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Analysis of natural gradient descent for multilayer neural networks
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Natural gradient descent is a principled method for adapting the parameters of a statistical model on-line
using an underlying Riemannian parameter space to redefine the direction of steepest descent. The algorithm is
examined via methods of statistical physics that accurately characterize both transient and asymptotic behavior.
A solution of the learning dynamics is obtained for the case of multilayer neural network training in the limit
of large input dimension. We find that natural gradient learning leads to optimal asymptotic performance and
outperforms gradient descent in the transient, significantly shortening or even removing plateaus in the tran-
sient generalization performance that typically hamper gradient descent trdiBk@63-651X99)08004-9

PACS numbegps): 87.10+e€, 02.50-r, 05.20-y

I. INTRODUCTION is to be contrasted with other variable-metric algorithms that
utilize the inverse averaged Hessian matrix. Premultiplying
One of the most popular forms of neural network trainingthe error gradient with the inverse Hessian may make other
is on-line learning, in which training examplésaput-output  fixed points stable, so that the algorithm could converge to
pairg are presented sequentially and independently at eaamaxima or saddle points on the mean error surface. Although
learning iteratior(for an overview of on-line learning in neu- such methods can be adapted to ensure a positive-definite
ral networks, se¢l]). Natural gradient descefiNGD) was  matrix premultiplier, such adaptations are ratler hocin
recently proposed by Amari as a principled alternative tonature and are not theoretically well motivated outside of the
standard on-line gradient descd@D) [2]. When learning asymptotic regime.
the parameters of a statistical model, in our case a feedfor- Variable-metric methods are often difficult to implement
ward neural network, this algorithm has the desirable propas on-line algorithms since they require the averaging and
erties of asymptotic optimality, given a realizable learninginversion of a large matrix. In the case of NGD we require
problem and differentiable model, and invariance to re-knowledge of the input distribution in order to calculate the
parametrizations of our model distribution. NGD is alreadyFisher information matrix. Yang and Amari discuss methods
established as a popular on-line algorithm for independerfior preprocessing training examples in order to obtain a whit-
component analysif2] and shows much promise for other ened Gaussian process for the inputs If this is possible
statistical learning problems. Yang and Amari recently intro-then, when the input dimensidd is large compared to the
duced an NGD algorithm for training a multilayer perceptronnumber of hidden unit&, inversion of the Fisher informa-
[3,4]. In this paper we provide an analysis of NGD for this tion for two-layer feedforward networks requires only
problem using a statistical mechanics formalism. Our result©(N?) operations, providing an efficient and practical algo-
indicate that NGD provides significantly improved perfor- rithm in many cases. Such a simplification is not possible for
mance over GD and we quantify these gains for both thédessian based methods, because the Hessian involves an av-
transient and asymptotic stages of learn{pgeliminary re-  erage over input-output pairs. In general it will not be pos-
sults from this work have been reported[Bi). sible to apply this preprocessing because the input distribu-
The intuition behind NGD comes from viewing the pa- tion may be far from Gaussian and difficult to estimate. In
rameter space of a statistical model as a Riemannian spadhis case other on-line methods will be required in order to
A natural measure of infinitesimal distance between probapproximate the NGD algorithm. We have recently proposed
ability distributions is given by the Kullback-Leibler diver- a method based on a matrix momentum algoritfihthat
gence[6]. In this case the Fisher information matrix can beallows efficient on-line inversion and averaging of the Fisher
shown to be the appropriate Riemannian metric. The naturahformation matrix. This algorithm can be shown to approxi-
gradient direction is defined as the direction of steepest demate NGD closely and also provides optimal asymptotic per-
scent under this metric and is obtained by premultiplying theformance, although at the cost of introducing an extra vari-
standard Euclidean error gradient with the inverse of theable parametel8].
Fisher information matrix. Since this metric is derived from  Here, we will consider the idealized situation in which we
a divergence between neighboring model distributions, théaave the Fisher information matrix at our disposal. We solve
algorithm is clearly independent of model parametrizationthe averaged dynamics of NGD using a statistical mechanics
An additional beneficial feature of using this matrix premul- framework which becomes exact Bis—<« for finite K (see,
tiplier is that it remains positive-definite and therefore en-for example,[9-16]). This allows us to compare perfor-
sures convergence to a minimum of the generalization erramance with standard GD in both the transient and asymptotic
(assuming the learning rate is annealed approprigtélyis  phases of learning, so that we can quantify the advantage that
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NGD can be expected to provide. Numerical results for a Consider the deterministic mappingy(£€) =3 ,9(3/#),
small network provide evidence of improved performancewhich defines a soft committee machifwe call this the

In order to obtain more generic results we introduce a sitestudent network where g(x) is some sigmoid activation
symmetric ansatz for the special case of a realizable learnininction for the hidden units]={J;}, ;= is the set of input
scenario, so that we can efficiently explore a broad range ab hidden weights and the hidden to output weights are set to
task complexity and nonlinearity. We show that trappingone. We choose the following Gaussian noise model:

time in an unstable fixed point that dominates the training

time, the symmetric phase, is significantly reduced by using —[Z—dy5(&)]?

NGD and exhibits a slower power law increase as task com- ps(¢l€)= ex . :
plexity grows. We also find that asymptotic performance is V2mag, 200,
greatly improved, with the generalization performance of

NGD equalling the known universal asymptotics for batch The Fisher information matrix for this model distribution is
learning[17]. given by G=A/¢2 with A in block form,

4

Il. NATURAL GRADIENT DESCENT Aij =f dép(Hg' (I Ha' (I & EE". )

We consider a probabilistic modpl(¢|£) for the distri- A particularly convenient choice for activation function is

B . . N
bution of a scalar outpuf given a vector of inputge i g(x)=erf(x/\2) as this allows the average over inputs to be

. . . KN _ . ._
which is parametnzed by < R ; The Kullback-Leibler Q| cgrried out analytically for an isotropic Gaussian input dis-
vergence provides an appropriate measure for the d'Stan(fnbution 0(8=MO.N)

between distribution$6] and for two nearby points in pa-
rameter space we find

2 ( 1 -
Aij=—— 1——[(1+Q;))J;J;
KL (p3(£.E)1Pa- (£, ) e B OS]
_ ps(¢1&) ) +(1+Qi) 39 — Qi (93] + 33D, (6)
2dJTGdJ, (1) WhereA”:(1+Q“)(1+Q“)—Qﬁ andQ”EJTJJ .

whereG is the Fisher information matrix, IIl. STATISTICAL MECHANICS FRAMEWORK

In order to analyze NGD beyond the asymptotic regime
_ we use a statistical mechanics description of the learning
G f dgp(g)f dZpy(¢l8) process which is exact in the limit of large input dimensidn
and provides an accurate model of mean behavior for realis-
tic values ofN [9,10]. We consider the case where outputs
are generated by a teacher network corrupted by Gaussian

X[V5Inpy(£1 &IV, Inpy(LlHT . )

This matrix provides a Riemannian metric within the spac

of model parameters. We choose the training et $) OIS€,

o —Inp,(¢|€). The direction of steepest descent within this 1 ("= da(E9]?
Riemannian space in terms of expected error is obtained by Pe(L“| &)= ex ° )
premultiplying the mean Euclidean error gradient w@h! o’ 20°

[2].

In an on-line learning scheme we draw inputs sequentiallwvhere¢>3(§“)=2,"1"=1g(BI§"). Due to the flexibility of this
& u=1.2,...from some distributiop(£) each labeled ac- mapping[18] we can represent a variety of learning sce-
cording to some stochastic rufgy(¢#|&*). The NGD algo- narios within this framework. The weight update at each it-
rithm is defined by a corresponding sequence of weight uperation of NGD is then given by
dates,

K
Y -
7 Jrr=p 2 A E ®
Jrt=grt GGV, Inpy( g€, 3 =

wheres'=g' (3] &) da(£) — ¢3(£") + p*] andp* is zero-
where the learning rate is scaled by the input dimension fomean Gaussian noise of varianeé Notice that knowledge
convenience. This algorithm therefore utilizes an unbiase@f the noise variance is not required to execute this algorithm
estimate of the steepest descent direction in our Riemanniaince the contributions from the Fisher information matrix
parameter space. If the rule can be realized by the model arahd log-likelihood cancelrecall Eq.(3)]. The model noise
exemplars are corrupted by output noise then annealing theariance is therefore not included as a variable parameter and
learning rate agy= 1/« at late timegwherea= u/N) results  the algorithm is well defined even in the deterministic case
in optimal asymptotic performance in terms of the quadratiONherearzn—>O.
estimation error, saturating the Cramer-Rao lower bound and The Fisher information matrix can be inverted using the
equalling in performance even the best batch algoritfihs  partitioning method described [d] (see Appendix A each
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FIG. 1. Numerical integration of the NGD equations of motion. A two-node soft committee machine learns from examples generated by
a two-node isotropic teacheKEM =2, T,,,,= d,m in the absence of noise. The learning rate is fixega.05 and initial conditions are
Rin,Qike U[0,10 3] andQ;; € U[0,0.5]. The generalization error is shown by the solid lindahwith the exponential asymptotic decay
shown on a log scale in the ingghe dashed line shows the effect of reducing the initial conditions by a factor @) 1The student-teacher
and student-student overlaps are showfbinand (c), respectively.

block is some additive combination of the identity matrix seems to grow logarithmically a¥ increases, as was also

and outer products of the student weight vectors, found to be the case for G12].
As is the case for GI)9] the dynamics for this example
Ai}lzainz le‘]k‘]l'l'_ (9) can be qharacterized by two m_ajor phases of Iearning, the
kI symmetric phase and asymptotic convergence. Following a

- short initial transient the order parameters are trapped in a
where 6;; are scalars whild" are K dimensional square sypspace characterized by a lack of differentiation between
matrices. Using the methods described [BY it is then  the activities of different teacher nodes. After an initial re-
straightforward to derive equations of motion for a set ofgyction, the generalization error remains at a constant non-
order parameters{J;=Q;;, J/B,=Ri, and BlB,,=T.m.  zero value and the student-teacher overlaps are virtually in-
measuring the various overlaps between student and teachgistinguishable. This symmetric phase is an unstable fixed
vectors. These order parameters are necessary and sufficigiglint of the dynamics and eventually small perturbations due
to determine the generalization erroe,=(;(¢;(§  to the random initial conditions lead to escape and conver-

_ ¢B(§))2>§, which we defined to be the expected error ingence towards zero generalization error. If the teacher is de-
the absence of noid®]. The equations of motion are in the terministic, as in this example, then the generalization error
form of coupled first order differential equations for the or- converges to zero exponentially unless the learning rate is

der parameters with respect to the normalized number d#hosen too largésee the inset to Fig.(a)]. If the teacher’s
examples, output is corrupted by noise then the learning rate must be

annealed in order for the generalization error to decay as-
dRi,, ymptotically (we will consider this regime in more detail in
da :Ufin(R,Q,T), SeC.VB.

The dynamics differs from the GD result in that the sym-
dQiy X X metric phase is typically less pronounced, although the
da = 7IRQD+ 7 hi(RQT,0%, (100 dashed line in Fig. (B) shows how the symmetric phase

increases in duration a¥ increasegbecause of a reduced
whereR=[Ri;], Q=[Qy] and T=[T,]. The explicit ex- asymmetry in the initial conditionsThe dynamics for GD
pressions are given in Appendix B. These equations can b@nd NGD are qualitatively different for small Iearning rates,
integrated numerically in order to determine the evolution ofwhere fluctuations in the gradient are completely suppressed

the generalization error. and the#? terms in Eq.(10) can be neglected. In this limit
the symmetric phase disappears completely for NGD, while
IV. NUMERICAL RESULTS it still dominates the learning time for GD. The symmetric

phase is a fluctuation driven phenomena for NGD, rather

In Fig. 1 we show an example of the NGD dynamics forthan a perturbation around the deterministic result. As de-
a realizable and noiseless learning scenaffo=M =2, scribed in the next section, this makes analysis of the sym-
Tom= 6nm) - Figure 1a) shows the evolution of the generali- metric phase more difficult than for GD since a small learn-
zation error while Figs. (b) and Xc) show the student- ing rate expansion is no longer meaningful.
teacher and student-student overlaps respectitiedyindices A quantitative comparison of GD and NGD is difficult
have been re-orderedposterior). We have used initial con- because both algorithms have a free parameter, the learning
ditions corresponding to an input dimension of abdut rate %, which can be chosen arbitrarily and which will be
=10P, although we expect the dynamical equations to decritical to performance. In order to make a principled com-
scribe mean behavior accurately for much smaller systems gmarison we choose to compare the algorithms when their
was found to be the case for GO]. The dashed line in Fig. learning rates are chosen to be optimal. This can be achieved
1(a) shows the effect of reducing the initial conditions for by using a variational method that allows us to determine the
eachR;, andQ; . by a factor of 103, which corresponds to globally optimal time-dependent learning rate for each algo-
an input dimension of abo=10'2 The symmetric phase rithm [14]. The resulting learning rate optimizes the total
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FIG. 2. The optimal performance of a two-node studdft=@Q) for NGD (solid line) and GD(dashed lingfor (a) overrealizableM
=1, (b) realizable:M =2 and(c) unrealizableM =3 learning scenarios. The optimal learning rate schedule for NGD is shown by the inset
to each figure. The teacher is isotropit, (= 5,n), Noise free and initial conditions are as in Fig. 1.

change in generalization error over a fixed time-window andhat lead the dynamics to the symmetric pixed point, are
is found by extremitization of the following functiongee effectively reweighed and suppressed by the NGD rule.
[14] for details and results for optimized GD

ard N V. GENERIC RESULTS FOR A SYMMETRIC SYSTEM
i da=f "L n(a),alda. (1D) - - .
da ag ma, : Although our equations of motion are sufficient to de-
scribe learning for arbitrary system size, the number of order
Numerical results suggest that the optimal learning rates deparameters igK(K+1)+ KM so that the numerical integra-
termined here are close to the critical learning rate within theion soon becomes rather cumbersomé&asdM grow and
symmetric phase for both methods, above which the studertnalysis becomes difficult. To obtain generic results in terms
weight vector norms increase without bound. of system size we therefore exploit symmetries which appear
In Fig. 2 we compare the performance of optimized GDin the dynamics for isotropic tasks and structurally matched
and optimized NGD for a two-node student learning from astudent and teacherKEM and T=T4,,). This site-
noiseless, isotropic teacher starting from the same initial consymmetric ansatz is only rigorously justified for the special
ditions K=2, T,,m=S.m). Figures 2a), 2(b), and Zc) show case of symmetric initial conditions and further investiga-
results for teachers withM=1, M=2, andM=3 hidden tions are required to determine the validity of this approxi-
nodes respectively. In each case the optimal learning ratmation in general for large values &f (fixed points other
schedule for NGD is shown by the inset. It should be notedhan those considered here have been reported fof 2D
that although there is a significant temporal variation in theand it is unclear whether or not their basins of attraction are
optimized#, very similar performance would be achieved by negligible. Simulations of the GD dynamics fét up to 10,
choosingy to be fixed at its average value. We see that NGDwith random initial conditions, show good correspondence
significantly outperforms GD in each example. For the overwith the symmetric system. In this case we define a four
realizable example shown in Fig(& the difference is most dimensional system viaQ;;=Qd;+C(1—¢;) and R;,
significant, with NGD displaying no obvious symmetric pla- =Rd;,+ S(1— 6;,,) which can be used to study the dynamics
teau. Performance of the NGD algorithm seems to reflect théor arbitraryK andT (here, §;; denotes the Kroneckes). In
difficulty inherent in the task, while GD displays very similar Appendix A we show how the Fisher information matrix can
performance in each case. It is interesting to compare oupe inverted for the reduced dimensionality system and the
results with those found using a locally optimal rule derivedresulting equations of motion are given in Appendix B 1.
by variational argumentgl5]. The variational approach re- Analytical study of the symmetric phase for GD is only
quires rather detailed information about the teacher’s strucfeasible for small learning rates, since in this case the sym-
ture and would be difficult to approximate with a practical metric fixed point is easily determined and a linear expansion
algorithm. However, we find rather similar performance witharound this fixed point is possib[8,13]. Such an analysis is
NGD, especially for the&K =M =2 example shown both here not feasible for NGD because the dynamics never ap-
and in[15]. The performance bottleneck for GD is due to anproaches this fixed poirithe Fisher information matrix be-
inherent symmetry in the student parametrization, while forcomes singular whe@=C). In any case, a smaf} analysis
NGD the task complexity seems to be more important. Alsowill be of limited value since it is the fluctuation driven
notice that the generalization error is significantly lower dur-terms in the dynamicfterms proportional ta;? in Eq. (10)]
ing the symmetric plateau for NGD in each case, which isthat set the learning time scale and determine the optimal and
due to reduced weight vector norrtthis is also true for the maximal learning rate during the symmetric phase. In order
locally optimal algorithm. It is the growth of these norms to study the performance of both methods for larger learning
which limits increases in the learning rate for GD and itrates we will therefore apply the optimal learning rate frame-
appears that NGD is much more effective in controlling thiswork described in the preceding sectid].
effect. Another interesting difference between the NGD and The impact of output noise on the symmetric phase dy-
GD dynamics is in the short transient prior to the symmetricnamics is not considered explicitly here. For low noise levels
phase. The NGD dynamics seems to converge much slowéhere is no noticeable effect on the length of the symmetric
to the symmetric fixed point, as shown in Fig. 2, reflectingphase, or on the order parameters and generalization error
the fact that the strong eigenvalues, related to eigenvectomsithin this phase. For larger noise levels the symmetric

Aeg[n(a)]=f

a0



PRE 59 ANALYSIS OF NATURAL GRADIENT DESCENT FOR ... 4527

g 08 ( a) Ktiopt % (b)

4+
0.5 o

.
107
10 100 K 1000
10' 10° 10°
@ K

FIG. 3. In(a) the generalization error is shown for optimal NG&lid line) and optimal gradient descefttashed lingfor K=10 in the
site-symmetric systerfwe definea=10"2a). The inset shows the optimal learning rate for NGD(bhthe time required for optimal NGD
to reach a generalization error of 1K is shown as a function df on a log-log scale. The inset shows the optimal learning rate within the
symmetric phase. In botta) and (b) we usedT=1, zero noise and initial conditiorR=10"2, Q=U[0,0.5] andS=C=0. A brief stage
of GD is used before NGD is started.

phase increases in length and the student norms increasayor in the absence of noisén the absence of output noise
resulting in a larger generalization error. We expect thathis convergence is exponential for a fixed learning rate so
these are secondary effects and that most essential featured@fig as we do not choose the learning rate too high. How-
this phase are captured by the noiseless dynamics. This is neter, in the presence of output noise the learning rate must
true for later stages of learning, where the inclusion of noisébe annealed in order to achieve zero generalization error as-
completely alters qualitative features of the dynamics. Thesgmptotically. It is known that NGD is asymptotically opti-

asymptotic effects are considered in Sec. V B below. mal, in terms of the covariances of the student-teacher
weight deviations(the quadratic estimation erpprwith 7
A. Globally optimal performance =1/a, saturating the Cramer-Rao bound and equalling in

. . . . . gerformance even the best batch methi@s However, the
The optimal learning rate is determined as describe befor . S ; . S
(uadratic estimation error has no direct interpretation in

Eg. (11) in Sec. IV. In the following examples we use a brief terms of generalization ability. In Fig. 4 we show results for

initial Iearnmg phase with G[Duntll a=1) as this results in optimized NGD dynamics witlk =5 andT=1. Figure 4a)
faster entry into the symmetric phase and also leads tQ o .

. . N Shows the generalization error and Figb¥shows the cor-
quicker convergence of the learning rate optimization. The

effect on learning time will be negligible a6 becomes very responding optimal learning rate schedules for three noise

2 __ 2 __ 2 __
large, but this procedure might be used to improve perfori€Vels (°=0.1, 0°=0.01 ando=0.001). The graphs are

mance in practice for realistically sized networks. on log-log scales and show that the optimized learning rates
Figure 3 summarizes our results for transient learning ir{ndeed converge to a &_/decay after leaving the symmetric
the absence of noise. In Fig(83 we compare optimal per- phase. The generalization error decays at the same rate, but

formance forK =10 andT=1, which indicates a significant with a prefactor that depends on the noise level.

shortening of the symmetric phase for NGibe inset shows declzg Or::; tgciﬁtemns tn‘e ;aezs;cin;tp)trzgfjl?se?:rr?rlwléagr?r?ezrlirr?r
the optimal learning rate for NGD Figure 3b) shows the y y y PPy 9

time required for NGD to reach a generalization error Ofdynamlcs of GO[16]. This allows a comparison between the

10"%K as a function oK (for T=1). The learning time is asymptotic generalization error for NGD and the result for

dominated by the symmetric phase, so that these results prg’-D' In Appendx B 2 wesolve the asymptotic dy”a”.“cs for
. annealed learning. As expected, the optimal annealing sched-

vide a scaling law for the length of the symmetric phase in . c .
terms of task complexity. We find that the escape time forUIe for NGD iis found by s_ettlng7—1_/a at late times. By
NGD scales ak2, while the inset shows that the learning contrast, although the optimal learning rate for GD is also

L . - inversely proportional te, the optimal prefactor depends on
rate _W'thm the symmetric phase _approacheK & de_cay. K andT in a nontrivial mannef16]. For both optimized GD
Scaling laws for GD were determined 3] (also using a o ;

. . ; 83 . and NGD the generalization error decays according to an
site-symmetric ansatzshowing aK®* law for escape time

and a learning rate scaling &~5? within the symmetric " o oc POWEr law:
phase. The escape time for the adaptive learning rule studied €002
in [13] scales a¥®? which is also worse than NGD. €9~

as a—o, (12

B. Asymptotic convergence with noise

After the symmetric phase, the order parameters begiiThe exact result for NGD takes a very simple forp
convergence towards their asymptotic valuBs € Q.. =T, = 3K independent of the value @f. This equals the univer-
S,.=C,=0) and for the realizable scenario considered heresal asymptotics for optimal maximum likelihood and Bayes
the generalization error converges towards Zgetall that estimators, which depend only on the learning machine’s
we have defined the generalization error to be the expectentmber of degrees of freedoifl7]. NGD is therefore
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FIG. 4. Optimal NGD with teacher corrupted by Gaussian nois&fer5 andT=1 in the site-symmetric system, shown on a log-log
scale. The generalization error and optimal time-dependent learning rates are sh@varid (b) respectively, witho>=0.1 (solid line),
02=0.01 (dashed ling and o>=0.001 (dot-dashed ling

asymptotically optimal in terms of both generalization erroroptimal learning rate in each case. We found that NGD pro-
and quadratic estimation error. vided significant gains in performance over GD in every case

In Fig. 5 we compare the prefactor of the generalizationexamined, both in the transient and asymptotic stages of
error decay for NGD and optimal GD. Figuréabshows the learning. A site-symmetric ansatz was applied in order to
result forT=1 as a function oK, indicating an approxi- simplify the dynamical equations for a realizable and isotro-
mately linear scaling law for GIThe result above shows pic task. This allowed the dynamics of large networks to be
that the NGD scaling is linear iK.) In Fig. 5b) we com- integrated efficiently so that we could determine generic be-
pare the decay prefactors for each method as a functidn of havior for large networks. We found that the learning time
showing how the difference diverges s reducedthe GD  scaled ak? whereK is the number of hidden nodes, com-
results are for larg&). This can be explained by examining pared to a scaling dk®? for GD [13]. Asymptotically NGD
the asymptotic expression for the Fisher information matrixjs known to provide optimal performance with=1/a in
shown in Eq.(A6). For largeT the diagonals of this matrix terms of the quadratic estimation error. An asymptotic solu-
are O(1/\T) and equal(for large N) while all other terms tion to the annealed learning rate dynamics showed this
are at mosO(1/T), so that the Fisher information is effec- schedule to also be optimal in terms of generalization error,
tively proportional to the identity matrix in this limit and with the error decay saturating the universal asymptotics for
NGD is asymptotically equivalent to GD. However, for optimal maximum likelihood and Bayes estimatpt3]. We
small T the diagonals ar®(T?) while the off-diagonals re- compared this result with the optimized schedule for GD and
main finite, so that the Fisher information is dominated byplotted the relative performance for various values of task
off-diagonals in this limit. nonlinearity T. The difference in performance was found to
be largest for small values of. However, in the case of
NGD the optimal annealing schedule at late times is known
while for GD it is a complex function oK andT that will be

We have used a statistical mechanics formalism to solvélifficult to estimate in general.
and analyze the dynamics of NGD for learning in a two-layer One possible drawback for NGD is the rather complex
feedforward neural network. In order to quantify the com-transient behavior of the optimal learning rate. For example,
parative performance of NGD and GD we compared the opin the realizable isotropic case the optimal learning rate
timized performance of each algorithm by determining thescales ak 2 in the symmetric phase arid™! asymptoti-

VI. CONCLUSION

80
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FIG. 5. Prefactor for the asymptotic decay of the generalization gapshows the prefactor fofF =1 as a function oK for optimal GD
(circles and NGD(crosseswhile (b) shows how the prefactor for optimal GargeK) decays toward&/2 asT increases, which is the
prefactor for NGD. The inset t(h) shows the GD result on a log-log scale.
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cally in the absence of noise. It is also unclear where learningvhere we have defined
rate annealing should begin in the presence of output noise.

Asymptotically the optimal annealing schedule is known, so 2 2
the situation is better than for GD, but the problem of setting b= —— AT ———" b,
a good learning rate in the transient remains. In practical mV[(1+Q)*—C7] mV14+2Q
applications there will also be an increased cost required in
estimating and inverting the Fisher information matr. 4(1+Q—-C) 4
Here, we have only considered the idealized situation in c= 2 ~2nN32 312"
which the Fisher information matrix is exactly known.[B)] m(1+Q)"=CH m(1+2Q)
we adapt a matrix momentum algorithm due to Orr and Leen
[7] in order to obtain efficient averaging and inversion of the _ —2(1+0Q) o= 2C
Fisher information matrix on line. This algorithm is shown to m((1+Q)2—C?)3”?’ m((1+Q)2—C?)3?’
provide a good approximation to NGD, although this is at the
cost of including an extra parameter. Block (i,j) in the inverse ofA is then given by
We would like to thank Shun-ichi Amari for useful dis- 1 K K
cussions. This work was supported by EPSRC Grant No. Al=Z5 ——— ||+ rky at (a2
GRIL19232. iR a1 & & T (A2

APPENDIX A: INVERTING THE FISHER INFORMATION and symmetries suggest the following general formIfor

MATRIX
Fikjlz‘}’15ij5ik5i|+‘}’2(5ik5n+5jk5j|)+ Y3( ik Oj+ 611 6ij)

In general the Fisher information matrix should be in-
verted using the block inversion method described4h + Y4616t Y5k Sji t eSS+ v7( 8y + i)
The parameters in E9) are then complicated functions of T+ vl Sut 1)+ VaSui+ Vand: + A3
Q which must be determined iterativelyee[19] for a simi- Vs Ot G+ ¥odat ¥109 + Ya- (A3)
lar method applied to the Hessian matrix fst=K=2). e therefore have to set 11 free parameters in order to fully

Below we consider the simpler situation of a site-symmetricspecify I'. This is achieved by substituting EqgA1) and
system, in which case the inversion can be carried out iRa2) into the definition of the inverse,

closed form for arbitraryK. Asymptotically the result is
shown to be further simplified. K

kZl AiA =81 Vil (A4)
1. Site-symmetric system

Exploiting symmetries in the dynamics of realizable iso- Equating like terms leads to a set of 15 equations and we can
tropic learning K=M and T,,,=Td,,) We consider a re- choose any linearly independent subset of 11 equations in
duced dimensionality system witQ;;=Q&;;+C(1— ;).  order to determiney. For one particular choice we find
We can then write blocki(j) of the Fisher information ma-
trix as[see Eq(6)], y=M"1B, (A5)

Aij=(as+b)l+(cs;+d) g +dJ I +e(3I +3;3)), where the nonzero terms Mg q;=[m;;] and Bix1a
(A1) =[Bi] are defined below:

My, 1= My =My 3=(Q—C)(d+e)+cQ+a,

My 2= My 9=Myg=Cc[Q+C(K—-1)],

My 3= My g=My 1= (Q—C)(dK+c),
my =My e=c(Q—C), my,=mye=cC,

My 6= My 4= M5 4,=M5s=d(Q—C),

M3 2= Mg 4= Mg = M3 8=,
M3 3= Mg 6= My 4= M7 6= Mg 4= My 1= &(Q—C),
Mms 1=Mgs=b+dQ+eC,

Ms ,= My ,= My = (d+€)(Q+C(K—1)),
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ms3=d(Q—C)+Kb+a, m;;=myg,=myp:=eQ+dC,
M7 3= My 10~ €(Q—C)+cC+(d+e)KC,
m;s=m;o;=(Q—C)(d+c+e)+a+cC+K(Qe+Cd),
m; ;=M 1= (Q—C)(K(d+e)+c)+cCK+(d+e)CK?,
Mg o=b, Mg 3s=Mjgs=Myge=(d+e)C,
mg,=Kb+a+(d+e)(Q+C(K—1)),

Myog=(Q—C)(d+2e)+cC+2KC(d+e),

c b(c+dK) d d Substituting these expressions into E44) and using the
==, orthogonality of the teacher weight vectoi&,{,=T 5, we

A==z Paaion ar P _ of the te. t
obtain a matrix equation fo"=[T";],

eb

e
B7=Bs=— X ,Blozﬁllzm- IM=p1X, (A8)

2. Asymptotic inversion where

For realizable rules the asymptotic form for each block of
A is (to leading ordex, P—al+

Ajj=(as;+b)l+(cs;+d)BB +dB;B], (A6)

e

e

—dT b u

where « 1/e,\T/—c (da—bc)/(a+bK)\ (e,
5 ) 5 “alu/ | d —db/(a+bK) J\u/
a= - b=——
N 1+7T)’ 1+T)’
m1+2T ) m ) Here, we have defined, to be aK-dimensional row vector
with a one in thenth element and zeros everywhere else,
c= 4 _ 4 d=— 2 _ while u is a row vector of ones. Solving fdr" we find
m(1+T)?  m(1+2T)% m(1+T)?
1/e\T (e
Block (i,j) in the inverse ofA is then given by Fn:_< ) ( ) (A9)
. « A\u u
-l |Z5 - n T
Aij a5" a(a+bkK) I+n§1 TBnBn, (A7) where
K(d*T—bc)—ac d*T—bc—ad
d°T—bc—ad (d?T(a+b)—2abd—b?c)/(a+bK)/’
A=a?(a+bK)+a’T(c—2d)+aT(K—1)(cb—d?).
|
APPENDIX B: EQUATIONS OF MOTION dQ, N ,
da :772 <9ijl//jr+9rj ‘/ﬁi"’% 10 Qi+ 0 Qi)
Using the definition ofA ™! given in Eq.(9) we find .
+ 772% 0ij Ok vk - (BY)
dRm:nE 0 it > OUR Wi
da ] NI KL Here ¢in=(diyn)g, ¢uw=(diXg and vy =(5d)y
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where x;=J"¢ and y,=B¢ are activations of theith
student anchth teacher hidden nodes, respectively, aifd

=g’ (X [ZNL19(yH) — =1L 19(x¢) + p*]. The brackets de-
note averages over inputs that can be written as averages
over the multivariate Gaussian distribution of student and
teacher activations. The explicit expressions &f, ¢,

vy, depend exclusively on the weight overlaftke covari-
ances of the activation distributipand are given if9].

vR= (74t ¥6)(R=S)(s— a),
Wr= (¥4t ¥6)[(R=S) ¢hat+ S(¢hs+(K=1)¢fy) ]
+(R+(K=1)S)[(y2+ ya+Kyr) s
+(2yg+ yot yiot Ky ¢hs+ (K=1) ¢a]],
zr= (1t vsK) st (v2+ v3+ Kyg)[¢hst (K= 1) ],
andvg, Wg andzg are the same except thRtand S are

1. Site-symmetric system

We substitute the definition of the inverse Fisher informa-
tion for a symmetric system from EGA2) into Eq.(3) to get

the weight update equation:

=g

s+t S
J

gﬂ+% I otxt3g |,
(B2)

replaced byQ and C respectively everywhere they appear
explicitly. Here,y=[ v;] is defined in Eq(A5) and we have
defined

<5iyn>{§}: Sinst (1= 6in) da,
(6i0j)16=6ijvst (1= 8j) va,

(8% + 0% )= 8 hs+ (1= ) a,

wheres=1/a andt=—b/a(a+bK). Differential equations Where & with two indices denotes the Kroneckerand
for the order parameters can then be derived by the method¥ackets denote averages over the inputs. These averages can
described in9] and for the reduced dimensionality system 29ain be calculated in closed forfi9].

we find

dR
da n[Spstt(pst+(K—1)da) +vr+WwrtzgR],

ds
a =n[Shatt(dst+(K—1)p,) +Wg+2ZgS],

d
dS = 77[S‘r/fs+t(’//s+(K_1)'r//a)+2(vQ+WQ+ZQQ)]

+ 9 SPvet+ (25t+ t?K) (vt (K—1)vy) ],

dC
o~ Msat st (K=1)¢a) +2(Wo+2oC)]

+ p[sPv,+ (2st+12K) (vs+ (K—1)vy)], (B3)
where

|

(o2 (o

16 .

— —=C

o N
Al 8y3 -—43
163 —843

A=m(25—-16y3+K(813-9)),
c,=2[32/3-41-K(163-9)],

C,=[57—48\3+K(24y/3-9)]/2,

2. Asymptotic dynamics

The asymptotic dynamics for GD with an annealed learn-
ing rate have recently been solved under the statistical me-
chanics formalism and the optimal generalization error decay
is known in this cas¢16]. Here we extend those results to
NGD.

Following the notation in[16] we defineu=(R—-T,Q
—T,5,C)T to be the deviation from the asymptotic fixed
point. If the learning rate decays according to some power
law then the linearized equations of motion around this fixed
point are given by

W MU+ 2% B4
dCY = Na u 7,00, ( )
wheren,M is the Jacobian of the equations of motion to first
order in  while the only nonvanishing second order terms
are proportional to the noise variance. Hor 1 we find

—6(K—1)cs 3(K—1)cz
—12(K—1)c; 6(K—1)cs
Cs -9(K-1) |’
2c 8
——C
4 \/§ 3

C3=2(2/3—6+3K),
C,s=7—16\3+K(9+843),

Cs=16\3—43+K(27—84/3),
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and the two nonzero entries lmare
] _ m(38/3-66+K(51-30y3) +K*(6y/3-9))
= [2+(K—1)\3](V3-2)?
_ —3m(7-4\3+K(2\3-3))
Y2+ (K-1)V3](\3-2)2
The solution to Eq(B4) with 7,= 79/« is

u(a)=oc?VXV b, (B5)
where V™" IMV is a diagonal matrix whose entrieg are
eigenvalues oM. We have defined the diagonal matkxto
be

MAGNUS RATTRAY AND DAVID SAAD

PRE 59

2
o |+ a"inoag(l“‘"o)

dag_ _ 0
Xi 1+ N7 @ ’

(B6)

where annealing begins when= «y. For natural gradient
learning we find two degenerate eigenvalues,=—1,

A3 4=—2 and by substituting E¢B6) into a first-order ex-
pansion of the generalization error it is straightforward to
show 79=1 to be optimal. In this case the modes corre-
sponding to\, , do not contribute to the asymptotic gener-
alization error and for all values af we find

a'zr]gK oK
C 2a(1+ TNz 2a

€g= (B7)
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