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Thermal screening of Darwin interactions in a weakly relativistic plasma

Walter Appel and Angel Alastuey
Laboratoire de Physique, Groupe de Physique The´orique,* École Normale Supe´rieure de Lyon, 46 Alle´e d’Italie,

69 364 Lyon Cedex 07, France
~Received 24 November 1998!

We study a weakly relativistic and weakly degenerate plasma of electrons at equilibrium, described by
thermal quantum electrodynamics. Near the classical limit, at lowest order in\, the first contribution~in a
perturbative expansion with respect toe2) to the current correlation is shown to exhibit two different behav-
iors. At intermediate distances~between the de Broglie thermal wavelengthAb\2/m and the thermal photon
wavelengthb\c), it decreases slowly, as the Darwin~transverse! potential which accounts for retarded elec-
tromagnetic interactions beyond Coulomb in Darwin classical models. At large distances~larger thanb\c), it
decays exponentially fast, in agreement with the predictions of the classical field theory. This thermal screening
of the Darwin ~transverse! interactions allows us to understand the contradictory results on the equilibrium
properties of relativistic plasmas found in the literature. Furthermore, we give the physical regime of validity
of these models for the description of real plasmas.@S1063-651X~99!04704-2#

PACS number~s!: 52.60.1h, 52.25.Kn, 11.10.Wx, 12.20.2m
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I. INTRODUCTION

The Coulomb interactions are sufficient to describe
properties of systems of charged particles~either classical or
quantum!, when the mean velocities are small compared
the speed of lightc. For weakly relativistic and weakly de
generate plasmas, namely at sufficiently low temperature
low density, the first effects of retarded electromagnetic
teractions beyond Coulomb can be studieda priori within
the so-called Darwin classical~nonquantum! models. In
these models@1#, the Lorentz equations of motion for th
charged particles, truncated at order 1/c2, can be recast in
Hamiltonian form@2–4#. The Hamiltonian of the system i
then a function of the sole canonical coordinates of the p
ticles, the degrees of freedom of the electromagnetic fie
being eliminated, as in the Coulomb case. In a simplifi
version@5#, the non-Coulombic potential part of the Ham
tonian is a sum of two-body Darwin~transverse! interactions.
~It is simplified in the sense that a Lagrangian truncated
the first order 1/c2 leads to a full Hamiltonian with terms o
any order in 1/c2; Krizan keeps only the term of order 1/c2

in his Hamiltonian. We stress that thissimplified model is
consistent at the order 1/c2 included. The terms of orde
higher than 1/c2 that appear in the full Darwin Hamiltonia
do not make sense, because they do not account for the
tromagnetic interactions of the same order that would app
in the equations of motion.! The Darwin potential depend
on the momentum of the particles, and it decays like
Coulomb potential, i.e. as 1/r at large distances.

In a previous paper@6#, we have studied the equilibrium
properties of a classical one-component plasma describe
the ~simplified! Darwin Hamiltonian. At low densities, we
have computed the first relativistic corrections to the p
Coulomb contributions for various quantities such as the
cess pressure or the current correlations. Use of diagr
matic resummations remove the long-range divergences
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duced by the Coulomb and Darwin potentials, and they all
us to go beyond previous mean-field calculations@7–9#.

As far as real matter is concerned, some predictions of
simplified Darwin model are questionable. For instance,
other Darwin model, the Hamiltonian of which differs from
ours by terms of order 1/c4 and more, predicts a faster~but
still algebraic! decay of the current correlations at large d
tances. This discrepancy has been the source of controve
discussions in the literature@9#.

In order to clarify the situation, we must start with a com
plete description of matter and radiation, where all the el
tromagnetic interactions between the charges are taken
account. As already explained in@10# and @6#, this requires
the use of quantum electrodynamics at finite temperature
thermal QED. Our goal is to study various equilibrium prop
erties of the system and to compare the QED results in
weakly relativistic and weakly degenerate limit to the pred
tions of the different~and mutually disagreeing! classical
models. In this paper, we will first consider the current c
relation of a dilute and cold electron plasma~with a rigid
uniform background! in equilibrium with radiation. In par-
ticular, we show that the corresponding lowest-order Fe
man graph decays exponentially fast at large distances in
present almost classical and nonrelativistic limit. Such a
cay can be interpreted as resulting from the screening of
transverse effective interactions between the charges, ge
ated by the exchange of thermalized photons. We stress
this mechanism is completely different from the classi
Debye screening of Coulomb interactions. It is due to
process of thermalization of the mediating photons t
becomes crucial at distances larger than the thermal p

ton wavelengthlphoton5
def

b\c. At intermediate distances

ldB5
def

(b\2/m)1/2,r ,lphoton, we recover the classical ex
pression predicted by all the Darwin models. The existe
of the thermal photonic screening implies that all these c
sical models fail in the description of large-distance beh
iors for real matter coupled with radiation. According to th
mechanism, we shall determine in forthcoming papers
4542 ©1999 The American Physical Society
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PRE 59 4543THERMAL SCREENING OF DARWIN INTERACTIONS IN . . .
physical status of Darwin contributions to the thermod
namic quantities such as the free energy or the excess
sure.

In Sec. II, we recall some general features about ther
quantum electrodynamics. The free thermal propagators
both matter and radiation are presented, as well as the
modynamical conditions required to describe a weakly re
tivistic and almost classical system.

In Sec. III, we present the Feynman graphs which
scribe the current correlation function at the lowest orde
the e2 expansion. The behavior of this function with respe
to the distance will be shown to be completely different b
low and above the photon thermal wavelengthlphoton. These
two behaviors will be compared to the predictions of t
Darwin models and classical field theory. The previous
sults are then generalized to all the graphs. Furthermor
dynamical interpretation of thermal screening is given, a
we briefly sketch the discussion about the regime of valid
of the Darwin approach which will be detailed in a ne
paper.

Eventually, we conclude in Sec. IV and we clarify th
paradox arising from the mutually disagreeing Darwin mo
els @8,9,5,11#.

II. GENERAL FRAMEWORK

In the following, we shall call ‘‘real world’’ a system o
electrons and positrons at equilibrium, with electromagne
interactions, regardless to any other kind of particles a
interactions, in a world fully described by special relativit
A fully relativistic and quantum description is necessary
determine the regimes of validity of the Darwin model.

Matter, made of electrons and positrons, is described b
Dirac bispinor fieldc(x), with fermionic nature, a function
of the space variablex ~time does not appear in this equilib
rium theory!. It should be noticed that, although the classi
limit of our system will be aone component plasma, this
bispinor field describes both electrons and positrons, indis
ciable in a relativistic and quantum theory.~The disappear-
ance of the positrons will follow from the specific choice
the thermodynamic parameters in the regime of interest.! Ra-
diation is described by a quadrivector fieldAm(x). In the
grand canonical ensemble, the chemical potential of the p
tons is identically zero, whereas the chemical potentials
the electrons and the positrons are opposite :mpos52mel5
2m, as a consequence of the equilibrium between the a
hilation of electron-positron pairs into photons, and the c
verse process of creation. Notice that in the relativistic ca
we havem5mc21m* , wherem* is the usual chemical po
tential.

Our system, made of electrons and positrons couple

photons with the coupling constanta5
def

e2/\c, is immersed
in a rigid, homogeneous background, with charge dens
2erB , which creates an electrostatic potential. As alrea
discussed in@4# and @6#, this bath has a great physical im
portance, for it ensures the stability of the system; howe
it will not enter explicitly in most perturbative calculation
except by removing some divergent Feynman graphs in
Dyson expansion with respect toe2 ~as in the Mayer expan
sions for classical models@6#!.

In the following, the specific effects arising from a qua
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tum field description, such as pair creation~annihilation! and
renormalization, will not be considered, for we are only i
terested here in contributions having a classical equival
Therefore, the physical constants (m,e, . . . ) involved in the
expression of interest are supposed to be the renorma
observable quantities.

A. Hamiltonian description and free thermal propagators

The Hamiltonian of our system can be written as the s
of three terms:

H5
def

Hmat
0 1H rad

0 1Hint , ~2.1!

where the free matter Hamiltonian is

Hmat
0 5

defE c̄~x!~2 i\cg•“1mc2!c~x! dx, ~2.2!

@g being the 3-vector of Dirac matricesg1,g2,g3, and
c̄(x)5defc†(x)g0], the free electromagnetic field Hamil
tonianH rad

0 is derived from the Lagrangian

L em
0 5

def

2~1/16p!E FmnFmn dx, ~2.3!

@there are several ways to derive a Hamiltonian from
electromagnetic Lagrangian, due to the gauge symme
however, the explicit form of the chosen Hamiltonian is n
important here, for we will express the correlation functio
in terms of the sole free propagators~which of course still
depend on the chosen gauge!#, and the interaction Hamil-
tonian is

Hint5
def

eE c̄~x!gmc~x!Am~x! dx. ~2.4!

In order to investigate the equilibrium statistical mechan
of the system at a given temperaturekBT51/b and chemical
potentialm, through perturbative expansions with respect
Hint , it is convenient to introduce the imaginary-time fre
evolved operators

c~t,x!5
def

expFtSHmat
0 2mE c̄~x!g0c~x! dxD G

3c~x!expF2tSHmat
0 2mE c̄~x!g0c~x! dxD G

~2.5!

and

Am~t,x!5
def

exp@tH rad
0 #Am~x!exp@2tH rad

0 #. ~2.6!

Following @12–14#, we now define the matter free propa
gator as

G~t,x;t8,x8!5
def

^Tc̄~t,x!c~t8,x8!&0 , ~2.7!
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4544 PRE 59WALTER APPEL AND ANGEL ALASTUEY
where^ &0 is an equilibrium average, evaluated with the fr
Gibbs distribution

expH 2bSHmat
0 2mE c̄g0c dxD J .

The time-ordered productT has been used. It is well know
that this propagator depends only on the difference of
arguments, and satisfies antiperiodicity relations that al
us to decompose it in Fourier series on thet variable:

G~t,x;t8,x8!5
1

b (
l PZ

E eiv l ~t82t!e2 ip•~x82x!/\

3G~v l ,p!
dp

~2p\!3
, ~2.8!

where the Matsubara frequenciesv l ’s are odd multiples of
p/b:

v l5
def~2l 11!p

b
for all l PZ. ~2.9!

As usual, we will write, in a condensed and convenient w

p5
def

~p0,cp!5~ iv l1m,cp!. ~2.10!

As in ~dynamical! QED, the propagator~2.7! is the Green
function for the Dirac operator, and reads, in terms of m
mentum and Matsubara frequencies,

G~v l ,p!5
1

p”2mc2
5

p”1mc2

p22m2c4
5

g0p02cg•p1mc2

~p0!22p2c22m2c4
.

~2.11!

Similarly, the free photonic propagator defined by

Dad~t,x,;t8,x8!5
def

^TAa~t,x!Ad~t8,x8!&0 ~2.12!

satisfies periodicity relations overt, and its Fourier compo-
nents withevenmultiples ofp/b as Matsubara frequencie
read

Dad~t,x;t8,x8!5
1

b (
nPZ

E e2 ivn~t2t8!e2 ik•~x82x!

3Dad~vn ,\k!
dk

~2p!3
, ~2.13!

vn52np/b. ~2.14!

Notice that we have chosen here to write the momentum
the photon as\k, while the momentum of the electrons an
positrons wasp. Now, the expression of the photon prop
gator depends on the choice of gauge. We can work wi
the gauge that is most likely to be convenient for our p
pose. Unusually, it will not be the Lorentz gauge, althou
the expression of the propagator is simpler therein, for
Lorentz invariance is lost anyhow at finite temperature.
the other hand, the Coulomb gauge has the most like
s
w

,
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-
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property to separate clearly the longitudinal Coulomb pot
tial, which corresponds to the nonrelativistic limit of th
electromagnetic field, and the transverse field that co
sponds to relativistic corrections~retardation and magneti
terms, see@4#!. In this gauge, the photon propagator read

Di j ~k!5
4p\2c2

k2 S d i j 2
kikj

k2 D , i , j 51,2,3, ~2.15!

D00~k!52
4p

k2
~2.16!

and the other components vanish. In this expression, we h
setk5def(k0,\ck)5( ivn ,\ck). The time componentD00 is
obviously related to the~instantaneous! Coulomb potential.
The total expression is of course not relativistically explici
covariant.

B. Perturbative expansions

The fine-structure constanta5e2/\c being small, one
may perform expansions of various equilibrium quantities
powers ofa. The equilibrium averages resulting from th
Dyson expansion of the Gibbs factor in powers ofHint are
treated using Wick’s theorem, and can be represented
series of Feynman graphs.

The free fermionic propagators will be represented
usual by straight lines, whereas the free photon propaga
will appear as wiggly lines. Each graph will contain ferm
onic loops, connected by photonic lines.

C. The classical and nonrelativistic limit

In order to study the weakly relativistic and almost cla
sical limit of the system, we takem* negative and such tha

kBT!um* u!mc2. ~2.17!

In order to check that this regime really defines the abo
limit, we can, for instance, compute the free charge den
of electrons and positrons of the noninteracting system,

qfree5
def

e^c̄~0,x!g0c~0,x!&0

~the total charge density including the contribution2erB of
the background vanishes!. A straightforward calculation
shows thatqfree can be written ase*N(p) dp/(2p\)3, with

N~p!5
1

b(
l

trg0G~v l ,p!5(
l

4~ ibv l1bm!

~ ibv l1bm!22b2E2~p!
,

where we have setE(p)5defAm2c41p2c2. If we combine in
this sum the opposite terms inl and 2 l , we see that each
term decreases as 1/l 2 and the sum is therefore convergen
Using integration in the complex plane and the method
residues, one finds that

N~p!52NF
el~p!22NF

pos~p!, ~2.18!

whereNF refers to the electron or positron Fermi distributio
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NF
el~p!5

def 1

exp$b@E~p!2m#%11
,

N F
pos~p!5

def 1

exp$b@E~p!1m#%11
, ~2.19!

and the factor 2 comes from the two different spin stat
The condition ~2.17! implies E(p)1m.2mc2@kBT, and
thus the positronic contribution is completely negligible. F
the electronic contribution,E(p)2m.2m* 1p2/2m, and
e2bm* !1, so at low densities we have

NF
el~p!.NMB~p!5ebme2bE~p!, ~2.20!

whereNMB is the Maxwell-Boltzmann~relativistic! distribu-
tion, which reduces, in the weakly relativistic limit, to th
familiar Gaussian, i.e.,

NMB~p!.ebm* e2bp2/2m. ~2.21!

Therefore, and as expected, the system under the cond
~2.17! is mainly made of classical nonrelativistic electrons

III. CORRELATIONS AND EFFECTIVE INTERACTIONS

Within the above QED framework, we now calculate t
first relativistic corrections to the current correlation functi
and the charge correlation functions, in the regime~2.17!,
and we compare them to the results found within class
descriptions such as the simplified Darwin model or the c
sical field theory.

A. General expression of the current correlations

We study the lowest order term ine2 of the 4-current
correlations

J mn~r!5
def

^Jm~0!Jn~r!& with Jm~r!5
def

ec̄~r!gmc~r!,
~3.1!

where^ & is the equilibrium value for the interacting system
With these notations, the charge correlations
^r(0)r(r)&5J 00(r) and the current correlations are

^ j~0!• j~r!&5c2(
i 51

3

J i i ~r!. ~3.2!

In the perturbative Dyson expansion, we now apply Wic
theorem to contract field operators by pairs and make
propagators appear; the first terms are then represente
the three topologically distinct Feynman graphs of Fig. 1

FIG. 1. The first three Feynman graphs in the Dyson expan
of the current correlations.
s.

r
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The second diagram 1~b! corresponds to a purely quantu
exchange term; it decreases exponentially with the dista
on a characteristic scale depending on Planck’s constant~In
the purely Coulomb nonrelativistic case@the electromagnetic
interaction ‘‘transported’’ by the photon in Fig. 1~b! is then
replaced by the Coulomb potential#, the exchange term is
Gaussian with a covariance length equal to the de Bro
thermal wavelengthldB5\Ab/m at low density.! The last
diagram 1~c! is related to the first contribution to the ma
renormalization of the fermions. Since the latest two have
classical equivalent, their contribution will be ignored in th
following, and we shall restrict ourselves to the study of t
first graph 1~a!. As a matter of fact, all the renormalizatio
processes are omitted here, assuming that our propag
and vertices are expressed, in the final expressions and a
order considered, in terms of the dressed masses and cha

For technical reasons, we shall consider the Fourier tra
form of J mn(r). The corresponding contribution of grap
1~a! is

J̃mn~k!5
e4

b3 (
l ,l 8PZ

(
nPZ

E E tr@gaG~v l ,p!gmG

3~v l1vn ,p1\k!#Dad~vn ,\k!

3tr@gdG~v l 8 ,q!gn

3G~v l 82vn ,q2\k!#
dp

~2p\!3

dq

~2p\!3
.

~3.3!

The calculation of this quantity is straightforward but t
dious. After evaluating the traces, we have to sum over
fermionic indicesl and l 8. For this purpose, we can us
complex integration and the method of residues. T
positronic contributions can be ignored at this stage, by om
ting some exponentially small terms proportional
e22bmc2

. The photonic indexn can then be summed ove
still using the method of residues. Some details of the ca
lation are given in Appendix A. The final formula forJ mn(r)
can be evaluated in two different regimes, according to
fact that the distancer is larger or smaller than the therma
photon wavelengthb\c.

B. Behavior at short distances

In order to avoid some purely quantum effects due to
strong overlapping of the electron wave functions at sh
distances, we restrict the analysis to distances larger than
de Broglie thermal wavelength,

ldB5
defAb\2

m
, ~3.4!

where a classical behavior of matter is expected. The co
tion r @ldB can be written in Fourier components, thanks
the duality between positions and momenta, as

b\2k2

m
!1. ~3.5!

This condition will be used in the expansion of the expre
sions derived in Appendix A.

n
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Now, another length appears in these expressions, w
is the mean thermal wavelength of the photonslphoton

5
def

b\c. This length separates two crucially different beha
iors of the correlation function. In this section, we deri
expansions under the condition

r !b\c or b\cuku@1. ~3.6!

We point out that the double conditionldB!r !lphoton can
be fulfilled only for a weakly relativistic plasma, forldB
!lphoton is equivalent tobmc2@1. We also use a third in
equality which is

\uku!upu. ~3.7!

This inequality is at first sight a bit surprising, for we have
integratep over R3 in the expression of̂ j(0)• j(r)&. How-
ever, the presence of the Maxwell-Boltzmann distribution
the integral and the volume factordp imply that the leading
contributions arise from momenta of orderAm/b, which do
satisfy Eq.~3.7! by virtue of Eq.~3.5!.

We are therefore led to a double expansion of Eq.~3.3! in
powers of the small parametersb\2k2/m and 1/b\cuku. We
stress that\ appears at both the denominator and the
merator of these parameters, sonegativepowers of\ will
appear in the previous expansion. The presence of thes
verse powers of\ exemplifies that some retarded effecti
interactions do not have a well-behaved classical limit@\
→0# ~see below.! The classical contribution can be found,in
fine, by retaining the terms of order\0. Once this expansion
is done, we find, at the orders 1/c2 and\0, and at the lowest
order in the density,

^ j• j̃&5c2(
i 51

3

J̃i i ~k!

54pE dp

~2p\!3E dq

~2p\!3
NMB~p!NMB~q!

3F4be4

m2k2
p•q2

4e4

m3c2k2
@p21q22~p• k̂!22~q• k̂!2#

2
4be4

m2k2H p21q2

2m2c2
p•q1

p•q

m2c2

3@p•q2~p• k̂!~q• k̂!#J 1•••G . ~3.8!

In order to interpret this expression, we can first notice t

2E NMB~p!
dp

~2p\!3
5r ideal

class, ~3.9!

wherer ideal
classis the density of an ideal classical relativistic g

with fugacity m. In the low density limit, we can identifyr
andr ideal

class. After integration over the momentap andq, the
Coulomb contribution of order 1/c0 vanishes. This was ex
pected, for there are no current correlations in a class
Coulomb plasma. However, it should be noticed that
have neglected some quantum, nonrelativistic terms, of o
ch

-

-

in-

t

al
e
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1/c0 and\2n. For the other classical terms, of order 1/c2, we
can use the nonrelativistic expression~2.21! of NMB(p),
which leads to

^ j• j̃&.28p
r2e4

bm2c2k2
. ~3.10!

The inverse Fourier transform of Eq.~3.10! then gives

^ j~0!• j~r!&522
e4r2

bmc2

1

r
for ldB!r !lphoton.

~3.11!

C. Behavior at large distances

At distancesr @lphoton, the contribution of graph 1~a! to
the correlation function at order\0 and 1/c2 should decay
exponentially fast as shown in Appendix A. Under the co
dition b\ck!1, the expansion ofJ̃(k) leads to an expres
sion regular at k50, at the orders\0 and 1/c2. For a given
Matsubara frequencyvn (nÞ0), the photon propagator i
proportional to 1/(vn

21\2c2k2). It should lead, in the rea
world, to an exponentially decreasing contribution toJ(r),
over a typical lengthlphoton/n. The sum of all these terms i
therefore exponentially decreasing at the order conside
As for the static (v050) terms, their contributions to the
correlations vanish in the classical limit, at large distance

D. Interpretation in terms of classical descriptions

Now, we interpret the behaviors at short and large d
tances of the correlations in terms of classical models.
noticed in @6#, whereas in the classical one-compone
plasma with Darwin interactions, algebraic tails appear in
current correlations, within the fully relativistic theory o
classical fields such correlations vanish identically~see also
@15#.! The intermediate distance behavior may therefore
obtained within the simplified Darwin model, while the larg
distance behavior coincides with the predictions of the cl
sical field theory.

1. TQFT at intermediate distances and the simplified
Darwin model

The behavior~3.11! can be interpreted in terms of th
simplified Darwin model. Let us recall what this model is

A simple approach of weakly relativistic classical plasm
consists in considering classical point-particles, with char
ei and massesmi , interactingvia a classical electromagneti
field. Any given charge is assumed to move in the total el
tromagnetic field created by all the other ones. This fi
involves retardation effects, as well as magnetic contri
tions, which can be expanded in powers of 1/c, under weakly
relativistic conditions. The corresponding Lorentz equatio
of motion for the charges, once truncated at order 1/c2, can
be integrated into a Hamiltonian form, which mixes the p
sitionsr i and momentapi of the particles. A simplified ver-
sion of this Hamiltonian reads
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HD5
def

(
i 51

N

Ami
2c41pi

2c21
1

2 (
i , j

iÞ j

eiej

ur i2r j u

2
1

2 (
i , j

iÞ j

eiej

2mimjc
2ur i2r j u

@pi•pj1~pi•ni j !~pj•ni j !#.

~3.12!

In this equation,ni j is the unit vector betweenr i andr j . This
Hamiltonian is the sum of a kinetic part, the classical Co
lomb interaction energy, and an interaction energy term
sociated to the two-body relativistic Darwin potential of o
der 1/c2. The velocities are related to the momenta by
relation

v i5
pi

mi
2

pi
2

2mi
3c2

pi2(
i , j

iÞ j

eiej

2mimjc
2ur i2r j u

@pj1ni j ~pi•ni j !#

1o~1/c2!. ~3.13!

A model of one-component plasma described by the sim
fied Darwin Hamiltonian~3.12! has been studied in previou
papers@4,6#. The main result is that collective effects a
responsible for a weak~and oscillating! screening of the Dar-
win interactions on a scalej5Amc2/4pre2 at low densities
@6#. This length is equal to the Debye screening length m
tiplied by Abmc2.

In the considered regime, and at distancesr !lphoton, no
collective screening effects occur, sincelphoton!j. There-
fore, the first term of ordere4 and 1/c2 of the Darwin current
correlation can be obtained from a straightforward expans
with respect to the interactions. In the grand canonical
semble, the Darwin current correlation reads

^ j~0!• j~r!&Darwin5
e2

J (
N50

`
zN

~N22!! E d~r1!d~r22r!

3@v1•v2#e2b~H01A!)
i

dpi dr i

~2p\!3

for rÞ0, where thepi ’s are the canonical momenta of th
particles, related to the velocities by Eq.~3.13!, H0 is the
free relativistic Hamiltonian

H05
def

(
i

Am2c41pi
2c2,

A is the sum of the Coulomb and Darwin interaction en
gies, andJ is the grand-canonical partition function. W
then use the perturbative expansion

^ j~0!• j~r!&Darwin5^ j~0!• j~r!&02b^Aj~0!• j~r!&01•••,

where ^ &0 is an equilibrium average with the free Ham
tonian H0 . @The truncated termb^A&0^ j(0)• j(r)&0 van-
ishes.# In the Fourier world, after straightforward calcula
tions, this leads to
-
s-

e

i-

l-

n
-

-

^ j• j̃&Darwin54pE dp1

~2p\!3E dp2

~2p\!3
NMB~p1!NMB~p2!

3F4be4

m2k2
p1•p22

4e4

m3c2k2
@p1

21p2
22~p1• k̂!2

2~p2• k̂!2#2
4be4

m2k2H p1
21p2

2

2m2c2
p1•p2

1
p1•p2

m2c2
@p1•p22~p1• k̂!~p2• k̂!#J 1•••G ,

~3.14!

which is exactly the same expression as the right-hand
of Eq. ~3.8!, if we identify p with p1 andq with p2 . ~This
identification has no precise physical sense: the momen
associated with the first fermionic loop isp1\k as well asp.
The photon wave vectork being the Fourier dual of the
relative positionr, this uncertainty on the momentum
nothing but the expression of Heisenberg’s principle. O
the integrated quantity has a precise physical sense.! This
shows that the perturbative expansion within QED wh
leads to Eq.~3.8! is isomorphic to an analogous perturbati
expansion for the Darwin classical model in the phase sp
~There is a subtle point to be taken into account here. I
perturbative expansion in powers ofe2, the nonperturbed
quantities correspond to thefree system. However, in the
Hamiltonian description, the canonical momentum is anin-
trinsic object. Therefore the speeds of the particles in
presence of interactions are different from the speeds of
free particles, for a given set of canonical momenta. T
must not be forgotten in the calculation of^ j• j&). The effec-
tive electromagnetic interactions beyond Coulomb genera
by the exchanged photons therefore correspond, at o
1/c2, to the transverse Darwin interactions, as expected.

Notice that the latter calculations have been perform
within the Coulomb gauge. This point is crucial if we wa
to have the same structure in Eqs.~3.8! and ~3.14!. Indeed,
although the present Feynman graph, once integrated, re
sents a physical quantity~and therefore gauge invariant!, on
the contrary the expression of the integrand depends on
gauge choice, for in the Hamiltonian method the relev
parameter is the canonical momentum, the velocities
current depending, atfixed momenta, on the gauge. The ex
pression of the Feynman graph 1~a! in, say, the Feynman
gauge, has therefore a different integrand than Eq.~3.8!, but
the difference of course vanishes after integration over
canonical momenta. The reader may remember that the
struction of the Darwin Hamiltonian is made within the Co
lomb ~transverse! gauge; this explains the similarity betwee
the structures involved in Eqs.~3.8! and ~3.14!.

2. TQFT at large distances and the classical field theory

At large distances, the Darwin models appear as ra
questionable, already in their foundations. Indeed~see @in
French# @16# for a detailed discussion!, in order to construct
the Darwin Lagrangian, one expresses the electromagn
field created by the particles at the position of particlei at
time t, in terms of the coordinates, velocities, and accele
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tions of the particlej at a retarded time (t2t i j ), defined by
the well-known implicit equation

t i j 5
ur i~ t !2r j~ t2t i j !u

c
. ~3.15!

To truncate the equations of motion at a given order in 1/c is
equivalent to taking, formally, a limit@c→`#. Some trouble
may now arise when looking at large-distance behaviors
correlation functions, for the limits@r→`# and@c→`#, ob-
viously, do not commute in Eq.~3.15!. This shows that the
Darwin models may provide spurious predictions at la
distances. As a matter of fact, different Darwin models le
to contradictory behaviors at large distances.

In fact, at large distances, the electromagnetic field can
treated as a classical object, and the fully relativistic class
field theory ~CFT! should provide the correct behaviors
interest. Let us consider a model of classical point partic
interacting with a classical electromagnetic field. This s
tem can be described by a HamiltonianHCFT, a function of
the positions and momenta of the particles (r i ,pi), and gen-
eralized positions and momenta (qa ,pa) for the transverse
electromagnetic field. The indexa is a multiple indexa
5(k,«) running over a momentumkPR3 and two polariza-
tion vectors«(k) and «8(k), orthogonal tok and to each
other. The classical canonical partition function reads

Z5E e2bHCFT)
i ,a

dpi dr i

~2p\!3

dpa dqa

2p\
, ~3.16!

where the semiclassical counting rule is applied to the
nonical volume elementsdpi dr i and dpa dqa . One can
show @15# that it can be factorized into two contributions

Z5ZCoulomb
matter 3Ztrans

class. ~3.17!

The second factor is the classical partition function of
free transverse electromagnetic field. The first factor is
classical partition function of Coulomb matter, and it det
mines all the statistical properties of matter. Therefore,
classical field theory, all the electromagnetic forces beyo
Coulomb do not affect equilibrium properties, and classi
Coulomb matter is entirely decoupled from the classi
transverse electromagnetic field. In particular, the curr
correlations identically vanish@15#.

Nevertheless, the previous analysis fails at short distan
since the classical partition function of the free transve
electromagnetic field is known to suffer from the so-call
ultraviolet divergence. In fact, a classical treatment of a ha
monic oscillator of pulsationv in the framework of statisti-
cal mechanics is valid only if the energy gap\v is much
smaller than the thermal energykBT, that is to say,b\cuku
!1 since herev5cuku. We are therefore led to the conclu
sion that the classical field theory approach is justified o
at interparticle distancesr @b\c. At these distances, th
classical decoupling between matter and radiation holds
agreement with the result obtained within the framework
QED. All the classical effects beyond Coulomb present
the Darwin model are therefore due to the quantum natur
the thermalization process of the electromagnetic field,
explained in Sec. III F.
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E. Extrapolation to all the graphs

The phenomenon of thermal screening, characterized
the screening lengthlphoton5b\c, certainly occurs in all the
Feynman graphs that enter in any equilibrium quantity.

For instance, we can compute the charge-charge corr
tion function, given byJ 00. The calculation is somewha
similar to that of the current correlations, and the result
similar: at intermediate distances, one recovers the Dar
correction~at a formal level at least, for it vanishes by pari
after integration over the momenta!, whereas at large dis
tances, the transverse corrections do vanish exponent
fast in the classical limit.

Actually, if one writes any Feynman graph in the mome
tum representation, with the thermodynamical conditio
~2.17!, one may think of the fermionic loops as classic
objects, with well defined canonical momenta and positio
interactingvia effective interactions generated by the phot
propagators. The fact thatclassicalmatter interacts onlyvia
Coulomb interactions at large distances~except for exponen-
tially decaying termse2r /lphoton) should be true at all order
in 1/c, and not only at order 1/c2 as shown by the CFT
analysis. The effective interactions beyond Coulomb ha
therefore a purely quantum nature at large distances,
should decrease algebraically, faster than 1/r , with ampli-
tudes proportional topositive powers of \ since they are
related to quantum fluctuations of the positions of t
charges. These quantum fluctuations should induce algeb
tails in the spatial correlation functions, as already shown
@17–19# in the purely Coulomb case.

Naturally, there also appears effective interactions of
der larger than 1/c2, even in the simple graph 1~a!. These
interactions may be proportional tonegativepowers of\.
Indeed, in the Darwin ‘‘window’’ldB!r !lphoton, expan-
sions are made in powers of the small parameters

Ab\2

m
uku and

1

b\cuku
. ~3.18!

At sufficiently high orders in 1/c, negative powers of\ will
appear. Their classical limit (\→0) is therefore not defined
This is in part related to the impossibility of constructing
Hamiltonian, within the framework of a classical Darwin
like theory ~i.e., where the electromagnetic field degrees
freedom are eliminated in favor of the coordinates of t
particles!, with effective interactions of order higher tha
1/c2 that only depend on the positions and momenta of
particles~see@4# for a detailed discussion!.

At last, at very short distancesr ,ldB , matter should be
treated by quantum mechanics. In this regime, the first r
tivistic effective electromagnetic interactions between qu
tum electrons should keep the same form as in the Dar
window, with purely quantum terms as in the so-called Br
Hamiltonian@3,2#.

F. Dynamical interpretation of thermal screening

The fact that the electromagnetic field behaves as a c
sical degree of freedom at large distancer @lphoton implies
that its contributions to equilibrium static quantities a
purely configurational, and do not depend on its dynami
properties. Then, the previous CFT result appears as a d
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consequence of this remarkable property of classical sta
cal mechanics. At the level of the real-time evolution of t
system, it is tempting to interpret this thermal screening
follows. The photons which carry the electromagnetic int
actions between two electrons separated by a sufficie
large distance are thermalized by diffusion, absorption,
emission. Therefore, they are unable to keep memory of
dynamical configuration of the emitting charge, and the
sulting generated effective interactions~beyond the residua
Coulomb potential! vanish. However, we stress that, if th
presence of matter is indeed crucial in the thermalizat
process of the photons, the screening length that appe
the previous decorrelation mechanism is entirely contro
by quantum-mechanical properties of the photons : it redu
to lphoton, at least at sufficiently low density. At distance
r !lphoton, the dynamical contributions of the electroma
netic field to equilibrium quantities cannot be disentang
from purely static ones, as that of any quantum degree
freedom. The corresponding effective interactions then
corporate dynamical features, which turn out to be those
dicted from a classical analysis of the real-time dynamics
the electromagnetic field. The occurrence of the Darwin
tential in these interactions illustrates the general relation
quantum statistical mechanics between static quantities
their classical dynamical counterparts. Similarly to the c
r @lphoton, and with the same restrictions, we can give
dynamical interpretation of the behavior at distancesr
!lphoton. At sufficiently short distances, the photons e
changed between two electrons do not have time to be t
malized, and the Darwin approach is legitimate.

G. Darwin regimes of validity

According to the previous results, we can anticipate
brief discussion on the regime of the validity of the Darw
approach. This discussion will be detailed in a forthcom
paper. A first condition is, of course, that matter is alm
classical and weakly relativistic, i.e., as shown in Sec. II

kBT!um* u!mc2.

A second one is that, for a given spatial configuration of
particles, the relative distances must be in the Darwin w
dow

Ab\2

m
!r !b\c. ~3.19!

When calculating the excess pressure or free energy
Darwin plasma@6#, contributions from the whole space in
tervene. Some of them are reliable~in the sense that the
make physical sense for real matter!, the others are not. Th
Darwin model is therefore more reliable if the Darwin wi
dow is large compared to the other characteristic len
scales. In fact, the equilibrium state of our system depe
on three dimensionless parameters:a5e2/\c ~strength of
relativistic electromagnetic interactions beyond Coulom!,
ldB /a ~strength of quantum effects on matter!, and G
5be2/a ~strength of Coulomb interactions in thermal units!,
wherea is the interparticle mean distancea5(3/4pr)1/3. A
weakly relativistic and weakly degenerate state obviou
corresponds to small values ofa and ldB /a @notice that
ti-
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kBT/mc25(1/G2)a2(ldB /a)2]. The corresponding Darwin
window indeed becomes large, and we will show that
reliable Darwin contributions appear in expansions of
real quantities~described by thermal QED! with respect to
(ldB /a) anda, at fixed values ofG. At a formal level, this
regime can be obtained by settingm and c to infinity for
instance. In practice, an equivalent situation will be obtain
at low temperatures and low densities that determine
thermodynamical regime of validity of the Darwin approac

IV. CONCLUSION

By studying the current correlations in a plasma describ
by thermal quantum electrodynamics, we have exhibite
phenomenon of thermal screening of the transverse inte
tions on a scalelphoton5b\c. We stress that this screenin
has a completely different nature than the Debye screen
for instance, which is a many-body classical effect. In o
case, the thermal screening appears already in a single F
man graph~the sole ‘‘collective’’ effects responsible for thi
screening are therefore the ones hidden in the thermaliza!
with two fermionic loops. Our study also enlightens the a
biguities linked to the definition of a classical~nonquantum!
and nonrelativistic limit for electromagnetically interactin
systems. This is related to the ill-defined behavior of t
photon thermal wavelengthb\c when one takes both limits
@\→0# and @c→`#. ~Actually, \ controls the quantum ef
fects for matter, as well as the thermodynamics of radiati
that has no well-behaved classical limit. If one could dist
guish two different ‘‘\, ’’ say a blue one for matter and a re
one for radiation, the classical treatment of matter wo
appear as an expansion in powers of\blue for a fixed \ red,
and in order to obtain the classical contributions of matt
we would keep the zeroth-order terms in\blue. However,
somebody set\blue5\ red for the real world.!

The thermal screening is responsible for the failure of
Darwin models at sufficiently large distances. The pres
study also suggests that some thermodynamical predict
of the Darwin models, involving contributions from the win
dow ldB!r !lphoton, are expected to be relevant pieces
the relativistic corrections to the Coulomb quantities for re
plasmas.~This analysis is confirmed by the study of the e
cess pressure, which will be published in a forthcoming
ticle.!

Several Darwin models have actually been studied in
literature, in particular by Krizan@5,11,7#, and by Kosachev
and Trubnikov@9,8# ~for a review, see@20#!. The difference
between these models lies in the way of truncating the
pression of the velocities in terms of the canonical mome
when deriving the various Darwin Hamiltonians from th
same Lagrangian. Consequently, their model Hamiltoni
differ from terms of order 1/c4 and higher@4#. Nevertheless,
within each model the predictions at large distances di
considerably: whereas in Krizan’s model~the same as the
one exposed here! the correlations decrease as 1/r ~with os-
cillations!, in Trubnikov’s model the screening is slightl
more efficient, and they decrease faster, namely asr 3

~without oscillations!. Furthermore, the excess free energ
are different at order 1/c3. These crucial differences at low
est orders in 1/c2 between two models, the Hamiltonians
which differ only at order 1/c4, can be explained by the
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fact that the corresponding screened contributions invo
convolutions of an indefinite number of Darwin potentia
and thus a sum of terms of arbitrary orders in 1/c @4,6#.

Some authors argued about which model was the be
describe a real plasma. According to our study, it appe
clearly that the large-distance behavior of the screened D
win potential is not physically relevant, for this screeni
occurs, in both models, at a distancej which is much larger
than lphoton5b\c in the considered regime.@The ratio
lphoton/j is equal to (ldB /a)AG in the low density and low
temperature regime. This parameter is therefore small in
pansions with respect to (ldB /a) at fixed G.] This should
end the old battle between the two opposite sides.

APPENDIX A: THE FEYNMAN GRAPH

The aim of this appendix is to provide some details ab
the calculation of the Feynman graph shown in Fig. 1~a!.
First, we write the fermionic propagator as an integral,

G~v l ,p!5
~p”1mc2!

~ iv l1m!22E2~p!
5E

2`

1`~P”1mc2!rms~P!

p02~ iv l1m!

dp0

2p
,

~A1!

wherep5( iv l1m,cp) andP5
def

(p0,cp), and the mass-she
density function is defined by

rms~P!5
def

2p«~p0!d~P22m2c4! ~A2!

and the« function is just«(p0)5
def

p0/up0u.
We can then write the correlation function as

J̃mn~k!5 (
nPZ

Pma~vn ,k!Dad~vn ,k!Pdn~vn ,k!,

~A3!

whereP(vn ,k) is the first-order term~in e2) of the photon
self-energy, namely@using Eq.~A1!#

Pmn~vn ,k!5
e2

b (
l PZ

trE H gm
P”1mc2

iv l1m2p0
gn

3
P” 81mc2

i ~v l2vn!1m2p80J rms~P! rms~P8!

3
dp

~2p\!3

dp0

2p

dp80

2p
, ~A4!

where we have set

P5
def

~p0,cp! and P85
def

~p80,cp2\ck!. ~A5!

We now perform the summation over the fermionic ind
cesl andl 8. Using integration in the complex plane, one c
show that, for any meromorphic functiong on C with van-
ishing residue at̀ ~i.e. decreasing faster than 1/z2 at infin-
ity!, and holomorphic on an open set containing the line$z
PC ; Rez5m%, the following formula holds:
e
,

to
rs
r-

x-

t

1

b (
l PZ

g~z5 iv l1m!5(
a

Res$g~a!%NF~a2m!, ~A6!

wherea runs over the set of poles ofg, and where the Ferm
distribution is

NF~x!5
def 1

ebx11
.

In particular, this formula gives

1

b (
l PZ

1

@ iv l1m2p0#

1

@ i ~v l2vn!1m2p80#

52
NF~p02m!2NF~p802m!

ivn2p01p80
. ~A7!

Now we have to sum over the bosonic indexn. Still using
complex integration, we obtain the following expression,
volving the Bose distributionNB(x)5def1/(ebx21):

(
nPZ

1

@ ivn2~q02q80!#

1

@ ivn2~p02p80!#

1

@vn
21\2c2k2#

5
NB~q02q80!

@q02q801p02p80#

1

~q02q80!22\2c2k2

2
NB~p802p0!

@q02q801p02p80#

1

~p02p80!22\2c2k2

1
NB~\cuku!

2\cuku
1

~\cuku2q01q80!~\cuku1p02p80!

2
NB~2\cuku!

2\cuku
1

~\cuku1q02q80!~\cuku2p01p80!

.

~A8!

We can now use the formulas~A7! and ~A8! together with
Eqs.~A3! and~A4! to obtain the~exact! formula givingJ̃(k)
at the first order ina. This formula involves~by integrating
the r distribution! summations on the signs ofq0, q80, p0,
andp80.

It should be noticed that the set$p0.0 and p80.0%
gives a purely electronic contribution,$p0,0 and p80

,0% gives a purely positronic contribution~therefore vanish-
ing in the limit considered!, while mixed contributions$p0

.0 and p80,0% or $p0,0 and p80.0% give both elec-
tronic andpositronic contributions, and therefore must not
forgotten.

First we can evaluate the previous expression ofJ̃(k) in
the regime whereb\cuku@1 @which corresponds,via the
Fourier transform, to the main contributions toJ(r) at inter-
mediate distancesldB!r !lphoton]. The small dimensionless
parameters of our expansions are therefore
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1

b\cuku
!1 and b

\2k2

2m
!b\

p•k

m
!1.

In order to describe a weakly relativistic and weakly deg
erate system, the following parameters are also considere
small:

1

bmc2
!1 and ebm* !1.

We therefore haveNB(\cuku).0 while NB(2\cuku).21
up to exponentially small terms. Moreover, limit expressio
of NB must be taken, according to the sign ofp0 andp80. For
instance, ifp0 andp80are both positive,NB(p02p80) can be
expanded as a series, the first term of which
NB(\p•k/m).m/\p•k ~higher-order terms should be take
into account in the global formula, due to a cancellati
mechanism!. If p0 andp80have opposite signs, we can wri
NB(2mc2).0 andNB(22mc2).21, the omitted terms be
ing exponentiallysmall. Some denominators are expand
using

\p•k

m
!\cuku or \cuku!mc2.

~The second inequality comes from\2k2/m2c2

5@b\2k2/m#3@1/bmc2#, which is the product of two smal
parameters. It also means that the photon energy\cuku is too
small to create electron/positron pairs.! At last, the Fermi
distribution NF(p02m) is zero up to exponentially sma
terms if p0,0, and reduces to the Maxwell-Boltzmann di
t

-
as

s

s

d

tribution in the desired limit otherwise. After expanding th
whole expression with respect to the small parameters,
find the expression~3.8! which is proportional to 1/k2. This
behavior corresponds to a slow decrease~in 1/r ) of J(r) at
intermediate distancesldB!r !lphoton.

We now evaluateJ̃(k) in the regime whereb\cuku is a
small parameter. We perform expansions ofJ̃(k) with re-
spect to the following small parameters:

b
\2k2

2m
!b\

p•k

m
!b\cuku!1

and

1

bmc2
!1, ebm* !1.

We write NB(\cuku) as an algebraic series, the first term
which is 1/b\cuku ~higher order terms must also be take
into account!. After expansion, the singular terms, propo
tional to 1/k2, cancel out. At the order\0, the correlation
function is therefore regular atk50 and can be expanded i
positive powers ofk2. In the ‘‘real’’ world, we can therefore
expect a rapidly decreasing behavior of the current corr
tion at large distances.
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