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Thermal screening of Darwin interactions in a weakly relativistic plasma
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We study a weakly relativistic and weakly degenerate plasma of electrons at equilibrium, described by
thermal quantum electrodynamics. Near the classical limit, at lowest order the first contribution(in a
perturbative expansion with respectd®) to the current correlation is shown to exhibit two different behav-
iors. At intermediate distancébetween the de Broglie thermal wavelengf%2/m and the thermal photon
wavelengthB7.c), it decreases slowly, as the Darw(imansversgpotential which accounts for retarded elec-
tromagnetic interactions beyond Coulomb in Darwin classical models. At large distdages thang#c), it
decays exponentially fast, in agreement with the predictions of the classical field theory. This thermal screening
of the Darwin (transversginteractions allows us to understand the contradictory results on the equilibrium
properties of relativistic plasmas found in the literature. Furthermore, we give the physical regime of validity
of these models for the description of real plasnj84.063-651X99)04704-2

PACS numbgs): 52.60:+h, 52.25.Kn, 11.10.Wx, 12.26m

[. INTRODUCTION duced by the Coulomb and Darwin potentials, and they allow
us to go beyond previous mean-field calculatipris9|.

The Coulomb interactions are sufficient to describe the ; o
. S . As far as real matter is concerned, some predictions of the
properties of systems of charged partiolegher classical or . " .. . . X
simplified Darwin model are questionable. For instance, an-

?huears]tp;jerz’d\,\(l)??irg];r:zeanfa\:\?egillscrlctelliiv?gicsgqriﬂl V(\:/Zg]zsrg:_toother Darwin model, the Hamiltonian of which differs from

- ours by terms of order ¢ and more, predicts a fastéout
generate plasmas, namely at sufficiently low temperature ang: . . .
low density, the first effects of retarded electromagnetic in=> il algebr{;m) Qecay of the current correlations at large d's'.
i i b d Coulomb be stud@driori withi tances. This discrepancy has been the source of controversial
eractions beyond Coulomb can be stu g&dbriori within discussions in the literatui@)].

the so-called Darwin classicalnonquantum models. In

h | h X ¢ ion for th In order to clarify the situation, we must start with a com-
these modelg1], the Lorentz equations of motion for the ate gescription of matter and radiation, where all the elec-

charged particles, truncated at ordecl/can be recast in  tromagnetic interactions between the charges are taken into
Hamiltonian form[2—4]. The Hamiltonian of the system is 5ccount. As already explained 0] and[6], this requires
then a function of the sole canonical coordinates of the parie use of quantum electrodynamics at finite temperature, or
ticles, the degrees of freedom of the electromagnetic fieldghermal QED Our goal is to study various equilibrium prop-
being eliminated, as in the Coulomb case. In a simplifiederties of the system and to compare the QED results in the
version[5], the non-Coulombic potential part of the Hamil- \veakly relativistic and weakly degenerate limit to the predic-
tonian is a sum of two-body Darwiftransversginteractions.  tions of the different(and mutually disagreeingclassical
(It is simplified in the sense that a Lagrangian truncated agnodels. In this paper, we will first consider the current cor-
the first order 1¢° leads to a full Hamiltonian with terms of relation of a dilute and cold electron plasraith a rigid
any order in 1¢%; Krizan keeps only the term of orderct/  uniform backgroundin equilibrium with radiation. In par-
in his Hamiltonian. We stress that thésmplifiedmodel is ticular, we show that the corresponding lowest-order Feyn-
consistent at the order & included. The terms of order man graph decays exponentially fast at large distances in the
higher than 1¢? that appear in the full Darwin Hamiltonian present almost classical and nonrelativistic limit. Such a de-
do not make sense, because they do not account for the elegay can be interpreted as resulting from the screening of the
tromagnetic interactions of the same order that would appearansverse effective interactions between the charges, gener-
in the equations of motion.The Darwin potential depends ated by the exchange of thermalized photons. We stress that
on the momentum of the particles, and it decays like thehis mechanism is completely different from the classical
Coulomb potential, i.e. as Lt large distances. Debye screening of Coulomb interactions. It is due to the
In a previous papef6], we have studied the equilibrium process of thermalization of the mediating photons that
properties of a classical one-component plasma described yecomes crucial at distances larger than the thermal pho-

the (simplified Darwin Hamiltonian. At low densities, we def . . .
have computed the first relativistic corrections to the puretonde\fyavelength)‘phO‘O“_ phe. At intermediate distances,

Coulomb contributions for various quantities such as the exx ig=(8%2/ m)1’2<r<)\ph0ton, we recover the classical ex-
cess pressure or the current correlations. Use of diagranpression predicted by all the Darwin models. The existence
matic resummations remove the long-range divergences irof the thermal photonic screening implies that all these clas-
sical models fail in the description of large-distance behav-

iors for real matter coupled with radiation. According to this
*Unite de Recherche 1325 assaziau CNRS. mechanism, we shall determine in forthcoming papers the
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physical status of Darwin contributions to the thermody-tum field description, such as pair creati@mnihilation and
namic quantities such as the free energy or the excess pragnormalization, will not be considered, for we are only in-
sure. terested here in contributions having a classical equivalent.
In Sec. Il, we recall some general features about thermalherefore, the physical constants,g, . .. ) involved in the
guantum electrodynamics. The free thermal propagators fagxpression of interest are supposed to be the renormalized
both matter and radiation are presented, as well as the thepbservable quantities.
modynamical conditions required to describe a weakly rela-
tivistic and almost classical system. A. Hamiltonian description and free thermal propagators
In Sec. Ill, we present the Feynman graphs which de- . .
scribe the current correlation function at the lowest order in__ 1€ Hamiltonian of our system can be written as the sum
the e? expansion. The behavior of this function with respect®’ three terms:
to the distance will be shown to be completely different be- def
low and above the photon thermal wavelen . These _ /0 0
two behaviors willpbe compared to the p)rgekgci)a?ons of the M= Hmat Tt rad Hine @
Darwin models and classical field theory. The previous reyyhere the free matter Hamiltonian is
sults are then generalized to all the graphs. Furthermore, a

dynamical interpretation of thermal screening is given, and def

we briefly sketch the discussion about the regime of validity He.= | () (—ificy-V+mA)y(x)dx, (2.2
of the Darwin approach which will be detailed in a next

Paper. [y being the 3-vector of Dirac matrices?,y? v, and

Eventually, we conclude in Sec. IV and we clarify the —*

— T (x) A0 o .
paradox arising from the mutually disagreeing Darwin mod-‘ﬁ(x_)_deféﬁ (x)77], the free electromagnetic field Hamil-
els[8,9,5,11. tonian’H ,q is derived from the Lagrangian

def
Il. GENERAL FRAMEWORK Egm_ (1/16m) FM,,F‘“’dX, (2.3

In the following, we shall call “real world” a system of
electrons and positrons at equilibrium, with electromagnetithere are several ways to derive a Hamiltonian from the
interactions, regardless to any other kind of particles anglectromagnetic Lagrangian, due to the gauge symmetry;
interactions, in a world fully described by special relativity. however, the explicit form of the chosen Hamiltonian is not
A fully relativistic and quantum description is necessary toimportant here, for we will express the correlation functions
determine the regimes of validity of the Darwin model. in terms of the sole free propagatamshich of course still
Matter, made of electrons and positrons, is described by gepend on the chosen galijeand the interaction Hamil-
Dirac bispinor field#(x), with fermionic nature, a function tonian is
of the space variable (time does not appear in this equilib-
rium theory. It should be noticed that, although the classical def
limit of our system will be aone component plasmahis Him:ef P(X) Y P(X) A, (X) dX. (2.9
bispinor field describes both electrons and positrons, indisso-
ciable in a relativistic and quantum theoihe disappear- |, qrger to investigate the equilibrium statistical mechanics

;nc?hof the dposnr_ons will fotllow_frctJrzn the _specT_c tchge of of the system at a given temperatigT = 1/8 and chemical
e thermodynamic parameters in the regime of intorBt- potentialu, through perturbative expansions with respect to

diation is de.scnbed by a quadrlvectlor f|e@(x). In the Hint, it iS convenient to introduce the imaginary-time free
grand canonical ensemble, the chemical potential of the pho?volved operators

tons is identically zero, whereas the chemical potentials o
the electrons and the positrons are opposig = — ue= def
— ., as a consequence of the equilibrium between the anni- T,X):eXF{T
hilation of electron-positron pairs into photons, and the con-
verse process of creation. Notice that in the relativistic case, o
we haveu=mc+ u*, whereu* is the usual chemical po- X w(x)exp{ - T(H?nat—,u.f P(X) YOup(x) dx
tential.

Our system, made of electrons éi?d positrons coupled to (2.5

ngat_MJ’ P(x)YP(x) dx

[}

photons with the coupling constamt=e?/4c, is immersed and
in a rigid, homogeneous background, with charge density
—epg, Which creates an electrostatic potential. As already def
discussed irf4] and[6], this bath has a great physical im- A, (7, x)=exd 7H ?ad]AM(X)qu_ Hod. (2.6
portance, for it ensures the stability of the system; however,
it will not enter explicitly in most perturbative calculations Following [12—14, we now define the matter free propa-
except by removing some divergent Feynman graphs in thgator as
Dyson expansion with respect & (as in the Mayer expan-
sions for classical mode([$]). def

In the following, the specific effects arising from a quan- G, ;7" X ) ={Th(7,x) (7", X" ))g, 2.7
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where( ) is an equilibrium average, evaluated with the freeproperty to separate clearly the longitudinal Coulomb poten-

Gibbs distribution tial, which corresponds to the nonrelativistic limit of the
electromagnetic field, and the transverse field that corre-
_ 0o _ —0 sponds to relativistic correctiongetardation and magnetic
exp[ ’B(Hma‘ ’uf vy l’/,dx)]' terms, seg¢4]). In this gauge, the photon propagator reads
The time-ordered produdt has been used. It is well known Amh2c2 K ki
) ; . i .
that this propagator depends only on the difference of its D;i(k)= ( ”——J>, i,j=1,2,3, (2.15
arguments, and satisfies antiperiodicity relations that allow k? k?
us to decompose it in Fourier series on theariable:
4
Dog(k) =~ — (2.16

Q(r,x;r’,x’)IiE el o7 = NgTip (X' =x)/h k2
B leZ
and the other components vanish. In this expression, we have
e (2.9 setk=de(k°,7ck) = (i w, ,7ck). The time componerDy, is
(27h)3 obviously related to th€instantaneoysCoulomb potential.

] _ The total expression is of course not relativistically explicitly
where the Matsubara frequenciegs are odd multiples of  cqoyariant.

7l B:

XG(w,p)

B. Perturbative expansions

def( 21+ 1) 7
O=Tg forall 1eZ. 2.9 The fine-structure constant=e?/#c being small, one
may perform expansions of various equilibrium quantities in
As usual, we will write, in a condensed and convenient waypowers ofa. The equilibrium averages resulting from the
Dyson expansion of the Gibbs factor in powers?of; are
def treated using Wick’s theorem, and can be represented by
p=(p°%cp)=(iw+u,cp). (210  series of Feynman graphs.

) , ) The free fermionic propagators will be represented as
As in (dynamica) QED, the propagatof2.7) is the Green gya| by straight lines, whereas the free photon propagators
function for the Dirac operator, apd reads, in terms of mo-,;, appear as wiggly lines. Each graph will contain fermi-
mentum and Matsubara frequencies, onic loops, connected by photonic lines.

_ p+mc&  Op°—cy-ptmd
p-m@ pPomict  (p%)2— pPc?— mlch

(2.11
Similarly, the free photonic propagator defined by

C. The classical and nonrelativistic limit

g(wl 1p) =
In order to study the weakly relativistic and almost clas-
sical limit of the system, we takg* negative and such that

KgT<|u*|<mc2. (2.17
def
D,s(1.%,7 X )=(TA(7,X)As(7' X))o (2.1  In order to check that this regime really defines the above
limit, we can, for instance, compute the free charge density
satisfies periodicity relations ovet and its Fourier compo- of electrons and positrons of the noninteracting system, i.e.,
nents withevenmultiples of =/ 8 as Matsubara frequencies

read def __
Ofree= e< #(0x) 'YO Y(0) > 0

1 _ b
Dos(m X7 X" ) = _nEZ e len(Tm g ik (7 (the total charge density including the contributierepg of
© the background vanishesA straightforward calculation
dk shows thatje. can be written agfN(p) dp/(274)3, with
XDaﬁ(wnnﬁk)Wn (213

le o ABertpw
NP g2 D= 2 e - )

Notice that we have chosen here to write the momentum ofvhere we have sé(p) = der/m?c*+ p?c?. If we combine in
the photon agk, while the momentum of the electrons and this sum the opposite terms Inand —I, we see that each
positrons wag. Now, the expression of the photon propa- term decreases asl4/and the sum is therefore convergent.
gator depends on the choice of gauge. We can work withitJsing integration in the complex plane and the method of
the gauge that is most likely to be convenient for our pur-residues, one finds that

pose. Unusually, it will not be the Lorentz gauge, although

the expression of the propagator is simpler therein, for the N(p)=2Ng(p) — 2N p), (2.18
Lorentz invariance is lost anyhow at finite temperature. On

the other hand, the Coulomb gauge has the most likeablhereN refers to the electron or positron Fermi distribution

w,=2nm7/B. (2.14
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The second diagram(ld) corresponds to a purely quantum

exchange term; it decreases exponentially with the distance,
on a characteristic scale depending on Planck’s congiant.
the purely Coulomb nonrelativistic cafie electromagnetic
interaction “transported” by the photon in Fig(l) is then

(@) b) © replaced by the Coulomb potenfiathe exchange term is

Gaussian with a covariance length equal to the de Broglie
thermal wavelength\ sg=78/m at low density) The last
diagram Ic) is related to the first contribution to the mass
renormalization of the fermions. Since the latest two have no
classical equivalent, their contribution will be ignored in the

FIG. 1. The first three Feynman graphs in the Dyson expansio
of the current correlations.

Ne d_ef 1 following, and we shall restrict ourselves to the study of the
F(p)_exp[,g[E(p)_M]}Jrl’ first graph 1a). As a matter of fact, all the renormalization
processes are omitted here, assuming that our propagators
def 1 and vertices are expressed, in the final expressions and at the
NP p) = , (2.19  order considered, in terms of the dressed masses and charges.
exp{BLE(p) + n]}+1 For technical reasons, we shall consider the Fourier trans-

form of J7#%(r). The corresponding contribution of graph

and the factor 2 comes from the two different spin statesi(a) is

The condition (2.17) implies E(p) + u=2mc*>>kgT, and

thus the positronic contribution is completely negligible. For et

the electronic contributionE(p) — u=— u* +p?2m, and TH(K) = — > 2 f f trl y*G(w; ,p) ¥*G

e Ar" <1, so at low densities we have By ezne?
Nﬁl(p)zNMB(p)=eB”e_'BE(p), (22() X(“’I"‘“’nyp"'ﬁk)]pa&(wnahk)

X tr[ y° S )Y
whereNyg is the Maxwell-Boltzmanrrelativistic) distribu- G
tion, which reduces, in the weakly relativistic limit, to the dp dq
familiar Gaussian, i.e., XG(w;—wy,q— k) .
(e —en.g ](27771)3 (27H)3

Nyg(p) = 8" g~ Ae2m, (2.21) 3.3

Therefore, and as expected, the system under the condition The calculation of this quantity is straightforward but te-

(2.17 is mainly made of classical nonrelativistic electrons. dious. After evaluating the traces, we have to sum over the
fermionic indicesl and|’. For this purpose, we can use

Ill. CORRELATIONS AND EFFECTIVE INTERACTIONS complex integration and the method of residues. The

o positronic contributions can be ignored at this stage, by omit-
Within the above QED framework, we now calculate theting some exponentially small terms proportional to

first relativistic corrections to the current correlation functlonefzngZ_ The photonic indesn can then be summed over,

and the charge correlation functions, in the regi(@el?, ?till using the method of residues. Some details of the calcu-

and we compare them to the results found within classicag,;,, ore given in Appendix A. The final formula fof**(r)
descriptions such as the simplified Darwin model or the CIaSE:an be evaluated in two different regimes, according to the

sical field theory. fact that the distance is larger or smaller than the thermal
_ _ photon wavelengtiB7.c.
A. General expression of the current correlations
We study the lowest order term ie? of the 4-current B. Behavior at short distances
correlations In order to avoid some purely quantum effects due to the
strong overlapping of the electron wave functions at short

def def R ; H ;
. — distances, we restrict the analysis to distances larger than the
TH(N=*0)I"(r))  with ‘]#(r):e‘/’(r)yﬂ'/’(rz' ) de Broglie thermal Wavelengt?]l ’
3.1 '
. e . . def BﬁZ
where( ) is the equilibrium value for the interacting system. Moo= | 3.4
With these notations, the charge correlations are dB m '’ '

{p(0)p(r)y=7%(r) and the current correlations are _ _ _ _
where a classical behavior of matter is expected. The condi-

s tion r>\ 4g can be written in Fourier components, thanks to
(j(O)-j(r))zczz J"(r). (3.2  the duality between positions and momenta, as
=1
Bh2K?
In the perturbative Dyson expansion, we now apply Wick’s <1. (3.9

theorem to contract field operators by pairs and make the
propagators appear; the first terms are then represented fyis condition will be used in the expansion of the expres-
the three topologically distinct Feynman graphs of Fig. 1. sions derived in Appendix A.
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Now, another length appears in these expressions, which/c® and#2". For the other classical terms, of ordec?,/we
is the mean thermal wavelength of the photoNg,.,, can use the nonrelativistic expressi¢p.21) of Nyg(p),

def :
= Bhc. This length separates two crucially different behav—WhICh leads to

iors of the correlation function. In this section, we derive
expansions under the condition 2.4
(J-))=—8m (3.10

r<phc or phclk|>1. (3.6 BM2cA2

We point out that the double conditiotyg<r <<\ proton CaN
be fulfilled only for a weakly relativistic plasma, fotse  The inverse Fourier transform of E¢8.10 then gives
< N\photon IS €quivalent to8mc®>1. We also use a third in-
equality which is
e4p2

filk|<pl. @7 (0 j(N)==2—5 = for  Nag=<r <Apnoon
This inequality is at first sight a bit surprising, for we have to Am (3.11
integratep over R® in the expression ofj(0)-j(r)). How-
ever, the presence of the Maxwell-Boltzmann distribution in
the integral and the volume factdp imply that the leading C. Behavior at large distances
contributions arise from momenta of ordgm/8, which do
satisfy Eq.(3.7) by virtue of Eq.(3.5).

We are therefore led to a double expansion of Bd3) in
powers of the small parametefd 2k?/m and 18%¢|k|. We
stress thath appears at both the denominator and the nu
merator of these parameters, segativepowers ofa will

At distances >\ yhoton, the contribution of graph (&) to
the correlation function at ordet® and 1£2 should decay
exponentially fast as shown in Appendix A. Under the con-

dition Bfick<1, the expansion of/(k) leads to an expres-
sionregular atk=0, at the orders:® and 1¢2. For a given

appear in the previous expansion. The presence of these iMatsubara frequenzc;on 2(27&20)’ the photon propagator is
verse powers ofi exemplifies that some retarded effective Proportional to 1/en+#°c°k?). It should lead, in the real
interactions do not have a well-behaved classical lipit ~World, to an exponentially decreasing contributionfr),

— 0] (see below. The classical contribution can be fouri, ~ OVer a typical lengthk ynoton/n. The sum of all these terms is
fine, by retaining the terms of ordé®. Once this expansion therefore exponentially decreasing at the order considered.

is done, we find, at the ordersc¥/and#°, and at the lowest AS for the static (o=0) terms, their contributions to the
order in the density correlations vanish in the classical limit, at large distances.

— ) 5 D. Interpretation in terms of classical descriptions

(i-y=c22 J'(k) . . .
i=1 Now, we interpret the behaviors at short and large dis-

tances of the correlations in terms of classical models. As

_ dp dq noticed in [6], whereas in the classical one-component
- f(zwh)a (zwﬁ)aNMB(p)NMB(Q) plasma with Darwin interactions, algebraic tails appear in the
current correlations, within the fully relativistic theory of
4Be* 4e* classical fields such correlations vanish identicédlge also

[p?+d?—(p-k)>—(q-k)?] [15].) The intermediate distance behavior may therefore be
obtained within the simplified Darwin model, while the large
distance behavior coincides with the predictions of the clas-
sical field theory.

mzkzp' a- m3c2k2

ape(pP+d  pg
m2k?| 2m?2c? m?c?

1. TQFT at intermediate distances and the simplified

Darwin model
. (3.9

X[p-a—(p-k -k + ...
Lp-a-(p-R)q )]] The behavior(3.11) can be interpreted in terms of the
) ] ] ] ] simplified Darwin model. Let us recall what this model is.
In order to interpret this expression, we can first notice that simple approach of weakly relativistic classical plasmas
consists in considering classical point-particles, with charges
zf Nys(p) dp :p%lasls, (3.9 e and masses;, interaqtingviaa classical elgctromagnetic
(2mwh)3 ' field. Any given charge is assumed to move in the total elec-
tromagnetic field created by all the other ones. This field
wherepi2SSis the density of an ideal classical relativistic gasinvolves retardation effects, as well as magnetic contribu-
with fugacity x. In the low density limit, we can identifp ~ tions, which can be expanded in powers af, inder weakly
and pS2S. After integration over the momengandgq, the  relativistic conditions. The corresponding Lorentz equations
Coulomb contribution of order &? vanishes. This was ex- of motion for the charges, once truncated at ordef,1¢an
pected, for there are no current correlations in a classicdie integrated into a Hamiltonian form, which mixes the po-
Coulomb plasma. However, it should be noticed that wesitionsr; and momentar; of the particles. A simplified ver-
have neglected some quantum, nonrelativistic terms, of ordegion of this Hamiltonian reads
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def N 1 ee —_— dmr da
_ a1 2 (| . _ 1 2
= 2ehp mocl = : in=4 f f N N
Hp ;1 m;C iC ZIEJ ri—r| (1) parwin= 4 2nt?) (2mh)? ma(71)Nyg(72)
i#]
4Be* 4e* N
1 €i€; Ty [ 72+ m5— (- K)?
~52 [ 77 a7+ (7 ny) (- ) 1. mae L T a2 T
2i|¥]j 2mm;c?|r;—rj|
(312 ) i S
2 m2k2| 2m2c2 L ¢
In this equationn;; is the unit vector between andr; . This
Hamiltonian is the sum of a kinetic part, the classical Cou- T T N N
lomb interaction energy, and an interaction energy term as- ey [ = (71 K) (- K) ] p 4 - |,

sociated to the two-body relativistic Darwin potential of or-

der 1t2. The velocities are related to the momenta by the (3.19
relation which is exactly the same expression as the right-hand side
2 of Eq. (3.8), if we identify p with 7y, andqg with ar,. (This
vi:ﬁ_ i — €i€; [m+n (m-n)] identification has no precise physical sense: the momentum
m 2mic? Y ammicd - T associated with the first fermionic loopps- 7k as well asp.
17 The photon wave vectok being the Fourier dual of the
+o0(1/c?). (3.13 relative positionr, this uncertainty on the momentum is

nothing but the expression of Heisenberg’s principle. Only
A model of one-component plasma described by the simplithe integrated quantity has a precise physical sgerndgs
fied Darwin Hamiltonian3.12 has been studied in previous shows that the perturbative expansion within QED which
papers[4,6]. The main result is that collective effects are leads to Eq(3.8) is isomorphic to an analogous perturbative

responsible for a weafand oscillating screening of the Dar-
win interactions on a scalg= Jmc?/4mpe? at low densities

expansion for the Darwin classical model in the phase space.
(There is a subtle point to be taken into account here. In a

[6]. This length is equal to the Debye screening length mulPerturbative expansion in powers ef, the nonperturbed

tiplied by VBmd2.

In the considered regime, and at distances\ yngi0n, NO
collective screening effects occur, sinkgnoi<¢. There-
fore, the first term of ordee* and 1¢? of the Darwin current

quantities correspond to thieee system. However, in the
Hamiltonian description, the canonical momentum isiran
trinsic object. Therefore the speeds of the particles in the
presence of interactions are different from the speeds of the

correlation can be obtained from a straightforward expansioff€€ particles, for a given set of canonical momenta. This
with respect to the interactions. In the grand canonical enMust not be forgotten in the calculation @fj)). The effec-

semble, the Darwin current correlation reads

N

o ez
<J(O)‘J(r)>Darwin:§Nz:O mf 8(ry) 8(r,—r)

dﬂ'i dri
X[v, vy]e Aot AT ——
v i (27h)3
for r#0, where thes;’s are the canonical momenta of the

particles, related to the velocities by E@®.13, H, is the
free relativistic Hamiltonian

def
Ho=2, ym?c*+m2c?,
I

tive electromagnetic interactions beyond Coulomb generated
by the exchanged photons therefore correspond, at order
1/c?, to the transverse Darwin interactions, as expected.
Notice that the latter calculations have been performed
within the Coulomb gauge. This point is crucial if we want
to have the same structure in E¢3.8) and (3.14). Indeed,
although the present Feynman graph, once integrated, repre-
sents a physical quantityand therefore gauge invarignon
the contrary the expression of the integrand depends on the
gauge choice, for in the Hamiltonian method the relevant
parameter is the canonical momentum, the velocities and
current depending, dixed momentaon the gauge. The ex-
pression of the Feynman graplial in, say, the Feynman
gauge, has therefore a different integrand than(B®), but
the difference of course vanishes after integration over the
canonical momenta. The reader may remember that the con-
struction of the Darwin Hamiltonian is made within the Cou-

A is the sum of the Coulomb and Darwin interaction enerlomb (transversggauge; this explains the similarity between

gies, and= is the grand-canonical partition function. We
then use the perturbative expansion

(100)-J(1)) pamin=i(0)-}()o= B(AJ(0) - J(N) o+ - - -,

where( )q is an equilibrium average with the free Hamil-
tonian Hy. [The truncated termB({A)q(j(0)-j(r))o van-

the structures involved in Eq$3.8) and (3.14).

2. TQFT at large distances and the classical field theory

At large distances, the Darwin models appear as rather
questionable, already in their foundations. Indésde[in
FrencH [16] for a detailed discussionin order to construct
the Darwin Lagrangian, one expresses the electromagnetic

ishes] In the Fourier world, after straightforward calcula- field created by the particles at the position of particket

tions, this leads to

time t, in terms of the coordinates, velocities, and accelera-
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tions of the particlg at a retarded timet( 7;;), defined by E. Extrapolation to all the graphs

the well-known implicit equation
the screening lengtho10= B C, certainly occurs in all the
[ri(t)—r;(t— )| P : A :
= ) (3.19 Feynman graphs that enter in any equilibrium quantity.
¢ For instance, we can compute the charge-charge correla-
tion function, given by 7°. The calculation is somewhat
similar to that of the current correlations, and the result is
imilar: at intermediate distances, one recovers the Darwin
orrection(at a formal level at least, for it vanishes by parity

The phenomenon of thermal screening, characterized by

Tij

To truncate the equations of motion at a given order mid/
equivalent to taking, formally, a limfitc—~]. Some trouble
may now arise when looking at large-distance behaviors o

correlation functions, for the limitsr —] and[c—=], 0b-  agter integration over the momentavhereas at large dis-
viously, do not commute in Eo[3.1_3- This shows that the tances, the transverse corrections do vanish exponentially
Darwin models may provide spurious predictions at larger,st in the classical limit.

distances. As a matter of fact, different Darwin models lead Actually
to contradictory behaviors at large distances. i
In fact, at large distances, the electromagnetic field can b

if one writes any Feynman graph in the momen-
tum representation, with the thermodynamical conditions
) ) He X .17, one may think of the fermionic loops as classical
treated as a classical object, and the fully relativistic classic bjects, with well defined canonical momenta and positions,
field theory (CFT) should provide the correct behaviors of jyieractingvia effective interactions generated by the photon
interest. Let us consider a model of classical point part'despropagators. The fact thatassicalmatter interacts onlyia

interacting with a.classical elect'romggnetic field. This SYSCoulomb interactions at large distandescept for exponen-
tem can be described by a Hamiltoniafarr, a function of tially decaying terms ™"/ ehooy) should be true at all orders

the positions and momenta of the particles ), and gen- i 1/c. and not only at order & as shown by the CFT
eralized positions and momentg,(,p,) for the transverse 4n4ysis. The effective interactions beyond Coulomb have
electromagnetic field. The index is a multiple indexa  therefore a purely quantum nature at large distances, and
= (k) running over a,momenturheR and two polariza-  ghould decrease algebraically, faster than, With ampli-
tion vectorse(k) and €'(k), orthogonal tok and to each  ,4es proportional tgositive powers of# since they are
other. The classical canonical partition function reads related to quantum fluctuations of the positions of the
charges. These quantum fluctuations should induce algebraic
(3.16 tails in the spatial correlation functions, as already shown in
[17-19 in the purely Coulomb case.

Naturally, there also appears effective interactions of or-
where the semiclassical counting rule is applied to the cader larger than t?, even in the simple graph(d). These
nonical volume elementsl#; dr; and dp,dg,. One can interactions may be proportional twegativepowers of#.
show[15] that it can be factorized into two contributions  Indeed, in the Darwin “window” \ gg<r <\ ppoton, €Xpan-

sions are made in powers of the small parameters

Bh*
The second factor is the classical partition function of the F|k| and ,Bﬁ—0|k| (3.18
free transverse electromagnetic field. The first factor is the
classical partition function of Coulomb matter, and it deter- ¢ sufficiently high orders in 1, negative powers af will

mines all the statistical properties of matter. Therefore, inyyhear Their classical limiti(—0) is therefore not defined.
classical field theory, all the electromagnetic forces beyoners is in part related to the impossibility of constructing a
Coulomb do not affect equilibrium properties, and classicalyapmjjtonian, within the framework of a classical Darwin-
Coulomb matter is entirely decoupled from the classicalike theory (i.e., where the electromagnetic field degrees of
transverse electromagnetic field. In particular, the currenfreedom are eliminated in favor of the coordinates of the
correlations identically vanisfiL5]. particleg, with effective interactions of order higher than

Nevertheless, the previous analysis fails at short distanceg.2 tnat only depend on the positions and momenta of the
since the classical partition function of the free tra”Sversebarticles(see[4] for a detailed discussion

electromagnetic field is known to suffer from the so-called  at |ast. at very short distances< \ 4z, matter should be

ultraviolet divergenceln fact, a classical treatment of a har- treated b),/ quantum mechanics. In this, regime, the first rela-
monic oscillator of pulsatiom in the framework of statisti- yistic effective electromagnetic interactions between quan-
cal mechanics is valid only if the energy g is much  m electrons should keep the same form as in the Darwin

smaller than the thermal energiyT, that is to sayShclkl  \indow, with purely quantum terms as in the so-called Breit
<1 since herav=c|k|. We are therefore led to the conclu- Hamiltonian[3,2].

sion that the classical field theory approach is justified only
at interparticle distances> BAc. At these distances, the
classical decoupling between matter and radiation holds, in
agreement with the result obtained within the framework of The fact that the electromagnetic field behaves as a clas-
QED. All the classical effects beyond Coulomb present insical degree of freedom at large distarmee ,pq0n implies

the Darwin model are therefore due to the quantum nature dhat its contributions to equilibrium static quantities are
the thermalization process of the electromagnetic field, apurely configurational, and do not depend on its dynamical
explained in Sec. Il F. properties. Then, the previous CFT result appears as a direct

Z:f e Feer[] da; dr, dpadqa’
Lo (27h)3 27h

Z= Z 8 lomo* Zrane (3.17

F. Dynamical interpretation of thermal screening
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consequence of this remarkable property of classical statistksT/mc®= (1/T2) a®(\4g/a)?]. The corresponding Darwin
cal mechanics. At the level of the real-time evolution of thewindow indeed becomes large, and we will show that the
system, it is tempting to interpret this thermal screening aseliable Darwin contributions appear in expansions of the
follows. The photons which carry the electromagnetic inter-real quantitiesdescribed by thermal QBDwith respect to
actions between two electrons separated by a sufficiently) ,;/a) and«, at fixed values of". At a formal level, this
large distance are thermalized by diffusion, absorption, angegime can be obtained by settimg and ¢ to infinity for
emission. Therefore, they are unable to keep memory of thiystance. In practice, an equivalent situation will be obtained
dynamical configuration of the emitting charge, and the reqt low temperatures and low densities that determine the

sulting generated effective interactio(ieyond the residual thermodynamical regime of validity of the Darwin approach.
Coulomb potential vanish. However, we stress that, if the

presence of matter is indeed crucial in the thermalization
process of the photons, the screening length that appear in IV. CONCLUSION

the preViOUS decorrelation mechanism is entir6|y controlled By Studying the current correlations in a p|asma described
by quantum-mechanical properties of the photons : it reducegy thermal quantum electrodynamics, we have exhibited a
to Aphoton, At least at sufficiently low density. At distances phenomenon of thermal screening of the transverse interac-
I <Nphotons the dynamical contributions of the electromag- tions on a scalé ynei= 8%C. We stress that this screening
netic field to equilibrium quantities cannot be disentanglechas a Comp|ete|y different nature than the Debye Screening,
from purely static ones, as that of any quantum degree ofor instance, which is a many-body classical effect. In our
freedom. The Corresponding effective interactions then incase, the thermal Screening appears a|ready ina Sing|e Feyn_
corporate dynamical features, which turn out to be those preman graphthe sole “collective” effects responsible for this
dicted from a classical analysis of the real-time dynamics okcreening are therefore the ones hidden in the thermaliation
the electromagnetic field. The occurrence of the Darwin POwith two fermionic |00ps_ Our Study also en"ghtens the am-
tential in these interactions illustrates the general relation ibjguities linked to the definition of a classicalonquanturm
quantum statistical mechanics between static quantities anghd nonrelativistic limit for electromagnetically interacting
their classical dynamical counterparts. Similarly to the casgystems. This is related to the ill-defined behavior of the
> Nphotons @Nd with the same restrictions, we can give aphoton thermal wavelengtfic when one takes both limits
dynamical interpretation of the behavior at distanges [%—0] and[c—=]. (Actually, # controls the quantum ef-

<Nphoton- At sufficiently short distances, the photons ex-fects for matter, as well as the thermodynamics of radiation,
changed between two electrons do not have time to be thethat has no well-behaved classical limit. If one could distin-

malized, and the Darwin approach is legitimate. guish two different ‘%,” say a blue one for matter and a red
one for radiation, the classical treatment of matter would
G. Darwin regimes of validity appear as an expansion in powershgf,. for a fixed# o,

According to the previous results, we can anticipate £nd in order to obtain the classical contributions of matter,
brief discussion on the regime of the validity of the Darwin W& would keep the zeroth-order terms finy,. However,
approach. This discussion will be detailed in a forthcomingSOMebody Sefipiue=1ireq for the real world) _
paper. A first condition is, of course, that matter is almost The thermal screening is responsible for the failure of the

classical and weakly relativistic, i.e., as shown in Sec. Il C:Parwin models at sufficiently large distances. The present
study also suggests that some thermodynamical predictions

KeT<|u*|<mc®. of the Darwin models, involving contributions from the win-
dow A gg<<r <\ pnoton: @re expected to be relevant pieces of
A second one is that, for a given spatial configuration of thethe relativistic corrections to the Coulomb quantities for real
particles, the relative distances must be in the Darwin winplasmas(This analysis is confirmed by the study of the ex-

dow cess pressure, which will be published in a forthcoming ar-
ticle.)
/ﬁﬁ2< <gh 319 Several Darwin models have actually been studied in the
m Bhc. (3.19 literature, in particular by Krizaf5,11,7, and by Kosachev

and Trubnikov[9,8] (for a review, se¢20]). The difference
When calculating the excess pressure or free energy in between these models lies in the way of truncating the ex-
Darwin plasmg6], contributions from the whole space in- pression of the velocities in terms of the canonical momenta
tervene. Some of them are reliakli® the sense that they when deriving the various Darwin Hamiltonians from the
make physical sense for real majtehe others are not. The same Lagrangian. Consequently, their model Hamiltonians
Darwin model is therefore more reliable if the Darwin win- differ from terms of order * and highef4]. Nevertheless,
dow is large compared to the other characteristic lengtlwithin each model the predictions at large distances differ
scales. In fact, the equilibrium state of our system dependsonsiderably: whereas in Krizan’'s modghe same as the
on three dimensionless parametens=e?/#ic (strength of one exposed herghe correlations decrease as With os-
relativistic electromagnetic interactions beyond Coulpmb cillations), in Trubnikov’'s model the screening is slightly
Agg/a (strength of quantum effects on majteand I’ more efficient, and they decrease faster, namely ad 1/
= Be?/a (strength of Coulomb interactions in thermal upits (without oscillationg. Furthermore, the excess free energies
wherea is the interparticle mean distanee= (3/4mp)*3. A are different at order &. These crucial differences at low-
weakly relativistic and weakly degenerate state obviouslyest orders in 12 between two models, the Hamiltonians of
corresponds to small values of and Agg/a [notice that which differ only at order 1%, can be explained by the
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fact that the corresponding screened contributions involve 1
convolutions of an indefinite number of Darwin potentials, =2 g(z=io+p)=2 Redg(a)}Nga—p), (A6)
and thus a sum of terms of arbitrary orders in [4,6]. <2 a

Some authors argued about which model was the best igherea runs over the set of poles gf and where the Fermi
describe a real plasma. According to our study, it appeargistribution is
clearly that the large-distance behavior of the screened Dar-

win potential is not physically relevant, for this screening def
occurs, in both models, at a distangevhich is much larger Ne(X)= 1
than \phoori= BAC in the considered regime[The ratio e”+1

Aphotor/ € IS equal to (‘dB./a)‘/F in the low density and low |, particular, this formula gives
temperature regime. This parameter is therefore small in ex-

pansions with respect ta\(g/a) at fixedI'.] This should

end the old battle between the two opposite sides. 1 1

1
fez i —n° .. '
PIEliont m=P] [i(w— wp)+ =)
APPENDIX A: THE FEYNMAN GRAPH
. . . . . NE(p°— 1) —Ng(p 0
The aim of this appendix is to provide some details about __ Nelp =) ~Ne(p 'u),

the calculation of the Feynman graph shown in Fi¢g).1 iw,—p°+p©
First, we write the fermionic propagator as an integral,

(A7)

Now we have to sum over the bosonic indexStill using

_(ptm®) [(+=(P+m)ppd P) dp’ complex integration, we obtain the following expression, in-
9wy, p)= (1w + w)2—E2(p) I p°— (i @+ ) 27  volving the Bose distributiomNg(x) = defl/(e#*—1):

(AL) 1 1 1
wherep= (i w,+ u,cp) and Pd=6f(pO cp), and the mass-shell rgz . 0 O\ s 0_ oy [@3+h2c?k?]
density functilon is defined by S [lon=(a"=a D] lien=(p"=p ] ="

def _ Ng(a°—q'®) 1
pmd P)=2me(p%) o(P*—m’c?) %2 [0°~0a"%+p°=p %] (a°~ ')~ AZc?k?
def
and thes function is juste(p®) =p%|p°|. Ng(p °—p°) 1

We can then write the correlation function as } } }
[a°=q ®+p°=p 7] (p°—p )2-h*c%k?

T0= 3 T (wn KD w0 KT (0K, Ng(clK)) 1
(A3) T 2hclK]

(ficlk| = q°+q ) (fic|k|+p°—p°)
wherell(w,,k) is the first-order terntin €?) of the photon
self-energy, nameljusing Eq.(A1)] _ Ng(—7clk) 1

2hclk , Ton
Pimc I (ficlkl+a°—q °)(ficlk| —p°+p °)

04 (A8)

2
(w0 k) = =S trf [ "
leZ

i+ p—p°
We can now use the formuld#7) and (A8) together with
« P’ +mc? pd P) prd P') Egs.(A3) and(A4) to obtain the(exac formula giving 7(k)
(0= )+ p—p’® m " at the first order inw. This formula involves(by integrating
the p distribution summations on the signs of, q 9 p°,
dp dp® dp® andp'®
(Ad) It should be noticed that the sép®>0 and p'°>0}
gives a purely electronic contribution,p®<0 and p'0
where we have set <0} gives a purely positronic contributigtherefore vanish-
o o ing in tr;e I,i(r)nit consideore):j whilz mj)xed contribtl)Jti(r)1ns{lpO
—(nO '—(pn'0 >0 an <0} or {p”<0 an >0} give both elec-
P=(pcp) and P'=(p cp—ick). (A9 tronicandpz)ositrgnic (;{gntributions,p)and t&e?efore must not be
We now perform the summation over the fermionic indi- forgotten. 3
cesl andl’. Using integration in the complex plane, one can First we can evaluate the previous expressiogK) in
show that, for any meromorphic functianon C with van-  the regime wheres7c|k|>1 [which correspondsyia the
ishing residue ate (i.e. decreasing faster thanzd/at infin-  Fourier transform, to the main contributions #r) at inter-

ity), and holomorphic on an open set containing the {ime mediate distances;g<r <\ pod. The small dimensionless
e C; Rez=u}, the following formula holds: parameters of our expansions are therefore

(27h)3 27 2w’



PRE 59 THERMAL SCREENING OF DARWIN INTERACTIONS IN ... 4551

#2K? -k tribution in the desired limit otherwise. After expanding the
o<1l and Bo—<phi—<I1. whole expression with respect to the small parameters, we
,Bh Bhclk| 2m m . : LA ; i
find the expressiofi3.8) which is proportional to &?. This
In order to describe a weakly relativistic and weakly degenbehavior corresponds to a slow decreésel/r) of J(r) at
erate system, the following parameters are also considered §¥ermediate distancesy<r <\ noton-

small: We now evaluate7(k) in the regime whergclk| is a
small parameter. We perform expansions k) with re-
and efr*<1. spect to the following small parameters:
Bm 21,2 .k
We therefore havéNg(fic|k|)=0 while Ng(—#c|k|)=—1 Bom <Bﬁ—<ﬁﬁc|k|<1

up to exponentially small terms. Moreover, limit expressions

of Ng must be taken, according to the signp¥fandp’® For ~ and
instance, ifp® andp are both positiveNg(p®—p °) can be
expanded as a series, the first term of which is 3
Ng(zp-k/m)=m/#Ap-k (higher-order terms should be taken Bmc '
into account in the global formula, due to a cancellation

mechanism If p° andp °have opposite signs, we can write We write Ng(%c|k|) as an algebraic series, the first term of
Ng(2mc®)=0 andNg(—2mc®) = —1, the omitted terms be- which is 18#c|k| (higher order terms must also be taken
ing exponentiallysmall. Some denominators are expandednto account After expansion, the singular terms, propor-
using tional to 1k?, cancel out. At the ordek®, the correlation
function is therefore regular &=0 and can be expanded in
positive powers ok?. In the “real” world, we can therefore
expect a rapidly decreasing behavior of the current correla-
tion at large distances.

or #clkl<md.

(The second inequality comes from#2k?/m?c?
=[ Bh2k?/m] X[ 1/Bmc?], which is the product of two small
parameters. It also means that the photon engl| is too
small to create electron/positron pajrét last, the Fermi W. A. is very grateful to Michel Le Bellac for explaining
distribution Ng(p®— ) is zero up to exponentially small the method based on EGA1) and for his constant interest in
terms if p°<0, and reduces to the Maxwell-Boltzmann dis- this work.

ACKNOWLEDGMENTS

[1] C.G. Darwin, Philos. Mag39, 537 (1920. W.D. Kraeft and M. Schlange@Norld Scientific, Singapore,
[2] L.D. Landau and E. LifchitzThe Classical Theory of Fields 1996, pp. 59-65.
(Pergamon Press, Oxford, 1989 [11] J.E. Krizan, Phys. Rew77, 376 (1969.

[12] A.L. Fetter and J.D. Walecka, Quantum Theory of Many-
particles System&cGraw-Hill, New York, 197).

[13] J.I. Kapusta,Finite-Temperature Field TheoryCambridge
University Press, Cambridge, 1989

[14] M. Le Bellac, Thermal Field TheoryCambridge University

[3] J.D. Jackson,Classical ElectrodynamicgJohn Wiley and
Sons, New York, 1962

[4] A. Alastuey and W. Appel, Physica 238 369 (1997.

[5] J.E. Krizan and P. Havas, Phys. R&28 2916(1962.

[6] W. Appel and A. Alastuey, Physica 252, 238(1998. Press, Cambridge, 1996

[7] J.E. Krizan, Phys. Rev. AQ, 298 (1974. [15] A. Alastuey and W. Appe{unpublishegl

[8] V.V. Kosachev and B.A. Trubnikov, Nucl. Fusiof, 53 [16] W. Appel, These de Doctorat, &le Normale Supéeure de
(1969. . Lyon, January, 1997.

[9] B.A. Trubnikov and V.V. Kosachev, Zh.K8p. Teor. Fiz54, [17] A. Alastuey and Ph. Martin, J. Stat. Phy&), 6485(1989.
939 (1968 [Sov. Phys. JETR7, 501(1968)]. [18] F. Cornu, Phys. Rev. B3, 4595(1996.

[10] A. Alastuey and W. AppelWeakly Relativistic Plasmas at [19] F. Cornu, Phys. Rev. Let?.8, 1464(1997.
Equilibrium, Physics of Strongly Coupled Plasmaslited by  [20] H. Ess@, Phys. Rev. B53, 5228(1996.



