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Spatiotemporal evolution of focused single-cycle electromagnetic pulses
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We analyze exact solutions of Maxwell’s equations that are capable of describing focused single-cycle
electromagnetic pulses. These finite energy solutions are a subset of Ziolkowski’s ‘‘modified power spectrum’’
pulse solutions@Phys. Rev A39, 2005~1989!#. They display substantial temporal reshaping, time reversal, and
polarity reversals as they pass through the focus. The temporal profiles at the focus and in the far field are
related by a Hilbert transform in time. These results are explained in terms of the Gouy phase shift of focused
beams. We also show that these pulse solutions are natural spatiotemporal modes of an open resonator and
propose methods for their practical realization.@S1063-651X~99!06304-7#

PACS number~s!: 41.20.Jb, 42.60.Da, 42.25.Bs
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I. INTRODUCTION

There is much current interest in exact pulse solutions
Maxwell’s equations that describe the localized transmiss
of electromagnetic energy in free space@1–4#. These studies
were initiated by Brittingham@1# who introduced the so
called ‘‘focus wave modes’’~FWM’s!, which are three-
dimensional packetlike solutions of the homogeneous M
well’s equations. The original FWM’s had finite energ
density but infinite total energy and hence were physica
unrealizable. In a major advance, Ziolkowski obtained fin
energy solutions he termed ‘‘electromagnetic directed ene
pulse trains’’~EDEPT’s! by forming appropriate superpos
tions of the focus wave modes@2,3#. Hellwarth and Nouchi
have recently explored a particular subset of these EDEP
and obtained solutions that depict single-cycle electrom
netic pulses the fields of which are confined to toroidal wa
packets and thus resemble focused doughnuts@4#. In that
work and in Ref.@3#, the vector electromagnetic field com
ponents were derived from a complex Hertz potentialẑf (r ,t)
oriented in the direction of wave propagation. The real a
imaginary parts of the scalar generating functionf (r ,t) are
solutions of the scalar wave equation in vacuum. They
spectively lead to the long pulse~11

2-cycle! and short pulse
~one-cycle! solutions described in Ref.@4#.

A number of open questions were posed by Hellwarth a
Nouchi regarding these focused one-cycle electromagn
pulse solutions of Maxwell’s equations. In particular, it is n
known what kind of electromagnetic fields are produced w
a Hertz vector oriented transverse to the direction of pro
gation. It is also of interest to know if there is a simp
transformation that relates the long pulse solution to the s
pulse solution. Finally, there is the question of the practi
realization of these pulse solutions in the laboratory.

In this paper we provide the exact electromagnetic fi
solutions of Maxwell’s equations for a transversely orien
~along x! Hertz vector@5#. We find that the resulting fields
are oblate wave packets that resemble ‘‘focused pancak
PRE 591063-651X/99/59~4!/4630~20!/$15.00
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We carry out an explicit calculation that yields the finite to
energy contained in these pulses. The real and imagin
pulse solutions are shown to be related by a Hilbert tra
form in time at any positionr . In fact, we find that the rea
and imaginary solutions transform into one another as
pulses propagate from the focus to the far field. The ne
field and far-field temporal profiles are thus related by a H
bert transform. We also show how the well known Go
shift of focused beams leads to polarity reversals, time rev
sal, and temporal reshaping as the pulses evolve through
focus. The properties of the pulse solutions are comple
determined by two parameters:q1 , which is related to the
peak wavelength, andq2 , which determines the Rayleig
length. In the limit q1!q2 , which corresponds to the
paraxial regime, a number of useful approximate relatio
are obtained. The results are applied to recent observat
on single-cycle terahertz electromagnetic pulses@6#. We
demonstrate that these paraxial solutions are the natural
tiotemporal modes of an open electromagnetic cavity. T
leads to the idea that EDEPT’s can be generated in the la
ratory by exciting a curved mirror resonator or by propag
tion along a lens waveguide.

II. DERIVATION OF FIELDS

Our analysis is based on exact solutions of the wave eq
tion of the type developed by Ziolkowski to describe ef
cient, localized transmission of electromagnetic energy
space-time. The free-space propagation of electromagn
pulses is governed by the wave equation

H ¹22
1

c2

] 2

]t2J f ~r ,t !50, ~2.1!

where f (r ,t) is a scalar function. A particularly useful exa
solution of this equation is the modified Gaussian pulse@3#,
4630 ©1999 The American Physical Society
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Gk~r ,t !5
exp$2kr2/~q11 i t!%

~q11 i t!
exp$ ik~z1ct!%, ~2.2!

where r5(x21y2)1/2 is the transverse coordinate,z is the
propagation direction,t5z2ct, k is a constant with dimen
sions (length)21, andq1 is a positive parameter with dimen
sions of length. These solutions have finite energy den
but infinite total energy and hence do not adequately re
sent a physical space-time localized pulse. They can ne
theless be used as basis functions to synthesize finite en
pulse solutions through the superposition

f ~r ,t !5E
0

1`

dk Gk~r ,t !F~k!, ~2.3!

whereF(k) is a weighting function that satisfies certain ge
eral square-integrability conditions@3#. A physically moti-
vated choice of thek spectrum is

F~k!5 H f 0 exp~2kq2!, k.0,
0, k<0, ~2.4!

which reminds one of the Boltzmann factor governing t
probability of exciting a particular Gaussian mode of ene
proportional tok. Hereq2 is a positive parameter. With us
of Eqs. ~2.4! and ~2.2! in Eq. ~2.3!, we obtain the scala
generating function

f ~r ,t !5
f 0

r21~q11 i t!~q22 is!
, ~2.5!

wheres[z1ct. In Sec. IV F, it will be shown that the pa
rametersq1 and q2 characterize, respectively, the effectiv
wavelength and Rayleigh range of the pulses. All the phy
cal properties of the solutions, such as pulse width, spec
width, and far-field diffraction angle, are completely dete
mined by these two parameters. The functionf (r ,t) ex-
pressed by Eq.~2.5! has finite energy and is an exact soluti
of the scalar wave equation.

Solutions to Maxwell’s equations are found from this ge
erating function by constructing a Hertz vector oriented,
example, along a transverse direction:

P5 x̂f ~r ,t !, ~2.6!

wherex̂ is a unit vector, andf (r ,t) is the generating function
given by Eq.~2.5!. ~In previous work@4#, use of az-directed
Hertz vector resulted in toroidal, focused doughnut wa
packets.! The vector electromagnetic field components
then found from

E~r ,t !52m0

]

]t
~“3P!,

~2.7!

H~r ,t !5“3~“3P!,
ty
e-
r-

rgy

-
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i-
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-
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since the electromagnetic scalar potential is zero. Us
Maxwell’s equations, these relations can be written as

E5 ŷH 2m0

]

]z
S ] f

]t
D J 1 ẑH m0

]

]y
S ] f

]t
D J , ~2.8!

H5 x̂H ]2f

]x22
1

c2

]2f

]t2J 1 ŷ
]2f

]y ]x
1 ẑ

]2f

]z ]x
, ~2.9!

where x̂, ŷ, and ẑ are unit vectors along the correspondin
axes, andc is the light velocity in vacuum. The electric fiel
along thex direction is exactly zero due to thex orientation
of the Hertz vector. Using Eq.~2.5! in Eqs.~2.8! and ~2.9!,
we obtain the following components of the electromagne
field:

Ey~r ,t !52 f 0Am0

«0

~q11 i t!22~q22 is!2

$r21~q11 i t!~q22 is!%3 ,

~2.10!

Ez~r ,t !52 i4 f 0Am0

«0

~q11 i t!1~q22 is!

$r21~q11 i t!~q22 is!%3 r sinw,

~2.11!

Hx~r ,t !52 f 0

2r2 cos~2w!1~q11 i t!21~q22 is!2

$r21~q11 i t!~q22 is!%3 ,

~2.12!

Hy~r ,t !54 f 0

r2 sin~2w!

$r21~q11 i t!~q22 is!%3 , ~2.13!

Hz~r ,t !5 i4 f 0

~q22 is!2~q11 i t!

$r21~q11 i t!~q22 is!%3 r cosw,

~2.14!

where «0 is the permittivity of the vacuum, andw
5tan21(y/x) is the azimuthal angle. Eqs.~2.10!–~2.14! are
exact solutions of Maxwell’s equations. Due to the linear
and reality of the wave equation and Maxwell’s equatio
the real and the imaginary parts of the fields constitute t
physical pulse solutions. They originate separately from
real and the imaginary parts of the generating function.
q1!q2 both the real and the imaginary solutions repres
focused single-cycle pulses propagating in free space w
the energy confined near the propagation axis. By duality
can obtain another set of solutions (E8,H8) by letting E8
5Am0 /«0H andH852A«0 /m0E.

A. Analyticity of pulse solutions

An important property of the electromagnetic field sol
tions Eqs.~2.10!–~2.14! as well as the generating functio
Eq. ~2.5! is that they are analytic functions of time at an
positionr . This means that their poles lie in the lower half
the complex plane regardless of the values ofr andz. These
poles are the solutions of the quadratic equation

r21~q11 i t!~q22 is!50,
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and are given by

ct152 i
q21q1

2
2AS z1 i

q22q1

2
D 2

1r2

ct252 i
q21q1

2
1AS z1 i

q22q1

2
D 2

1r2. ~2.15!

It is shown in Appendix A that the imaginary parts of the
roots are always negative and hence the field solutions
analytic functions of time.

B. Hilbert transform relationship

Since the field solutions and the generating function
analytic functions of time, their real and imaginary parts a
Hilbert transforms of each other. For the electric field w
have

Er~r ,t !52
1

p
PE

2`

1` Ei~r ,t8!

t2t8
dt8,

~2.16!

Ei~r ,t !5
1

p
PE

2`

1` Er~r ,t8!

t2t8
dt8,

where Er and Ei are the real and imaginary parts of th
electric field given in Eqs.~2.10!–~2.14! and P stands for
principal value. This transform relationship simplifies in t
frequency domain. Define the Fourier transform pair

Ẽ~r ,v!5E
2`

1`

E~r ,t !exp~2 ivt !dt,

~2.17!

E~r ,t !5
1

2p E
2`

1`

Ẽ~r ,v!exp~ ivt !dv.

Then the Hilbert transform relationship between the real
imaginary parts ofE(r ,t) in the frequency domain can b
expressed as

Ẽr~r ,v!5 i sgn~v!Ẽi~r ,v!,
~2.18!

Ẽi~r ,v!52 i sgn~v!Ẽr~r ,v!,

where

sgn~v!5H 1, if v.0,
0, if v50,
21, if v,0.

C. Orthogonality of pulse solutions

The real and the imaginary solutions form two spatiote
poral modes of single-cycle pulses. This point will becom
clearer after we discuss the physical properties of these
lutions. The two modes are orthogonal at any space poinr ,
i.e.,

E
2`

1`

Er~r ,t !Ei~r ,t !dt50. ~2.19!
re

e
e

d

-
e
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To prove this we start with Parseval’s equality,

E
2`

1`

Er~r ,t !Ei~r ,t !dt5
1

2p E
2`

1`

Ẽr~r ,v!Ẽi* ~r ,v!dv,

~2.20!

and use the Hilbert transform relationship, Eq.~2.18!, and
the fact thatEr(r ,t) andEi(r ,t) are real.

III. ENERGY OF PULSE SOLUTIONS

If these pulse solutions are to be physically realizab
their energy content should be finite. In Ref.@3#, Ziolkowski
showed that for a longitudinally oriented Hertz vector, t
EDEPT will have finite total energy if the spectrumkF(k) is
square integrable. In Appendix B, we will present a detai
calculation to show that for a transversely oriented He
vector the total energy of the EDEPT solution is given by

UEM5
1

2 E2`

1`

dzE
0

1`

r drE
0

2p

dw~«0uEyu21«0uEzu2

1m0uHxu21m0uHyu21m0uHzu2!

5
3p2m0

4q1
4 E

0

1`

dkuF~k!u2

3@11 2
3 ~kq1!1 2

3 ~kq1!21 4
3 ~kq1!3#

5Ur1Ui , ~3.1!

whereUr and Ui represent, respectively, the energy of t
real and the imaginary pulses. Thus for a transverse orie
tion of the Hertz vector an EDEPT will have finite energy
the spectrumk3/2F(k) is square integrable.

With the particular spectrumF(k) given by Eq.~2.4!, the
generating function, Eq.~2.5!, as well as the field compo
nents Eqs.~2.10!–~2.14! are analytic functions of time at an
spatial pointr . This property can be used with the wav
equation to show that the real and the imaginary soluti
have equal amounts of electric energy and magnetic ene
Hence, the total energy of the real pulse equals that of
imaginary pulse. Note that both real and imaginary solutio
satisfy the wave equation. Taking the Fourier transfo
~with respect to time! of the wave equation, we have

¹2Ẽr ,i~r ,v!52
v2

c2 Ẽr ,i~r ,v!, ~3.2!

where r and i refer to the real and imaginary solutions, r
spectively. Equation~3.2! implies that vectorsẼr ,i(r ,v) are
the eigenfunctions of the Hermitian operator¹2, correspond-
ing to the eigenvalue2v2/c2. Therefore, the following or-
thogonality relations hold:

E E E Ẽr* ~r ,v!•Ẽr~r ,v8!dr5Sr~v!d~v82v!,

E E E Ẽi* ~r ,v!•Ẽi~r ,v8!dr5Si~v!d~v82v!.

~3.3!
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Using Eq.~3.3!, the electric energy of the pulse can be wr
ten as

Ur ,i
E 5

«0

2 E E E uEr ,i~r ,t !u2 dr 5
«0

8p2 E
2`

1`

Sr ,i~v!dv.

~3.4!

Since all the field components are analytic in time at a
positionr , the real and the imaginary solutions are related
a Hilbert transform in time, which leads to

Sr~v!5Si~v!. ~3.5!

Thus, we haveUr
E5Ui

E and a similar equality for the mag
netic energy. Therefore, the real and the imaginary pu
have the same amount of electromagnetic energy. Subs
ing Eq. ~2.4! into Eq. ~3.1!, the total energy of the exac
solution is obtained as

Ur5Ui5
3 f 0

2p2m0

16q2q1
4 H 11

1

3
S q1

q2
D 1

1

3
S q1

q2
D 2

1S q1

q2
D 3J .

~3.6!

In the following section, we analyze the evolution of th
temporal pulse profile, the spatial distribution of the field
the amplitude spectra, and other features that are amenab
experimental verification.

IV. PHYSICAL PROPERTIES

A. Paraxial limit „q1!q2…

The exact solutions given by Eqs.~2.10!–~2.14! simplify
considerably in the paraxial or ‘‘weakly focused’’ lim
where the wavelengthq1 is much smaller than the Rayleig
range q2 . Since this is the limit in which most teraher
systems operate, we provide in this section the appropr
limiting forms of the exact solutions. These approximate
lutions are exact solutions of the time-dependent para
wave equation and can also be obtained by inverse Fou
transform of the monochromatic fundamental Gaussian b
solution multiplied by the spectrumv2 exp(2vq1 /c).

From the radial dependence of the solution it can be s
that the fields have a limited transverse spatial extent. In f
for z5ct50, the value ofEy at r5Aq1q2 is only 1

8 of its
peak value atr50. All the other components also drop off
least as rapidly asr24. We thus somewhat arbitrarily defin
the transverse extent of the beam asr2;q1q2 . Outside this
range the energy density in the solutions is negligible. T
longitudinal extent of these essentially single-cycle pulse
lutions is likewise limited by the wavelength toctp;pq1 ,
wheretp is the temporal pulse width. Since the variablet
5z2ct measures the local distance from the pulse cen
the amplitude of the fields is negligible whenutu.ctp .
Thus, wherever the fields have significant amplitude the te
(q11 i t) in the solutions can be neglected compared toq2
2 is) in the limit q1!q2 . Furthermore, since the fields a
significant only forr2,q1q2 , the term 2r2 cos(2w) in Eq.
~2.12! is of orderq1q2!q2

2 and can also be neglected com
pared to (q22 is)2. With these approximations, Eqs.~2.10!
and ~2.12! reduce to
y
y

e
ut-

,
to

te
-
al
ier
m

n
t,

e
-

r,

m

Ey~r ,t !'2Am0

«0

Hx~r ,t !'
22 f 0m0c~q22 is!2

$r21~q11 i t!~q22 is!%3 .

~4.1.1!

The relation betweenEy(r ,t) andHx(r ,t) can also be dem-
onstrated with the use of Maxwell’s equation:

“3E~r ,t !52m0

dH~r ,t !

]t
. ~4.1.2!

Taking Fourier transforms with respect to both time a
space yields

k̂3Ẽ~v,k!5Am0

«0

H̃~v,k!, ~4.1.3!

wherek̂ is a unit vector in the direction of the wave vecto
and is given by

k̂5 x̂ sinu cosw1 ŷ sinu sinw1 ẑcosu. ~4.1.4!

Substituting Eq.~4.1.4! into ~4.1.3! gives

Am0

«0
H̃x~v,k!5sinu sinw Ẽz~v,k!2cosuẼy~v,k!.

~4.1.5!

Since Ẽz!Ẽy @see Eq.~4.1.8!#, and cosu'1 for a weakly
diffracting beam, Eq.~4.1.5! reduces to

Ẽy~v,k!'2Am0

«0
H̃x~v,k!. ~4.1.6!

An inverse Fourier transform of above equation yields

Ey~r ,t !'2Am0

«0
Hx~r ,t !. ~4.1.7!

In this weak focusing limit the dominant components
the electromagnetic field turn out to beEy and Hx . Again
replacingr2 by q1q2 in Eqs.~2.10!–~2.14!, it is easy to see
that for q1!q2 , the other field components are smaller th
Ey andHx in the ratios

Ez

Ey
;OSAq1

q2
D ,

Hy

Hx
;OS q1

q2
D ,

Hz

Hx
;OSAq1

q2
D .

~4.1.8!

Figure 1 shows the spatiotemporal profiles of the five elec
and magnetic field components of the real solution atz50.
Note that the magnitudes ofEy andHx greatly exceed that o
the other components. Thus, in the weak focusing limit
field is quasi-TEM~transverse electric and magnetic! and
quasiaxisymmetric. It has a maximum on axis (r50), drops
off as r24, has a longitudinal extent (;pq1) much smaller
than its transverse extent (;Aq1q2), and thus resembles
pancake. These ‘‘focused pancake’’ solutions result from
x-directed Hertz potential used in this work as opposed to
z-directed potential that led to toroidal ‘‘focused doughnu
solutions in Ref.@4#. Figure 2~a! shows the energy density a
z50 of the real solution
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FIG. 1. The five electromagnetic field components corresponding to the real solutionEr(r ,t) andHr(r ,t). Takew5p/4 in the field Eqs.
~2.10!–~2.14!. The electric fields are normalized by the peak value ofEy

r , while the magnetic fields are normalized by the peak value ofHx
r .

Note thatEy
r and Hx

r are the dominant field components. In this and subsequent plots we have chosenq150.1 mm andq25100 mm,
parameters appropriate for terahertz pulses.
E
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Fig.
ulse
Ur~r ,t !5 1
2 $«0uEr u21m0uHr u2%

based on the exact expressions in Eqs.~2.10!–~2.14!. The
energy density based on the approximate solution of
~4.1.1! is shown in Fig. 2~b!. The two plots are indistinguish
able and show the flat, ‘‘pancake’’ nature of the solutions

In the limit q1!q2 , the solutions~2.10!–~2.14! describe
the spatiotemporal evolution of focused electromagn
pulses that have a near-Gaussian transverse beam profil
attain a minimum spot size in the planez50, which we will
call the focal plane. To visualize these pulses and relate t
to terahertz experiments, we set the parametersq150.1 mm
andq25100 mm, and plot in Fig. 3 the on-axis (r50) tem-
poral shapes of the real (Ey

r ) and imaginary (Ey
i ) parts ofEy

at z50. In this planeEy
r is symmetric in time and passe

through zero twice whileEy
i is antisymmetric and goe

through zero three times. These fields therefore repre
pulses that are essentially single cycle in nature.
q.

ic
and

m

nt

We define the pulse width, somewhat arbitrarily as t
separation between the two side nulls of the imaginary pu
To estimate this pulse width we use the fact that, for a sing
cycle pulse, the spatial extent in the propagation direct
ctp is of order pq1!q2 . Hence atr50, the factor (q1
2 ict) is much smaller in magnitude than (q22 ict). Writing
these factors in terms of magnitude and phase, we find
Ey

i (0,t) is proportional to sin(3f1), wheref15tan21(ct/q1)
and we use the approximationct!q2 wherever the field has
significant amplitude. The separation between the two s
nulls of Ey

i (0,t) is thus

tp~r50!52)
q1

c
. ~4.1.9!

For q150.1 mm this yields a pulse width of 1.15 ps. Whi
this expression has been derived for the imaginary pulse,
3 shows that the real solution has roughly the same p
width.
t
s.
e

FIG. 2. Energy density of the real solution a
z50. ~a! From the exact expressions of Eq
~2.10!–~2.14!. The values are calculated on th
plane that contains propagation axisz and bisects
thex-y plane, i.e.,w5p/4. ~b! From the approxi-
mate expression, Eq.~4.1.1!.
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FIG. 3. On-axis pulse temporal shapes atz50 for the real and the imaginary solutions. The fields are normalized by their peak va
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B. Spatiotemporal evolution of pulses

Figure 4 shows the spatiotemporal evolution of the r
and imaginary pulse solutions from a distant plane (z5
230 cm) before the focus, through the focus and then t
plane in the far field (z530 cm). The variablez2ct repre-
sents the local distance measured from the pulse center ar
is the radial coordinate. One clearly observes the cur
phase fronts of the pulse as it converges to a minimum s
size at the focus and then diverges again. More significa
we observe a polarity reversal and substantial tempora
shaping as the pulse evolves through the focus. A sim
polarity reversal for half-cycle pulses has been noted by Y
and Bucksbaum@7#. The temporal reshaping that accomp
nies free space propagation can be more easily analyze
l

a

d
d
ot
ly
e-
r
u
-
by

following the temporal profile of the pulse along thez axis
(r50). Figure 5 shows the axial temporal profiles of t
real and the imaginary solutions at several propagation
tances. It is seen that the symmetric real solution atz50
evolves in the far field into an inverted version of the an
symmetric imaginary pulse atz50. Simultaneously, the an
tisymmetric imaginary solution atz50 evolves in the far
field into the symmetric real solution. The transformation
a pulse temporal profile from symmetric to antisymmetric
it propagates from the focus has been observed in terah
experiments by Budiartoet al. @8#. It is important to note the
striking difference in the way the real and imaginary puls
transform as they propagate through the focus from a p
2z to a pointz. It is evident from Fig. 5 that the real solutio
through the
FIG. 4. Spatiotemporal evolution of the real~top! and the imaginary~bottom! pulses from the plane (z5230 cm), passing through the
focus, to the plane (z530 cm). The variablez2ct represents the local distance measured from the pulse center andr is the radial
coordinate. One clearly observes the curved phase fronts, the polarity reversal and the temporal reshaping as the pulse evolves
focus. The plots are normalized by the peak value at the focus.
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Er undergoes a time reversal while the imaginary solut
undergoes both a time reversal and a polarity reversal.

C. Effect of Gouy phase shift

The change in pulse waveform under focusing can be
plained by the difference of phase and envelope velocity
the focal region and is related to the Gouy phase shift
focused beams.

In the limit q1!q2 , s can be replaced by 2z in Eq.
~4.1.1!, and the complex field can be rewritten as

Ey~r ,t !'
22 f 0m0c

~q22 i2z!

3
1

H q11
q2r2

4z21q2
2 1 i S z2ct1

2zr2

4z21q2
2D J 3 .

~4.3.1!

Note that the replacement ofs by 2z does not affect the
analyticity of the field. The poles of Eq.~4.3.1! are still in the
lower half-plane for any spatial point, hence Eq.~4.3.1! is
also an analytic function of time at any point in space. Af
much algebra we obtain a particularly useful form for t
field:

FIG. 5. Temporal profiles on axis at several propagation d
tances for the real and the imaginary solutions. The two soluti
have the following symmetries:Er(2z,t)5Er(z,2t) and
Ei(2z,t)52Ei(z,2t). Thus in passing through the focus the re
solution undergoes a time reversal while the imaginary solu
undergoes both time reversal and polarity reversal.
n

x-
n
f

r

Ey~r ,T!5
A~T!

Az0
21z2H 11

r2

2w2~z!
J 3 exp$ i @a~T!1f~z!#%,

~4.3.2!

whereT is a radially scaled local time~SLT!, given by

T5

cH t2
z1r2/2R~z!

c
J

q1H 11
r2

2w2~z!
J . ~4.3.3!

Here

R~z!5zH 11S z0

z D 2J ,

w2~z!5we
2H 11S z

z0
D 2J , ~4.3.4!

we
25

q1q2

2
, z05

q2

2
,

and

f~z!5tan21S z

z0
D , A~T!5

2 f 0m0c

q1
3~T211!3/2

,

a~T!53 tan21~T!. ~4.3.5!

The quantityR(z) represents the radius of curvature of t
pulse wave front whilew(z) measures the transverse exte
of the beam. Although the transverse beam profile is clea
non-Gaussian we will show later that the beam energy
fracts in the same manner as a monochromatic Gaus
beam with an effective beam waistwe5Aq1q2/2 and Ray-
leigh rangez05q2/2. The term$z1r2/2R(z)%/c in T is the
radially-dependent delay suffered by the pulse during pro
gation. The edges of the pulse are delayed more than
center and this results in a curved wave front. The quan
$11r2/2w2(z)% in T scales the pulse width and hence t
pulse width is different at different radial positions. How
ever, along the hyperbolic trajectoriesr2/w2(z)5const, the
pulse width is invariant. The quantityf(z)5tan21(z/z0) is
the Gouy phase shift that any finite beam encounters u
passage through a focus.

The real and the imaginary parts of Eq.~4.3.2! represent
the spatiotemporal evolution of the physical pulse solutio
of Maxwell’s equations in the paraxial limit and are given b

-
s

l
n
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FIG. 6. Amplitude function and temporal phase function. Note the horizontal axis is dimensionless local time.
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Ey
r ~r ,T!5

A~T!

Az0
21z2H 11

r2

2w2~z!
J 3 cos@a~T!1f~z!#,

Ey
i ~r ,T!5

A~T!

Az0
21z2H 11

r2

2w2~z!
J 3 sin@a~T!1f~z!#.

~4.3.6!

The temporal envelope functionA(T) and the phase func
tion a(T) are invariant upon propagation~except for the
scaling in time for the points off axis! since they depend only
on the scaled local timeT. Figure 6 shows the form of thes
functions. Any variation of the spatiotemporal profiles of t
pulseEy

r ,i(r ,T) during propagation is completely determine
by the Gouy phase shiftf(z), which modulates the initia
phase of the temporal functions of the fields. The factorz0
2

1z2)21/2@11r2/2w2#23 accounts for energy conservatio
due to the propagation and the scaling. In propagation fr
the focus to the far fieldf(z) goes from zero top/2, thus
effecting the transformationEy

r→2Ey
i and Ey

i→Ey
r . This

transformation is also obtainable from the Hilbert transfo
relationship between the real and imaginary parts of the c
plex field. The6p/2-phase shift in each frequency comp
nent in propagating fromz50 to z→6` results in a Hilbert
transform in time between the near field and the far fie
The Gouy shift is thus responsible for the pulse reshap
time reversal, and polarity reversal that occurs when th
pulses pass through the focus.

To emphasize the validity of the approximations leadi
to Eq. ~4.3.6!, Fig. 7 shows the pulse profiles on axis atz
510 cm as calculated from the exact formula Eq.~2.10! and
from the approximate formula Eq.~4.3.6!.

The field solutions obey the following space-time symm
tries @9#:
ution
FIG. 7. Temporal profiles of the pulses atz510 cm for the real and imaginary solutions. The plots on the left are from the exact sol
Eq. ~2.10!, while the plots on the right are from the approximate solution Eq.~4.3.6!. The fields are normalized by their peak values.
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FIG. 8. Dependence of pulse shapes on radial position atr50 ~solid line!, r5we ~dashed line!, andr52we ~dot-dashed line!, wherewe

is the effective beam waist. The fields are normalized by their peak values.
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Ey
r ~2z,2T!5Ey

r ~z,T!; Ey
i ~2z,2T!52Ey

i ~z,T!.
~4.3.7!

The real pulse is symmetric under the reflection of b
space and time, while the imaginary pulse is antisymme
This explains why in passing through the focus the ima
nary pulse is both time reversed and inverted while the
pulse is only time reversed.

A key feature of these pulse solutions is that they are
separable into a product of a function that depends only
time and one that depends only on space. One consequ
of this nonseparability is that the pulse width is genera
dependent on radial position and propagation distance. F
Eqs.~4.1.9! and~4.3.3!, it can be shown that the pulse widt
at any positionr is given by

tp~r !52)
q1

c H 11
r2

2w2~z!J . ~4.3.8!

The minimum pulse width occurs on axis (r50) and is in-
variant with propagation distance. Off axis the pulse width
longer by a factor of$11r2/2w2(z)%, and it decreases with
propagation distance for fixedr.

As shown in Sec. IV E, in the frequency domain the
pulses consist of an ensemble of Gaussian beams of diffe
frequencies, all of which have the same Rayleigh rangez0
5q2/2. For a Gaussian beam of wavelengthl and beam
waist w0 , the Rayleigh range is given byz05pw0

2/l. In
order that z0 remains fixed at all wavelengths the bea
waists must scale asw0}Al. Thus, in any transverse plan
the higher frequency components of the pulse are clo
confined to the axis while the lower frequency compone
are more spread out. It is this radial dispersion of be
waists that leads to the radial dependence of the p
widths. Figure 8 shows the temporal profiles of the real a
imaginary pulse solutions atz50 for r50, r5we , and r
52we . The radial dependence of the pulse widths in a
fixed z plane is also true in the far field.

We note that Kaplan has also discussed a radial de
dence of pulse widths due to the different diffraction an
for frequency components with the same initial waist~Ref.
@9#! while Wanget al. ~Ref. @10#! have analyzed a situatio
similar to ours where the beam waists scale asAl. In recent
experiments, Budiartoet al. @8#, have observed dramatic in
creases in pulse width as a function of radial distance fr
h
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m

the axis at the focus of terahertz beams. The pulse wid
appear to increase linearly with radial distance as might
expected for a pulse the frequency components of wh
have the same geometricalf number. This is closer to the
situation analyzed by Kaplan@9#.

The results of Eq.~4.3.6! show that a pure phase chang
f(z) can lead to dramatic reshaping of a single-cycle te
hertz pulse. In fact, experiments have revealed how the ph
shift on total internal reflection distorts the temporal profi
of an incident pulse~Ref. @11#!. We suggest that Eq.~4.3.6!
can be used, along with a measurement of initial and fi
pulse shapes, to extract the phase shift responsible for p
shaping.

D. Hilbert transform relationship between near and far field

As pointed out earlier, since the complex field soluti
Ey(r ,t) is an analytic function of time at any pointr , its real
and imaginary parts are Hilbert transforms of each other w
respect to the global time variablet. We now show that the
temporal profiles in the far field are Hilbert transforms of t
temporal profiles in the focal plane (z50). In other words,
propagation from the focus to the far field corresponds t
Hilbert transform operation performed with respect to t
local time.

Because of the transverse spreading of the pulse du
diffraction, it is convenient to compare temporal profiles
the near field (z50) and far field (z→`) for points that
have the same radial coordinate relative to thez-dependent
beam radiusw(z). Such points are defined byr2/2w2(z)
5const[m, which specifies the hyperbolic trajectories

r222mz2S we

z0
D 2

52mwe
2. ~4.4.1!

Along these trajectories the scaled local time becomes

Tm5

cH t2
z

c
F11m

q1

z0
G J

q1~11m!
. ~4.4.2!

At z50, the real and the imaginary parts of the complex fie
are given by the Hilbert transform pair
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Ey
r ~z50,Tm!5

A~Tm!cos@a~Tm!#

z0~11m!3 5H$Ey
i ~z50,Tm!%,

~4.4.3!

Ey
i ~z50,Tm!5

A~Tm!sin@a~Tm!#

z0~11m!3

5H21$Ey
r ~z50,Tm!%

52H$Ey
r ~z50,Tm!%.

In the far field, asz→1`, f(z)→p/2, hence the fields
become

Ey
r ~z→1`,Tm!52

A~Tm!sin@a~Tm!#

z0A11~z/z0!2~11m!3

5
1

A11~z/z0!2
H$Ey

r ~z50,Tm!%,

~4.4.4!

Ey
i ~z→1`,Tm!5

A~Tm!cos@a~Tm!#

z0A11~z/z0!2~11m!3

5
1

A11~z/z0!2
H$Ey

i ~z50,Tm!%.

Equation~4.4.4! show that for points in the near field and th
far field that have the same relative transverse coordin
r/w(z), the temporal profiles are related by a Hilbert tran
form.

More generally, for any two points (z150, r5r1) and
~z2→1`, r5r2) that do not necessarily lie on the hype
bolic trajectories described above~the pulse width is differ-
ent!, a scaled Hilbert transform relation exists between
temporal profiles at the two points:

Ey
r ~z2 ,r2 ,z!5

s3

dp
PE

2`

1` Ey
r ~0,r1 ,t8!

sz2t8
dt8,

~4.4.5!

Ey
i ~z2 ,r2 ,z!52

s3

dp
PE

2`

1` Ey
i ~0,r1 ,t8!

sz2t8
dt8.

Here

z[t2

z21
r2

2

2R~z2!

c
, ~4.4.6!

and the scaling parameters is given by
te
-

e

s5

11
r1

2

q1q2

11
r2

2

2w2~z2!

, ~4.4.7!

andd5A11@z2 /z0#2. The factors3/d in front of Eq.~4.4.5!
accounts for energy conservation due to the propagation
the scaling.

It is often stated that the far field temporal distribution
a time derivative of the near field temporal distribution. A
examination of the Kirchhoff diffraction law for non
monochromatic fields shows that this derivative relations
is strictly true if the initial distribution is separable into
spatial function multiplied by a temporal function. If the in
tial distribution is nonseparable, different radial positio
will have different temporal profiles. In that case the tim
derivative is with respect to the temporal profile of the to
field integrated over the transverse plane. In the time dom
the Kirchhoff diffraction law is given by@12#:

E~P0 ,t !5E E
S

cos~n,r !

2pcr10

d

dt
ES P1 ,t2

r 01

c Dds.

Figure 9~a! shows the results of applying the Hilbert tran
form relation and an application of the Kirchhoff diffractio
law to the initial field distribution. As expected, the two a
proaches agree. Figure 9~b! shows the evolution of the spa
tiotemporal field profile obtained by using the Kirchhoff di
fraction law. This should be compared with Fig. 4, whic
was generated from the exact solutions given by Eqs.~2.10!–
~2.14!.

E. Fourier transform of the field

We now turn to a frequency domain description of t
exact pulse solutions obtained in Sec. II.

From Eq.~2.8!, we have

Ey~r ,t !52m0

]

]t
S ] f

]z
D . ~4.5.1!

With the definition of the Fourier transform given by E
~2.17!, and using the fact that the field vanishes ast→6`, a
Fourier transform of Eq.~4.5.1! gives

Ẽy~r ,v!52 im0vE
2`

1` ] f ~r ,t !

]z
exp~2 ivt !dt.

~4.5.2!

The Fourier transform can be evaluated by means of a c
tour integral around a path that encloses two double pole
the lower half-plane. Forv.0, the integration yields
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FIG. 9. ~a! The near-field and the far-field temporal wave forms of the real solution. The plot on the lower left is a Hilbert transf
the plot on the upper left. The plot on the lower right is obtained from the Kirchhoff diffraction integral. It is a time derivative of a
integrated over the diffracting screen (z50); i.e., a summation of the temporal profiles in the upper right plot where only four temp
profiles are shown. Note the temporal functions are different for differentr’s on thez50 plane. The fields are normalized by their pe
values. ~b! Simulations of the spatiotemporal evolutions of the real~top! and the imaginary~bottom! solutions using the time-domain
Kirchhoff diffraction integral for a comparison with Fig. 4 which is plotted from the analytical solutions. The plots are normalized
peak value at the focus.
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Ẽy~r ,v!5
p f 0m0v

c

expF2
k

2
~q11q2!G H S 1

b
2 ik D exp~ ikb!2S 1

b
1 ik D exp~2 ikb!J

S z1 i
q22q1

2
D H 11

r2

S z1 i
q22q1

2
D 2J , ~4.5.3!
m

om

t
are
-

o
u-

ile
.

s of
k-

he
where

b[H r21S z1 i
q22q1

2 D 2J 1/2

. ~4.5.4!

For v<0 the integral is zero. Since the time-domain co
plex field is given by

Ey~r ,t !5Ey
r ~r ,t !1 iEy

i ~r ,t !, ~4.5.5!

the spectrum of the real and imaginary parts can be c
puted from

Ẽy
r ~r ,v!5 1

2 $Ẽy~r ,v!1Ẽy* ~r ,2v!%,
~4.5.6!

Ẽy
i ~r ,v!5

1

2i
$Ẽy~r ,v!2Ẽy* ~r ,2v!%.
-

-

-

With the propertyẼy(r ,v)50 for v<0, it can be shown tha
the Fourier transforms of the real and imaginary solutions
related by Eq.~2.18! which is the Hilbert transform relation
ship demonstrated in the frequency domain.

From Eq.~4.5.3! we see that the field is composed of tw
counter-propagating waves. With the definition of the Fo
rier transform as given by Eq.~2.17!, it is recognized that the
term in e2 ikb represents a forward propagating field, wh
the term ineikb represents the backward field component

Equation~4.5.3! is exact. In the weak focusing limitq1
!q2 , Eq. ~4.5.3! can be greatly simplified. Sincer2;q1q2
!q2

2 wherever the field has significant amplitude, ther2

term in the denominator can be neglected. Keeping term
first order inr2 in the exponents, it is found that the bac
ward field component (;e2kq2) is much smaller than the
forward field (;e2kq1), and hence can be neglected. In t
forward component, the quantity 1/b is of orderi /q2 , which
in turn is much smaller thanik. Hence, replacing (1/b)1 ik
by ik, Eq. ~4.5.3! is reduced to
Ẽy~r ,v!5H 2 i
2p f 0m0v2

c2

1

2z1 iq2

exp$2 ik~z2a r !2ka i%, v.0,

0, v<0,

~4.5.7!
rier

lts
po-
tion
any

of
of
where

a r52
2zr2

4z21q2
2 , a i5q11

r2q2

4z21q2
2 . ~4.5.8!

Substituting Eq.~4.5.7! into Eq. ~4.5.6!, we obtain the spec
tra of the real and imaginary pulses as

Ẽy
r ~r ,v!52 i

p f 0m0vuvu
c2

exp$2 ik~z2a r !%

2z1 i
v

uvu
q2

3expH 2
uvu
c

a i J , 2`,v,1`,
Ẽy
i ~r ,v!52

p f 0m0v2

c2

exp$2 ik~z2a r !%

2z1 i
v

uvu
q2

3expH 2
uvu
c

a i J , 2`,v,1`.

~4.5.9!

These results are also obtainable from the direct Fou
transform of the approximate solutions.

F. Pulse diffraction

The ultrashort pulse width of a single-cycle pulse resu
in an extremely broad bandwidth. Each frequency com
nent of the pulse propagates independently. The diffrac
character of the entire pulse, such as its spatial profile in
transverse plane, is determined by the diffraction nature
each frequency component of the pulse. The diffraction
the pulse is analyzed in two ways in this section:~i! the
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diffraction of each frequency component and~ii ! the diffrac-
tion of the entire pulse treated as a single entity. We find t
in the weak focusing limit each frequency component d
fracts like a conventional Gaussian beam with a differ
beam waist but the same Rayleigh range for all the frequ
cies. The entire pulse is not Gaussian in space or time. H
ever, the rate of spread of the transverse energy distribu
is similar to that of a monochromatic Gaussian beam with
effective wavelength ofpq1 .

Equation~4.5.9! can be rewritten in the form of a conven
tional Gaussian beam weighted by a frequency-depen
factor. Substituting Eq.~4.5.8! into Eq. ~4.5.9! we find

Ẽy
r ~r ,v!5

2p f 0m0

Aq2w
S uvu

c D 3/2

expH 2
uvu
c

q1J
3expH 2 ikz1 i

v

uvu
f2 ik

r2

2R
2

r2

w2J ,

~4.6.1a!

Ẽy
i ~r ,v!5 i

v

uvu
Ẽy

r ~r ,v!, ~4.6.1b!

where the beam radiusw(z), the radius of curvatureR(z),
the Gouy phase shiftf(z), the beam waistw0 , and the
Rayleigh rangez0 , respectively, are given by

w25w0
2H 11S z

z0
D 2J , ~4.6.2!

R5zH 11S z0

z D 2J , ~4.6.3!

f5tan21S z

z0
D , ~4.6.4!

w0
25

lq2

2p
, ~4.6.5!

z0[
pw0

2

l
5

q2

2
. ~4.6.6!

The beam waist of each frequency component is proportio
to Al. The far-field diffraction angle of each frequency com
ponent is given by

u f 5
w~z!

z
'

l

pw0
5A 2l

pq2
, ~4.6.7!

which is also proportional toAl. The above equation
clearly show that each frequency component in the sin
cycle pulse propagates independently as a conventi
Gaussian beam weighted by a frequency-dependent fa
which is zero at dc and decays exponentially in the h
frequency end. The parameterq2 is seen to play the role o
the confocal parameter which is twice the Rayleigh ran
the distance from the waist (z50) to the plane in which the
beam area is twice that at the waist. It is important to n
that all the frequency components are characterized by
same value ofq2 and hence will all have the same Rayleig
at
-
t

n-
-

on
n

nt

al

-
al

tor
h

:

e
he

range. From the definition of the beam waistw0 it is clear
that if q2 is fixed, the longer wavelength components w
have a larger spot size at the focus. By tailoring the be
waist, all the frequency components have the same Rayl
range, which means the rate of the beam spreading and
ergy decay on the transverse plane is the same for all
frequencies. Thus the spatially resolved spectral profile
axis is invariant on propagation except that the magnitude
the entire spectrum is scaled down by an intensity de
factor. This is shown in Fig. 10 in which the frequency of t
peak intensity and the full width at half-maximum~FWHM!
bandwidth are independent of propagation distance. This
sult is confirmed by Eqs.~4.7.2! and ~4.7.3! in Sec. IV G.
Since all the components have the same Rayleigh range
transition between near field and far field will occur at t
same point for all the frequencies. It is this feature th
makes it possible for the pulse to propagate as an en
without dispersing away. This suggests a practical way
create such pulses is with a confocal resonator which ens
that all wavelength components have the same Rayle
range.

An alternative approach to pulse diffraction is to consid
the distribution of the entire pulse energy on the transve
planes at different propagation distances. The total ene
passing through each plane should be conserved du
propagation. The beam spread during propagation leads
continuous decay of the energy density in thex-y plane. The
physical quantity which characterizes the energy distribut
on the transverse planes is given by

G~r ![E Pz
r~r ,t !dt5E Pz

i ~r ,t !dt, ~4.6.8!

wherePz
r and Pz

i are, respectively, the Poynting vectors
the real and imaginary pulses. Since only the componentsEy
andHx are significant, we have

Pz
r~r ,t !52Ey

r ~r ,t !Hx
r ~r ,t !; Pz

i ~r ,t !52Ey
i ~r ,t !Hx

i ~r ,t !.
~4.6.9!

FIG. 10. A plot of amplitude spectra on axis at different prop
gation distances. The spectra are normalized by the peak valu
the spectrum at the focus (z50,r50). The peak frequencies an
FWHM bandwidths are invariant on propagation. The magnitude
each spectrum is simply scaled by a decay factor due to the diff
tion.
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From Eq.~4.1.1! and the Parseval equation, Eq.~4.6.8! can
be expressed as

G~r !5
c«0

2p E
2`

1`

uẼy
r ~r ,v!u2 dv5

c«0

2p E
2`

1`

uẼy
i ~r ,v!u2 dv.

~4.6.10!

The quantityG~r ! has dimensions of energy per area. It d
scribes the distribution of the pulse energy on the transv
planes at different propagation distances. This distributio
the same for the real and the imaginary solutions. Subst
ing Eq. ~4.6.1! into Eq. ~4.6.10! we obtain

G~r !5
3p f 0

2m0

4q1
5

1

~4z21q2
2!H 11

q2r2

q1~4z21q2
2!
J 5 .

~4.6.11!

This equation describes the distribution of energy density
any transverse planez and can be used to describe the d
fraction of the entire pulse. To determine the beam size
the radial direction at different translation positions, we co
sider the ratio

G~r,z!

G~0,z!
5

1

H 11
q2r2

q1~4z21q2
2!
J 5 5

1

H 11
r2

2w2~z!
J 5 .

~4.6.12!

where we have defined

w25we
2H 11S z

z0
D 2J , ~4.6.13!

with

we
2[ 1

2 q1q2 , z0[ 1
2 q2 . ~4.6.14!

When r5w, the ratio G(w,z)/G(0,z) equals (2/3)5

'0.132. This value is remarkably close toe22'0.135. We
thus note that the Gaussian beam criterionG(w,z)/G(0,z)
5e22 leads to a consistent definition of beam radiusw for
the entire pulse as given in Eq.~4.6.13!.

The quantityw2 in Eq. ~4.6.13! is proportional to the
beam area of the entire pulse as it propagates through s
It has the same mathematical form as the beam area
monochromatic Gaussian beam with a waist of (q1q2/2)1/2

and a Rayleigh range ofq2/2. Therefore,we and z0 in Eq.
~4.6.14! can be used to define, respectively, the effect
beam waist and Rayleigh range of single-cycle pulses. N
thatq2/2 is the Rayleigh range of the entire pulse, as well
each frequency component of the pulse. After propagatin
distance of Rayleigh length, the beam area of each freque
component, as well as the entire pulse, increases by the s
factor; therefore, the spectra on axis are invariant dur
propagation. This invariance is achieved by making the R
leigh range equal for all the frequency components.

The effective wavelengthle of the pulses can be obtaine
from the Rayleigh range expression of a monochrom
Gaussian beam:
-
se
is
t-

n

in
-

ce.
a

e
te
s
a
cy
me
g
y-

ic

z0[
pw0

2

le
. ~4.6.15!

With use of Eq.~4.6.14! (w05we), we obtain

le5pq1 . ~4.6.16!

Therefore,q1 is related to the effective wavelength of th
pulses. The far-field diffraction angle of the entire pulse a
has the same mathematical form as that of a Gaussian b
It can be obtained from Eqs.~4.6.13!, ~4.6.14!, and~4.6.16!:

u f[
r

z
'A2q1

q2

5
le

pwe

5
we

z0

. ~4.6.17!

For a weakly diffracting pulse, we requireq1!q2 , which
means the effective wavelength of the pulses is much sho
than the Rayleigh range.

It can be seen that the effective wavelength of the pu
characterizes the peak wavelength in the amplitude spec
uẼy

r (r ,v)u on axis. The maximum of this distribution occu
at the frequencyvp52c/q1 , hence the peak wavelength o
the pulse is given bylp5pq1 . Moreover, the pulse width
and the peak wavelength of the pulse are related by the s
of light: tp;pq1 /c. In fact, as shown by an accura
analysis in the previous section, the pulse width on axis
given by 2)q1 /c.

In short, the diffraction of the energy of the entire pulse
similar to that of a monochromatic Gaussian beam with
effective wavelengthpq1 that characterizes the peak wav
length in the amplitude spectrum, beam waistAq1q2/2, Ray-
leigh rangeq2/2, and far-field diffraction angleA2q1 /q2.
The real and the imaginary pulses have the same diffrac
behavior. From Eq.~4.6.11!, the highest energy density i
along the propagation axis (r50). This value is propor-
tional to the fifth power of the effective frequency.

In the limit q1!q2 , the pulse energy passing throug
each transverse plane is given by the integration of
~4.6.11! over the whole plane, which yields the electroma
netic energy of the pulse

UEM5E E
s
G~r !ds5

3 f 0
2p2m0

16q2q1
4 . ~4.6.18!

As expected, this quantity is independent of the propaga
distancez. This is the result of energy conservation when t
pulse propagates in space. Note that Eq.~4.6.18! equals the
first term in the exact electromagnetic energy express
~3.6!.

Figure 11 is plotted from Eq.~4.6.11! to show the distri-
bution of the pulse energy on the transverse planes at
focus (z50) and in the far field (z520 cm). The pulse
spread due to the propagation is clearly observed. Figure
is generated from Eq.~4.6.12! to demonstrate the diffraction
of the entire pulse. It is similar to that of a monochroma
Gaussian beam.

G. Off-axis spectral shift

Because the pulse solution is inherently nonseparable
amplitude spectrum, and hence the pulse shape, will dep
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FIG. 11. Energy density on two transverse planes.~a! z50 cm. ~b! z520 cm. The plots are normalized by the peak value of the ene
density at the focus.
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on bothr andz. The spectral analysis reveals that each f
quency component of the pulses propagates independen
a conventional Gaussian beam with the same Rayleigh ra
but with different beam waists proportional toAl. Thus, in
the near field, high frequency beams are more tightly c
fined about the propagation axis. The fact that all the f
quency components have the same Rayleigh range resu
an invariance of the spectra on axis. On the other hand,
frequency dispersion of the beam waist causes a redshift
reduced FWHM bandwidth of the spectra off axis. Figure
shows the off-axis spectral shift.

In the limit q1!q2 , the spatially resolved amplitude spe
trum is given by

uẼy
r ~r ,v!u}

v2

A4z21q2
2

expH 2S q1

c
1

q2

c

r2

4z21q2
2D uvuJ .

~4.7.1!

This equation represents the amplitude spectra on transv
planes at different propagation distances. Taking a deriva
of the above equation, the peak frequencies in the spectr
obtained. They are

np~r !5
c

pq1

1

H 11
r2

2w2~z!
J . ~4.7.2!
-
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ge

-
-
in

he
nd
3

rse
e

are

The FWHM bandwidths are given by

DnFWHM~r !'1.6973np~r !5
0.5403c

q1

1

H 11
r2

2w2~z!
J .

~4.7.3!

As shown in Eqs.~4.7.2! and ~4.7.3!, the highest peak fre-
quency and broadest bandwidth occur on axis (r50). This
peak frequency and FWHM bandwidth are independent
the propagation distancez, therefore the spectrum on axis
invariant during the propagation. Equations~4.7.2! and
~4.7.3! support the discussion in Sec. IV C about the pu
width @see Eq.~4.3.8!#. This result confirms the arguments
the last section. That is, the same Rayleigh range for all
frequencies results in an invariance of the spectrum on a

On the other hand, for a fixed distancez, the peak fre-
quencies and FWHM bandwidths decrease with increasinr,
therefore the off-axis spectra have a redshift and the FW
bandwidth is reduced by a factor of$11r2/2w2(z)%. As
shown in the previous section@see Eq.~4.3.8!#, the pulse
width off axis is increased by the same factor as the resu
this bandwidth reduction. In the near field the high frequen
components are more concentrated about the axis, and
gradually lost with increasingr, so the longer wavelength
begins to dominate the spectrum. Combining Eq.~4.3.8! with
Eq. ~4.7.3!, we have
d by the
Gaussian
FIG. 12. A plot of energy surface to demonstrate the diffraction of the entire pulse during the propagation. This surface is define
criterione22 for the ratio of the energy at the beam edges to that at the beam center. The pulse energy diffracts as a monochromatic
beam with an effective wavelengthpq1 .
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DnFWHM~r !tp~r !'1.87 . ~4.7.4!

As expected, the time-bandwidth product is constant a
where in space and time, and is independent ofq1 and q2 .
This value of time-bandwidth product characterizes sing
cycle pulses.

Equation ~4.7.3! implies an interesting feature of th
single-cycle pulses. The peak frequency and the bandw
of the pulse are not independent. If one of them is chos
the other is also fixed. This differs from standard models
pulse propagation that involve a temporal envelope mu
plied by a carrier frequency. In that model, the carrier f
quency and the envelope width, which determines the ba
width of the pulse, are given independently.

H. Power spectrum and amplitude spectrum

The power spectrum of the pulses is derived by integ
tion of Eq. ~4.6.1! over the cross section of the beam. Usi
cylindrical coordinate, the power spectrum can be calcula
from

S~v!5
c«0

2p E E
s
uẼy

r ~r ,v!u2r dr dw, ~4.8.1!

which yields

S~v!5
f 0

2p2m0uvu3

4c4q2
expH 2

2uvu
c

q1J , 2`,v,1`.

~4.8.2!

This expression satisfies the general property of the po
spectrum, i.e.,S(v)5S(2v). The real and imaginary
pulses have the same power spectrum. Note the integra
of Eq. ~4.8.2! over the whole spectrum yields Eq.~4.6.18!,
the pulse energy in the limitq1!q2 . The frequency of the
intensity peak in the power spectrum isnp53c/(4pq1), or
in terms of wavelength,lp54pq1/3'4q1 . Figure 14 plots
the power spectrum of the pulses.

FIG. 13. Off-axis spectral shift for fixed propagation distancez.
The spectra are normalized by the peak value of the spectrum
axis (r50). Both peak frequency and bandwidth are downshift
r increases.
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The cutoff frequencyvc of the power spectrum can b
computed by defining it as the~angular! frequency above
which the power spectrum contains the fractionh of the total
energy:

h5

E
vc

`

S~v!dv

E
0

`

S~v!dv
. ~4.8.3!

This yields

h5$11g1 1
2 g21 1

6 g3%exp~2g!, ~4.8.4!

whereg[2q1vc /c54pq1 /lc . The cutoff frequency of the
pulses can be calculated from this expression. For exam
the cutoff frequency is given byg510.045 forh50.01; that
is, lc51.25q1 ; and by g54p for h50.0015, that is,lc
5q1 . Thusq1 equals the cutoff wavelength of the pulse.

In terahertz experiments, the electric field is measu
directly, so the amplitude spectrum is more relevant. T
amplitude spectrum can be defined by

uẼy
r ~v!u[AS~v!}uvu3/2expH 2

q1

c
uvuJ . ~4.8.5!

This type of a power term multiplied by an exponential te
is a typical shape of amplitude spectrum in terahertz exp
ments.

V. PHYSICAL REALIZATION

The question that still remains is this: how does one g
erate these solutions, at least approximately, in the lab
tory? In this section we show that these pulse solutions
natural spatiotemporal modes of a cavity resonator. As s
they should be realizable by exciting a curved mirror re
nator or the equivalent lens waveguide.

There are three key insights that lead us to propose
resonant cavity scheme for generating these solutions. F
as shown in Sec. IV F, the Fourier spectrum of these pu
consists of an ensemble of Gaussian beams of different
quencies all of which have the same Rayleigh rangez0 and
radius of curvatureR(z). One way to enforce this condition

on
s

FIG. 14. Power spectrum of the pulse.
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is through the use of a resonator consisting of two cur
mirrors of radii of curvatureR1 and R2 separated by a dis
tanceL. For a symmetric resonator withR15R2 , the mini-
mum spot size of the modes occurs at the center of the ca
and is given by

w0
25

l

2p
AL~2R2L !.

The confocal parameter is given by

b52z0[
2pw0

2

l
5AL~2R2L !.

Once the mirror separation and radii of curvature have b
specified, the confocal parameter is fixed. The beam wa
will scale so thatw0

2}l, thus keepingb fixed. This single
confocal parameter characterizes the whole pulse as we
its frequency components. It is also clear that specifying
confocal parameter determines the wave front radius of
vature R(z)5z$11(z0 /z)2% for all the frequency compo
nents as well as for the entire pulse. Placing mirrors of
appropriate radii of curvature at positions where they ma
the pulse front curvature will ensure that the soluti
matches the boundary conditions at the mirrors. Finally
order to ensure that the temporal profile of the genera
pulse matches that of the solutions, the pulse must reprod
itself in space and time after a number of round trips in
cavity. In other words, it should be a spatiotemporal mode
the resonator. That possibility is ensured by the symmetr
the solutions under time reversal and space inversion,
~4.3.7!.

To test this idea we follow a pulse solution as it evolv
inside a confocal resonator. The pulse length is much sho
than the transit time in the cavity~ensured by the condition
q1!q2). Starting from an arbitrary reference plane~say,
planeB at z50) with an initial pulseEy

r (z50,r,T) propa-
gation to the right mirror adds a phasef(R/2)5tan21(1)
5p/4 which transforms the shape of the pulse. The mirro
radius of curvature matches that of the pulse and its aper
is sufficiently large that diffraction effects are negligible. R
flection at the right mirror imparts ap phase shift and henc
an inverted and transformed pulse propagates back tow
the center. Upon propagation to the left mirror, reflectio
and propagation back to thez50 reference plane, the puls
is identical in spatial and temporal profile to the initial on
However, its polarity is reversed. After a second round t
the final pulse is identical to the initial one. Similar consi
erations lead to another spatiotemporal mode described
Ey

i (r ,T). The key point is that the confocal placement
mirrors whose radii of curvature match those of the pu
that satisfies Maxwell’s equations and the boundary con
tions.

In a practical experiment the pulse source may be loca
either inside or outside the cavity. A pulse from an exter
source can be matched fairly closely to the fundame
transverse mode of the cavity using mode-matching opt
The match need not be exact. After a few round trips,
pulse will settle into a self-reproducing mode. The outp
will then consist of a train of eigenpulses separated by
d

ity
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cavity round trip time. The pulse train will have an envelo
that decays exponentially at a rate determined by the ca
Q.

VI. CONCLUSION

In conclusion, we have presented exact solutions of M
well’s equations that describe the spatiotemporal evolut
of focused single-cycle pulses. These solutions are s
tiotemporal modes of single-cycle pulses in a confocal re
nator. In contrast to previous formulations we used a He
vector oriented transversely to the propagation direction. T
resulting pulse solutions have finite total energy. Our ene
expression, however, differs from that of Ziolkowski
EDEPT solution by some additional terms that arise from
breakdown of axial symmetry of the resulting electroma
netic fields. We elucidate the role of the Gouy phase shif
causing polarity reversals and temporal reshaping as th
pulses evolve through the focus. A physical realization
these pulses in a confocal resonator scheme has been
posed.

Finally, the bandwidth and the peak frequency are
independent for these single-cycle pulses. The higher the
quency, the broader the bandwidth, thus the shorter the p
width. Therefore, ultrashort single-cycle optical pulses
likely to be generated by going to extremely short wav
lengths.

A set of useful and simple formulas has been develope
this paper. These formulas were derived from the exact
lutions of Maxwell’s equations. They are capable of descr
ing focused single-cycle electromagnetic pulses, hence
be used in experiments as a set of working equations to
culate the parameters of single-cycle pulses. These equa
are all related to the parametersq1 and q2 which describe,
respectively, the wavelength and Rayleigh range of
pulses. By measuring any two independent quantities of
pulse to determine the values ofq1 and q2 , all the other
quantities can be calculated by using this set of equatio
which are listed here for convenience.

Beam waist of each frequency w0
25

lq2

2p
Effective beam waist of entire
pulse

we
251

2q1q2

Rayleigh range z05
1
2q2

Far-field diffraction angle
of each frequency uf5A 2l

pq2

Far-field diffraction angle
of entire pulse u f5A2q1

q2

Cutoff wavelength lc5q1

Effective wavelength le5pq1

Peak frequency* np~r !5
c

lea~r !

Bandwidth* DnFWHM~r !'
0.54c

q1a~r !
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Pulse width* tp~r !52)
q1a~r !

c

Time-bandwidth product
DnFWHM~r !tp~r !

'1.87
Relation between

DnFWHMandnp
DnFWHM~r !'1.7np~r !

Group velocity@13#
ng

c
512

2q1

3q2

Amplitude spectrum

uẼ~v!u}v3/2exp

H2 q1

c
vJ

Temporal waveform of
complex field A~T!exp$i@a~T!1f~z!#%

A~T!}~11T2!23/2

a~T!53 tan21~T!

f~z!5tan21~z/z0!

Dimensionless scaled
local time T5

ct2z2r2/2R

q1a~r !

*Scaling parameter a~r !511
r2

2w2~z!

*Beam size w2~z!5we
2H 11S z

z0
D 2J
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APPENDIX A

From the following discussion, it will be seen that the tw
poles in Eq.~2.15! are always in the lower half-plane n
matter what the values ofr andz. Hence the fields and th
generating function are analytical functions of time at a
spatial pointr .

For any point on axis (r50), the poles are given by

ct152z2 iq2 , ct25z2 iq1 , ~q1 ,q2.0! ~A1!

The imaginary part of Eq.~A1! are independent ofz. For the
points off axis, let

b[AS z1 i
q22q1

2
D 2

1r25b r1 ib i .

Square both sides of above equation,
i-
l

S.

y

b r
22b i

25z22
~q22q1!2

4
1r2,

2b rb i5z~q22q1!. ~A2!

For any fixed valuez, to satisfy both equations in Eq.~A2!,
whenr increases,ub r u will increase, and simultaneouslyub i u
will decrease. Soub i u is maxim on axis, and always de
creases as increasingr. The maximum value ofub i u is given
by uq22q1u/2. Whenr→`, ub i u→0, andct15ct252 i (q1
1q2)/2.

Therefore, the imaginary parts of the poles are nega
and independent ofz for any point on axis. Whenr in-
creases, the imaginary parts of the poles will approach
each other, and end up with the same value2(q11q2)/2 as
r→`.

APPENDIX B

In this appendix, we will show that for a transverse co
struction of the Hertz vector, the EDEPT solutions will ha
finite electromagnetic energy, i.e., Eqs.~3.1!, if spectrum
k3/2F(k) is square integrable.

The electromagnetic energy expression associated
the x-oriented Hertz vector is given by

UEM5
1

2 E2`

1`

dzE
0

1`

r drE
0

2p

dw~«0uEyu21«0uEzu2

1m0uHxu21m0uHyu21m0uHzu2!. ~B1!

Applying the operators in Eqs.~2.8! and ~2.9! directly to
Eq. ~2.2!, we obtain the expansions of the field compone
over spectrumF(k):

Ey~r ,t !5E
0

1`

dk F~k!Ẽy~r ,t,k!,

Ez~r ,t !5E
0

1`

dk F~k!Ẽz~r ,t,k!,

Hx~r ,t !5E
0

1`

dk F~k!H̃x~r ,t,k!, ~B2!

Hy~r ,t !5E
0

1`

dk F~k!H̃y~r ,t,k!,

Hz~r ,t !5E
0

1`

dk F~k!H̃z~r ,t,k!,

where

Ẽy~r ,t,k!52m0ce2ksH k2r4

~q11 i t!52
4kr2

~q11 i t!4

1
2

~q11 i t!32
k2

~q11 i t!J , ~B3!
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Ẽz~r ,t,k!5 i2m0ce2ksH k2r3

~q11 i t!42
2kr

~q11 i t!3

2
k2r

~q11 i t!2J sinw, ~B4!

H̃x~r ,t,k!5e2ksH k2r4

~q11 i t!52
4kr2

~q11 i t!41
2

~q11 i t!3

1
2k2r2 cos 2w

~q11 i t!3 1
k2

~q11 i t!J , ~B5!

H̃y~r ,t,k!5e2ks
2k2r2

~q11 i t!3 sin 2w, ~B6!

H̃z~r ,t,k!52 i2e2ksH k2r3

~q11 i t!42
2kr

~q11 i t!3

1
k2r

~q11 i t!2J cosw, ~B7!

where

s5
r2

q11 i t
2 is,

With use of Eq.~B2!, the energy expression~B1! be-
comes

UEM5
1

2 E0

`E
0

`

dk dk8 F~k!F* ~k8!E
2`

1`

dzE
0

`

r drE
0

2p

dw

3$«0Ẽy~k!Ẽy* ~k8!1«0Ẽz~k!Ẽz* ~k8!

1m0H̃x~k!H̃x* ~k8!1m0H̃y~k!H̃y* ~k8!

1m0H̃z~k!H̃z* ~k8!%. ~B8!

Apparently there are 60 terms that need to be calculate
substituting Eqs.~B3!–~B7! into Eq. ~B8!. By grouping
terms properly, before carrying on the calculations ma
terms can be dropped either due to cancellation or du
angular integration. Hence the calculation task is greatly
duced to 17 terms. With the substitution of those 17 ter
into Eq. ~B8!, we have

UEM52pm0E
0

`E
0

`

dk dk8F~k!F* ~k8!

3E
2`

1`

dzE
0

`

r dr e2ks2k8s*

3H AB12CD1
k2k82

~q1
21t2!

1
2k2k82r4

~q1
21t2!3

1
2k2k82r2

~q1
21t2!2J , ~B9!
in

y
to
-
s

where

A~k!5
k2r4

~q11 i t!52
4kr2

~q11 i t!4 1
2

~q11 i t!3 , B5A* ~k8!,

C~k!5
k2r3

~q11 i t!42
2kr

~q11 i t!3 , D5C* ~k8!.

~B10!

After the r integrations and some algebraic manipulatio
one obtains

UEM52pm0E
0

`E
0

`

dk dk8F~k!F* ~k8!k2k82

3E
2`

1`

dze2 i ~k82k!sH 24

a5 1
4

a3 1
12

a4 1
2

a2 1
1

a
J ,

~B11!

where

a[~k81k!q11 i ~k82k!t. ~B12!

The z integration is performed with use of the followin
expression developed by Ziolkowski@3#,

E
2`

1`

dy
e2 ixy

~L1 ixy!m 52pd~x!
eL

Lm21 Em~L!,

where

Em~L![E
L

1` e2Lt

tm dt.

With x5k82k, y5t, and L5(k81k)q1 , Eq. ~B11! be-
comes

UEM52p2m0E
0

`

dkuF~k!u2k4

3e2kq1H 24E5~2kq1!

~2kq1!4 1
12E4~2kq1!

~2kq1!3

1
4E3~2kq1!

~2kq1!2 1
2E2~2kq1!

~2kq1!
1E1~2kq1!J .

~B13!

Using the recurrence relation

En11~x!5
1

n
@e2x2xEn~x!#,

Eq. ~B13! is simplified to

UEM5
3p2m0

4q1
4 E

0

`

dkuF~k!u2@11 2
3 ~kq1!1 2

3 ~kq1!2

1 4
3 ~kq1!3#. ~B14!
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