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Spatiotemporal evolution of focused single-cycle electromagnetic pulses
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We analyze exact solutions of Maxwell's equations that are capable of describing focused single-cycle
electromagnetic pulses. These finite energy solutions are a subset of Ziolkowski's “modified power spectrum”
pulse solutiongPhys. Rev A39, 2005(1989]. They display substantial temporal reshaping, time reversal, and
polarity reversals as they pass through the focus. The temporal profiles at the focus and in the far field are
related by a Hilbert transform in time. These results are explained in terms of the Gouy phase shift of focused
beams. We also show that these pulse solutions are natural spatiotemporal modes of an open resonator and
propose methods for their practical realizatip®1063-651X99)06304-1

PACS numbe(s): 41.20.Jb, 42.60.Da, 42.25.Bs

[. INTRODUCTION We carry out an explicit calculation that yields the finite total
energy contained in these pulses. The real and imaginary
There is much current interest in exact pulse solutions opulse solutions are shown to be related by a Hilbert trans-
Maxwell’s equations that describe the localized transmissiofiorm in time at any position. In fact, we find that the real
of e|ectromagnetic energy in free Spdae.zﬂ These studies and imaginary solutions transform into one another as the
were initiated by Brittinghan{1] who introduced the so- Pulses propagate from the focus to the far field. The near-
called “focus wave modes”(FWM's), which are three- field and far-field temporal profiles are thus related by a Hil-
dimensional packetlike solutions of the homogeneous Maxbert transform. We also show how the well known Gouy
well's equations. The original FWM's had finite energy Shift of focused beams leads to polarity reversals, time rever-
density but infinite total energy and hence were physicallys@l, and temporal reshaping as the pulses evolve through the
unrealizable. In a major advance, Ziolkowski obtained finitefocus. The properties of the pulse solutions are completely
energy solutions he termed “electromagnetic directed energgletermined by two parametersq, which is related to the
pulse trains” (EDEPT'9 by forming appropriate superposi- Peak wavelength, and,, which determines the Rayleigh
tions of the focus wave mod¢g,3]. Hellwarth and Nouchi length. In the limit q;<q,, which corresponds to the
have recently explored a particular subset of these EDEPT’Baraxial regime, a number of useful approximate relations
and obtained solutions that depict single-cycle electromagare obtained. The results are applied to recent observations
netic pulses the fields of which are confined to toroidal wavedn single-cycle terahertz electromagnetic pul§és We
packets and thus resemble focused doughfditsin that ~demonstrate that these paraxial solutions are the natural spa-
work and in Ref[3], the vector electromagnetic field com- tiotemporal modes of an open electromagnetic cavity. This
ponents were derived from a Comp|ex Hertz poterﬁfal"t) leads to the idea that EDEPT's can be generated in the labo-
oriented in the direction of wave propagation. The real andatory by exciting a curved mirror resonator or by propaga-
imaginary parts of the scalar generating functign,t) are  tion along a lens waveguide.
solutions of the scalar wave equation in vacuum. They re-
spectively lead to the long pulgé3-cycle) and short pulse
(one-cycle solutions described in Ref4].
A number of open questions were posed by Hellwarth and  Qur analysis is based on exact solutions of the wave equa-
Nouchi regarding these focused one-cycle electromagnetion of the type developed by Ziolkowski to describe effi-
pulse solutions of Maxwell's equations. In particular, it is notcjent, localized transmission of electromagnetic energy in

known what kind of electromagnetic fields are produced withspace-time. The free-space propagation of electromagnetic
a Hertz vector oriented transverse to the direction of propapulses is governed by the wave equation

gation. It is also of interest to know if there is a simple

transformation that relates the long pulse solution to the short 5

pulse solution. Finally, there is the question of the practical [ 19 ]f( =0
r! 1

Il. DERIVATION OF FIELDS

realization of these pulse solutions in the laboratory. 21

In this paper we provide the exact electromagnetic field
solutions of Maxwell’s equations for a transversely oriented
(along x) Hertz vector[5]. We find that the resulting fields wheref(r,t) is a scalar function. A particularly useful exact
are oblate wave packets that resemble “focused pancakessolution of this equation is the modified Gaussian piiBle
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exp{ —kp?/(q,+i7)} _ since the electromagnetic scalar potential is zero. Using
Gy(r,t)= @i explik(z+ct)}, (2.2 Maxwell's equations, these relations can be written as
d(of Jd [of
where p=(x?+y?)2 is the transverse coordinate,is the E=9{ —po—| —|{+2Z po—|—1t, (2.8
propagation directionf=z—ct, kis a constant with dimen- gz \ dt gy \ dt

sions (lengthy !, andq; is a positive parameter with dimen- ) ) ) )

sions of length. These solutions have finite energy density et Loty ettt

but infinite total energy and hence do not adequately repre- H=X 2 2o Y dy ox M

sent a physical space-time localized pulse. They can never-

theless be used as basis functions to SyntheSize finite ener%eref(, 9, andZ are unit vectors a|0ng the Corresponding

pulse solutions through the superposition axes, ana is the light velocity in vacuum. The electric field
along thex direction is exactly zero due to theorientation

(2.9

+o of the Hertz vector. Using Eq2.5) in Egs. (2.8 and(2.9),
f(f,t):J dk Gy(r,t)F(k), (2.3 we obtain the following components of the electromagnetic
° field:
whereF (k) is a weighting function that satisfies certain gen- po (A +in)2—(g;—io)?
eral square-integrability conditior{8]. A physically moti- E/(r,)=2fa\/ —— y —,
vated choice of thé spectrum is go {p* (a1 t+in)(q—i0)}
(2.10
Fo9={ 2 Ty O 2.4 o fue (@tint@io)
0, k=0, E(r,)=—idfg\/ — — _ ——psine,
go P+ (qrtin)(q—io)}

(2.11

2p®cog2¢)+ (g +iT)?+(qp—io)?

which reminds one of the Boltzmann factor governing the
probability of exciting a particular Gaussian mode of energy
proportional tok. Hereq, is a positive parameter. With use Hy(r,t)=2 fg

of Egs. (2.4 and (2.2) in Eq. (2.3, we obtain the scalar {p?+(qu+in)(g—io)}® ’
generating function (2.12
fo Hy(r,t)=4f P’ sinZe) (213
r,t)= .
f(r,t)= , 2. VAR 0, 2 - . 3
(r.t) P2+ (g1 +i7)(gp—i0) 2.9 {p*+(ay+in(q2—io)}

L ) (g2—io)—(qyt+iT)
whereo=z+ct. In Sec. IVF, it will be shown that the pa- Hy(r,t)=idfo— - ——3 p COSp,
rametersq, andq, characterize, respectively, the effective {p™t (a1 +in)(a2—i0)}
wavelength and Rayleigh range of the pulses. All the physi- (214

cal properties of the solutions, such as pulse width, SpeCtr%!/here is the permittivity of the vacuum, andp
width, and far-field diffraction angle, are completely deter- " ,180 . PE y '
mined by these two parameters. The functiffm,t) ex- =tan(y/x is the azimuthal angle. Eq¢2.10~(2.14 are

pressed by Eq(2.5) has finite energy and is an exact solution exact so!utions of Maxwell's equations. Due to the Iinearity
of the scalar wéve equation and reality of the wave equation and Maxwell's equations,

Solutions to Maxwell's equations are found from this gen_the real and the imaginary parts of the fields constitute two

erating function by constructing a Hertz vector oriented, forfgésg:nﬂ ?#(LS%]ZOI;J;;?”S';Pseﬁfotrr']%'mgﬁesrgg?rasgc{srzn It:r;er
example, along a transverse direction: ginary p 9 9 y

0,<<(, both the real and the imaginary solutions represent
focused single-cycle pulses propagating in free space with
I=Xf(r,t), (2.6 the energy confined near the propagation axis. By duality we
can obtain another set of solutiong’(H’) by letting E’

whereX is a unit vector, and(r,t) is the generating function = Vao/goH andH’=—eq/uoE.

given by Eq.(2.5). (In previous worl{4], use of az-directed

Hertz vector resulted in toroidal, focused doughnut wave A. Analyticity of pulse solutions
packets. The vector electromagnetic field components are

then found from An important property of the electromagnetic field solu-

tions EQs.(2.10—(2.14 as well as the generating function

Eqg. (2.5 is that they are analytic functions of time at any

positionr. This means that their poles lie in the lower half of

the complex plane regardless of the valuep ahdz. These
2.7) poles are the solutions of the quadratic equation

J
E(r.0) =~ poge (VXID),

H(r,t)=V X (VxII), p?+(q+in)(qu—io)=0,
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and are given by To prove this we start with Parseval’s equality,

G2+ 9 42— 1) 2 be 1 [+ =
cty= i \/(Z+i 22 1) 1 p? f Er(r,t)Ei(r,t)dtzﬂﬁ E(r,0)E*(r,w)do,

2
(2.20

+ _ 2
Cty=—i 927 \/<z+i 92~ % +p2 (215 and use the Hilbert transform relationship, E8.18, and
2 2

the fact thate, (r,t) andE;(r,t) are real.
It is shown in Appendix A that the imaginary parts of these
roots are always negative and hence the field solutions are

Ill. ENERGY OF PULSE SOLUTIONS

analytic functions of time. If these pulse solutions are to be physically realizable,
their energy content should be finite. In RES], Ziolkowski
B. Hilbert transform relationship showed that for a longitudinally oriented Hertz vector, the

Since the field solutions and the generating function aréDEPT will have finite total energy if the spectruei (k) is
analytic functions of time, their real and imaginary parts areSduare integrable. In Appendix B, we will present a detailed
Hilbert transforms of each other. For the electric field wec@lculation to show that for a transversely oriented Hertz

have vector the total energy of the EDEPT solution is given by
1 [+ Ef(r,t") 1 [+ +oo 2
E,(r,t)=——Pf : dt’, UEM=§f de pdp |  de(eolEyl?+e0|E,|?
7 Joe t—t' - 0 0
1 1o E (r t!) (216) +MO|HX|2+M0|Hy|2+M0|HZ|2)
r )
Ei(r,t):—Pf —dt’, 3772 oo
w - t—t’ :_’MOJ dKIE(k 2
aqt Jo [F (k)|

where E, and E; are the real and imaginary parts of the , , - 5
electric field given in Eqs(2.10—(2.14 and P stands for X[1+5(kay) +5(kgy) +3(kgy)”]
principal value. This transform relationship simplifies in the

frequency domain. Define the Fourier transform pair =Urt Ui, @
_ +oo whereU, and U; represent, respectively, the energy of the
E(r,w)zf E(r,t)exp—iwt)dt, real and the imaginary pulses. Thus for a transverse orienta-

tion of the Hertz vector an EDEPT will have finite energy if
L pen (217 the spectrunk®2F (k) is square integrable.
E(r,t)= _J E(r,0)exp(i ot)do. With 'the partigular spectrurii (k) given by Eq.(2.4), the
27 ) generating function, Eg2.5), as well as the field compo-
nents Eqs(2.10—(2.14) are analytic functions of time at any
Then the Hilbert transform relationship between the real an@patial pointr. This property can be used with the wave
imaginary parts ofg(r,t) in the frequency domain can be equation to show that the real and the imaginary solutions

expressed as have equal amounts of electric energy and magnetic energy.
- - Hence, the total energy of the real pulse equals that of the
E/(r,o)=isgne)E(r,v), imaginary pulse. Note that both real and imaginary solutions
_ _ (2.18 satisfy the wave equation. Taking the Fourier transform
Ei(r,w)=—isgnw)E,(r,w), (with respect to timgof the wave equation, we have
where - w2
VZEr,i(r7w):__2Er,i(r1w)1 (32)
1, if >0, ¢
sgnw)=1 0, if 0=0,

wherer andi refer to the real and imaginary solutions, re-

spectively. Equatiori3.2) implies that vectorér,i(r,w) are

_ _ the eigenfunctions of the Hermitian opera¥, correspond-
C. Orthogonality of pulse solutions ing to the eigenvalue- w?/c?. Therefore, the following or-

The real and the imaginary solutions form two spatiotem-thogonality relations hold:

poral modes of single-cycle pulses. This point will become

clearer after we discuss the physical properties of these so-

lutions. The two modes are orthogonal at any space point

ie.,

-1, if w<O.

Hf Er (1,0)-E(r,0")dr=S(0) 8o’ — o),

FwEr(r,t)Ei(r,t)dt:O. 2.19 jfj B (rw) B(rohdr=5(e)ow _“’)'(3 )
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Using Eq.(3.3), the electric energy of the pulse can be writ- o — 2 fouol(Qp—io)?
ten as Ey(r,t)~—"\/ —H\(r,t)~— - 3~
€0 {pe+(artin)(g,—io)}
(4.1.1

€0 gy [t~
UF,F?J J J |E,i(r,t)|?dr = WJ S i(w)dw. .
T J e The relation betweek(r,t) andH,(r,t) can also be dem-
3.4 onstrated with the use of Maxwell's equation:
Since all the field components are analytic in time at any SH(r,b)

positionr, the real and the imaginary solutions are related by VXE(r)=—po ——- (4.1.2
a Hilbert transform in time, which leads to

Taking Fourier transforms with respect to both time and

Si(w)=S(w). (3.5  space yields
Thus, we haveJF=UF and a similar equality for the mag- o Lo ~
netic energy. Therefore, the real and the imaginary pulse kXE(w,k)=\/— H(o,k), (4.1.3

have the same amount of electromagnetic energy. Substitut- &o

ing Eq. (2.4 into Eq. (3.1, the total energy of the exact
solution is obtained as

3157 o 1/a;
169,9; 310,

wherek is a unit vector in the direction of the wave vector,
and is given by

1(q1)2 (ql)s] k=xsinfcose+ysindsing+zcosd. (4.1.4
U,=U; +—=—] +{—] ;. ' -

3
el (3.6  Substituting Eq(4.1.4 into (4.13 gives

In the following section, we analyze the evolution of the /ﬁﬁx(w,k)=sinHsinqoEz(w,k)—coseﬁy(w,k).
temporal pulse profile, the spatial distribution of the fields, €o

the amplitude spectra, and other features that are amenable to (4.1.9

experimental verification. - ~
P Since E,<E, [see Eq.(4.1.8], and cog~1 for a weakly

diffracting beam, Eq(4.1.9 reduces to
IV. PHYSICAL PROPERTIES

A. Paraxial limit (g;<qy) Ey(w,k)~— ,@~Hx(w,k). 4.1.6
The exact solutions given by EqR.10—(2.14 simplify &o

considerably in the paraxial or "weakly focused” limit Ap jnverse Fourier transform of above equation yields
where the wavelength, is much smaller than the Rayleigh

rangeq,. Since this is the limit in which most terahertz o
systems operate, we provide in this section the appropriate Ey(r,t)~— 8—Hx(r,t)-
limiting forms of the exact solutions. These approximate so- 0

lutions are exact solutions of the time-dependent paraxial |, this weak focusing limit the dominant components of

wave equation and can also be obtained by inversg Fourighe electromagnetic field turn out to & and H, . Again
transform of the monochromatic fundamental Gaussian bea%placingpz by .05 in Egs.(2.10—(2.14), it is easy to see

. . . 2 X
solution multiplied by the spectrum® exp(-wa, /c). that forq,<q,, the other field components are smaller than
From the radial dependence of the solution it can be seeEy andH, in the ratios

that the fields have a limited transverse spatial extent. In fact,

4.1.9

for z=ct=0, the value ofE, at p=q,q; is only 3 of its E, a; Hy a; H, N
peak value ap=0. All the other components also drop off at E—~O q_ ) H—~O(q— ) H—~O —.
least as rapidly ap~*. We thus somewhat arbitrarily define y 2 X 2 X 2(4-1-8

the transverse extent of the beampds-q,q,. Outside this
range the energy density in the solutions is negligible. Themigure 1 shows the spatiotemporal profiles of the five electric
longitudinal extent of these essentially single-cycle pulse soand magnetic field components of the real solutioz=-a0.
lutions is likewise limited by the wavelength tor,~m7q, Note that the magnitudes &, andH, greatly exceed that of
where 7, is the temporal pulse width. Since the variable the other components. Thus, in the weak focusing limit the
=z—ct measures the local distance from the pulse centefield is quasi-TEM (transverse electric and magnetiand

the amplitude of the fields is negligible whdnr|>ch. quasiaxisymmetric. It has a maximum on axis<0), drops
Thus, wherever the fields have significant amplitude the ternaff as p 4, has a longitudinal extent{q;) much smaller

(g, +i7) in the solutions can be neglected comparedd ( than its transverse extent-(/q,q,), and thus resembles a
—io) in the limit q;<<q,. Furthermore, since the fields are pancake. These “focused pancake” solutions result from the
significant only forp?<q,d,, the term »?cos(2) in Eq.  x-directed Hertz potential used in this work as opposed to the
(2.12 is of orderq1q2<q§ and can also be neglected com- zdirected potential that led to toroidal “focused doughnut”
pared to (,—io)2. With these approximations, Eq®.10  solutions in Ref[4]. Figure 2a) shows the energy density at
and(2.12 reduce to z=0 of the real solution
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1 10O

0 =
p (mm) 1 2 ct(mm) P (mm)1 -1 29 ct (mm)

0.01 4

1 0
p (mm) -1 2 ¢t (mm) Y

FIG. 1. The five electromagnetic field components corresponding to the real sdlifion) andH"(r,t). Takee= /4 in the field Egs.
(2.10—(2.14). The electric fields are normalized by the peak vaIuE{gf while the magnetic fields are normalized by the peak valugof
Note thatEry and H;, are the dominant field components. In this and subsequent plots we have eheséri mm andg,=100 mm,
parameters appropriate for terahertz pulses.

U (r,t)=3{eoE |2+ molH,|?} We define the pulse width, somewhat arbitrarily as the
separation between the two side nulls of the imaginary pulse.
To estimate this pulse width we use the fact that, for a single-
cycle pulse, the spatial extent in the propagation direction
Crp is of order mq;<q,. Hence atr=0, the factor §,
—ict) is much smaller in magnitude thag4{—ict). Writing

based on the exact expressions in E@10—(2.14). The
energy density based on the approximate solution of E
(4.1.7) is shown in Fig. 2b). The two plots are indistinguish-

able and show the flat, “pancake” nature of the solutions. th factors in t ¢ tud d oh find that
In the limit gq;<<q,, the solutiong2.10—(2.14) describe €se factors In terms of magnitude and phase, we find tha

the spatiotemporal evolution of focused electromagneti€y(Ot) is proportional to sin(@y), where ¢; =tan Yty
pulses that have a near-Gaussian transverse beam profile aiff We use the approximatimi<q, wherever the field has
attain a minimum spot size in the plame:0, which we will S|gn|f|canit amp_htude. The separation between the two side
call the focal plane. To visualize these pulses and relate thefulls of E,(01) is thus

to terahertz experiments, we set the paramejers0.1 mm q

andg,=100 mm, and plot in Fig. 3 the on-axip€0) tem- Tp(rzo)zz\/j—l_ (4.1.9
poral shapes of the reaEC) and imaginary E'y) parts ofE, ¢

at z=0. In this planeE; is symmetric in time and passes For g,=0.1 mm this yields a pulse width of 1.15 ps. While
through zero twice whiIeE'y is antisymmetric and goes this expression has been derived for the imaginary pulse, Fig.
through zero three times. These fields therefore represeBtshows that the real solution has roughly the same pulse
pulses that are essentially single cycle in nature. width.

(a) Exact Solution (b) Approximate Solution

200

2 2

5 5

3 g FIG. 2. Energy density of the real solution at
3 8 z=0. (8 From the exact expressions of Egs.
%‘ %100 A (2.10—(2.14. The values are calculated on the
o S plane that contains propagation axziand bisects
] Q i - i

~ > thex-y plane, iep= 7/4. (b) From the approxi-
2 2 mate expression, E¢4.1.1).

2 2 5

wl L

p(mm) -5 -1  z-ct(mm)
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1 1
0.8 ”
0.6 0.5
. =04 — =
w i1} 0 — 4 - —
' 02 !
0 [~ -0.5
-0.2
-0.4 -1
-2 -1 0 1 2 -2 -1 0 1 2
time (ps) time (ps)

FIG. 3. On-axis pulse temporal shapeszatO for the real and the imaginary solutions. The fields are normalized by their peak values.

B. Spatiotemporal evolution of pulses following the temporal profile of the pulse along thexis

Figure 4 shows the spatiotemporal evolution of the reaf?=0). Figure 5 shows the axial temporal profiles of the
and imaginary pulse solutions from a distant plarze- ( real and the imaginary solutions at several propagation dis-
—30cm) before the focus, through the focus and then to &ances. It is seen that the symmetric real solutiorz-a0
plane in the far field =30 cm). The variable—ct repre- ~ evolves in the far field into an inverted version of the anti-
sents the local distance measured from the pulse centgy andsymmetric imaginary pulse at=0. Simultaneously, the an-
is the radial coordinate. One clearly observes the curvetisymmetric imaginary solution a=0 evolves in the far
phase fronts of the pulse as it converges to a minimum spdteld into the symmetric real solution. The transformation of
size at the focus and then diverges again. More significantla pulse temporal profile from symmetric to antisymmetric as
we observe a polarity reversal and substantial temporal reat propagates from the focus has been observed in terahertz
shaping as the pulse evolves through the focus. A similaexperiments by Budiartet al.[8]. It is important to note the
polarity reversal for half-cycle pulses has been noted by Youstriking difference in the way the real and imaginary pulses
and Bucksbauni7]. The temporal reshaping that accompa-transform as they propagate through the focus from a point
nies free space propagation can be more easily analyzed byz to a pointz. It is evident from Fig. 5 that the real solution

Pulse Center = -30 cm Pulse Center = O cm Pulse Center =30 cm

) ) 0 - 0
p (mm) L (mm) p (mm) -1, ¢t (mm) p (mm) 20 -1 z - ct (mm)

-20 ~20 0 -20 0
p (mm) 1ozt {mm) p (mm) -1zt (mmy) p (mm) -1 {mm)

FIG. 4. Spatiotemporal evolution of the rg&bp) and the imaginarybottom pulses from the planez& —30 cm), passing through the
focus, to the planez2=30cm). The variablee—ct represents the local distance measured from the pulse centep &nthe radial
coordinate. One clearly observes the curved phase fronts, the polarity reversal and the temporal reshaping as the pulse evolves through the
focus. The plots are normalized by the peak value at the focus.
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Real Solution E; Imaginary Solution Eiy A(T) .
/\/ A E,(r,T)= ——explila(T)+ (21},
z=100cm 2 2
Vz5+z5 1+
0 [ 2W2(Z)]
(4.3.2
z=20cm
whereT is a radially scaled local timé&LT), given by
z= 10cm \/\/— ﬁ/\/‘
7+ p?I2R(2)
, H cit————
z= Ocm C
T= 5 (4.3.3
p
q:y 1+
z=-10cm ‘—/‘\/; 2w%(2)
z=-20c¢m \/\ J\/¥ Here
zZ=-100cm 0 2
- J\/¥ R(z)=z{ 1+ —) ]
z
Time
. . . . VA 2
FIG. 5. Temporal profiles on axis at several propagation dis- Wz(z):W2 1+(_) ] (4.3.9
tances for the real and the imaginary solutions. The two solutions € zy) )’
have the following symmetries:E'(-zt)=E'(z,—t) and
E'(—zt)=—E'(z,—t). Thus in passing through the focus the real
solution undergoes a time reversal while the imaginary solution 5 U102 0z
undergoes both time reversal and polarity reversal. We= 2 ZO—E'
E" undergoes a time reversal while the imaginary solution d
undergoes both a time reversal and a polarity reversal. an
. z —fomoC
C. Effect of Gouy phase shift _ 0o
P $(z)=tan l(z—), A= 52y gy
. . 0
The change in pulse waveform under focusing can be ex- !
plained by the difference of phase and envelope velocity in
the focal region and is related to the Gouy phase shift of a(T)=3tanm X(T). (4.3.5

focused beams.
In the limit q;<<q,, o can be replaced by 2in Eq.
(4.1.2, and the complex field can be rewritten as

—2fomoC
S apmiza)
1
. Up® 2zp% 1%
Iq1+ 422+q§+|(Z—Ct+ 4Zz+q§ ]

Note that the replacement @f by 2z does not affect the
analyticity of the field. The poles of E.3.]) are still in the
lower half-plane for any spatial point, hence E4.3.)) is

also an analytic function of time at any point in space. After

The quantityR(z) represents the radius of curvature of the
pulse wave front whilev(z) measures the transverse extent
of the beam. Although the transverse beam profile is clearly
non-Gaussian we will show later that the beam energy dif-
fracts in the same manner as a monochromatic Gaussian
beam with an effective beam waist.= \/q,9,/2 and Ray-
leigh rangezy=q,/2. The term{z+ p?/2R(2)}/c in T is the
radially-dependent delay suffered by the pulse during propa-
gation. The edges of the pulse are delayed more than the
center and this results in a curved wave front. The quantity
{1+ p?/2w?(2)} in T scales the pulse width and hence the
pulse width is different at different radial positions. How-
ever, along the hyperbolic trajectoripé/w?(z) = const, the
pulse width is invariant. The quantity(z) =tan }(z/zy) is
the Gouy phase shift that any finite beam encounters upon
passage through a focus.

The real and the imaginary parts of E¢.3.2 represent

much algebra we obtain a particularly useful form for thethe spatiotemporal evolution of the physical pulse solutions

field:

of Maxwell's equations in the paraxial limit and are given by
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1 5
0.8
E 0.6 E 0
< g
' 0.4 L:;
0.2
0 -5
-5 0 5 -5 0 5
Scaled Local Time: T Scaled Local Time: T

FIG. 6. Amplitude function and temporal phase function. Note the horizontal axis is dimensionless local time.

A(T) phase of the temporal functions of the fields. The faczér (
——cog a(T)+ ¢(2)], +2z%) "Y1+ p?/2w?] "2 accounts for energy conservation
p due to the propagation and the scaling. In propagation from
2w2(z) the focus to the far fields(z) goes from zero tom/2, thus
effecting the transformatlorE;—> E andE! —E;. This
transformation is also obtainable from the Hilbert transform
A(T) . relationship between the real and imaginary parts of the com-
7 3Sina(T)+é(2)]. plex field. The*x/2-phase shift in each frequency compo-
2 2 P
Vzpt+z [1+ ]

El(r,T)=

VZ3+ 22

1+

Ey(r,T)=

nent in propagating from=0 to z— * o results in a Hilbert
transform in time between the near field and the far field.
(4.3.6  The Gouy shift is thus responsible for the pulse reshaping,
time reversal, and polarity reversal that occurs when these
The temporal envelope functiogh(T) and the phase func- pulses pass through the focus.
tion «(T) are invariant upon propagatiofexcept for the To emphasize the validity of the approximations leading
scaling in time for the points off axisince they depend only to Eq. (4.3.6, Fig. 7 shows the pulse profiles on axiszt
on the scaled local timé. Figure 6 shows the form of these =10cm as calculated from the exact formula E210 and
functions. Any variation of the spatiotemporal profiles of thefrom the approximate formula E¢4.3.6.
pulseEr '(r T) during propagation is completely determined  The field solutions obey the following space-time symme-
by the Gouy phase shif$(z), which modulates the initial tries[9]:

2w?(2)

Exact, z=10cm Approximate, z=10cm
- v T 1 r v

-2 -1 0 1 2 -2 -1 0 1 2
local time (ps) local time (ps)

Z2 -1 0 1 2 22 -1 0 1 2
local time (ps) local time (ps)

FIG. 7. Temporal profiles of the pulseszt 10 cm for the real and imaginary solutions. The plots on the left are from the exact solution
Eq. (2.10, while the plots on the right are from the approximate solution (B.6. The fields are normalized by their peak values.
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1 _ 1

time (ps) time (ps)

FIG. 8. Dependence of pulse shapes on radial positigr=d1 (solid line), p=w, (dashed ling andp= 2w, (dot-dashed ling wherew,
is the effective beam waist. The fields are normalized by their peak values.

E{,(—z,—T)=E;(z,T); Eiy(—z,—T)= —Eiy(z,T). the axis at the focus of terahertz beams. The pulse widths
(4.3.7 appear to increase linearly with radial distance as might be
expected for a pulse the frequency components of which
The real pulse is symmetric under the reflection of bothhave the same geometrichumber. This is closer to the
space and time, while the imaginary pulse is antisymmetricsituation analyzed by Kaplai®].
This explains why in passing through the focus the imagi- The results of Eq(4.3.6 show that a pure phase change
nary pulse is both time reversed and inverted while the real(z) can lead to dramatic reshaping of a single-cycle tera-
pulse is only time reversed. hertz pulse. In fact, experiments have revealed how the phase
A key feature of these pulse solutions is that they are noghift on total internal reflection distorts the temporal profile
separable into a product of a function that depends only owf an incident pulséRef. [11]). We suggest that Eq4.3.6
time and one that depends only on space. One consequenggn be used, along with a measurement of initial and final
of this nonseparability is that the pulse width is generallypulse shapes, to extract the phase shift responsible for pulse
dependent on radial position and propagation distance. Froghaping.
Egs.(4.1.9 and(4.3.3, it can be shown that the pulse width

at any positiorr is given b
yp 9 y D. Hilbert transform relationship between near and far field

2 . . . . .
p ] 439 As pointed out earlier, since the complex field solution

2w<(z) E,(r,t) is an analytic function of time at any pointits real
o ) ] o and imaginary parts are Hilbert transforms of each other with
The minimum pulse width occurs on axip£0) and is in-  respect to the global time variableWe now show that the
variant with propagation distance. Off axis the pulse width issemporal profiles in the far field are Hilbert transforms of the
longer by a factor o{1+p?/2w?(2)}, and it decreases with temporal profiles in the focal plang£0). In other words,
propagation distance for fixeel _ propagation from the focus to the far field corresponds to a
As shown in Sec. IVE, in the frequency domain thesejpert transform operation performed with respect to the
pulses consist of an ensemble of Gaussian beams of differefycal time.
frequencies, all of which have the same Rayleigh range  Because of the transverse spreading of the pulse due to
=(Qy/2. For a Gaussian beam of wavelengthand beam djffraction, it is convenient to compare temporal profiles in
waist Wy, the Rayleigh range is given bg,=mwj/\. In  the near field £=0) and far field ¢— ) for points that
order thatz, remains fixed at all wavelengths the beamhave the same radial coordinate relative to zraependent
waists must scale asy\. Thus, in any transverse plane beam radiusw(z). Such points are defined by?/2w?(z)
the higher frequency components of the pulse are closely-const=u, which specifies the hyperbolic trajectories
confined to the axis while the lower frequency components )
are more spread out. It is this radial dispersion of beam 2_5,2 Y| o, u?
waists that leads to the radial dependence of the pulse p me Z #We-
widths. Figure 8 shows the temporal profiles of the real and
imaginary pulse solutions @&=0 for p=0, p=W,, andp  ajong these trajectories the scaled local time becomes
=2w,. The radial dependence of the pulse widths in any
fixed z plane is also true in the far field.

a1
Tp(l’)—Z\/j < 1+

(4.4.9

We note that Kaplan has also discussed a radial depen- z a1
dence of pulse widths due to the different diffraction angle = c 1+MZ_0
for frequency components with the same initial waiRef. T,= . (4.4.2
[9]) while Wanget al. (Ref.[10]) have analyzed a situation qx(1+w)

similar to ours where the beam waists scale/as In recent
experiments, Budiartet al. [8], have observed dramatic in- At z=0, the real and the imaginary parts of the complex field
creases in pulse width as a function of radial distance fronare given by the Hilbert transform pair
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r A(T,)cof a(T,)]
E}(z=0T,)= SNTFURE =H{E,(z=0T,)},
(4.4.3
| AT, )sina(T,)]
B2= 0T = T

=H YE}(z=0T,)}
=—H{E}(z=0,T,)}.

In the far field, asz— +, ¢(z)— w/2, hence the fields
become

A(T)sina(T,)]
ZoV1+(2/20)%(1+ p)®

1
= ———H{E|(z=0T,)},

V1+(2/25)?

El(z—+%,T,)=—

(4.4.9
A(T,)cod a(T,)]
ZoV1+(2/20)%(1+ p)®
1 )
=———HE\(z=0T,)}.

V1+(2/2)?

Ey(z—+2,T,)=
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(4.4.7)

andd= \1+[z,/z0]?. The factors®/d in front of Eq.(4.4.5
accounts for energy conservation due to the propagation and
the scaling.

It is often stated that the far field temporal distribution is
a time derivative of the near field temporal distribution. An
examination of the Kirchhoff diffraction law for non-
monochromatic fields shows that this derivative relationship
is strictly true if the initial distribution is separable into a
spatial function multiplied by a temporal function. If the ini-
tial distribution is nonseparable, different radial positions
will have different temporal profiles. In that case the time
derivative is with respect to the temporal profile of the total
field integrated over the transverse plane. In the time domain
the Kirchhoff diffraction law is given by12]:

E(Poff)_f J'

Figure 9a) shows the results of applying the Hilbert trans-
form relation and an application of the Kirchhoff diffraction
law to the initial field distribution. As expected, the two ap-
proaches agree. Figurék shows the evolution of the spa-
tiotemporal field profile obtained by using the Kirchhoff dif-

cogn,r) d

27TCI’10 dt

r
(Pl, ?Ol)ds.

Equation(4.4.4 show that for points in the near field and the fraction law. This should be compared with Fig. 4, which
far field that have the same relative transverse coordinateras generated from the exact solutions given by Ej40—
p/w(z), the temporal profiles are related by a Hilbert trans-(2.14).

form.
More generally, for any two pointsz{=0, p=p;) and

(zo0— +%, p=p,) that do not necessarily lie on the hyper-

bolic trajectories described aboviae pulse width is differ-

E. Fourier transform of the field

We now turn to a frequency domain description of the

end, a scaled Hilbert transform relation exists between theexact pulse solutions obtained in Sec. Il.

temporal profiles at the two points:

s* _[+=Ey(0pq,t")
r _ y ’
Ey(ZZ!pZIé/)_dﬂ_PJ‘_w Sg_t/ dt '

(4459
$° [+ Ey(0p1t)
EV(22.p2.0)= = fwa
Here
2
P2
2R
=t-—— (2), (4.4.6

and the scaling parametsiis given by

From Eq.(2.8), we have

E,(r,t)=— (4.5.)

of
_E'

Moét

With the definition of the Fourier transform given by Eq.
(2.17), and using the fact that the field vanisheg-ast+«, a
Fourier transform of Eq(4.5.1) gives

~ += gf(r,t)
Ey(r,o)= —I,uowJ Tz

exp(—iwt)dt.
(4.5.2
The Fourier transform can be evaluated by means of a con-

tour integral around a path that encloses two double poles in
the lower half-plane. Fow>0, the integration yields
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FIG. 9. (a) The near-field and the far-field temporal wave forms of the real solution. The plot on the lower left is a Hilbert transform of
the plot on the upper left. The plot on the lower right is obtained from the Kirchhoff diffraction integral. It is a time derivative of a field
integrated over the diffracting screen<{0); i.e., a summation of the temporal profiles in the upper right plot where only four temporal
profiles are shown. Note the temporal functions are different for diffessnbn thez=0 plane. The fields are normalized by their peak
values. (b) Simulations of the spatiotemporal evolutions of the rgap) and the imaginarybottom solutions using the time-domain
Kirchhoff diffraction integral for a comparison with Fig. 4 which is plotted from the analytical solutions. The plots are normalized by the

peak value at the focus.
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k 1 1
exg — —(g,+ ——ik |exp(ikB)—| —+ik |exp(—ik
~ f opo® F{ 2(Q1 Q2)[ 5 ) pikB) 5 o ,3)]
Ey(r,w)= c P 2 ) (453
z+i 1+ >
2 _CI2_CI1)
Z+i
2

where With the propertyEy(r ,w)=0 for w=<0, it can be shown that

the Fourier transforms of the real and imaginary solutions are
o 12 related by Eq(2.18 which is the Hilbert transform relation-
B 02— Qs (4.5.4 ship demonstrated in the frequency domain.

P 2 ' o From Eq.(4.5.3 we see that the field is composed of two
counter-propagating waves. With the definition of the Fou-
rier transform as given by Eq2.17), it is recognized that the

For =<0 the integral is zero. Since the time-domain com-term in e~ '*# represents a forward propagating field, while

IBE

plex field is given by the term ine'*? represents the backward field component.
. - Equation(4.5.3 is exact. In the weak focusing limg,
Ey(r,t) =Ey(r,t) +iE(r,1), (459  <q,, Eq.(4.5.3 can be greatly simplified. Singe’~q;0,

, , <q§ wherever the field has significant amplitude, tpe
the spectrum of the real and imaginary parts can be cOMgm in the denominator can be neglected. Keeping terms of
puted from first order inp? in the exponents, it is found that the back-
ward field component {e k%) is much smaller than the
forward field (~e k%), and hence can be neglected. In the
(4.5.9 forward component, the quantitydis of orderi/q,, which
=i _ T Bk, in turn is much smaller thaik. Hence, replacing (B) +ik
By(ro)=7; {By(r,0) =By (r,= )}, by ik, Eq. (4.5.3 is reduced to

El(r,w)=3{Ey(r,0) +E} (r,— w)},

[

_ 2mfouow? 1

exp —ik(z— a,) —kaj}, >0,

- —i
Ey(r,o)= c? 2z+iq, (4.5.7
0, w=<0,
|
where o mfomow? exp{—ik(z—a,)}
Ely(riw):_ 2
. w
22+|mq2
2zp? . P20 458 " p[ |w]| } et
a=— —— = — 5. exp — —a;if, —o ®.
" 42492 h 472+ 3 c ©
(459

These results are also obtainable from the direct Fourier
Substituting Eq(4.5.7 into Eq. (4.5.6, we obtain the spec- transform of the approximate solutions.
tra of the real and imaginary pulses as

F. Pulse diffraction

The ultrashort pulse width of a single-cycle pulse results
in an extremely broad bandwidth. Each frequency compo-
nent of the pulse propagates independently. The diffraction
character of the entire pulse, such as its spatial profile in any
transverse plane, is determined by the diffraction nature of
Xexp{ B Mai], o< < b each frequ.ency component of the pylse._The d?ff_re_tction of

c the pulse is analyzed in two ways in this sectidgi): the

mfopow|w| expl—ik(z—a,)}
o2

El(r,w)=—i

2747 —
Z+ | —
|w|CI2
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diffraction of each frequency component afiid the diffrac- 1
tion of the entire pulse treated as a single entity. We find that _ z=00cm
in the \_/veak focusing_ limit each frequency component dif- o8l e _z=50cm
fracts like a conventional Gaussian beam with a different g - 2210.0 cm
beam waist but the same Rayleigh range for all the frequen- & A T N o
cies. The entire pulse is not Gaussian in space or time. How- 29 )/ AN -.-.2=2000m
ever, the rate of spread of the transverse energy distribution 2 ! \
is similar to that of a monochromatic Gaussian beam with an 2 04t [/ M
effective wavelength ofrq; . g Is \
Equation(4.5.9 can be rewritten in the form of a conven- < oot ,'.-’ P \\
tional Gaussian beam weighted by a frequency-dependent Vi RN AN
factor. Substituting Eq(4.5.8 into Eq. (4.5.9 we find o/ ‘-\.\_: >~
0 . : —
0 1 2 3 4 5
E;(r,w) - M ( M) ¥ exp{ _ M%] Frequency (THz)
Jogw | ¢ c
2 2 FIG. 10. A plot of amplitude spectra on axis at different propa-
Xexp{ —ikz+i el b— ikp__ p_] gation distances. The spectra are normalized by the peak value of
|(0| 2R w?|’ the spectrum at the focuz£0,0=0). The peak frequencies and
(4.6.13 FWHM bandwidths are invariant on propagation. The magnitude of
each spectrum is simply scaled by a decay factor due to the diffrac-
- -, tion.
Ey(r,w)—lmEy(r,w), (4.6.1H

range. From the definition of the beam waigj it is clear

where the beam radius(z), the radius of curvatur®(z), that if g, is fixed, the longer wavelength components will

the Gouy phase shiftb(z), the beam waistv,, and the have a larger spot size at the focus. By tailoring the beam
Rayleigh rangez,, respectively, are given by waist, all the frequency components have the same Rayleigh

range, which means the rate of the beam spreading and en-
z\? ergy decay on the transverse plane is the same for all the
— } (4.6.2 frequencies. Thus the spatially resolved spectral profile on
axis is invariant on propagation except that the magnitude of
2] the entire spectrum is scaled down by an intensity decay

W2=WS[ 1+
Zy

(4.6.3  factor. This is shown in Fig. 10 in which the frequency of the
peak intensity and the full width at half-maximu@WHM)
) bandwidth are independent of propagation distance. This re-

(4.6.9 sult is confirmed by Eqgs@4.7.2 and (4.7.3 in Sec. IVG.
Since all the components have the same Rayleigh range, the
transition between near field and far field will occur at the

W2 A2 (465 Same point for all the frequencies. It is this feature that

0 ’ -0. . . .
2w makes it possible for the pulse to propagate as an entity
without dispersing away. This suggests a practical way to
create such pulses is with a confocal resonator which ensures
that all wavelength components have the same Rayleigh
range.

The beam waist of each frequency component is proportional An alternative approach to pulse diffraction is to consider

to \\. The far-field diffraction angle of each frequency com- the distribution of the entire pulse energy on the transverse

2
™o 0z
=TT (4.6.9

ponent is given by planes at different propagation distances. The total energy
passing through each plane should be conserved during
_W(Z) o 2\ 46 propagation. The beam spread during propagation leads to a

Tz “aw, Vmg, 487 Continuous decay of the energy density in g plane. The

physical quantity which characterizes the energy distribution
which is also proportional to/A. The above equations on the transverse planes is given by
clearly show that each frequency component in the single-
cycle pulse propagates independently as a conventional -
Gaussian beam weighted by a frequency-dependent factor F(r)EJ P;(r,t)dt=f Py(r,t)dt, (4.6.8
which is zero at dc and decays exponentially in the high '
frequency end. The parametgs is seen to play the role of where P}, and P, are, respectively, the Poynting vectors of
the confocal parameter which is twice the Rayleigh rangethe real and imaginary pulses. Since only the comportepts
the distance from the waisz£0) to the plane in which the andH, are significant, we have
beam area is twice that at the waist. It is important to note _ _ _
that all the frequency components are characterized by thePy(r,t)=—Ey(r,t)H(r,t); Py(r,t)=—Ey(r,{)H(r,t).
same value o, and hence will all have the same Rayleigh (4.6.9
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From Eq.(4.1.1 and the Parseval equation, E¢4.6.8 can W3
be expressed as Zp= Vi (4.6.19
e
C80 to CSO to . - _ .
I'(r)= Z_J |E;(r,w)|2 do= Z_J |E'y(r,w)|2dw. With use of Eq.(4.6.19 (wy=Ww,), we obtain
m ) - m ) -
(4.6.10 Ne=m(y. (4.6.16

The quantityl'(r) has dimensions of energy per area. It de-Therefore,q, is related to the effective wavelength of the
scribes the distribution of the pulse energy on the transverseulses. The far-field diffraction angle of the entire pulse also
planes at different propagation distances. This distribution i§as the same mathematical form as that of a Gaussian beam.
the same for the real and the imaginary solutions. Substituit can be obtained from Eq$4.6.13, (4.6.19, and(4.6.16:

1

Q2P2

9.(42%+q3)

ing Eq. (4.6.]) into Eq.(4.6.10 we obtain
z
(42%+ q§)| 1+ }
(4.

6.10

p

We

Zy

0

(4.6.17

/2%_ Ne
z Q2 ’7TWe
For a weakly diffracting pulse, we requig <q,, which
means the effective wavelength of the pulses is much shorter
than the Rayleigh range.

It can be seen that the effective wavelength of the pulse

This equation describes the distribution of energy density 0Rp 4 acterizes the peak wavelength in the amplitude spectrum

any transverse planeand can be used to describe the dif-

fraction of the entire pulse. To determine the beam size i
the radial direction at different translation positions, we con
sider the ratio

I'(p,2) 1 1
r0z ap? )% p? °
a1(42%+q3) 2w*(2)
(4.6.12
where we have defined
2
w2=w§r1+ — } (4.6.13
Zy
with
Wi=30:0;, Zo=30>. (4.6.19

When p=w, the ratio I'(w,2)/T'(0,2) equals (2/3)
~0.132. This value is remarkably close ¢6°~0.135. We
thus note that the Gaussian beam criterlofw,z)/1°(0,2)
=e 2 |leads to a consistent definition of beam radgor
the entire pulse as given in E.6.13.

The quantityw? in Eq. (4.6.13 is proportional to the

beam area of the entire pulse as it propagates through spacp
It has the same mathematical form as the beam area of

monochromatic Gaussian beam with a waist @fq,/2)%?
and a Rayleigh range af,/2. Thereforew, andz, in Eq.

(4.6.19 can be used to define, respectively, the effective

beam waist and Rayleigh range of single-cycle pul

thatq,/2 is the Rayleigh range of the entire pulse, as well a

each frequency component of the pulse. After propagating

distance of Rayleigh length, the beam area of each frequenq
component, as well as the entire pulse, increases by the sarge

factor; therefore, the spectra on axis are invariant durin

rLE;(r,w)| on axis. The maximum of this distribution occurs

at the frequency»,=2c/q,, hence the peak wavelength of
the pulse is given by ,=mq,. Moreover, the pulse width
and the peak wavelength of the pulse are related by the speed
of light: 7,~mq,/c. In fact, as shown by an accurate
analysis in the previous section, the pulse width on axis is
given by 273q;/c.

In short, the diffraction of the energy of the entire pulse is
similar to that of a monochromatic Gaussian beam with an
effective wavelengthrq, that characterizes the peak wave-
length in the amplitude spectrum, beam waigtq,/2, Ray-
leigh rangeq,/2, and far-field diffraction angle/2q,/qs,.

The real and the imaginary pulses have the same diffraction
behavior. From Eq(4.6.1), the highest energy density is
along the propagation axisp€0). This value is propor-
tional to the fifth power of the effective frequency.

In the limit q,;<<q,, the pulse energy passing through
each transverse plane is given by the integration of Eq.
(4.6.11 over the whole plane, which yields the electromag-
netic energy of the pulse

3f(2)772M0
U =f fF(r)dSZ—. (4.6.18
s 160,07

As expected, this quantity is independent of the propagation
stancez. This is the result of energy conservation when the
;?ulse propagates in space. Note that &g6.18 equals the

first term in the exact electromagnetic energy expression
(3.9).
Figure 11 is plotted from Eq4.6.11 to show the distri-

ses. NOI, ion of the pulse energy on the transverse planes at the
Jocus @z=0) and in the far field =20 cm). The pulse

%)read due to the propagation is clearly observed. Figure 12
generated from Ed4.6.129 to demonstrate the diffraction
the entire pulse. It is similar to that of a monochromatic

$Gaussian beam.

propagation. This invariance is achieved by making the Ray-

leigh range equal for all the frequency components.
The effective wavelength, of the pulses can be obtained

G. Off-axis spectral shift

from the Rayleigh range expression of a monochromatic Because the pulse solution is inherently nonseparable, the

Gaussian beam:

amplitude spectrum, and hence the pulse shape, will depend
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FIG. 11. Energy density on two transverse plari@sz=0 cm. (b) z=20 cm. The plots are normalized by the peak value of the energy
density at the focus.

on bothp andz. The spectral analysis reveals that each fre-The FWHM bandwidths are given by
guency component of the pulses propagates independently as

a conventional Gaussian beam with the same Rayleigh range 0.540% 1

but with different beam waists proportional t&.. Thus, in Avewam(r)~1.6973,(r)= > .
the near field, high frequency beams are more tightly con- a1 N p

fined about the propagation axis. The fact that all the fre- 2W2(2)
guency components have the same Rayleigh range results in (4.7.3

an invariance of the spectra on axis. On the other hand, the

frequency dispersion of the beam waist causes a redshift ar]gs shown in Eqs(4.7.2 and (4.7.3, the highest peak fre-

reduced FWHM pandwidth of t_he spectra off axis. Figure 13quency and broadest bandwidth occur on agis0). This
shows the off-axis spectral shift.

D . . peak frequency and FWHM bandwidth are independent of
In the limitd, <qy, the spatially resolved amplitude spec- yo hronagation distance therefore the spectrum on axis is
trum is given by invariant during the propagation. Equatiori4.7.2 and
2 2 (4.7.3 support the discussion in Sec. IV C about the pulse
B (r @ (% G2 p width [see Eq(4.3.8]. This result confirms the arguments in
v ,0)|oc ———=ex Tt |o|}. ) . .
/4zz+q§ C C 47°+q5 the last section. Th:?\t is, the same Rayleigh range for all the
4.7.1 frequencies results in an invariance of the spectrum on axis.
On the other hand, for a fixed distanzethe peak fre-

Thi . h litud uencies and FWHM bandwidths decrease with increasing
IS equation represents the amplitude Spectra on transverge, ¢ e the off-axis spectra have a redshift and the FWHM

planes at different propagation distances._ Ta_king aderivatiVBandwidth is reduced by a factor L+ p2/2w%(2)}. As

of th_e above equation, the peak frequencies in the spectra aLfown in the previous sectiolsee Eq.(4.3.9], the pulse

obtained. They are width off axis is increased by the same factor as the result of
this bandwidth reduction. In the near field the high frequency

c 1 components are more concentrated about the axis, and are
v(h=———""—>—. (472 gradually lost with increasing, so the longer wavelength
s P begins to dominate the spectrum. Combining @&g3.8 with
2w?(2) Eq. (4.7.3, we have
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FIG. 12. A plot of energy surface to demonstrate the diffraction of the entire pulse during the propagation. This surface is defined by the
criterione ™2 for the ratio of the energy at the beam edges to that at the beam center. The pulse energy diffracts as a monochromatic Gaussian
beam with an effective wavelengthq; .
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FIG. 13. Off-axis spectral shift for fixed propagation distarce FIG. 14. Power spectrum of the pulse.

The spectra are normalized by the peak value of the spectrum on
axis (p=0). Both peak frequency and bandwidth are downshift as  The cutoff frequencyw, of the power spectrum can be
p increases. computed by defining it as th@angulaj frequency above
which the power spectrum contains the fractipof the total
Aveyum(r) 7p(r)~1.87. (4.7.4  energy.

As expected, the time-bandwidth product is constant any- j S(w)dw
where in space and time, and is independeng,0indq,. 7= ¥c _
This value of time-bandwidth product characterizes single- fo(w)dw
cycle pulses. 0
Equation (4.7.3 implies an interesting feature of the
single-cycle pulses. The peak frequency and the bandwidtfihis yields
of the pulse are not independent. If one of them is chosen,
the other is also fixed. This differs from standard models of n={1+y+ 3y’ + &y’ exp(— ), (4.8.9
pulse propagation that involve a temporal envelope multi-
plied by a carrier frequency. In that model, the carrier fre-Wherey=2q,w./c=4mq,;/\.. The cutoff frequency of the
guency and the envelope width, which determines the bandlulses can be calculated from this expression. For example,
width of the pulse, are given independently. the cutoff frequency is given by=10.045 for»=0.01; that
is, Ac=1.25,; and by y=4= for »=0.0015, that is\.
=q4. Thusq; equals the cutoff wavelength of the pulse.
In terahertz experiments, the electric field is measured
The power spectrum of the pulses is derived by integradireCﬂy, so the amplitude spectrum is more relevant. The
tion of Eq.(4.6.1) over the cross section of the beam. Usingamplitude spectrum can be defined by
cylindrical coordinate, the power spectrum can be calculated

from |E§(w)|5v8(w)°<|w|3’2exp{—%lwl]. (4.8.5

S(f»F%fLIEry(r,w)lzpdpdsv, (4.8.1

(4.8.3

H. Power spectrum and amplitude spectrum

This type of a power term multiplied by an exponential term
is a typical shape of amplitude spectrum in terahertz experi-

. : ments.
which yields
V. PHYSICAL REALIZATION
2ol w|® 2| w| _ . o
S(w)= B Xp—— 0y, —*<o<+x, The question that still remains is this: how does one gen-
4c’q ¢ erate these solutions, at least approximately, in the labora-

(4.8.2 tory? In this section we show that these pulse solutions are
natural spatiotemporal modes of a cavity resonator. As such

This expression satisfies the general property of the powethey should be realizable by exciting a curved mirror reso-
spectrum, i.e.,.S(w)=S(—w). The real and imaginary nator or the equivalent lens waveguide.
pulses have the same power spectrum. Note the integration There are three key insights that lead us to propose the
of Eq. (4.8.2 over the whole spectrum vyields E@.6.18, resonant cavity scheme for generating these solutions. First,
the pulse energy in the limij;<<q,. The frequency of the as shown in Sec. IVF, the Fourier spectrum of these pulses
intensity peak in the power spectrumis=3c/(4mq,), or  consists of an ensemble of Gaussian beams of different fre-
in terms of wavelength\ ,=4mq,/3~4q, . Figure 14 plots quencies all of which have the same Rayleigh rapgand
the power spectrum of the pulses. radius of curvaturdl(z). One way to enforce this condition
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is through the use of a resonator consisting of two curveaavity round trip time. The pulse train will have an envelope
mirrors of radii of curvatureR; andR, separated by a dis- that decays exponentially at a rate determined by the cavity
tancelL. For a symmetric resonator wifR;=R,, the mini- Q.

mum spot size of the modes occurs at the center of the cavity

and is given by VI. CONCLUSION

, A In conclusion, we have presented exact solutions of Max-
Wo=5_VL(2ZR-L). well’'s equations that describe the spatiotemporal evolution
of focused single-cycle pulses. These solutions are spa-
tiotemporal modes of single-cycle pulses in a confocal reso-
nator. In contrast to previous formulations we used a Hertz

2 w2 vector oriented transversely to the propagation direction. The
9y — O Trop_1 resulting pulse solutions have finite total energy. Our energy
b=22 A L(2R-L). expression, however, differs from that of Ziolkowski's
EDEPT solution by some additional terms that arise from the
Once the mirror separation and radii of curvature have beehreakdown of axial symmetry of the resulting electromag-
specified, the confocal parameter is fixed. The beam waistsetic fields. We elucidate the role of the Gouy phase shift in
will scale so thawvgoc)\, thus keepingb fixed. This single causing polarity reversals and temporal reshaping as these
confocal parameter characterizes the whole pulse as well #gilses evolve through the focus. A physical realization of
its frequency components. It is also clear that specifying théhese pulses in a confocal resonator scheme has been pro-
confocal parameter determines the wave front radius of curPosed.
vature R(z) =z{1+ (zo/2)?} for all the frequency compo- Finally, the bandwidth and the peak frequency are not
nents as well as for the entire pulse. Placing mirrors of théndependent for these single-cycle pulses. The higher the fre-
appropriate radii of curvature at positions where they matcifluency, the broader the bandwidth, thus the shorter the pulse
the pulse front curvature will ensure that the solutionwidth. Therefore, ultrashort single-cycle optical pulses are
matches the boundary conditions at the mirrors. Finally, irlikely to be generated by going to extremely short wave-
order to ensure that the temporal profile of the generatetengths.
pulse matches that of the solutions, the pulse must reproduce A set of useful and simple formulas has been developed in
itself in space and time after a number of round trips in thethis paper. These formulas were derived from the exact so-
cavity. In other words, it should be a spatiotemporal mode ofutions of Maxwell's equations. They are capable of describ-
the resonator. That possibility is ensured by the symmetry ofng focused single-cycle electromagnetic pulses, hence can
the solutions under time reversal and space inversion, Edpe used in experiments as a set of working equations to cal-
(4.3.7. culate the parameters of single-cycle pulses. These equations
To test this idea we follow a pulse solution as it evolvesare all related to the parametegs and g, which describe,
inside a confocal resonator. The pulse length is much shortéespectively, the wavelength and Rayleigh range of the
than the transit time in the cavitiensured by the condition pulses. By measuring any two independent quantities of the
01<0,). Starting from an arbitrary reference plafgay, Pulse to determine the values qf and g, all the other
planeB at z=0) with an initial pulseE;(z=O,p,T) propa- qu:?\ntities can be calculated by.using this set of equations,
gation to the right mirror adds a phagg(R/2)=tan (1) ~ Which are listed here for convenience.
=14 which transforms the shape of the pulse. The mirror's
radius of curvature matches that of the pulse and its aperture
is sufficiently large that diffraction effects are negligible. Re-
flection at the right mirror imparts & phase shift and hence Beam waist of each frequency W%Z)‘_QZ
an inverted and transformed pulse propagates back toward
the center. Upon propagation to the left mirror, reflection,Effective beam waist of entirewz_ 1
and propagation back to thee=0 reference plane, the pulse pulse e=20h%

The confocal parameter is given by

is identical_ in spati_al gnd temporal profile to the initial One. Rayleigh range 2o=1a
However, its polarity is reversed. After a second round trip
the final pulse is identical to the initial one. Similar consid- Far-field diffraction angle [ 2A
erations lead to another spatiotemporal mode described by of each frequency [ 7T_Qz
E'y(r,T). The key point is that the confocal placement of i , )
mirrors whose radii of curvature match those of the pulsd@r-field diffraction angle g2
that satisfies Maxwell's equations and the boundary condi- ©Of entire pulse f a2
tions. _ _ Cutoff wavelength Ae=0;

In a practical experiment the pulse source may be located ]
either inside or outside the cavity. A pulse from an externafEffective wavelength Ne=m0;
source can be matched fairly closely to the fundamental c
transverse mode of the cavity using mode-matching optics?€ak frequency vp(r)= ()
The match need not be exact. After a few round trips, the €
pulse will settle into a self-reproducing mode. The outpUtEandwidH Aven(f) = 0.54

will then consist of a train of eigenpulses separated by the gia(r)
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. a(r) -qy)?

Pulse widtH To(r)=2V3 Q1C( ﬁrZ_Bgzzz_(quqlerz'

. . Avpwhm(r) 7p(1)
Time-bandwidth product g7 2B, Bi=2(0,—0y). (A2)
Relation between Avpu(1) = L7w(1) For any fixed value, to satisfy both equations in E¢A2),

Avpywpvand vy P whenp increases|,3,| will increase, and simultaneoud;|

_ vg 20, will decrease. Sdg;| is maxim on axis, and always de-

Group velocity[13] T 173, creases as increasipg The maximum value dfg;| is given

Amplitude spectrum

Temporal waveform of

|[E(w)]=w¥exp

-+

by |g,—q1|/2. Whenp—o=, |Bi|—0, andct;=ct,= —i(q,
+4q,)/2.

Therefore, the imaginary parts of the poles are negative
and independent of for any point on axis. Whermp in-
creases, the imaginary parts of the poles will approach to
each other, and end up with the same vatu@,+q,)/2 as

APPENDIX B

In this appendix, we will show that for a transverse con-
struction of the Hertz vector, the EDEPT solutions will have
finite electromagnetic energy, i.e., Eq&.1), if spectrum
k32F (k) is square integrable.

The electromagnetic energy expression associated with
the x-oriented Hertz vector is given by

1 + oo + o0 27 5 )
Uiy | dz| “odo| Tdeted g+ eolEs
+/U'O|Hx|2+:u0|Hy|2+M0|Hz|2)- (B1)
Applying the operators in Eq$2.8) and (2.9) directly to

Eq. (2.2), we obtain the expansions of the field components
over spectrunf (k):

complex field AMexplila(T)+&(2)]} p—co.
AT)e(1+T2)~ 32
a(T)=3tan {7
P(2)=tan (o)
Dimensionless scaled _ ct=z—p2R
local time = —qla(r)
2
*Scaling parameter =14+
gp a(ry=1+ W2
2
wi(z)=w?{ 1+ z
*Beam size e Zo
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APPENDIX A

From the following discussion, it will be seen that the two
poles in Eq.(2.15 are always in the lower half-plane no
matter what the values gf andz Hence the fields and the
generating function are analytical functions of time at any
spatial pointr.

For any point on axisg=0), the poles are given by
(91,92>0) (A1)

ct;=—2z—iqg,, Ccty=z—iqq,

The imaginary part of EqA1) are independent af For the

Ey(r,t)zfowdk F(K)E,(r,t,k),
Ez(r,t)=JO+wdk F(K)E,(r,t,k),
Hx(r,t)=J0+wdk F(K)H(r,t,k), (B2)
Hy(r,t)=J0+wdk F(k)H,(r,t,k),

Hz(r,t)zf;xdk F(K)H,(r,t,k),

points off axis, let

z+i

-

q2—0q1
2

2
+P2::3r+i18i-

Square both sides of above equation,

where
~ k?p* 4kp?
- _ —ks, _
R R R G s
2 k?

: (B3)

T QFin® @rin



4648
~ k?p® 2kp
E,(r,t.k)=i2u,ce s —— .
R A P R CPRaTos
ol B4
T Qrin? sineg, (B4)
~ k?p* 4kp? 2
H,(r,t,k)=e"ks — —+ .
AL =E (i (i (@t i)
2k?p? cos k?
pleosy K| (B5)
(qp+i7) (qy+iT)
2 2
] _ ~—ks R
Hy(r,t,k)=e (ql+i7)33|n2go, (B6)
~ k?p3 2kp
— _j —ks,
A= 712 A Gt @i
k?p
+(q;|_+—i7')2 COS¢, (B7)
where
2
:q1+i7_la'

With use of Eq.(B2), the energy expressio(Bl) be-
comes

1 (> (= + o0 o 27
UEM:EJO fodkdk' F(k)F*(k’)f_x dzfopdpfo do

X {eoEy(K)E} (k') +eoE,(K)ES (k')
+ moHx (K H (k') + poH () H (k')

+ poH (K H (k). (B8)

Apparently there are 60 terms that need to be calculated in
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where

k?p* 4kp? 2 .
= - + . B=A*(K'),
(+i7)®> (gp+in?*  (gp+in)® ("

k?p3 2kp

= —C* (!

O™ i (@rin? P7CH
(B10)

After the p integrations and some algebraic manipulations
one obtains

uEMzszof f dk dK F(K)F* (k' )k?k'2
0Jo
24 4 12 2 1
f dze 'K ko St sttt
o o o
(B11)
where
a=(K'+K)qy+i(k' —K) 7. (B12)

The z integration is performed with use of the following

expression developed by Ziolkows3],
+oo e Xy et

S — S(x En(A),

f—oo (A+|x mo 2mS( )A’“*l ()

where
+o g At
Em(A)EJ —m—dt.
A t
With x=k'—k, y=7, and A=(k’+k)q;, Eq. (B11) be-
comes

Uen=27u0 | dkF (O

qul[z“Es(Zk%) 12E,(2kq,)
(2kay)* (2kay)®

substituting Egs.(B3)—(B7) into Eq. (B8). By grouping
terms properly, before carrying on the calculations many
terms can be dropped either due to cancellation or due to
angular integration. Hence the calculation task is greatly re-
duced to 17 terms. With the substitution of those 17 terms
into Eq. (B8), we have

0Jo

+ oo oe)
Xf dzf pdpe ksk st
— 0

k2k/2 2k2k12p4
X{ AB+2CD+ +
(@i+7) (gi+7)°
2k2k/2p2
el (59

4E3(2kq,)
(2kay)?

2E,(2kq,)
(2kay)

E1(2kay) |-

(B13)

Using the recurrence relation

1
Ens1(X)= -[e *~XEn(x)],

Eqg. (B13) is simplified to

UEM— 49’ J’dk“: K)|2[1+5(kay) +5(kay)?

+35(kap)®]. (B14)
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