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Elliptic representation of the Boltzmann equation with validity for all degrees of anisotropy

Edward A. Richley
4392 Silva Court, Palo Alto, California 94306
(Received 7 August 1998

It is shown that by choosing an ellipsoid of revolution to describe the angular dependence of the velocity
distribution function, the Boltzmann equation can be reduced to a set of two equations that have validity over
a wide range of conditions. These equations reduce to the common two-term spherical harmonic expansion for
nearly isotropic cases, but also properly describe highly anisotropic conditions. An example is given of the
application of this approach to the Townsend discharge in helium over a very wide raigh .of
[S1063-651%99)03704-9

PACS numbdss): 51.10+y, 51.50+v

I. INTRODUCTION at large anisotropy. Such a representation would have all the

The popular two-term spherical harmonic expansion O{Ijvgsirable properties o_f the spherical harmon_ic expansion, but
i . ith proper asymptotic behavior at large anisotropy.

the Bolizmann equationl-3] is very useful, but suffers i \ii'he shown that instead of expanding the distribution
from some serious drawbacks as the magnitude of the asymynction in spherical harmonics, an ellipsoid of revolution
metric componentf(;) grows relative to the symmetric com- can be used to represdrit any point of phase space. Analo-
ponent €,). In fact, once the magnitude (B)fl exceeds that gous to the two-term spherical harmonic expansion, this el-
of f,, the distribution function becomes negative at somédipsoid can be described by two parametése scalar and
angles, and is thus nonphysical. Highly distorted distributiorPn€ vectoy that are functions of position, and the magnitude
functions cannot be properly represented by this methoc?f velocity.
Furthermore, there is no mechanism in the resultant angular
moment equations for limiting the disparity of these quanti-!I- ASSUMED FORM OF THE DISTRIBUTION FUNCTION

ties. _ . _ . _ Considering an ellipsoid of revolution, as shown in Fig. 1,
Example exist of higher-order implementations of thisthe magnitude of the distribution function is taken to be the
type of expansion. For example, sixth-order solutions follength of a line extending from one focus to a point on the

some cases iN, have been obtained by Pitchford and surface. With one focus at the origin, it can be shown that
Phelps[4] and again by Phelps and Pitchfdrdl] in which

comparisons are made with a two-term expansion. They o by1—v? .
found that, at higher energies and fields, the inclusion of - A @
more terms made a significant difference. Similarly, Loff- 1-7y- o

hagen and Winklef6] performed time-dependent calcula-
tions for neon using as many eight terms, and found deficienwherey is a vector in the direction of the axis of symmetry,
cies with the two-term approximation in the early stages ofwith magnitude equal to the eccentricity of the ellipsoid. By
relaxation.
At large anisotropy, beam formation has been studied by ? v
examining the Boltzmann equation at small angles with re- «\ n
spect to the field axis. Riemaf] gives such an example to |
first order in - u, wherep is the direction cosine with the
field axis. Long[8] performs a similar analysis for the spe-
cial case of constant, isotropic cross sections, and compares
this result with multiterm expansions of various order. Pitch-
ford and Phelp$4] also found this approach to compare well
with their six-term solutions for cases of large anisotropy.
Although the higher-order spherical harmonic expansions o
have been studied and implemented, they require an exces-
sive amount of computational effort in order to represent a S~~~
fairly simple result. The distribution function in the limit of R
ultimate distortion is simply & function in some direction. ¥
Similarly, the small-angle models are unable to accurately
describe conditions of low anisotropy. FIG. 1. The surface of an ellipsoid of revolution describes the
It would be very beneficial to find a simple representationdistribution function in three dimensions. The electric field is shown
of a distribution function that is similar to the two-term ex- for the general case in which it is not aligned with the axis of
pansion for low anisotropy, but can distort intaSdunction  symmetry.

1(v) = IOPI
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its definition, 0< y<1. Bothb and y are functions of posi- In general, the necessary integrals are performed by lining up

tion F and velocity magnitude. the axes withy, a unit vector in the direction ofy. The
Equation (1) indicates that the elliptic representation is @ngles$ andjrare then as shown in Fig. 1, and the general

related to the two-term spherical harmonic expansion. Fogngular moment is obtained by the integral:

small values ofy, the fraction can be expanded in powers of

v. Retaining only first-order terms gives the approximation by/1— 72J+1j2w1F(v) dgdx, (7)
-1Jo 1=79X
i
f~bl 1+7y- ;) (2 wherex=cosy andF(7) is the function whose angular mo-

ment is to be taken. Obviously, must be expressed in terms
which is the two-term spherical harmonic expansion. Forof v, ¢, andx.
small y, the relation between the two representations is given The correspondence to the two-term spherical harmonic
by expansion for smally can be determined by looking at the
first-order terms in Eqg4) and (5):

fo(v)=b(v), fi(v)=b(v)¥(v). € s db(v) = darto(v) ®
All corrections to this by the elliptic representation are of
second order, or higher, in. However, unlike the two-term and
spherical harmonic expansion, the elliptic representation is A b

well behaved in the extreme cases for whigh 1. _ f:—b(v)ﬁ,% — 14, 9
In some sense, Eql) can be thought of as a generaliza- 3 3

tion of the asymptotic approach of Lo§] as given in the

Appendix of that work. However, unlike the present formu- X=>Z (10)

lation, that analysis was not meant to have validity for low '

energy, or for nonconstant, nonisotropic collision cross sec- )

tions. As a result of approximations used in the derivation of Similarly, asy— 1, it follows thatX—1 so that the mag-

that result, the solution does not reduce to a solution of thaitude of I' becomes equal ta as the highly anisotropié

two-term spherical harmonic expansion for low energies irfunction is approached.

the limit of low anisotropy. Furthermore, that analysis will ~ Beginning with the Boltzmann equation in its usual form:
not correctly represent the elastic regime of the distribution .

function, as the elastic in-scattering term is not accurately ﬂ+ - ﬁf—ﬁ v of= 5_f (11)
represented. This can be seen from the derivation of the an- a Y m U4t Cou’

isotropy parameter in that work which has a lower limit of

the order of the square root of the ratio of inelastic to elastiche first moment equation is obtained by integrating over
cross sections. As shown by Riemalj in the discussion solid angle() and the second is obtained by multiplying by
surrounding his Eqs27)—(30), this parameter should scale ¢, and then integrating ové2. No assumption is made about
as the square root of the ratio of energy loss to momenturthe direction of the electric field with respect to the anisot-
loss frequencies. Thus, only in the inelastic regime will theygpy Thus, the general case in whigh E+#|E| will be
analysis of Long have validity at low anisotropy, and, as canyeated.

easily be shown, only then for energies much in excess of the gome shortcuts will be useful in evaluating these various
mean energy gain between collisions divided by that samgytegrals. The first is to define axes perpendiculaftdrhe

anisotropy parameter. first such axisjy, , is in the direction ofs%/ dv
Ill. ANGULAR MOMENTS ay |9y R
_ _ _ il b RN (12
With f given by Eq.(1), the Boltzmann equation can be v v

integrated over all angles, so that two equations can be o
tained to describe the evolution bfand ¥. In order to do
this, it is convenient to define new quantities formed by in-
tegration over all solid angles:

QI(Ih“G the second new axig; , is perpendicular to both:
Yii=yXy, . (13

With these definitions, some simplifications are immedi-

27wbV1—9? 1+ :
n(r,v)=J fdo="TN Y [ Y ) A
Q Y 1-vy o
vdé=2mv cosyry, (19
R v 2mby1-9?[1 [1+7y fo
i=| Ztao-= “in|—Z] 2[5, ®
Qv Y y \1-vy

2 A
_ f vodgp=mv3(3 cog y—1)¥y+ mv?siré yl, (15
and to define: 0

27
X=——. (6) fo cosgpuvdg=mv2cosysing(yy, +¥, %), (16)
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where

=Yy+y. vty Y (17

is the identity tensor.
The various terms are as follows:

fﬁﬁfdﬂzﬁf f5dQ=V-(vl), (18
QO Q
T N 1]
f—(a.Vf)dQ:v-J f—dQ (19
Qv Q U
R ALA e
=V -
ﬁ nv L X
+ 7 —; ,
R 149 .. .
fE-V,,fdQ=—2—(v2ET), (20
Q v° du

1 9 [n?(3X & (FF
“ R 2z HEAD
LE d n(l X n L 3X)
wl|2\7 yl] 2w\ Ty
(21
The moment equations are thus
an N A
E—FV (UF)_ET%(U E- —(—) , (22
coll
ar  _[nv(3X |\ . o™, X
A P e R R N R
0o 1 4 [nv3[3X Ve 54
mw| 2\ Ty (¥y)
.| d|n X n 3X
5253202
m |dv|2 Yy 2v y
_[er
=5 : (23
coll

It is interesting to note that in the small distortion limit,
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These limits result in a replic@s they mustof the two-term
spherical harmonic expansion.
As y—1, the situation is different. In this case

(3X )
——1|=2 (26)
Y
and
X
(l—— =0. (27
Y

These limits serve to curtail further growth Bfn once it
reaches thes function limit of v%. The gradient terms, in
both configuration space and velocity, disappear in(28)
asy—1. In this limit, the left-hand side of E¢22) becomes

an N an goE, 1 49 1 08
st Yoz m viaw =L (29
wherez represents a coordinate in the directiomofThis is

a purely advective operator. In fact, the left hand side opera-
tors of Egs.(22) and(23) become proportional to each other,
with a proportionality factor ob. As long as the collision

terms do not permit further growth in the ratj&|/n, its
value will be limited. This is as one would expect for a
highly distorted ellipsoid. Equatio(28) is the elliptic repre-
sentation of the convection terms of a one-dimensional Bolt-
Zmann equation.

In order to use the elliptic representation, it is necessary to
invert the following relation:

x=_1 2 29
Th Ty i) @9
n —1_ y

This is analogous to, and a generalization of, the equation
given by Long[8] in that appendix, and again by Pitchford
and Phelpd4] as their Eq.(27). The relation must be in-
verted quite often and with quite good accuracy in order to
obtain the proper convergence of the various terms in the
equations. Clearly, some approximation is needed. By
matching the first, third, and fifth powers in the Taylor ex-
pansion, and requiring proper behavioXat 1 of bothy and
dvy/dX, one can obtain the following polynomial ratio:

X 35+92X%+17x*
v 105+ 24Xx%+15x*

(30

Eqg. (10 forces some terms to vanish, and others to reach

familiar limits. In particular,
3X

and

X\ 2
(1——):5. (25)

The functionX(y), along with the ratioX/y and its approxi-
mation, is shown in Fig. 2. Bot) and y are constrained to
lie between—1 and 1.

IV. ELECTRON-HEAVY PARTICLE COLLISION TERMS

The general collision term for electrons with heavy par-
ticles is well known[9]. For an elastic interaction, this is
written as
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! : ' ' X Oep(V)<0g 1(v). AS |f(v "Y|—n(v') it will thus be guar-
’x-'x' anteed that the relative repopulation term Fowill be less
08 o T than that fom. This will ensure that the collisional processes
i will prevent || from growing to be greater tham, and is
06 ¢ e ] consistent with the intuitive notion that collisions should
.X_.x--*' only broaden the angular extent of the distribution function.
04 AU X Y — . This property holds for the other types of collisions pre-
X approx Xﬂ o sented below. Thus, provided that collision terms are prop-
02 - 4 erly represented in the angular moment equations, collisional
processes will serve to suppress further growthXims it
0 . , , ! approaches unity.

0 0.2 04 0.6 0.8 1 For practical cases, approximations to the above terms
X can be made by the usual approach of taking the Taylor

FIG. 2. The relation betweepandX, expressed in two different €XPansion off (v, ). This leads to the following relations,
forms, along with the approximation of E¢B0). to first order indg=2(m/M)

5l
T~ = NU
ot c.el Q'

_f(U:M)Qel(lﬂ,U)

!

Y (5n) —N15 1a ,
f(l)’,bb’)(?) Qel('ﬂ-v,) 5 ce|_ E elv_2£(v O-eI,M(U)n)

Nl 1 9 5 KT on 36
dQ’, (31) + EF% eIUeI,M(U)UH% ( )

and
whereqe(#,v) is the differential cross section for the colli-

sion with initial velocityv’, final velocityv’, and scattering ST .1 19 .
angle . — | = Nvoeu)L+NZ ez ——(vhog ul),
. . . . : 2 v v '
Following the technique of the previous section, angular c
moments can be taken of this collision term. Using the well- (37)

known geometric relations for scatterif@,10], and taking  \yhere
advantage of the azimuthal symmetry of the differential

cross section and the distribution function from Eb), one L w _
obtains <Te|,M=27TJ’ (1—cos6)ge(6,v)coshsineds  (38)
0
1\ 4
@) :Nv(v_) oo 1(v")N(") = Nvag 1(v)N(v) and the effects of atom recoil an(v) have been included.
ot cel ' ' Although it is generally ignoredri,’M should, strictly speak-

(32 ing, be taken into account. For collisions in which forward
scattering dominatesre y may become small enough that

and its effect on|T’| relative to the effect of the derivative term
ST 74 on n may be questionable. The presence of the derivative
(_) =Nv<—) oo p(v )T (v")—Nvog 1(v)(v), term in Eqg.(37), however, removes this concern, aé,’,v,
ot cel v ’ ' — 0 m iN such cases. Thus, aside from the small contribu-
(33 tion of the atom recoil term, Eq$36) and(37) become simi-
where lar and, in fact, proportional ag,; becomes more forward

peaked and, henc&— 1. However,oy, y is becoming so
- small in these cases that other terms will generally dominate.
UeLT(v):ZTrJ' Je(,v)sin6do (34 Furthermore,aé,’,\,I is not generally available. The calcula-
0 tions of the next section will show that quite a range of
conditions can be evaluated by ignorimﬁhM altogether.
For inelastic collisions, similar arguments apply. The re-
sult for an excitation collision is

is the total collision cross section, and
O'eI,P(U):UeI,T(U)_O'eI,M(U)

r\ 2
7) O'ex,T(v/)n(U,)_ NUUex,T(U)n(U)

(39

T on
=27-rf c0s6qe( 0,v)sinod e (35 (g) =Nv
0 ex

has no common name, but can be described in terms of
e m(v), which is the momentum transfer cross section. and

From Egs.(32) and(33) it can be seen that each is com- ST N2
posed of a repopulation term and a depopulation term. The (_) ZNU(U_) o p(v’)f(v’)—Nva T(v)f(v)
relative depopulation rates are identical. However, owing to \ ot/ v/ % & ’
the presence of césn Eq. (35), it will always be true that (40
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where used in the calculations of the next section. The ionization
terms are then similar to excitation terms, and are
O'exT(U):ZTTf Jex(6,v)SIiNAdO (41) 2
0 on v , ,
(§> =Nv<7> oir(v)n(v’")=Nvao; r(v)n(v)
and i
™ N 50 46
(Texyp(U):zﬂf Jex(8,v)C0OSHSINOAE. (42 4o (0, (46
0
Once again, the precise form of the collision terms is such ST N i 4
that the diminishing effect ofi’| is greater than om. Fur- ot voim@) (), “7

ther approximations can be made in order to simplify the '
equations, but these must be made carefully. For excitatiomlhere
energies that are large in comparison with a characteristic
energy over which the distribution function changes greatly .
in magnitude, and for energies above the excitation energy, wi:477f o 1(v)on(v)v3dv, (48)
the depopulation terms will dominate, and it is appropriate to ’
retain only those terms. At lower energies, the repopulation
term can, of course, be significant in £§9). However, if at -
the energies near threshold,, is nearly isotropic, then ai,T(v)=27rf gi(6,v)sin6deo, (49
oep~0, and it is appropriate to ignore the repopulation 0
term in Eqg. (40). At energies much above the excitation
threshold, and where characteristic energies are much great@nd
than the excitation energy, all terms must be retained. For
these energies, Altshulgt1] shows that a momentum trans-
fer cross section can be defined as uu; |n—i
_ oim=2 7z oitv), (50
an,M(u)=2wf Gex B,0)(1—coOSH)sinade (43 '
° andu; is the ionization energy.
so that for these cases It is important that whatever approximations are used to
account for the collision processes, they must be chosen in a

ST ) self-consistent manner. A good discussion of these consider-
53 =—Nvoexm(v)I'(v). (44) ations can be found in Phelps and Pitchf¢f]. For ex-
ex ample, any small-energy approximation for a momentum

transfer cross sectiditq. (43)] must be applied only in situ-

In order to correctly account for the repopulation term whereytions where the excitation energyr ionization energyis
it is appropriate and to let it gracefully disappear at energiegmga|| with respect to the characteristic energy. It has been
near threshold, Riemar{7] has derived a simple cross sec- shown above that since all terms representing a given colli-

tion based on the Thompson model for the inelastic momengjona| process are derived from the same differential cross

tum transfer cross section: section, the relative diminishing effect dhwill be greater
than that om, as maximum anisotropy is approached. This
uu |ni property must be preserved in the approximations used, not
ex .. . .
—> ex ) 45) to ensure the success of the elliptic representation, but in
TexM=<€™ 22 Tex1(0), order to correctly represent the physics.
ex
whereu=muv?/2e is the electron energy, and,, is the ex- V. APPLICATION TO A TOWNSEND DISCHARGE

citation energy. This form, when used with Eqd4) and

(39) is physically reasonable, and has been shown, computa- The Townsend discharge provides an example for the ap-

tionally, to be adequate. plication of the elliptic representation to a simple situation.
lonization collisions are similar to excitation collisions, Following closely the analysis of Riemaff], a stationary

except for the creation of the new electron. Various ap-solution to the Boltzmann equation is sought in which all

proaches have been taken for the treatment of this electrospatial dependency is assumed to varg&s wherez is the

Margeneay 12] suggested that it share the resulting energydirection opposite the uniform applied field. With only one

with the incident electron after the collision. Although this Spatia| dimensionf becomes a scalar quantity' and Egs.

may be appropriate at low energies, it certainly is not at high22) and (23) can be reduced to
energies where forward scattering dominates. The other com-

mon approach is to deposit all newly created electrons at 1 9 Sn
energy zero, and to cope with the presence 6ffanction in —+avl'+F— a—(UZF) = (E) , (51)
v v

electron population therfl3]. This latter approach will be Jt coll
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&F+aFU+F1 d| ,n[3X 1 _H:ﬂ n 1 X 7
a Ty T ew|V ey w2\t y om ool ]
ST ot E (Uu"])_ U UOg|T¢|, MU E a
. 58
(&) ’ (52 (58)
coll

+N(7' O'ex,T(UI)U - WUex,T(U)U
whereF=—eE/m. + 9 o 10" — 7o (V)
Several observations can be made at this time. From Eq. Ky noiT
(51, it is immediately obvious that the Townsend coefficient +5,6(0)) (59
a must satisfy the following relation in steady state:

and
®( N )
4 f S| vdv e P, , X
. 0 ° coll , 53 T —“N[loeimt oexmt oim]JvG+| F~av |7
477f T'vidv (60)
0
with
which is similar to Eq(46) of Riemann[7]. Furthermore, in
the high-energy region in which collisional losses can be a=N S (61)
neglected altogether, E¢1) gives us fodu
0
A
lim T'= U—ze—(“’mvz, (54  and
= ! —fm d 62
whereA is some arbitrary constant of proportionality. This is S‘_E e 0 7(woir(Wrdu (62)
similar to Eq.(51) of [7]. It is also clear that, for sufficiently
high energy,I'=n, so that for sufficiently highF/N,a/F With Egs. (58) and (60), a solution for the distribution
relation, derived from Eq953) and (54): time-dependent equations until the steady state is reached.

These equations can be solved by the common techniques
F w ) used in the study of time-dependent reactive flow. The left-
(N) =J o 1(v)ve” MAFtgy, (550  hand sides contain convection operatfirs Eq. (58)], and
0 with zero velocity in Eq.(60), while the right-hand sides
contain a diffusion ternjin Eq. (58)], a pressure gradient
This is identical to Eq(54) of [7]. However, it can be ex- term[in Eq. (60)], and numerous collisiondteaction and
pected that use of the elliptic representation will result inPody force terms. The solution scheme used here is based on
convergence to this limiting curve gracefully, and without the flux corrected transport method of Boris and B4,
the application of the limiting step of Eq53) in [7]. That with fractlonal—step_ coupling to mclu_de_the various source
this is the case follows from the design of the elliptic repre-terms. The system is then advanced in time until the value of
sentation in that it reduces to the equivalent one-dimensionat has reached its asymptotic value.
description under extreme distortion, and should not be sur- Once convergence is obtained, it follows that the electron
prising in light of the discussion surrounding E§5) of [7]. drift velocity can be obtained by evaluation of the following:
Some simplification can be obtained by changing the in-

dependent variable to total energyand by definingp=vn OOF 34 OCGdU
andG=0v?I". Also, by defining a “energy velocity’v,, and o U0
a “energy pressure’P, as follows: Up=—" =— . (63
f nv?dv j ndu
0 0
Uu=vaX—Nuﬁe|0'e|,M(v)v, (56)
Likewise, the average electron energy is determined by
X evaluation of
Py=2u F(;) 7, (57)
f nuv?dv f nudu
0 0
the equations become very similar to the equations for time- u=— =— ) (64)
dependen_t pompressible gas fI(_)W. U_sing the approxi_mations f no2dov f ndu
to the collisions terms as described in Sec. IV, this yields 0 0
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10—1: T T g 108 —— 7 T e
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10¢ & limiting case 4—
102 elliptic model —
a/E (V1) T (eV)
10% 3
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1074
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FIG. 3. Townsend ionization coefficient in helium showing de-  FIG. 5. Mean electron energy for a Townsend discharge in he-
tailed calculations and extreme result obtained from (&6). lium as found by the elliptic model, along with extreme result dis-
cussed in the text.

These equations have been integrated to steady-state condi-

tions in helium using the same cross sections as used Qe classical two-term spherical harmonic expansion, this
Riemann[7]. These cross sections exhibit the runaway cOnyepresents the inevitable growth with energy of the ratio
dition in which the momentum transfer cross section de-|f» %o ~|EX(1/f ) (dfo/du)] for any f, that has a tail fall-
creases faster thanul/The results for these calculations are! 1" 0 0 0 YTo

shown in Figs. 3-6. Figure 3 shows the Townsend coeffil"d faster than exponentially with energy. This growth is

cient, in the form of @/E), along with the result of the contained, however, by the effects of the elliptic representa-

limiting case of Eq.(55). The two curves are seen to come g?mni.ngﬁ?nce,a;[hleoéaé?/ oz\triﬁie h(Z(E(;JIzl iittt]élob;g (;? tﬁléegi?_/
together at values oE/N which are very similar to that 9 ) 9 '

shoun n ig. S o7, T it i approached smoaily [0UL00 Lon s gnl drected, a1 over neary
without any artificial limiting of the components of the dis- g gies. P

tribution function, even though cross sections with rapid de-ShOW how the equations self-limit the growth of the ratio of

Figure 4 shows the drift velocity at various values of P pidly

E/N, from which it can be seen that a sufficiently large with energy.
extent ofE/N has been chosen that even the drift velocities
are becoming relativistic. At the upper end of this range, the
Boltzmann equation would require modification. Also shown

is the limiting curvevp= (2/m)(F/a) derived from Egs. The similarity to the two-term spherical harmonic expan-
(54) and(63) with n=T". Similarly, Fig. 5 shows the average sion must not be overlooked. In fact, by making the substi-
energy of the distribution function as a function BfN, tutions ofn=4f, andf:(47r/3)F1, one obtains from Egs.

along with the limiting curveu,,=1/2(E/a). As with the  (22) and (23) exactly the two-term spherical harmonic ex-
drift velocity, the energies in the range of higiiN are be- pansion, provided that one makes the substitution
coming quite large.

Figure 6 showsX(u) for two values ofE/N, showing
how X grows with energy for sufficiently low energy values . 5/ X .
at which the Druyvesteyn-like behavior of the distribution f2=Z(3——1)(33/3/—I)f0. (65)
function causes increase with energy of the asymmetric part Y
of the distribution relative to the symmetric part. In terms of

VI. DISCUSSION

1.2 T T T T
108 ¢ T T T
1L “\
‘e
107 F . X sl _
vp (M/s) E 08 10 Td, umeo = 100eV - )
: 103 Td, tmes = 10%€V — e
0.6 | L i
108 | 4 B
] 04 F i
10° limiting case —— e
elliptic model — 3 0.2 N
10t ) . 0 et | ] !
10 102 103 104 0 0.2 0.4 0.6 0.8 1
E/N (Td) /Umaz
FIG. 4. Drift velocity in helium found by the elliptic represen- FIG. 6. Plots ofX= |f|/n vs energy(normalized for two values

tation, along with extreme result discussed in the text. of E/N.
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Thus, the elliptic representation can be thought of as beinc 5 . ; . .

identically the two-term spherical harmonic expansion, with +;'
closure of the hierarchy according to E§5). 4+ Elliptic — .,+-'+ SR
3 . . i Common -X- - 4
f, as defined above is a valid and reasonable represente Max. Anisofropy -+ - R ",
tion, as it satisfies several important requirements. It is a 3r %(fLS e _+~"Jr 7 ]
symmetric and traceless tensor, it must(bee, for example, £ .*.-“" o
Shkarofsky, Johnston, and Bachyn§R]). Furthermore, the 2 b o7 £ .
ratio ?2/fo is second order iX. Riemann[7] explains that o A
this must be the case. His analysis is in terms of the quantity 1t ot e -
p=mv>Nge /qE, and applies to regions of phase space for R e -
which anisotropy is not great and, henger 1. As 1p—0 0k o ! , :
we also haveX—0, so that the order described by Riemann 0 0.2 0.4 N 0.6 0.8 1
as

FIG. 7. Plot of the closure of the hierarchy of the two-term
spherical harmonic expansion according to the usual closiye (

. . =0), the maximum anisotropic closure of Baraff, & (5/3)f,),
leads directly to the requirement thaf must appear as and the elliptic representati¢iqg. (65)]. Also shown is the approxi-

O(X") or, equivalently, a®©(y"). That the elliptic represen- mation 5¢2
tation satisfies this requirement automatically becomes evi- '
dent by performing a Taylor expansion of E@).

Although only the first three terms of the spherical har-
monic expansion are ever actually used in the elliptic repre- |t has been shown that an alternative to the two-term
sentation, the second-order nature of the closure of the hiekpherical harmonic approximation can be derived that exhib-

archy provides a realistic approximatior’iz.z is highly its a smooth transition to a description of a highly distorted
suppressed wheK is small, yet it reaches a magnitude of distribution function. This transition can be treated at the
5f, asX—1, as it must in order to represent the unidirec-e€xpense of only a slight increase in computational complex-
tional distribution. ity. Furthermore, the framework of a traditional reactive flow
Other approaches to this goal have been proposed. In pat,ransport description can be retained. It is expected that the
ticular, the maximum anisotropic approach of Bafdf§] is ~ analysis of situations which simultaneously exhibit both
based on the spherical harmonic expansion, and terminat&éghly isotropic and highly anisotropic distributions will ben-
the hierarchy by choosing the ratio of the highest term to tha€fit from this approach.
of the next-to-highest term to be that corresponding to the An example calculation for a Townsend discharge in he-
description of as function. Thus, for two terms, this would lium has been given. The results correspond to that of the
yield f,=(5/3)f,. Although this approach has been seen totwo-term spherical harmonic expansion at |&N, and to
yield good results for some transport coefficients, it stillthe theoretical limiting case derived by Riemgii at high
needs to include more than two terms in order to accuratelff/N. The suppression of the-gradient term in the aniso-
represent the distribution function. This form of closure doedropic equation at high energies leads to a condition in which
not satisfy the order of magnitude requirement of E&f), the isotropic and anisotropic portions are forced to follow the
and might be expected to yield incorrect results for situation$ame equation. This leads to nearly unit eccentricity for such
in which the bulk of the distribution has low anisotropy, Situations, showing that the formation of a beam is accu-
especially when only a small number of terms is used. Ifately represented. Using a time-dependent solution tech-
particular, with only two terms, there would be present twonique results were obtained over a very wide rang&/M,
quantities of first order irX, and one might expect the func- Using realistic cross sections.
tion f, so determined to be incorrect at low energies, as the
terms inf, would be relatively significant. A possibly better
approximate closure would be simplyf,=5X2f,
=5/9(f§/fo), which is of second order and reaches the cor- The author would like to thank several people for valu-
rect limit at unit eccentricity. A comparison of these variousable discussions and pointers, including J. H. Ingold, L. C.
closures is shown in Fig. 7. Pitchford, A. V. Phelps, Yan-Ming Li, and K.-U. Riemann.

fro1=0(pfn) (66)

VIl. SUMMARY
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