.008

-0.01

that the computed velocities agree very well with the linear
velocity profile of the exact solution to the Navier-Stokes
equation.

To demonstrate the flexibility of the finite volume scheme
we present another example of simulation of shear flow be-
tween two coaxial cylinders that also possesses an exact so-
lution for comparison. Figure 5 illustrates an irregular mesh
(actually we used much denser grids in the simulation than in
Fig. 5. Note that for any irregular boundary geometry, it is
always possible to cover the domain using triangular ele-
ments as we have done here for the two cylinders. The mac-
roscopic velocity field between two cylinders is taken to be
zero initially. The outer cylinder then suddenly begins to
rotate with a constant angular velocify while the inner
cylinder is kept at rest for all times. Note that this particular
problem has a rotational symmetry so that an appropriate FIG. 5. An irregular mesh between two coaxial cylinders.
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FIG. 6. The static velocity profile of flow between two coaxial
cyllnderg(pomts), compar_ed Wlt_h the theort_atlc Sf";t'Q"“_r‘;e) of L=W=31. The mesh type is of Fig.(® and mesh size is in the
the Navier-Stokes equation(r)=ar—Db/r with a=%5Xx10"* and . o -

5 S - order of 1.0. The forcing level i£=0.00012. We us¢p=1.0, 7

= 3. Here each point is the average of the angular velocities at the

des i reular | betw 12 andr + 1/2 with r int =0.1 anddt=0.01. The steady state is reached after1.5x 10°
nodes in a circutar fayer betweerr andr WINTINIEGETS.  time steps. Here each point is an average of velocity over nodes the

y coordinates of which are betwegn-1/2 andy+ 1/2 with y inte-

h d and the th ical Its | . d Th ers. The solid line represents the exact solution to the Navier
the computed and the theoretical results Is quite good. [%tokes equatiomiexa‘”’(y):uma)g(lf(y*C)Z/b) wherey=c is

relative global d_ifferencg between the pomputed velocit_y 8NGhe |ocation of the center of the channel b is the half width of the
the exact velocity solution to the Navier-Stokes equation iShannel andi,, .= FW?/(8pv) with » the kinematic viscosity. For

1.0% where the exact soluti§@3] is u™**®=ar—b/r with  our systemp=c=W/2=15.5 andv= /3.
a=SQR§/(R§— RI)=%x10"° and b=QRiRY/(R5—R3)

3

FIG. 7. Velocity profile for Poiseuille flow in a system of size

to 0.1 and the time difference between two successive time
steps isdt=0.01. In Fig. 7 the solid line represents the exact

_ _ _ solution to the Navier-Stokes equatioif®®!(y) = Upad1
We have also simulated a forced two-dimensional channel (y—c)2/b) wherey=c is the location of the center of the

flow (Poiseuille flow using the finite volume scheme. Here hannel ancb is the half width of the channel, and,
we present the results from simulations on the irregular mesh. FW?2/(8pv) with » the kinematic viscosity F(;r our Z);/s

dep_;_iﬁteﬁérllzliig. ﬁ:)'f d . | read tem, b=c=W/2=15.5 andv=7/3. The error between the
€ or the forced system now in general reads as computed and the exact velocity profile is less than 1.0%.

C. Poiseuille flow

{;—ft' +v;-Vf=— %(fi - fieq) +av;-F, (20 IV. DISCUSSION AND CONCLUDING REMARKS
In this paper we have used the nine-bit model along with

whereF is the body force applied in thex direction and the  triangular mesh, thus our model is a hybrid model. One can
coefficientsa equals to 1.0Ljv5,=1.05v],=1/6. The last also use the seven-bit model with the triangular mesh by
term in the above equation can be taken into consideratioreplacing Eqs(3), (4), and(7) with the corresponding ones
easily by the finite volume scheme by integrating over theused in the conventional LBM mode]&7], leaving all the
control volume. others unchanged. In the special case of using seven-bit ve-

Figure 7 is thex-component velocity profile obtained locities and regular triangular lattice, one can reach a numeri-
from our simulation. The system has a lengtiief31 anda cal scheme close to the so-called D2Q7 model. It is thus
width of W=31 with mesh size in the order of 1.0. The interesting to make a comparison between this special case
forcing level is F=0.00012. We started the computation and the D2Q7 model. When using regular triangular lattice,
from an initial state with zero macroscopic velocity in the for each lattice poink we have six nearest neighbdhéN’s).
system. The initial density ip=1.0. The system is found to The seven-bit velocities are equal to the six bond vecta)s (
have reached a steady state after we update the system fasnnecting one lattice site to its NIgiven the “speed of
T=1.5x10° time steps. Here the relaxation timeis equal light” to be unity), along with a zero velocity. They are

(0,0), =0,
Vi=&=1{ (co§(i—1)m/3],sif(i—1)m/3]), i=1.2,...,6. (21
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Using the above update procedures described in Sec. I, wiae model of Succi and co-workef$4], the “coarse grain”
can write down the explicit update rule for the special case oflensity distribution is the unknown for each macrocell. So,
using regular triangular lattice. It reads to calculate the flux term they have to extrapolatefth@ues
wt from the “coarse grain” density distributions according to
the arrangement of macrocells using piecewise constant or
fi(X’Hdt):fi(X’t)_?;O (Vi €) Ti(X+ €, 1) piecewiseglinear extrapolation. Secogn(?, in their model, the
piecewise constant extrapolation for the streaming operator
causes serious problems of numerical diffusion. Even for the
~ 108 665fi(X,t)+7a21 ofi(x+e, )|, piecewise linear interpolation, numerical diffusion does not
disappear. To minimize this numerical diffusion, a free pa-
(22 rameter is then needed to be adjusted for each problem on a
_ eq i case by case basis. Third, even for the meshes with simple
where 5f;=1;—f{"". For comparison, we have the update connectivity of rectangular lattice, their empirical formulas
rule for the D2Q7 model, for the streaming coefficients are very complex and one
1 could imagine the difficulty of using irregular meshes with
fi(x,t+1)="f(x—e ,t)— =5f(x—e ,t). (23)  arbitrary connectivity.
T Some difficulty in using unstructured meshes also exists

in the model of He, Luo, and Demij@5]. It is not clear how

2235:”;23 thtf]r: Szrg??xgaaell ?slﬁ;r:euncvsactj)ivggeep vtvﬁc;]w make a unique interpolation on a unstructured mesh from
) Y P ' density distributions not on the grid points to obtain the den-

means that thé;s atone Iat_t|ce sita dep.end_s on[y on Fh& sity distributions on grid points for the next time step within
at the upstream site— e, given a velocity directiow; (i.e., this model

ell) .dlnd (}ur moc_iel, Conlt”ptjt'%ns ftrprrr1f alltdlrectllotrtlls argt|n- By comparison, our scheme was proposed based on the
cluded for a given velocily direction; at one latlice Sité 1545, finjte-volume methods. It involves a minimum of

%athers |qforr?atloq frorr:. all thte S'XSNN S';‘TS at‘ﬁ Wf.e”f‘f’ from pproximation and does not need to introduce any free pa-
ItS own site at preévious time step. secondly, the TIrStIerM O, aters. We have not observed any numerical diffusion

the right-hand siddrhg of Eq. (2.3) can be expressed as problems in our finite-volume scheme. The scheme does not
fi.(x’t)_[.fi(x’t)_fi(x_a 0], which should be compared require a special mesh connectivity and it is easy to apply to
with the first two terms of the rhs of EG22). In our update other kinds of meshe&such as quadrilateral elements in 2D
equation, the flux ternithe se_cond term of the rhs of Ed. and tetrahedral and hexahedral elements in Bpreplacing
(22)] can be viewed as a welghte_d average of three differy, o qanqarg interpolation we used here for triangular ele-
ences of f; at opposite directions[f;(x+e,,t)—Tfi(x ments with other standard interpolation procedure suitable
te), filx+e,t)—fi(x+es,1), and fi(x+e,1)=Ti(X {5 the relevant elements. The Courant-Friedricks-Lewey
+&,1)]. The flux term in the D2Q7 model is just an upwind (cF| ) condition in the current finite volume scheme is found
difference off;s. Similarly, our collision term is a weighted (. e of the formy;dtc/h<1, whereh is a minimum length
average obf; at the NN sites as well as at its own site, while ¢5e of the control volume ardis a constant depending on

in the D2Q7 model it is simply &f; at the upwind site. he shape of the control volume. Thus one can avoid the

Thirdly, by our “average” update rule, the viscosity is no jnstapility by decreasing the integration time, or by changing
longer proportional ta— 1/2 as in the D2Q7 model, butto ¢ grid length at some positions.

This means the negativenphysical part of viscosity does To conclude, we have proposed a finite volume scheme
not result from our update rule. In the finite difference model,, the | BM that is flexible to use on any irregular meshes.

[18], it was also observed that the negative part of ViSCOSit3Complex boundary geometries can be handled easily with
disappear in a lattice model by taking account the downwingye finjte-volume lattice Boltzmann scheme. We have tested
operator. _ _ that the finite-volume scheme works well for two-
We should admit that there is a speed slowdown of cOmyimensjonal Taylor vortex flow, shear flows between two
putation compared with the classical LBM models which arajiel plates and between two cylinders as well as Poi-
lead to fast numerical implementation and short codes. Herggjille flow. The application of this scheme to a variety of

we have to look at a map of the nearest neighbors for ong,mplex geometries is thus expected. Further applications

chosen site in the computation. This is due to the lack of,g gevelopments of the finite-volume scheme is under way.
regularity in the connectivity of mesh sites. Apart from this,

the program is still simple to code. If we do not use unstruc-
tured meshes, but use the structufiedt not regular meshes
such the ones used in Ref44,15, the speed is two to three This work was supported in part by NSF Grant No. ASC-
times slower than the classical LBM models. 9418357 for the Pharoh MetaCenter Regional Alliance, in

It is also interesting to make a comparison between th@art by PRF under Contract No. 33160-GB9 and the Re-
above scheme and the finite-volume scheme of Succi ansearch Corporation under Grant No. CC4250. The simula-
co-workers[14]. First, their model is a cell-centered finite- tions were performed on the Cray T3E at the Ohio Super-
volume method while our scheme is a cell-vertex model. Incomputer Center.
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