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Energy conservation law for randomly fluctuating electromagnetic fields
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An energy conservation law is derived for electromagnetic fields generated by any random, statistically
stationary, source distribution. It is shown to provide insight into the phenomenon of correlation-induced
spectral changes. The results are illustrated by an example.@S1063-651X~99!01403-8#
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I. INTRODUCTION

Classical electromagnetic theory deals with determini
sources and deterministic fields. It follows from Maxwell
equations that such fields obey well-known conservat
laws for energy, linear momentum, and angular moment
The situation regarding conservation laws is rather differ
when the sources and the fields fluctuate randomly eithe
space or in time. Such situations are actually very comm
and are also more realistic, because sources found in na
or produced in laboratories undergo some irregular, unp
dictable, fluctuations.

Around 1960, after the rigorous laws of coherence the
of the electromagnetic field had been formulated, vario
conservation laws for such fields were derived@1#. They
turned out to be rather complicated and, probably becaus
this, little use has been made of them.

About ten years ago the phenomenon of correlati
induced spectral changes was discovered, and it has
extensively studied since then, both theoretically and exp
mentally @2#. This phenomenon is characterized by chan
in the spectrum of the field on propagation, as a conseque
of source correlations. In particular the field spectrum m
differ from the spectrum of the source, and may be differ
at different points in space. The source correlations may g
rise to shifts of spectral lines, or to broadening or narrow
of the lines, or they may generate much more dra
changes, e.g., producing new lines or suppressing som
the lines present in the source spectrum.

It might appear at first sight that correlation-induced sp
tral changes violate energy conservation. That this is no
was demonstrated, under somewhat special circumstance
several papers@3#, and this question was examined und
more general conditions in Ref.@4#, within the framework of
scalar theory.

In the present paper we generalize the results of Ref.@4#,
and we derive an energy conservation law which is valid
all statistically stationary fluctuating electromagnetic field
We further show that correlation-induced changes of spe
of electromagnetic fields of any state of coherence are c
sistent with this conservation law, and we illustrate the
sults by an example.
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PRE 591063-651X/99/59~4!/4594~6!/$15.00
c

n
.
t

in
n

ure
e-

y
s

of

-
en

ri-
s
ce
y
t
e

g
ic
of

-
o
, in
r

r
.
ra
n-
-

II. ENERGY CONSERVATION IN RANDOMLY
FLUCTUATING ELECTROMAGNETIC FIELDS

We begin by deriving an energy conservation law for
electromagnetic field generated by a randomly fluctuat
statistically stationary source occupying a domainD. Let
^F(r ,v)& represent the expectation value of the flux dens
vector ~the Poynting vector! at frequencyv, at an arbitrary
point r in the field. It is given by the expression~using co-
herence theory in the space-frequency domain—see Sec
of Ref. @5#!

^F~r ,v!&5
c

8p
Rê E* ~r ,v!3H~r ,v!&, ~2.1!

where Re denotes the real part, and the asterisk denote
complex conjugate. On taking the divergence of this expr
sion and on using the vector identity

“•~a3b!5b•~“3a!2a•~“3b!, ~2.2!

it follows that

“•^F~r ,v!&5
c

8p
Re$^H* ~r ,v!•@“3E~r ,v!#&

2^E* ~r ,v!•@“3H~r ,v!#&%. ~2.3!

The right-hand side of Eq.~2.3! may be simplified by
making use of the relations

“3E~r ,v!5 ikH~r ,v!, ~2.4a!

“3H~r ,v!52 ikE~r ,v!24p ikP~r ,v!, ~2.4b!

which follow from Maxwell’s equations. We have assum
that the source is nonmagnetic. Using Eqs.~2.4! in Eq. ~2.3!,
one finds that
4594 ©1999 The American Physical Society
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“•^F~r ,v!&5
kc

8p
Re$ i ^H* ~r ,v!•H~r ,v!&

1 i ^E* ~r ,v!•E~r ,v!&

14p i ^E* ~r ,v!•P~r ,v!&%. ~2.5!

FIG. 1. Illustrating notation relating to the integral form~2.13!
of the energy conservation law for fluctuating, statistically statio
ary, electromagnetic fields.
The first two terms on the right of Eq.~2.5! are purely imagi-
nary, and hence do not contribute to the left-hand side. Eq
tion ~2.5! therefore reduces to

“•^F~r ,v!&52
kc

2
Im^E* ~r ,v!•P~r ,v!&. ~2.6!

On eliminating the magnetic field from Eqs.~2.4a! and
~2.4b!, we can solve the resulting equation for the elect
field subject to the requirement that it is outgoing at infini
and we find that

E~r ,v!5@k21“~“• !#E
D

P~r 8,v!
eikur2r8u

ur2r 8u
d3r 8.

~2.7!

Next we substitute from Eq.~2.7! into Eq. ~2.6!, and obtain
the formula

-

olarization
e
the

netic

fore,
“•^F~r ,v!&52
kc

2
ImH K k2E

D
P~r ,v!•P* ~r 8,v!

e2 ikur2r8u

ur2r 8u
d3r 8L 1K P~r ,v!•“E

D
P* ~r 8,v!•“

e2 ikur2r8u

ur2r 8u
d3r 8L J .

~2.8!

Let us now introduce the cross-spectral density tensorWi j
(P)(r1 ,r2 ,v) of the source polarization, defined by the formula

Wi j
~P!~r1 ,r2 ,v!5^Pi* ~r1 ,v!Pj~r2 ,v!&, ~2.9!

where the angular brackets denote averages over the ensemble of the space-frequency realization of the source p
P(r ,v), and the suffixesi andj label Cartesian components. The tensorWi j

(P)(r1 ,r2 ,v) is a measure of the correlations of th
polarization at pairs of points in the source, at frequencyv. On interchanging the order of the various operations on
right-hand side of Eq.~2.8!, the formula may be expressed in the more compact form

“•^F~r ,v!&52
kc

2
ImE

D
Wi j

~P!~r 8,r ,v!~k2d i j 1] i] j !
e2 ikur2r8u

ur2r 8u
d3r 8, ~2.10!

where summation over repeated indices is to be taken.
Equation~2.10! is thedifferential formof an energy conservation law for statistically stationary random electromag

fields. We note that when the pointr is outside the source domainD, Wi j
(P)(r 8,r ,v)50, and Eq.~2.10! reduces to the simple

form

“•^F~r ,v!&50. ~2.11!

The physical significance of formula~2.10! becomes more apparent if one converts it into integral form. Let us, there
integrate both sides of Eq.~2.10! over a volumeV, bounded by a surfaceS, which completely encloses the source domainD.
Making use of the divergence theorem of vector calculus and of the fact thatWi j

(P)(r 8,r ,v)50 for all pointsr located outside
the domainD, it follows that

E
S
^F~r ,v!&•n dS52

kc

2
ImE

D
E

D
Wi j

~P!~r 8,r ,v!~k2d i j 1] i] j !
e2 ikur2r8u

ur2r 8u
d3r d3r 8, ~2.12!

where n denotes the unit outward normal toS at the pointr ~see Fig. 1!. Noting thatWi j
(P)(r 8,r ,v), summed over the

subscriptsi andj, is Hermitian, and that the expressione2 ikur2r8u/ur2r 8u is symmetric with respect tor andr 8, Eq.~2.12! may
be rewritten in the form

E
S
^F~r ,v!&•ndS5

k2c

2 E
D
E

D
Wi j

~P!~r 8,r ,v!~k2d i j 1] i] j !
sinkur2r 8u

kur2r 8u
d3r d3r 8. ~2.13!
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This formula is theintegral formof the conservation law. It
shows that the rate at which the source radiates energy a
any surfaceS which completely encloses the source dom
D depends on the second-order correlation properties of
source polarization, represented by the cross-spectral de
tensor Wi j

(P)(r 8,r ,v). The conservation laws~2.10! and
~2.13! are generalizations to electromagnetic fields of ene
conservation laws derived not long ago for fluctuating sca
fields @Ref. @4#, Eqs.~3.4! and ~3.6!#.

III. SOURCE SPECTRUM AND THE SPECTRUM OF THE
RADIATED FIELD

We now apply the energy conservation law to elucid
the phenomenon of correlation-induced spectral changes@2#.
Let us consider the field in the far zone of the source, a
point specified by the position vectorRu, (u251). The elec-
tric and the magnetic fields are given by the expressions@6#

E~Ru,v!;~2p!3k2
eikR

R
$@u3P̃~ku,v!#3u% ~3.1a!

and

H~Ru,v!;~2p!3k2
eikR

R
@u3P̃~ku,v!#, ~3.1b!

where

P̃~k,v!5
1

~2p!3 E
D

P~r ,v!e2 ik•rd3r ~3.2!

is the spatial Fourier transform of the source polarization@7#.
In tensor notation, Eqs.~3.1a! and ~3.1b! take the forms
f

oss

he
ity

y
r

e

a

Ei~Ru,v!;~2p!3k2
eikR

R
~d i j 2uiuj !P̃j~ku,v!,

~3.3a!

Hi~Ru,v!;~2p!3k2
eikR

R
« i jkuj P̃k~ku,v!, ~3.3b!

where d i j is the Kroenecker delta symbol, and« i jk is the
completely antisymmetric unit tensor of Levi-Civita.

Let us now define the cross-spectral density tensorsWi j
(E)

andWi j
(H) of the field by formulas analogous to that by whic

the polarization tensor was introduced@Eq. ~2.9!#, viz.

Wi j
~E!~r1 ,r2 ,v!5^Ei* ~r1 ,v!Ej~r2 ,v!&, ~3.4a!

Wi j
~H !~r1 ,r2 ,v!5^Hi* ~r1 ,v!H j~r2 ,v!&. ~3.4b!

Using Eqs.~3.3! in Eqs.~3.4!, we find that at points in the
far zone of the source the field correlation tensors are gi
by the expressions

Wi j
~E!~Ru1 ,Ru2 ,v!5

~2p!6k4

R2
~d im2u1iu1m!

3~d jn2u2 ju2n!W̃mn
~P!~2ku1 ,ku2 ,v!,

~3.5a!

Wi j
~H !~Ru1 ,Ru2 ,v!5

~2p!6k4

R2
« imn« jpqu1mu2p

3W̃nq
~P!~2ku1 ,ku2 ,v!, ~3.5b!

whereua i , (i 51,2,3), is thei th component of the unit vec
tor ua , and
t
the
W̃i j
~P!~k1 ,k2 ,v!5

1

~2p!6 E
D
E

D
Wi j

~P!~r1 ,r2 ,v!e2 i ~k1•r11k2•r2!d3r 1 d3r 2 ~3.6!

is the six-dimensional Fourier transform of the cross-spectral density of the source polarization.
Let us now determine the field spectrum in the far zone. The power spectrumS(`)(Ru,v) of the field in the far zone a

distanceR from the source, in a direction specified by a unit vectoru, may be identified with the ensemble average of
energy density multiplied by the speed of light,@see Ref.@5#, Eqs.~5.7-31!# viz.

S~`!~Ru,v![c^U ~`!~Ru,v!&5
c

16p
^Ei* ~Ru,v!Ei~Ru,v!&1

c

16p
^Hi* ~Ru,v!Hi~Ru,v!&

5
c

16p
@Wii

~E!~Ru,Ru,v!1Wii
~H !~Ru,Ru,v!#. ~3.7!
urce

urce
On making use of Eqs.~3.5! we obtain for the spectrum o
the field in the far zone expression@8#

S~`!~Ru,v!5
8p5k4c

R2
@~d i j 2uiuj !W̃i j

~P!~2ku,ku,v!#.

~3.8!
The spectrum of each Cartesian component of the so
polarization may be defined by the expression

Si
~P!~r ,v![Wii

~P!~r ,r ,v! ~no summation!. ~3.9!

Let us define the spectral degree of coherence of the so
polarization by the formula
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m i j
~P!~r1 ,r2 ,v!5

Wi j
~P!~r1 ,r2 ,v!

ASi
~P!~r1 ,v!ASj

~P!~r2 ,v!
. ~3.10!

Using elementary properties of the source polarization ten
and the Schwarz inequality, it is not difficult to show that

0<um i j
~P!~r1 ,r2 ,v!u<1. ~3.11!

Evidently m i j
(P) represents the correlation between Cartes

components of the polarization.

If we substitute forW̃i j
(P) in Eq. ~3.8! from Eq. ~3.6!, we

find that
or

n

FIG. 2. Illustrating notation relating to the spectrum of the ra
ated field in the far zone of a fluctuating source polarization.
of Eq.

o on the
pectrum of

the

ion law
age flux
S~`!~Ru,v!5
1

8p

k4c

R2 F ~d i j 2uiuj !E
D
E

D
Wi j

~P!~r 8,r ,v!e2 iku•~r2r8!d3r d3r 8G . ~3.12!

If we then expressWi j
(P) in Eq. ~3.12! in terms of the spatial degree of coherence and the spectral densities by the use

~3.10!, we finally obtain for the spectrum of the field in the far zone the expression

S~`!~Ru,v!5
1

8p

k4c

R2 ~d i j 2uiuj !E
D
E

D
ASi

~P!~r 8,v!ASj
~P!~r ,v!m i j

~P!~r 8,r ,v!e2 iku•~r2r8!d3r d3r 8. ~3.13!

It is evident from this equation that the spectrum of the far field depends not only on the source spectrum, but als
correlations between Cartesian components of the polarization. Hence, except perhaps in some special cases, the s
the far field will differ from the source spectrum, and will also depend upon the direction of observationu.

We will now show that in spite of the fact that source correlations induce spectral changes in the far field, formula~3.12!
is consistent with our new energy conservation law~2.13!. For this purpose we integrate both sides of Eq.~3.12! over all
directionsu, and multiply them byR2. We then obtain the formula

E
S~`!

S~`!~Ru,v!dS~`!5
1

8p
k4cE

~4p!
dV~d i j 2uiuj !E

D
E

D
Wi j

~P!~r 8,r ,v!e2 iku•~r2r8!d3r d3r 8, ~3.14!

where we used the fact thatR2dV5dS (`) is the differential surface element of a large sphereS (`) centered in the source
region~see Fig 2!. The productuiuj on the right side of Eq.~3.14! may be expressed as a differential operator acting on
exponent, and Eq.~3.14! then becomes

E
S~`!

S~`!~Ru,v!dS~`!5
1

8p
k2cE

~4p!
dVE

D
E

D
Wi j

~P!~r 8,r ,v!~k2d i j 1] i] j !e
2 iku•~r2r8!d3r d3r 8, ~3.15!

where the integral with respect toV is taken over the whole 4p solid angle generated by the real unit vectoru. On making use
of the identity~see the footnote on p. 123 of Ref.@5#!

sinkur2r 8u
kur2r 8u

5
1

4p E
~4p!

e2 iku•~r2r8!dV, ~3.16!

formula ~3.15! may be rewritten as

E
S~`!

S~`!~Ru,v!dS~`!5
k2c

2 E
D
E

D
Wi j

~P!~r 8,r ,v!@k2d i j 1] i] j #
sinkur2r 8u

kur2r 8u
d3r d3r 8. ~3.17!

The right-hand side of this equation is identical to the right-hand side of the integral form of the energy conservat
~2.13!. The left-hand sides are also equal to each other because of the well-known relations between the aver
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vector ^F(`)& and the spectral densitŷS(`)& in the far field
viz. ^F(`)(Ru,v)&5S(`)(Ru,v)u ~see, for instance, Eqs
~5.7-32! of Ref. @5#!. Hence the two equations~2.13! and
~3.17! are equivalent and consequently correlation-indu
spectral changes are consistent with energy conservatio

IV. EXAMPLE

We will illustrate our main results by considering a qua
homogeneous, isotropic source with a source spect
which is taken to be scalar. For such a source the cr
spectral density tensor can be well approximated by~cf. Ref.
@5#, Sec. 5.2.2!

Wi j
~P!~r1 ,r2 ,v!'S~~r11r2!/2,v!m i j ~r22r1 ,v!,

~4.1!

whereS(r ,v) is assumed to vary much more slowly withr
than m i j (r 8,v) varies with r 8. Because the source is a
sumed to be isotropic, it must have the form~cf. Ref. @9#!

m i j ~r ,v!5d i j A~r ,v!1B~r ,v!r i r j , ~4.2!

wherer i is the i th component of the vectorr . The normal-
ization m i i (0,v)51 ~no summation! implies that

A~0,v!51, ~4.3a!

r 2B~r ,v!→0 as r→0. ~4.3b!

In this case the six-dimensional Fourier transform of
source polarization tensor~4.1! is given by the expression

W̃i j
~P!~2ku,ku,v!5

1

~2p!3 E d3r @d i j A~r ,v!

1r i r jB~r ,v!#e2 iku•r

3
1

~2p!3E S~R,v!d3R. ~4.4!
d

-
m
s-

e

If Ã(q,v) and B̃(q,v) denote the Fourier transforms o
A(r ,v) andB(r ,v), respectively, i.e.,

Ã~q,v!5
1

~2p!3 E A~r ,v!e2 iq•rd3r ,

B̃~q,v!5
1

~2p!3 E B~r ,v!e2 iq•rd3r , ~4.5!

and we make use of the identity

FIG. 3. Normalized spectrums0(v)[S0(v)/*0
`S0(v8)dv8 of a

homogeneous, isotropic source@represented by Eqs.~4.1!, ~4.2!,
and ~4.9!# and the normalized spectrums(`)(v)[S(`)(v)/*0

`S(`)

3(v8)dv8 of the far field generated by the source, when

S~R,v![S0~v!5
I 0

A2pd
exp@2~v2v0!

2/2d2#

with s/c510215 sec,v05331015 sec21, andd5231014 sec21.
1

~2p!3 E r i r jB~r ,v!e2 iq•rd3r 52
]2

]qi]qj
B̃~q,v!52S d i j 2

qiqj

q2 D 1

q

d

dq
B̃~q,v!2

qiqj

q2

d2

dq2
B̃~q,v!, ~4.6!

formula ~4.4! becomes

W̃i j
~P!~2ku,ku,v!5S̃~0,v!H d i j F Ã~k,v!2

1

k

d

dk
B̃~k,v!G1uiujF1

k

d

dk
B̃~k,v!2

d2

dk2
B̃~k,v!G J . ~4.7!
ed
t of
On substituting from Eq.~4.7! into Eq. ~3.8!, and carrying
out the summations, we find that

S~`!~Ru,v!5
8p5k4c

R2
2F Ã~k,v!2

1

k

d

dk
B̃~k,v!G S̃~0,v!.

~4.8!
Formula~4.8! shows that the spectrum of the field produc
by a source of the kind we are considering is independen
the direction of observationu.

As a specific example, let us choose

A~r ,v!5e2r 2/2s2
, ~4.9a!
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B~r ,v!5
1

s2
e2r 2/2s2

, ~4.9b!

wheres is a positive constant, assumed to be independen
v. In this case,

Ã~k,v!5
s3

~2p!3/2
e2s2k2/2, ~4.10a!

B̃~k,v!5
1

s2
Ã~k,v!. ~4.10b!

If we assume that the source spectrum is the same at
source point, i.e., that

S~r ,v![S0~v!, rPD

50, r¹D, ~4.11!
.

n
og

-

y
ui
or

ac
of

ch

the formula~4.8! becomes

S~`!~Ru,v!5
A2pk4c

R2
s3e2s2k2/2V0S0~v!, ~4.12!

whereV0 is the volume of the domainD occupied by the
source.

We see that the normalized spectrumS(`)(Ru,v) of the
field in the far zone differs from the source spectru
S(0)(v). This is illustrated for a specific case in Fig. 3.
spite of the difference between the two spectra, the resu
consistent with the law of conservation of energy, as
showed earlier on general grounds.
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