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Nonlinear dynamics of an ordinary electromagnetic mode in a pair plasma
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Nonlinear generation of an ordinary electromagnetic mamlende, which has high phase velocity g,
>c), and at the same time, is almost longitudinal for long wavelengths, is discussed in an electron-positron
plasma. The solution of the problem of increasing endfgyasmon condensate’of the long-wavelengtto
mode based on modulations of the wave by the beat wave of two higher frequency transverse electromagnetic
waves(propagating along the external magnetic figklproposed. The system of equations describing three-
dimensional nonlinear dynamics of this “superluminad’mode is derived and analytical solution for the
modulated wave is found. The generated waves can have components propagating obliquely to the magnetic
field. Important consequences of the effect to processes in pulsar's magnetospheres, in particular, the pulsar
radio emission, are discuss¢&.1063-651X99)05404-5

PACS numbgs): 52.25-b, 52.35.Mw, 52.35.Hr, 52.35.Fp

I. INTRODUCTION tions that, as is widely believed, are responsible for the pul-
sar radio emission.
Recently, relativistic electron-positragi” e~ plasma has In Refs.[14,15, attempts were made to describe modula-

attracted much attentidi]. Collective processes in the plas- tional processes in a pair plasma, leading eventually to for-
mas are especially important for the physics of many astromation of Langmuir solitons. However, in order to obtain
physical objects such as pulsars, active galactic nuclei, eteloser analogies with the well-known modulational effects in
Also, there is recent interest in laboratory electron-positrorfin electron-ion plasmgl8], these models included artificial
plasmag2—4]. The literature on nonlinear waves and wave-assumptions as either the presence of an additionaetet-
particle interactions in a relativistic pair plasma can beffon or positrof component or the absence of a magnetic
loosely divided into two classes. In the first class are studief€ld in the presence of a rarefied ion component. However, it
related to particular astrophysical objects such as those basky unclear how the additional component with a different
on the well-developed model of pulsar magnetosphereé?mperature and/or density can be created in a pulsar mag-
which apply the results in attempts to explain the observe@etOSphere'

properties of pulsar radio emissi¢f—9]. The second class The possibility of _modulaﬂon of a longitudinal wave by
: . T . : . the beat of(also longitudinagl Langmuir waves, propagating
involves investigations of basic collective properties of

e*e- pair plasmas, linea1,10—13 or nonlinear(modula- along the magnetic field, was studied in wolflés-8]. The

i ' o : . solitons, derived if6—8], moving along the magnetic field
tional instabilities, soliton formation, e)d.9,14-17. lines, were supposed to act as additional sources of radiation.

The pulsar radio emission is believed to originate in the,q eyer, this type of four-plasmon interaction is limited to a
pulsar magnetosphere, which is populated by a relativisticarrow frequency range where the modes have phase veloc-
e"e” plasma. Since the pulsar magnetic field is extremelyity close to the speed of light. Moreover, as was demon-
strong,Bo~ 10" G, plasma particles lose their perpendicularsirated in[9,17], the soliton solutions obtained are unstable
momentum very fast through synchrotron radiation, and theiith respect to transverse perturbations. Thus the problem of
distribution function is essentially one dimensional. More-the mechanism for reradiation of the energy of fasith
over, because of the equal masses of electrons and positronglocities exceeding the speed of lighalmost longitudinal
there is more pairing symmetry in an electron-positronordinary modes into waves with slow&ubluminal veloci-
plasma than in an electron-ion plasifgag., there is a gyro- ties (which can leave the magnetosphere plasmemnains
motion in a magnetic field in opposite directions at the samepen.
frequency, and the spectrum of collective modes in the The aim of this paper is to investigate the possibility of a
plasma contains fewer branches of propagating waves; inonlinear(modulational instability of an ordinary ¢) mode
particular, the low-frequency modes associated with motionsaving phase velocity in the broad range of velocities ex-
of ions (e.g., ion-acoustic and ion-cyclotron wayese ab- ceeding the speed of light. We propose the mechanism of the
sent. The different low-frequency dispersion properties of amonresonant generation of tbanode by two high frequency
electron-positron plasma complicates consideration of nontransverse waves and t’, propagating along the external
linear mechanisms of wave-wave and wave-particle interacmagnetic field in the opposite directions. The electric field

vectorsE and E’ of these waves are perpendicular to the
magnetic field, and intensive interaction with para{lehgi-

*Permanent address: Abastumani Astrophysical Observatory, 2&idina) perturbations is possible because of nonlinear drift
A. Kazbegi, Thilisi 380060, Georgia. motions of plasma patrticles in the fiellis E’, andB,. This
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FIG. 1. Spectre of waves in an electron-positron plasma for F|G. 2. Spectre of waves in an electron-positron plasma for
oblique propagation. parallel propagation.

formulation is entirely different from that of Reff6—9,17. 1

We consider here a strongly magnetized electron-positron wy=kc 1—5 — ' (1)
plasma moving with relativistic velocity along the magnetic
field lines. In our study, we us@inless the opposite is speci- where w,=[4m(n.+ n)e2m]¥2=[87ne2/m]¥2 is the
fied) the reference frame connected with the moving plasma‘combine%” plasmea frlequency(i e taking into account
This assumption dogs not mean that the perpendi.cular MQontributions of plasma electrons and positionsg
tions of plasma particlesappearing as a result of interac- —eB/mc is the cyclotron frequency, angl, is the Lorentz
tions) are nonrelativistic. Furthermore, we calculate the NONtactor of plasma particles moving along the field lines. Be-

e cuent s he asumptons of sl ampes Sow, we consicer a storgy magnetied plasg <oy
! Ing wav W : P 'EwB/yo. The second and third modes are of mixed

, and the higher-frequency

. ’ | a mode is the fastsuperluminal, v,,>c, ordinary mode ¢
interaction modulates the considered longitudioahods.  mode. Analytical expressions for dispersion of these modes
We also assume that the amplitudes of the electromagnetige available in some limits. We consider the cdse
pump waves considerably exceed the amplitude of the lonz V2w, for waves propagating almost parallel to the mag-

gitudinal mode that is justified by our assumption that mostlynetic field |k, |<k,. For theo mode we havé12]
transverse waves are generated in pulsar magnetosphere

through(anomalouscyclotron resonandel 9—-21]. Using the :

above small parameters, we obtain a system of nonlinear wl=—2+3Kc?+ |k, |%c2. )
three-dimensional equations, which is solved analytically ne- Yo

glecting back reaction of the modulations on the pump . ) ,

waves. In this paper, we do not consider the Alfvenode, and so do

The paper is organized as follows: In Sec. II, we considef©t SPecify its dispersion. However, we note that for parallel
linear theory of waves in a relativistic electron-positron Propagation there is a coupling poinp~ wo=koC, see Fig.
plasma; motion of a test particle in the field of the incident?: Where all the three modes are indistinguishabiea cold

and scattered waves is studied in Sec. Ill: dynamics and in2'@sma and proper consideration of their nonlinear proper-
stability of theo mode is investigated in Sec. IV. ties must take this into account. The electric field of the

mode is perpendicular to the plane of vectkrand B; the
electric fields of theo mode and Alfve mode are in the
plane. The oblique subluminal Alfmemode is strongly sup-
pressed due to Landau damping if its phase speed, effec-
tively va/(1+0v3/c?)'? is less than the speed of the bulk of
The linear collective properties of an electron-positronthe particles; in the opposite limit Alfwvewaves are weakly
plasma are now well establishgt}10—13. According to the  damped.
theory, for oblique propagation with respect to the external Low-frequency modes analogous to the ion-acoustic wave
magnetic fielddirected along axis), there are three normal in an eletron-ion plasma, are absent in an electron-positron
modes, see Fig. 1. One is the purely transverse extraordinapfasma. Thus when considering nonlinear effects in the wave
x mode with dispersion in the laboratory frarfi2], propagation, the only possibility for amplitude modulations

II. WAVES IN A RELATIVISTIC ELECTRON-POSITRON
PLASMA
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of the o mode is due to nonresonant excitation of a beaftrons, becomes the dominant nonlinear effect. Thus the pro-
wave. This was pointed out in RdB], see alsd7,8]. Inthe cess of reradiation of a wave by a particle in such a plasma
cited papers, the possibility of amplitude modulation of thecan be considered on an isolated electfpositron, similar
purely parallelo mode (which is often called the Langmuir to Thomson scattering when an electromagnetic wave
modeg was considered fokc<w,; the beat wave is gener- forces oscillations of the particle generating a wave

ated as a result of interaction of two Langmuir waves with In the presence of an external magnetic field the genera-
close frequencie*ﬁwL—w,’_|<wp. However, in an electron- tion of the wavet’ can have a different origin. In particular,
positron plasma, with equal densities of electrons and posiwhen the incident wave is in anomalous Doppler-resonance
trons(as in[6-8]), this second-order process cancels becausg —k,v,+ wg=0 with a plasma particle, the particle, in the
of the equal masses and opposite charges of the plasma p@focess of radiation, increases its radius of gyrafti+-21].
ticles. This is because the second-order nonlinear current fhe frequency of the emittet! wave is close towg/7,
proportional to the charge cubed, and the electron and posjvherey is the Lorentz factor of the particle. In this case the
tron contributions are equal and opposite. Furthermore, wheparticle energy is the source for the radiation. Parallel radia-
considering interaction of waves under the conditien  tjon damping in the casg?v?>c? (here,v, is the perpen-

— w(|<w,, the beat wave cannot be generated in the supewicular component of the particle velocitymplies a damp-
luminal |w| — w||>|k,—k;|c range of phase velocities be- ing force given by[22]

cause of the wave dispersion. And, finally, when considering

waves near the coupling poimri; ~wy=KkyC, one needs to 2 2e2w28 vf v
invoke nonlinear interactions with themode and the Alfve f=— 37 2 ? <
mode. This possibility was studied in R¢fL7], where self-

similar unstable solutions satisfying the nonlinear Sehrothys the forces that act on a particle are those due to the
dinger equation were found. An analogous problem was corg|ectric and magnetic fields of the incident and emitted

sidered in Ref[9] where it was demonstrated that small wayes, as well as the external magnetic field and the radia-
transverse parturbations lead to unstable solutions. tion damping.

Consider the possibility of modulations of the fagnode
by transverse waves. Note that b_y “transverse” we imply Ill. MOTION OF A TEST PARTICLE
not only thex mode, but also the high-frequengyompared
with w,)0-mode, where its dispersion is close to the vacuum There are well-established methods for calculating higher-
case. The difference between these modes in this case is ordyder currents in a plasmglL,18]. For a relativistic pair
in their polarization. In the interaction, we are interested inplasma, these methods can be based on the general procedure
the longitudinal superluminal component of the perturbatiorelaborated in a series of pap€i®3]. Here, however, we
appearing as a result of the interaction of two transvers@resent a simpler more physical calculation based on the hy-
waves: drodynamic approximation.

The equation of motion for a test particle moving together
with the plasma(i.e., in our reference frampy,=0) in the
external magnetic field and the fields of the incident and
scattered waves, taking into account the radiation damping
Substituting Eq.(1) into Eq. (3), and using|k|=k,(1  force, is
—k2/2k2), this inequality implies

(6)

w'—w'

kz_ ké

t

>c. 3

d 1
—pze E+E' +—-vX(By+B+B’)|+f, (7)
G k2 dt c
o )
2| ky(k,—ky)  ki(k,—k2) wheref is given by Eq.(6). There are two small parameters

in the problem. First, there is the smallness of the wave fields
To satisfy Eq.(4) for k,>k;, we requirglk||>|k, | as well as compared to the external magnetic fiel&, &’ ,B,B’)
as <Bj. Second, there is the smallness of the wave energies
compared to the plasma particle thermal energy,
L] KL=k, | (|E|%|E'|)<mcEnys. Furthermore, we split the test par-
K, Tké> 1. ) ticle momentum into three parts:

We note that there is an important qualitative difference P=PoL*Pat P2, ®)

between a pair plasma and the more fami(@rd more stud-  \yherep,, corresponds to the unperturbed motion of the par-
ied) electron-ion plasma when wave-wave and wave-particlgcje in the external magnetic fielfly,p;<po, is the linear

interactions are considered. In an electron-ion plasma, thﬁerturbation o, due to the waves, angh<<p; is the non-
density fluctuations associated with Debye shielding can projneay perturbation of the particle m,otion.

duce electric dipole radiation when forced to oscillate. This Expansion of the Lorentz factoy=[1+ (po, +p1)?/
effect has no counterpart in a pair plasma because the ele{:ﬁzcz]l/z to first order gives

trons and positrons oscillate out of phase. As a consequence,

the nonlinear shieldingl], which tends to dominate wave- v Pos P, (Po* P1)Po
wave interactions in electron-ion plasmas is absent, and —== - 3
Thomson scattering, which is the same for electrons and pos- € MCy MCyo mcyo,

: (©)
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where y,=[1+p3, /m?c?]¥2. After substitution of this ex-
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and the wave vector: c@s=k,/|k|. Substituting Eqs(14),

pression into Eq(7), which is expanded in the same way, we (15), and(19) into Eq. (18), we obtain the nonlinear longi-

find a system of coupled equations fof,, p;, andp,. In
the zeroth approximation, we have

dpo, €
dt mc

Po. XBo- (10

If the test particle is an electron, the solution of EtQ) is

Pox= Po, COSwgt, Poy= —Po. sinwgt, (11
wherewg=wg/ vy, . For a positron, the sign of thecom-

ponent of the momentum is opposite.

In the first approximation, the equation of motion can be

written in the form

d - ~ ~ ~
%ze(Eer Ey) + wg(P1yCOSWg+ P14Sinwg)Coswg + Ty,
(12
dpyy S~ ~ ~ i f
T—e(Eer Ey) — wg(p1xSinwg+ p1,COSwp)SiNwg + f .
(13
The solution of Eqs(12) and(13) is given by
e|lE, [sinwt €|E||sinw’t |f ~
. |E.| i [EL| x Iilsiant’ 14
2(wt+wg) 2(w'+wg) 4dowg
e|lE, [sinwt  e|E||sinw’t |f, | -
P1x=— —+ = ——Sinwgt.
2(wtwg) 2(w'+wg) 4dowg
(15

Here, for the radiation damping force we use Egj.together
with the unperturbed solution, similar to Eqll): vgy

= |Vo, |coswgt,ve,=—|Vo, | Sinwgt. We also assume that

Ex=|E,(r,t)[coswt, E,=|E,(r,t)[sinwt, (16)

as well as

Ex=|EL(r,t)[cosw’t, Ey=—|E](r,t)[sinw't, (17)

tudinal perturbation equation,

d e’E? ® 1 w 1
Poz_ & 2L gin(Awt)| =22 e
dt  mco, wgt® COP  Hot+ o' cosO’
elf. | “E lsinAQr+|E,|sinAQ’7- 20
MCag| ~ COP - .l

where we introduce Aw=(0'-w'")/w,, AQ=(wg
—w) w,, AQ'=(wg—w)/w,, and 7=w,t. The electric
field E,, is the result of the nonlinear interaction of the
wavest andt’ with the plasma particles. We note that in the
reference frame where the parallel particle momentum is
zero,p,=0, the parallel component of the radiation damping
force is also zerof ,ocv,=0. Thus we have,,=p,, =0 and

the second-order current density has only a parallel com-
ponent.

Consider two limits:(1) o'>wg and (2) w'<wg (note
that in both limits we hava)p<Z>B). In the first limit the test
particle does not have time to complete one Larmor cycle,
and generation of the wave is due to reradiation of the
wavet by the particle whose unperturbed motion is effec-
tively rectilinear. For simplicity, we do not consider the pos-
sibility of generation on higher cyclotron harmonics. In this
case, the frequency of the radiated waw€ is close to the
frequency of the incident wave'. For co®=co$’~1 and
|E, |~|E]|, we obtain from Eq(20),

%_ w4 og |E||?
dt w?> Yoo

Sin(A wt). (21

In the second limitw'<wg, the wavet’ is emitted over
many Larmor cycles of the test particle. The frequeacyis

then close to the gyrofrequencwg, and we have
w'<w' for wg—w''<w,. We have in this case,

%: Wy 0 |Eit||fl|
dt Z)B 2’}/01_

SiAw't). (22

where the wave amplitude{(r,t) are slow functions of ~This is a new type of the ponderomotive force that appears
position and time. For positrons, we have similar solution?€cause of synchrotron radiation damping. The for@i3

with the changee— —e and, therefore, als@g— — wg .
Taking into account that the parallel component ppf
X By is zero, we have

Pz e o (BB (18
dt  mcyg, Pt z
From Maxwell’s equations, we have
E E
__-y __ =
“ooB’ BT o (19

where we use the wave dispersion equatios|k|c and

and(22) are manifestation of the nonlinear coupling between
the longitudinal and transverse components.
For further convenience, we rewrite Eq21) and(22) as

d
ap =asin(Awt),

dt @3

where fore'>wg andAw=(o'- 0’/ w,,

_ w*OZ‘)B |Ej_|2

1
w? YoL

(29)

introduce the angl® between the external magnetic field and forw'<wg andAw=(wg— ')/ w, o,
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d E/Y|f JE(
dp;_ @40 [ELIf,| _ 25 9 _ . 33
dt wp 2y01 at
From Eq.(23), we have the solution and
a Ziim_i@&_lzlz:@g
po,(t)= E(l_ COA wt). (26) wyo Ot w0 d(XY) N (x.y)?
o JE, kC[JE, JE,\ on
IV. NONLINEAR DYNAMICS OF THE FAST ORDINARY 2i —i —_—t = —EIZ. (34
MODE Wy 0 ot W40 IX &y no

Forces(21) and (22) demonstrate nonlinear coupling of Equations(33) are written in the zeroth apl)prct)ximation for
longitudinal component&' with transverse componenks.  the expansion of Eq27) in the paramete'/w'. They re-
To describe the nonlinear dynamics, we start from Maxwellflect the fact that the modulation of Langmuir waves has

equations, which imply little effect on the amplitudes of the high-frequertoyaves:
2E A b E' =const. (35)
— +C?VXVE+— — =0, (27) . _ .
at? c ot However, the nonlinear terms on the right-hand sides of Eq.

(34) are determined by the amplitudes of the high-frequency
wherej is the nonlinear current of second order in the elecyyavesk' .

tric field. If we neglect the right-hand side in the first equation of

~We consider a wave packet propagating at the small anglgs4), the resulting expression has a form similar to that found
with respect to the external magnetic field. Separating they [17]. However, the difference is in the nonlinear term: in
low-frequency and high-frequency transverse componentﬁﬂ, 5n/n00<|E'Z|2, whereas in our case the density perturba-

we have tion is caused by the beating of the two high-frequency trans-
E=E +E! (28) verse waves. The expression i@m/ny can be found by av-
' eraging the continuity equation over the high frequency. We

whereEL=0, and assume'>w'. Furthermore, we write  ind

Elt=1EM(r,expi o t—ik! 1), (29 gon_o9
i 2= ot no 9z pZZ' (36)
with i=x,y,z. For the transverse waves'=Kk'c. For the _
longitudinal o mode (Langmuir wave, we have from Eq. Here, we take into account thatn/dx=dJén/dy=0, and

(29) [see also Eq(2)], p», is defined by Eq(26).
Excluding the term wittE},, we find from the first equa-
of = (0,)2(1+3K2c? ki c?), (30) tion of (34,

wherew? =2w] v, . We also introduce the potential pertur-

d on
— [N [
bations of the background density; thus at (VXE), Ng (VXE),. (37

> én Thus we obtain
we=wiol 1+ —]. (3D
Ng 0
. i XEY.= _
For the considered mode,wp>k'c. The choice of the (VXED, Cexp“ (no dt|, (38)

characteristic time scale strongly influences the considered . ] . ] N

equations. Here, we consider the cdse<w~ d/dt, which ~ WhereCis a constant. Since there is an instability of the curl
corresponds to the inequalitg). Thus we assume that in the field, below we assume th&t, - E| =0. Thus in the presence
longitudinal direction k'c<Aw<wp. For the transverse Of the density perturbation there is exponential growth of the
fields E!, we havew<kic, as well ask's>|k!'|—|k' |>|k}|  transverse fields. We note that in the drift approximation, the
—|k.Y| [cf. condition (5)], thusk'>a/d(x,y,z). Because of density modulation as well as the change of the momentum
o'>w', it is natural to obtain a system of coupled equationsP2: caused by the high-frequency fiells(whenk||By), are
presented as a result of expansion in the parametest ~ Parallel to the axi||B,. However, the growth of the the

<1 fields due to the parallel density modulations may be in any
. . P . .
We introduce the dimensionless variables, direction:E(, , ,ocexp(~ikz—ik, -r,).
To obtain an equation for the parallel componEbt we
E eE Wy of 32 find the mixed derivative@zE'(ny)/ata(x,y) from the first
- mcw,’ r——c oot (32) equation of(34). Thus, differentiating the second equation of

(34) with respect to timdi.e., applyingd/dt) and substitut-
Then, substituting Eq$28) and(29) into Eq.(27) and taking  ing the resulting expression for the mixed derivatives, we
into account Eq(32), we obtain finally obtain
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PE, 1[Kic)? a(éon i koc on < k,a k,a
(. [ 0 [ N — z ; z
= | = -V, . XE"), = —_— — —n|Awt|.
poe 4( " B+ - Ez>+4 . vV, -E (VXE", cn;x J, Baf? exp —i e n|Awt
=0. (39 (45)

As already noted, we neglect the last term on the left-handrom the latter expression, we see tfeateraging over suf-

side of this equation. The assumpti®h, -E| =0 implies

ficiently long time intervalT> 1/A w) the transverse pertur-

that there are no components of the potent|al electric fieldation generated by the density modulation is not zero when

perpendicular to the external magnetic field. We have

(40)

where K0=kgc/2w*0. This equation has a form similar to
that found in[17]. However, our nonlinear term is propor-
tional to (E!)?E., in contrast to E})® in [17].

Using the continuity equatior{36) and Eq. (26), we
Fourier transforn{40). We also assume that the frequency of
the modulationsw far exceedSw: w> dw, and expand the
electric fieldE,(w* dw) in the small parametefw/w. Fi-
nally, the dispersion equation is given by

a
wz—ngi'f'i:O. (41)

ke
(Aw)?’

(46)

In this case, ¥ XE'), is determined by the Bessel function
with equal index and argument, i.d,,(v)~ v~ 3 [24].

V. CONCLUSION

We conclude that transverse electromagnetic waves gen-
erated in a pulsar magnetosphere can create beat density
modulations along the magnetic field. When the modulation
frequencyAw is much less than the frequenay of the
generated field pertubations, the growth of a parallel poten-
tial field E'z is accompanied by the growth of the transverse
electromangetic fieldE, according to Eq(38). The results
obtained contribute to and develop the theory of nonlinear

From this equation, we can easily see that instability is poswave-wave and wave-particle interactions in a pair plasma.

sible when

k,a

1o K2k? .

(42

Also, the processes studied can be applied to real astrophysi-
cal plasmas, in particular, those of pulsar magnetospheres
(and the problem of transformation of energy of fast waves
with phase velocities exceeding the speed of light into the
pulsar radio emission with phase velocities less or equal to

In the approximation considered, the aperiodic growth of thehe speed of light Indeed, in the development of the modu-

longitudinal potential field is not accompanied by a densitylational instability, a nonresonant interaction with plasma
modulation since the latter, as the continuity equaii®®) particles can leadbecause of the action of the ponderomo-
implies, is determined by the high-frequency transverseive force or the nonresonant quasilinear diffugiom non-

fields. We assume that the energy of the high-frequency linear generation of perpendicular components of particle
modes is maintained by external sources, which is reasonabfeomenta. If the perpendicular momenta are sufficient for
for the plasma in a pulsar magnetosphere where excitation afeneration of the high-frequency synchrotron radiation, we

on
r‘0

1
t— —sinA wt

the transverse modes should be very effecfiv@-21.
Aw ) '

From Eq.(36), we also find that
(43

.kza
—|—f (1—cokAwt)dt’ =
Aw

Substitution of this equation into Eq38) and use of the
expansion

+ oo

exp(i asin wt) = 2_ Jo(a)enaet (44)

gives us

can expect appearance of an additional high-frequency
source of the pulsar radio emission. However, we do not
expect considerable change in the particle energies because
in the processes of the nonresonant interactions the wave
energy is distributed to all particles; at the same time, the
change in the energy stored in the fast “superluminal”
waves can be significant. Some of these mechanisms are now
under investigation, and the results will be reported else-
where.
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