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Simple lattice Boltzmann model for simulating flows with shock wave
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We propose a lattice Boltzmann model for compressible Euler equations. The numerical examples show that
the model can be used to simulate shock wave and contact discontinuity. The results are compared with those
obtained by traditional methodgS1063-651X98)13012-X]

PACS numbeps): 47.10+g

I. INTRODUCTION (1) The fundamental framework and method are the same
as those used in the standard LBM.
In recent years, the lattice Boltzmann metho&M) has (2) The particles moving along every link are separated

developed into an alternative and promising numericainto two kinds with two different energy levels, and the rest
scheme for simulating fluid flows and modeling physics inparticle possesses another energy level.

fluids. Unlike traditional numerical methods which solve (3) Besides the conservation conditions of mass, momen-
equations for macroscopic variables, the LBM is based orium, and energy, the equilibrium distribution must satisfy the
the mesoscopic kinetic equation for the particle distributionflux conditions of momentum and energy.

function. The fundamental idea of the LBM is to construct a  (4) In this model one can choose the speed of moving
simplified kinetic model that incorporates the essential physparticles.

ics of microscopic or mesoscopic processes and the macro- Numerical results show that this model works quite well
scopic variables, and obeys the desired macroscopic equésr the simulation of strong discontinuity phenomena.
tions[1]. The kinetic nature of the LBM has three important  In Sec. Il of this paper, based on a square lattice, a lattice
features that distinguish it from other numerical methodsBoltzmann model will be proposed. In Sec. Ill three famous
First, the convection operator of the LBM is linear. Second,test problems are calculated to examine this model. The re-
the incompressible Navier-Stokes equations can be obtaineilts are satisfying.

in the incompressible limit. Third, the LBM uses a minimal

set of velocities. Since only a few moving directions arell. LATTICE BOLTZMANN MODEL FOR COMPRESSIBLE

used, if we fix the direction, saw, the lattice Boltzmann EULER EQUATIONS
equation is a one-dimensional iteration, and the code is i L )
greatly simplified. We use a square lattice with eight links that connects the

As important progress, the simple collision model of center site to eight nearest neighbor nodes, that is, four face
Bhatnagar-Gross-KrookBGK) was applied to the lattice Ce€nters and four verticeig. 1. We assume that the par-
Boltzmann equation, yielding the lattice BGK mod@al-4]. ticles moving along th_e link W|t_h velocitg, are divided into
However, this method is limited to a range of low Mach WO Kinds,A and B, with two different energy levels ,(«
number as an image g#8,6]. This is due to the following = 1:-8) andeg(a=9,...,16), and the rest particlex¢0)
two reasons.(i) There exist nonlinear deviations, i.e., POSS€sses energy lewg}. So it is actually a 17-bit model
azpuiujuk/&x,- %, . (i) In the momentum equation there is a with three speeds €,v2¢c, wherec is the speed of particles
compressible  factor Dj; = (9/dx;) 5[ u;dpl Ix; +u;dpl Ix; at the face centers. _

+ &ijuidpl Ixy + %p&ijaukmxk] (see Ref[6]). The foIIowmg |d9nt|t|es of velocity moments are neces-

It is a challenge to use pure lattice Boltzmann method t>@'y for the derivation of the modg]:
simulate the compressible Euler equations, especially for the
problems which contain shock waves and contact disconti>} €4i€4j
nuities. Recently, there are some studies on the compressible

flows, but the results are only for the situations of weak _[bczﬁij/D (a=1,357 or 9,11,13,15

compressible and isothermal floy,5]. 2623, /D (a=2,4,6,8 or 10,12,14,16 (1)

In this paper, using a square lattice, we will propose a
three-speed-three-energy-level lattice Boltzmann model for a
compressible perfect gas. This model is based on the foIIowE e,ie

2j€ak€a
ing ideas[7]. a J "

_[2¢*Sijkm («=1,3,5,7 or 9,11,13,15

=V Ar4A . _Qrbs _
*Present address: Department of Mathematics, Jilin University, [4C Aijkm —8C"dijkm (¢=2,4,6,8 or 10,12,14,16
Changchun 130023, China. (2)
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whereb=4, D is the space dimensiod;,=1 if i=j=k f®9=BJp+ pruieaﬁrnguiujeaieaﬁB;PUZ
=m, OtherWise 5ijkm:01 Aijkm:(5ij5km+ 5ik5jm
+ Simdik)- («=9,11,13,15,

(1) The definition of the macroscopic variablesThe
single particle distribution in the “shooting-in” state at sie fo9=Bg p+ By puie,i + B3 pujuje,ie,; + B3 pu?
and timet is denoted byf, =f_(x,t) («=0,...,,16). The
mass, momentum, and total energy per site are defined as («=10,12,14,18,

where the symbols-, X mean odd and even direction num-
PZ; fa 3 pera. Here, coefficients\" ,B;" ,A* ,BX ,Dy,D5 are deter-

mined by a set of reasonable requirements. These require-

ments consist of the conservation laws of mass, momentum,

pui=E f.eni (i=1,2), (4) energy, and the flux conditions of momentum and energy:
> f=p, ©)
3pUP+pE=2 foe, (ea=2n.e5.8p),  (5) @
whereE is the internal energy per unit mass. > %%,=pu;, (10

(2) The updating rule of particle distribution.According
to Refs.[2,3], the distributionf, of the “shooting-out” state
after collisions is determined by the BGK-type lattice Bolt- > %, =1pu+pE, (11
zmann equation “

fnga—%(fa—fiq) («=0,...,18, (6) ; faeai€s = pUil;+pd;, (12)
falx+eALEHAD = 001), @) S %% e0i= (3pu+ pE+p)U; (13

where 7 is the single relaxation time, antf’ is the local
equilibrium distribution. Equationés) and(7) are actually a Wherep is the pressure of the perfect gas,
finite-difference scheme which is not for macroscopic vari- .
ablesp, pu; ,E but for “mesoscopic” variables , . p=(y=1)pE. (14

(3) Equilibrium distribution. We assume that the equi-  gypstituting Eq(8) into Egs.(9)—(13) and using the iden-
librium diStributionSfiqin Eq (6) have the same eXpreSSionS t|ty (1) and(Z)’ we obtain the System of linear equations for
as those in Refg2, 3, determining these coefficients,

£89=Dyp+ DapU?, Do+b(Ad+Bg +A; +B)=1, (15

2

fol=Ag p+ Al puUies+A; puilje,ieq + Az pu? be
0 1 PU€qi T A pUU i€, T Ag F[Ag—l—Bg-O-Z(AE;-i‘BE;)]:(?’_]-)Ev (16)

(a= 1,3,5131
epDo+bea(Ay +A) +beg(By +B5)=E, (17
fol=Ag p+ Al pUieyi+As pUiUie,ie, + Az pu?

bCZ + + X X
4 3 2 12 11 10
N\
5 \ 1 13 9
8 7 8 14 15 18

(a) (b)
FIG. 1. A square lattice of the 17-bit modéh) type A, (b) type B.
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c? dp  Jpu;
F[sAAI+sBBI+2(sAAlX+sBle)]=%u2+yE, a—’:+ %zRﬁ—O(gz), (30)
I
(19
+ + X X %4_%4_&_‘)5_'? +0 2 (31)
A +B; =4(AS+B>), (20) ot x| ax i Re (g9,
A +B5 =1/8", (21) 9 (1 9 (1
—(—pu2+pE +—(—pu2+pE+p ui=R3+0(&?),
bC2 Jat\ 2 (9Xi 2
5 (A3 +B3 +2(A} +B})]+4c%(A; +B3)=0, (32
(220  where
Ds+b(A; +By +A; +B3)+[ (A, +B;) R.=0, (33
+2(A;+B;)]bc?/D=0, (23 1\(Pa®  #2PY
= —_—— +—
. o R 8<T 2) Ttodx; | IxX;0%) (34
80D3+b8A(A3 +A3)+b85(83 +B3)
(0)  2p(0)
C2 1 . 1 (92QJ J Rjk
+F[SAA;+SBB;+2(8AA§<+SBB;)]:E- Ry=e|7—5 MJFW : (35

(24 where 7{=3,f%e,, Q©V=3,%.e,, P
=3, f5%,ie.€u, Ri(jo)=Eaf§qsaeaieuj. This scheme has

First, if the requirements are reasonable, the system of equ 2 .
d y d e first order accuracy of the truncation errf@$

tions should be consistent. Second, if the system has mor
unknowns than equations, as we see in E§5)—(24), we
have to propose some man-made complementary conditions. Ill. NUMERICAL EXAMPLES

We throduce an assumption to eliminate the coefficients |, g section three famous test problems are calculated
A" ,Bi to get a system of equations with unknowns, examine the performance of this model in the simulation

A" ,B;" . Using a simpler method, we let of aerodynamics.
w4 w ar Example (1).The Sod tesf10] which consists of initial
AT=A7, B =By (i=013), (25 data on the left and right side,
AS=1AF, (26) (pL,uL,p)=(1,0,1), x<O
2D ,Ur,Pr)=(0.125,0,0.1, x>0.
8A+A;+SBBZ+:)\ 3bC2 . (27) (pR R pR) ( 1

Example (2)The Lax tesf{11] with initial data

Here, N is a chosen parameter, called the separating factor,
which may be taken as a contribution of each type particle to
£ (or per energy level If ex=sg=g, then this model
becomes a standard lattice Boltzmann ma@ebit mode),
then\ =3be/4Dc?. If e,# g, then the meaning of is the
coefficient of the equilibrium distribution by modifying the
energy levels. Therefore all coefficients can be solved easil

(pL,u.,p.)=(0.445,0.698,3.528 x<O0,
(pRvuRlpR):(0'5|010'571 x>0.
The comparisons between numerical and exact results are

plotted in Fig. 2(for Sod’s test and Fig. 3(for Lax’s tes}.
¥Fhey show the formation of shock waves, contact disconti-

N . - . X + X
Inserting the expressions of coeﬁlplemé ACBi B \Di nuities, and rarefaction waves. The widths of shock waves
into Eq. (8), we can obtain the final form of equilibrium gre apout three to four cells, the speed of shock waves coin-
distribution. cides with the theoretical predication. To sum up, the nu-

Choosing time stepit as small perturbation parameter  merical results are well consistent with the theoretical ones.
which plays the role of the Knudsen numij8t, we use the  However, on the pressure profiles on the position corre-
multiscale technique and Chapman-Enskog expansion sponding to the contact discontinuities, we also found some

PR P p obvious errors which are not dissipation or dispersion. This

= 4g — 42—, (28)  kind of errors has been found in some traditional schemes
gt dtg aty dt, such as in Ref.12]. Table | shows thé& ; norm errors in our
lattice Boltzmann model and other schemes. Another prob-
fo=fefVte2f@ ... (29 lem is that the “platform” between shock wave and contact

discontinuity in the Lax problem emerges quite late.
Then the macroscopic dynamics equations of mass, momen- Example (3).The Roe tesf13] with the following initial
tum, and energy can be derived from the schdB)e(8). data:
The leading order terms are the Euler equations of perfect
gas with the truncation erroR;=0O(e). (pL,u,p)=(1,—-1,1.8, x<O
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FIG. 2. Comparisons between numerical and theoretical results of Sod's test. Exact gtihajcaind simulatior(circles of p, p, u, and
E. Lattice size: 20& 2. Output at 120 time steps. Parameters:1.4; c=3; A=1.75; 1k/=1.51; e,=2¢?, £5=0.6c%; £p=0.1%2.

(pr,Ur,Pr)=(1,1,1.8, x>0. tips emerge in the middle of the density and energy profiles.
This unusual phenomenon also appeared in some high reso-
The numerical results and exact solutions are shown in Figution schemeg14,15. This is an interesting and difficult
4. The problem that should be mentioned is that two smalproblem. We think this is because the relaxation faetand
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FIG. 3. Comparisons between numerical and theoretical results of Lax’s test. Exact s@inépand simulatior(circles of p, p, u, and
E. Lattice size: 206 2. Output at 240 time steps. Parameters:1.4; c=8; A=1.05; 15/=1.62; s,=2.5¢%; £5=0.6c%; ep=0.1%2.
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TABLE |. Riemann problemsl,; norm errors. These results come from Ref3], except the LBM.
Lattice size:Nx=200. The underlined results indicate the smalleshorm error in every column.

Sod’s test=0.1644 Lax’s test=0.16
Density Velocity Pressure Density Velocity Pressure

LXF 0.017 69 0.028 14 0.015 82 0.061 65 0.055 57 0.065 37
LBM 0.008 04 0.016 73 0.007 92 0.03051 0.019 37 0.049 01
ORD 0.005 78 0.009 59 0.004 60 0.022 31 0.017 09 0.019 95
ULT1 0.004 37 0.008 20 0.003 62 0.014 77 0.010 94 0.012 06
STG2 0.002 97 0.004 94 0.002 28 0.01151 0.008 49 0.009 88
STGU 0.002 91 0.004 03 0.002 16 0.013 02 0.013 06 0.01121
STGC 0.001 72 0.002 76 0.001 53 0.006 47 0.008 36 0.008 23

ULTC 0.003 61 0.008 04 0.003 62 0.008 72 0.01074 0.011 83
Roe 0.008 36 0.011 45 0.006 66 0.028 27 0.021 92 0.026 55

time stepAt are unsuitable. In Roe’s tesht may be so the shock. The widths of shock waves are about one to two

small that the distribution cannot reach equilibrium status. Ifcells, the widths of contact discontinuity are about three to

we choose a large time step, the scheme is not stable. So theur cells. The numerical results from the LBM do not com-

reason the tips emerge is that the Knudsen number becompare well with these high resolution schemes. If we combine

small. the LBM with these high resolution techniques, the LBM
Recently several sophisticated finite-difference techniques/ould become a very interesting method.

have been developed which are capable of capturing discon-

tinuities more accurately. These include the essentially

nonoscillatory (ENO) scheme[16] and the total variation V. DISCUSSION AND CONCLUSIONS

diminishing (TVD) scheme and other high resolution We adopt the idea that the local equilibrium distribution
schemes. TVD-type schemes have gained popularity for thegatisfies conservation conditions and flux conditions of mass,
applications in compressible flow. In TVD schemes themomentum, and energy. This allows the dynamics equations
amount of this inherent numerical dissipation depends on thef the perfect gas, especially the energy equation, to be easily
flux limiter user[17]. When these schemes are applied torecovered. In the model, the particle speeshould be cho-
shock tube problems, they produce very high resolution fosen appropriately to meet the requirement of numerical sta-
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FIG. 4. Comparisons between numerical and theoretical results of Roe’s test. Exact stihetioend simulatior(circles of p, p, u, and
E. Lattice size: 206 2. Output at 60 time steps. Parameteys: 1.4; c=3; A=1.75; 1/=1.35; £,=2.0c%; e5=0.6c%; £p=0.1%2.
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bility (such as the CFL conditiofv,9]). On the other hand, which may be spurious invariant, but the order is more than
to define total energy and internal energy for the recovery oD(¢).
the energy equation, the total energy in Rdfs8-2(Q is Compared with the standard lattice Boltzmann model, our
defined as the total kinetic energy of particlds; model has some new assumptions, for example, additional
=>f,c?/2, which corresponds te,=eg=3c?, ep=0 in flux conditions, a three-energy-level assumption, paraneeter
our model. However, in a one or two speed model it causebeing chosen freely. These assumptions cause the isothermal
two difficult problems:(i) it leads toy=2 (the so-called and low Mach limit to be removed, and the constraintyof
ideal casg (ii) the energy conservation can be derived from=2 to be relaxed. At last, the simulation of aerodynamics
momentum flux conditions. To solve these problems, manyith strong discontinuities is realized by using the lattice
researchers use a multispeed mo@ey., Refs[18—-20) or  Boltzmann method. Although the model may not be a high
introduce the concept of energy lev@.g., Ref.[21]). We  resolution scheme, it is still attractive. This model preserves
utilize the merits of both of them. The present model is notthe main advantages of the available LBM model: noise-free,
only multispeed but also multienergy level. As a result, allsimple code and high parallelism, etc. The drawback of this
equations of the perfect gas are successfully included in thmodel is that there are many parameters to be chosen and the
lattice Boltzmann model, and the ratip of specific heats result of Roe’s test is not good enough.
appears as a chosen paramétbe so-called general case
The remaining problems are those of accuracy and numerical
stability [9]. The other advantage is that the presspr@r
internal energyE) in this model is a statistical quantity inde-  The authors are indebted to Professor Chen Shiyi, Profes-
pendent ofp andpu;, so that a wide range of sound speedsor Chen Hudong, Professor Qian Yuehong, Professor Zhao
(cs=+vyplp) is allowable. Kaihua, Professor Zhu Zhaoxuan, Professor Zhou Fuxin, and
This square lattice has many spurious invariants in differProfessor Jin Xizhou for helpful discussions. This work was
ent time scales. We find the spurious invariants that relay osupported by the Laboratory for Nonlinear Mechanics of
the moments of speeg,. There are two types of invariants Continuous Media, Institute of Mechanics, Chinese Acad-
in our model:(i) In scalet,, other equations are equivalent emy of Sciences, and by the National Natural Science Foun-
to Euler equationg(ji) there are some higher order moments,dation of China under Grant No. 19372020.
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