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An energy conservation law is derived for electromagnetic fields generated by any random, statistically
stationary, source distribution. It is shown to provide insight into the phenomenon of correlation-induced
spectral changes. The results are illustrated by an exaf§1663-651X%99)01403-9
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I. INTRODUCTION Il. ENERGY CONSERVATION IN RANDOMLY
FLUCTUATING ELECTROMAGNETIC FIELDS

Classical electromagnetic theory deals with deterministic We begin by deriving an energy conservation law for an

sources and determlnl_stlc fields. It follows from Maxwell_s electromagnetic field generated by a randomly fluctuating
equations that sych fields obey well-known Conservat'o%tatistically stationary source occupying a domain Let
laws for energy, linear momentum, and angular momentunkr, )y represent the expectation value of the flux density
The situation regarding conservation laws is rather differen ector (the Poynting vectdrat frequencyw, at an arbitrary

' ointr in the field. It is given by the expressidosing co-

when the sources and the fields fluctuate randomly either i
space or in time. Such situations are actually very Commo'Eerence theory in the space-frequency domain—see Sec. 4.7

and are also more realistic, because sources found in natugg pes. [5])
or produced in laboratories undergo some irregular, unpre-
dictable, fluctuations.
Around 1960, after the rigorous laws of coherence theory c
of the electromagnetic field had been formulated, various <F(r,w)>=ﬁRdE*(f,w)XH(f,w)% (2.9
conservation laws for such fields were deriveld. They
turned out to be rather complicated and, probably because of

this, little use has been made of them. where Re denotes the real part, and the asterisk denotes the

~ About ten years ago the phenomenon of correlationzomplex conjugate. On taking the divergence of this expres-
induced spectral changes was discovered, and it has begpn and on using the vector identity

extensively studied since then, both theoretically and experi-

mentally[2]. This phenomenon is characterized by changes

in the spectrum of the field on propagation, as a consequence V.-(aXb)=b-(VXa)—a-(VXh), (2.2
of source correlations. In particular the field spectrum may

differ from the spectrum of the source, and may be different

at different points in space. The source correlations may givé follows that

rise to shifts of spectral lines, or to broadening or narrowing

of the lines, or they may generate much more drastic

changes, e.g., producing new lines or suppressing some of V- (F(r,w))= iRe{(H*(r ©) [VXE(r,)])

the lines present in the source spectrum. ’ 8w ' '

It might appear at first sight that correlation-induced spec-
tral changes violate energy conservation. That this is not so
was demonstrated, under somewhat special circumstances, in
several paper$3], and this question was examined under i : P
more general conditions in Rg#], within the framework of ma-L?neg r&%gt :fatr;]de fétlj:tig;sEqCZB) may be simplified by
scalar theory.

In the present paper we generalize the results of Réf.
and we derive an energy conservation law which is valid for V XE(r,w)=ikH(r,0), (2.43
all statistically stationary fluctuating electromagnetic fields.

We further show that correlation-induced changes of spectra

of electromagnetic fields of any state of coherence are con- VXH(r,w)=—ikE(r,0)—47ikP(r,0), (2.4b
sistent with this conservation law, and we illustrate the re-

sults by an example.

—(E*(r,w)-[VXH(r,w)])}. 2.3

which follow from Maxwell's equations. We have assumed
that the source is nonmagnetic. Using E@s4) in Eq. (2.3),
*Electronic address: dfvj@t4.lanl.gov one finds that

1063-651X/99/504)/45946)/$15.00 PRE 59 4594 ©1999 The American Physical Society



PRE 59 ENERGY CONSERVATION LAW FOR RANDOMLY . .. 4595

! The first two terms on the right of E(R.5) are purely imagi-
nary, and hence do not contribute to the left-hand side. Equa-
tion (2.5) therefore reduces to

K
V- (F(rw))=— 5 IN(E*(,0)-P(r,0). (2.6

source domain On eliminating the magnetic field from Eq&.4a and
(2.4b, we can solve the resulting equation for the electric
field subject to the requirement that it is outgoing at infinity,

FIG. 1. lllustrating notation relating to the integral forf@.1 .
9 9 9 @13 and we find that

of the energy conservation law for fluctuating, statistically station-
ary, electromagnetic fields.
eik\r—r'\

E(r,w)z[k2+V(V-)]f P(r',w) = d3r’
V- (F(r,m))= —Re{l(H (r,m)-H(r,w)) P 2.7)

+i(E*(r,w) - E(r, . . .
B (1) E(r,0) Next we substitute from E(2.7) into Eq. (2.6), and obtain
+4mi(E*(r,w) P(r,w))}. (2.5  the formula

—ik[r—r'| —ik|r=r’]
V.<F(r,w))=—k2—clm[<k2f P(r,w)~P*(r’,w)e|r—r,|d3r’>+<P(r,a))~VJ P*(r’,w)~Ve|r—r,|d3r’>].
D - D -
(2.8)

Let us now introduce the cross-spectral density tewﬁﬁ’(rl,rz,w) of the source polarization, defined by the formula
WP (ry,r5,0)=(P} (r1,0)Pj(r,0)), 2.9

where the angular brackets denote averages over the ensemble of the space-frequency realization of the source polarizatior
P(r,w), and the suffixes andj label Cartesian components. The terméf)(rl,rz,w) is a measure of the correlations of the
polarization at pairs of points in the source, at frequencyOn interchanging the order of the various operations on the
right-hand side of Eq(2.8), the formula may be expressed in the more compact form

—ik|r—r’|

str’, (2.10}

V- (F(r w)}———ImJ WP (1, 0) (K28 + d,9;)

where summation over repeated indices is to be taken.

Equation(2.10 is the differential formof an energy conservation law for statistically stationary random electromagnetic
fields. We note that when the pointis outside the source domai W(P)(r’,r,w)=0, and Eq.(2.10 reduces to the simple
form

V- (F(r,))=0. (2.12)

The physical significance of formul@.10 becomes more apparent if one converts it into integral form. Let us, therefore,
integrate both sides of ER.10 over a volumeV, bounded by a surfacg, which completely encloses the source donfain
Making use of the divergence theorem of vector calculus and of the fadl\t,%’?é([r’,r,w)zo for all pointsr located outside
the domainD, it follows that

kc —ik[r—r’]
J(F(r,w))-nd2=——ImJ fM-P)(r’,r,w)(kzﬁi-+c7i(9-)—,d3rd3r’, (2.12
s 2 blp i j Pr=r]

wheren denotes the unit outward normal ¥ at the pointr (see Fig. 1L Noting thatWi(jP)(r’,r,w), summed over the

subscripts andj, is Hermitian, and that the expressieﬁ“‘“*"‘/|r—r’| is symmetric with respect toandr’, Eq.(2.12 may
be rewritten in the form

k _ !
f{F(r w))- ndE——f f\/\/‘Wr o) k%,ﬁﬁ&)%d%de’r’. (2.13
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This formula is theintegral formof the conservation law. It elkR ~

shows that the rate at which the source radiates energy across Ei(Ru1w)~(27T)3k2?(5ij —uu))Py(ku,w),

any surfaces which completely encloses the source domain (3.39
D depends on the second-order correlation properties of the

source polarization, represented by the cross-spectral density elkR -

tensor W(r',r,w). The conservation lawg2.10 and Hi(RUyw)N(ZW)3k2?Siijij(kU,w), (3.3b

(2.13 are generalizations to electromagnetic fields of energy
conservation laws derived not long ago for fluctuating scalawhere &;; is the Kroenecker delta symbol, ang is the
fields[Ref. [4], Egs.(3.4) and(3.6)]. completely antisymmetric unit tensor of Levi-Civita.
Let us now define the cross-spectral density ten¥df3
Ill. SOURCE SPECTRUM AND THE SPECTRUM OF THE andWi(jH) of the field by formulas analogous to that by which

RADIATED FIELD the polarization tensor was introducHgq. (2.9)], viz.
We now apply the energy conservation law to elucidate Wi(jE>(r1,r2,w)z(Ei*(rl,w)Ej(rz,w», (3.43
the phenomenon of correlation-induced spectral chaf®jes
Let us consider the field in the far zone of the source, at a W (ry,rp,0)=(Hf (r1,0)H(r2,0)).  (3.4b

point specified by the position vectBu, (u?>=1). The elec- ] . ] o
tric and the magnetic fields are given by the expressighs ~ Using Eqs(3.3) in Egs.(3.4), we find that at points in the
far zone of the source the field correlation tensors are given

glkR - by the expressions
E(Ru,w)~(2w)3k2?{[u>< P(ku,w)]xu} (3.19

o (277
and Wi (Ru,Rup, 0) = R? (8im—UgiUgm)
ghkR X (81— UniUon) WP (—kuy KU, @),
H(Ru,0)~ (2m) k2 —[uxP(ku,0)],  (3.1b In e it 2(3 5
where (27)%k*

H
Wi(j )(Rul RUy,w)= TsimnsquulmUZp

P(k,w)= (ZLW)SJDP(r,w)eik'der (3.2

XWE(—kuy kup, @), (3.5D

is the spatial Fourier transform of the source polarizafin  whereu,,;, (i=1,2,3), is theath component of the unit vec-
In tensor notation, Eqg3.19 and(3.1b) take the forms toru,, and

~ 1 .
Wi(jP)(kl,kz,w):_(27T)6 fDfDWi(jP)(rl’rz’w)efu(kl-rﬁkz.rz)darld3r2 (3.6)

is the six-dimensional Fourier transform of the cross-spectral density of the source polarization.

Let us now determine the field spectrum in the far zone. The power spe&fUiRu,w) of the field in the far zone at
distanceR from the source, in a direction specified by a unit veatpmay be identified with the ensemble average of the
energy density multiplied by the speed of lightee Ref[5], Egs.(5.7-31)] viz.

S(”)(Ru,w)EC<U(°°>(Ru,w)>=%(Ei*(Ru,w)Ei(Ru,w))Jr %(Hi*(Ru,w)Hi(Ru,w))

= %[Wi(iE)(Ru,Ru,w)+Wi(iH)(Ru,Ru,w)]. (3.7

On making use of Eq¥3.5 we obtain for the spectrum of The spectrum of each Cartesian component of the source
the field in the far zone expressi¢8| polarization may be defined by the expression

8.-5K4e ~ SP(r,w)=W{(r,r,0) (no summation (3.9
S(Ru,0) = ——[(&; — uiup) Wi (—ku,ku,e)]. _

R? Let us define the spectral degree of coherence of the source
(3.8 polarization by the formula
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WP (ry,12,0)

(P) =
Mij (rl,rz,w) \/Sfp)(rl,w)\/sf)(rz,w)' (31@

Using elementary properties of the source polarization tensor
and the Schwarz inequality, it is not difficult to show that

0$|/‘LI(]P)(rlar21w)|$1 (31])
source

Evidently ,ui(jp) represents the correlation between Cartesian
components of the polarization.

If we substitute for?) in Eq. (3.8) from Eq. (3.6), we

find that FIG. 2. lllustrating notation relating to the spectrum of the radi-
ated field in the far zone of a fluctuating source polarization.

k*c

1 - )
S(w)(RU.w)Igﬁ (5ij—Uin)foDWi(J-P)(r’,r,w)e""“'”’r )d3r ddr’|. (3.12

If we then expreswi(jp) in Eqg. (3.12 in terms of the spatial degree of coherence and the spectral densities by the use of Eq.
(3.10, we finally obtain for the spectrum of the field in the far zone the expression

1 kic , )
S(w)(R“’w)zﬁﬁwu—uiui)f f VS, ) VSP(rw) w1 )e e d3r d3r (3.13
DJD

It is evident from this equation that the spectrum of the far field depends not only on the source spectrum, but also on the
correlations between Cartesian components of the polarization. Hence, except perhaps in some special cases, the spectrum c
the far field will differ from the source spectrum, and will also depend upon the direction of obseruation

We will now show that in spite of the fact that source correlations induce spectral changes in the far field, f8rirfula
is consistent with our new energy conservation I&x3. For this purpose we integrate both sides of 2112 over all
directionsu, and multiply them byR?. We then obtain the formula

1 A ,
L(w)S@)(Ru,w)dE(w):%k4cf(4 )dﬂ(aij—uiuj)JDfDV\ﬁijP>(r’,r,w)e-'kU~<f—f )d3r d3r’, (3.19

where we used the fact th&PdQ=d3(*) is the differential surface element of a large sph&f& centered in the source
region(see Fig 2. The productu;u; on the right side of Eq(3.14 may be expressed as a differential operator acting on the
exponent, and Eq3.14) then becomes

1 . ,
f( )S<”>(Ru,w)d2<°°>=%k2cf dﬂf fw§f>(r',r,w)(k25i,-+aiaj)e—'ku-<f—f )d3r d3r, (3.15
DRSS (4m) DJD

where the integral with respect fdis taken over the whole#solid angle generated by the real unit veato©On making use
of the identity(see the footnote on p. 123 of R¢B))

e[ oo 216
k|r—r’| 47 J am ' |

formula (3.15 may be rewritten as

sink|r—r’|

3 3,7
—k|r—r’| derd°r’. 3.19

k2
f §°°>(Ru,w)d2<°°>=—cf fM-P>(r’,r,w)[k25i-+0i0-]
s(*) 2 DJD ! ! J

The right-hand side of this equation is identical to the right-hand side of the integral form of the energy conservation law
(2.13. The left-hand sides are also equal to each other because of the well-known relations between the average flux
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vector (F*)) and the spectral densitys™)) in the far field 25
viz. (F®)(Ru,0))=S")(Ru,w)u (see, for instance, Egs.
(5.7-32 of Ref. [5]). Hence the two equation®.13 and 2

(3.17 are equivalent and consequently correlation-induced
spectral changes are consistent with energy conservation.

-
(&)

IV. EXAMPLE

nommalized spectrum
-

We will illustrate our main results by considering a quasi-
homogeneous, isotropic source with a source spectrum
which is taken to be scalar. For such a source the cross-

LI I I D B O 0

spectral density tensor can be well approximateddbyRef. 0 ] 2 3 B 5 x 10'3
[5], Sec. 522 Frequency @ (sec™))
P) ~ —
WP (r,r2,0) ~S(r1+12)/2,0) wij(r =1, 0), FIG. 3. Normalized spectrusy(w)=So(w)/;So(w’)dw’ of &

(4.1 homogeneous, isotropic sour¢eepresented by Eqg4.1), (4.2),
and (4.9] and the normalized spectrug¥(w)=S")(w)/[5S™

whereS(r, ) is assumed to vary much more slowly with X(w')dw' of the far field generated by the source, when

than w;(r’,w) varies withr’. Because the source is as-

sumed to be isotropic, it must have the fotof. Ref.[9]) SR, 0)=Sy(w) = \/zlo—éexd—(w—wo)z/wz]
wij(r, @)= 8jA(r,w) + B(r,@)rir;, (4.2) with o/c=10"sec, wy=3X 1(7)7155ec’1, and§=2x10"%sec.
wherer; is theith component of the vectar. The normal-
ization ;i (0,0) =1 (no summatiopimplies that If A(q,0) and B(g,») denote the Fourier transforms of
A(0,0)=1, (4.33 A(r,w) andB(r,w), respectively, i.e.,
r’B(r,w)—0 asr—0. (4.3
In this case the six-dimensional Fourier transform of the A(,0)= (Zw)ajA(r,w)eiq'rd?’r,

source polarization tens@4.1) is given by the expression

1
(2m)®

+1irB(r,0)Je kT

vajp)(—ku,ku,w)= f d3T[5ijA(ryw)

B(q,0)= f B(r,w)e 9 d%, (4.5

(2m)®

X

S(R,w)d®R. (4.9 and we make use of the identity
(2m)®

2 2
i ~ qig;| 1 d~ id; d° ~
o igry3r = — S Y S b | P L R
(2w)3f rirB(r,w)e” " d>r 7090, B(q,0) (5., 7 )q dg (@) 7 dqu(q,w), (4.6
formula (4.4) becomes
o ~ ~ 1d-~ 1d-~ d? -
Wij (—ku,ku,w)=S(O,w) 5” A(k,w)—Ed—kB(k,w) +Uin Ed—kB(k,w)—@B(k,w) . (47)

On substituting from Eq(4.7) into Eq. (3.8), and carrying Formula(4.8) shows that the spectrum of the field produced
out the summations, we find that by a source of the kind we are considering is independent of
the direction of observation.

mkc As a specific example, let us choose

S”)(Ru,w)= 8 2

~ 1d-~ ~
A(k,w)—Ea(B(k,w) S(0,w). -
(4.8 A(r,w)=e 727", (4.93

RZ
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the formula(4.8) becomes

B(r, o) L e (4.9b
)= —5 ’ . f~
0‘2 (0) _ 2’7Tk4C 3, a2k2/2
S*)(Ru,w) — —oe VoSo(w), (4.12
whereo is a positive constant, assumed to be independent of
. In this case, where V, is the volume of the domai® occupied by the
3 source. )
~ o2 H
Ak, w)= e_{,2k2/2' (4.103 We see that the normalized spectr@)(Ru,w) of the

field in the far zone differs from the source spectrum

SO(w). This is illustrated for a specific case in Fig. 3. In

~ 1. spite of the difference between the two spectra, the result is

B(k,w)= _2A(k"")' (4.10b consistent with the law of conservation of energy, as we
o showed earlier on general grounds.

(2,”_)3/2
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