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Analysis of natural gradient descent for multilayer neural networks
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David Saad
Neural Computing Research Group, Aston University, Birmingham B4 7ET, United Kingdom

~Received 19 November 1998!

Natural gradient descent is a principled method for adapting the parameters of a statistical model on-line
using an underlying Riemannian parameter space to redefine the direction of steepest descent. The algorithm is
examined via methods of statistical physics that accurately characterize both transient and asymptotic behavior.
A solution of the learning dynamics is obtained for the case of multilayer neural network training in the limit
of large input dimension. We find that natural gradient learning leads to optimal asymptotic performance and
outperforms gradient descent in the transient, significantly shortening or even removing plateaus in the tran-
sient generalization performance that typically hamper gradient descent training.@S1063-651X~99!08004-6#

PACS number~s!: 87.10.1e, 02.50.2r, 05.20.2y
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I. INTRODUCTION

One of the most popular forms of neural network traini
is on-line learning, in which training examples~input-output
pairs! are presented sequentially and independently at e
learning iteration~for an overview of on-line learning in neu
ral networks, see@1#!. Natural gradient descent~NGD! was
recently proposed by Amari as a principled alternative
standard on-line gradient descent~GD! @2#. When learning
the parameters of a statistical model, in our case a feed
ward neural network, this algorithm has the desirable pr
erties of asymptotic optimality, given a realizable learni
problem and differentiable model, and invariance to
parametrizations of our model distribution. NGD is alrea
established as a popular on-line algorithm for independ
component analysis@2# and shows much promise for othe
statistical learning problems. Yang and Amari recently int
duced an NGD algorithm for training a multilayer perceptr
@3,4#. In this paper we provide an analysis of NGD for th
problem using a statistical mechanics formalism. Our res
indicate that NGD provides significantly improved perfo
mance over GD and we quantify these gains for both
transient and asymptotic stages of learning~preliminary re-
sults from this work have been reported in@5#!.

The intuition behind NGD comes from viewing the p
rameter space of a statistical model as a Riemannian sp
A natural measure of infinitesimal distance between pr
ability distributions is given by the Kullback-Leibler diver
gence@6#. In this case the Fisher information matrix can
shown to be the appropriate Riemannian metric. The nat
gradient direction is defined as the direction of steepest
scent under this metric and is obtained by premultiplying
standard Euclidean error gradient with the inverse of
Fisher information matrix. Since this metric is derived fro
a divergence between neighboring model distributions,
algorithm is clearly independent of model parametrizati
An additional beneficial feature of using this matrix prem
tiplier is that it remains positive-definite and therefore e
sures convergence to a minimum of the generalization e
~assuming the learning rate is annealed appropriately!. This
PRE 591063-651X/99/59~4!/4523~10!/$15.00
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is to be contrasted with other variable-metric algorithms t
utilize the inverse averaged Hessian matrix. Premultiply
the error gradient with the inverse Hessian may make o
fixed points stable, so that the algorithm could converge
maxima or saddle points on the mean error surface. Altho
such methods can be adapted to ensure a positive-de
matrix premultiplier, such adaptations are ratherad hoc in
nature and are not theoretically well motivated outside of
asymptotic regime.

Variable-metric methods are often difficult to impleme
as on-line algorithms since they require the averaging
inversion of a large matrix. In the case of NGD we requ
knowledge of the input distribution in order to calculate t
Fisher information matrix. Yang and Amari discuss metho
for preprocessing training examples in order to obtain a w
ened Gaussian process for the inputs@4#. If this is possible
then, when the input dimensionN is large compared to the
number of hidden unitsK, inversion of the Fisher informa
tion for two-layer feedforward networks requires on
O(N2) operations, providing an efficient and practical alg
rithm in many cases. Such a simplification is not possible
Hessian based methods, because the Hessian involves a
erage over input-output pairs. In general it will not be po
sible to apply this preprocessing because the input distr
tion may be far from Gaussian and difficult to estimate.
this case other on-line methods will be required in order
approximate the NGD algorithm. We have recently propos
a method based on a matrix momentum algorithm@7# that
allows efficient on-line inversion and averaging of the Fish
information matrix. This algorithm can be shown to appro
mate NGD closely and also provides optimal asymptotic p
formance, although at the cost of introducing an extra va
able parameter@8#.

Here, we will consider the idealized situation in which w
have the Fisher information matrix at our disposal. We so
the averaged dynamics of NGD using a statistical mecha
framework which becomes exact asN→` for finite K ~see,
for example,@9–16#!. This allows us to compare perfor
mance with standard GD in both the transient and asympt
phases of learning, so that we can quantify the advantage
4523 ©1999 The American Physical Society
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4524 PRE 59MAGNUS RATTRAY AND DAVID SAAD
NGD can be expected to provide. Numerical results fo
small network provide evidence of improved performan
In order to obtain more generic results we introduce a s
symmetric ansatz for the special case of a realizable lear
scenario, so that we can efficiently explore a broad rang
task complexity and nonlinearity. We show that trappi
time in an unstable fixed point that dominates the train
time, the symmetric phase, is significantly reduced by us
NGD and exhibits a slower power law increase as task c
plexity grows. We also find that asymptotic performance
greatly improved, with the generalization performance
NGD equalling the known universal asymptotics for bat
learning@17#.

II. NATURAL GRADIENT DESCENT

We consider a probabilistic modelpJ(zuj) for the distri-
bution of a scalar outputz given a vector of inputsjPRN

which is parametrized byJPRKN. The Kullback-Leibler di-
vergence provides an appropriate measure for the dist
between distributions@6# and for two nearby points in pa
rameter space we find

KL „pJ~z,j!uupJ1dJ~z,j!…

[E dj p~j!E dz pJ~zuj! lnS pJ~zuj!

pJ1dJ~zuj! D
.dJTGdJ, ~1!

whereG is the Fisher information matrix,

G~J!5E dj p~j!E dz pJ~zuj!

3@¹J ln pJ~zuj!#@¹J ln pJ~zuj!#T. ~2!

This matrix provides a Riemannian metric within the spa
of model parameters. We choose the training erroreJ(z,j)
}2 ln pJ(zuj). The direction of steepest descent within th
Riemannian space in terms of expected error is obtained
premultiplying the mean Euclidean error gradient withG21

@2#.
In an on-line learning scheme we draw inputs sequenti

jm:m51,2, . . . from some distributionp(j) each labeled ac
cording to some stochastic rulepB(zmujm). The NGD algo-
rithm is defined by a corresponding sequence of weight
dates,

Jm115Jm1
h

N
G21¹J ln pJ~zmujm!, ~3!

where the learning rate is scaled by the input dimension
convenience. This algorithm therefore utilizes an unbia
estimate of the steepest descent direction in our Rieman
parameter space. If the rule can be realized by the model
exemplars are corrupted by output noise then annealing
learning rate ash51/a at late times~wherea[m/N) results
in optimal asymptotic performance in terms of the quadra
estimation error, saturating the Cramer-Rao lower bound
equalling in performance even the best batch algorithms@2#.
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Consider the deterministic mappingfJ(j)5( i 51
K g(Ji

Tj),
which defines a soft committee machine~we call this the
student network!, where g(x) is some sigmoid activation
function for the hidden units,J[$Ji%1< i<K is the set of input
to hidden weights and the hidden to output weights are se
one. We choose the following Gaussian noise model:

pJ~zuj!5
1

A2psm
2

expS 2@z2fJ~j!#2

2sm
2 D . ~4!

The Fisher information matrix for this model distribution
given byG[A/sm

2 with A in block form,

A i j 5E dj p~j!g8~Ji
Tj!g8~Jj

Tj!jjT. ~5!

A particularly convenient choice for activation function
g(x)[erf(x/A2) as this allows the average over inputs to
carried out analytically for an isotropic Gaussian input d
tribution p(j)5N(0,I ),

A i j 5
2

pAD i j
S I2

1

D i j
@~11Qj j !JiJi

T

1~11Qii !JjJj
T2Qi j ~JiJj

T1JjJi
T!# D , ~6!

whereD i j 5(11Qii )(11Qj j )2Qi j
2 andQi j [Ji

TJj .

III. STATISTICAL MECHANICS FRAMEWORK

In order to analyze NGD beyond the asymptotic regim
we use a statistical mechanics description of the learn
process which is exact in the limit of large input dimensionN
and provides an accurate model of mean behavior for rea
tic values ofN @9,10#. We consider the case where outpu
are generated by a teacher network corrupted by Gaus
noise,

pB~zmujm!5
1

A2ps2
expS 2@zm2fB~jm!#2

2s2 D , ~7!

wherefB(jm)5(n51
M g(Bn

Tjm). Due to the flexibility of this
mapping @18# we can represent a variety of learning sc
narios within this framework. The weight update at each
eration of NGD is then given by

Ji
m115Ji

m1
h

N(
j 51

K

d j
mA i j

21jm, ~8!

whered i
m[g8(Ji

Tjm)@fB(jm)2fJ(jm)1rm# andrm is zero-
mean Gaussian noise of variances2. Notice that knowledge
of the noise variance is not required to execute this algorit
since the contributions from the Fisher information mat
and log-likelihood cancel@recall Eq.~3!#. The model noise
variance is therefore not included as a variable parameter
the algorithm is well defined even in the deterministic ca
wheresm

2→0.
The Fisher information matrix can be inverted using t

partitioning method described in@4# ~see Appendix A!; each
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FIG. 1. Numerical integration of the NGD equations of motion. A two-node soft committee machine learns from examples gene
a two-node isotropic teacher (K5M52, Tnm5dnm) in the absence of noise. The learning rate is fixed ath50.05 and initial conditions are
Rin ,QiÞkPU@0,1023# andQii PU@0,0.5#. The generalization error is shown by the solid line in~a! with the exponential asymptotic deca
shown on a log scale in the inset~the dashed line shows the effect of reducing the initial conditions by a factor of 1023). The student-teache
and student-student overlaps are shown in~b! and ~c!, respectively.
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block is some additive combination of the identity matr
and outer products of the student weight vectors,

A i j
215u i j I1(

kl
Qkl

i j JkJl
T . ~9!

where u i j are scalars whileQ i j are K dimensional square
matrices. Using the methods described in@9# it is then
straightforward to derive equations of motion for a set
order parametersJi

TJj[Qi j , Ji
TBn[Rin and Bn

TBm[Tnm ,
measuring the various overlaps between student and tea
vectors. These order parameters are necessary and suffi

to determine the generalization erroreg5^ 1
2 (fJ(j)

2fB(j))2&j , which we defined to be the expected error
the absence of noise@9#. The equations of motion are in th
form of coupled first order differential equations for the o
der parameters with respect to the normalized numbe
examples,

dRin

da
5h f in~R,Q,T!,

dQik

da
5h gik~R,Q,T!1h2hik~R,Q,T,s2!, ~10!

whereR5@Rin#, Q5@Qik# and T5@Tnm#. The explicit ex-
pressions are given in Appendix B. These equations can
integrated numerically in order to determine the evolution
the generalization error.

IV. NUMERICAL RESULTS

In Fig. 1 we show an example of the NGD dynamics f
a realizable and noiseless learning scenario (K5M52,
Tnm5dnm). Figure 1~a! shows the evolution of the general
zation error while Figs. 1~b! and 1~c! show the student-
teacher and student-student overlaps respectively~the indices
have been re-ordereda posteriori!. We have used initial con
ditions corresponding to an input dimension of aboutN
.106, although we expect the dynamical equations to
scribe mean behavior accurately for much smaller system
was found to be the case for GD@10#. The dashed line in Fig
1~a! shows the effect of reducing the initial conditions f
eachRin andQiÞk by a factor of 1023, which corresponds to
an input dimension of aboutN.1012. The symmetric phase
f
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seems to grow logarithmically asN increases, as was als
found to be the case for GD@12#.

As is the case for GD@9# the dynamics for this example
can be characterized by two major phases of learning,
symmetric phase and asymptotic convergence. Followin
short initial transient the order parameters are trapped
subspace characterized by a lack of differentiation betw
the activities of different teacher nodes. After an initial r
duction, the generalization error remains at a constant n
zero value and the student-teacher overlaps are virtually
distinguishable. This symmetric phase is an unstable fi
point of the dynamics and eventually small perturbations d
to the random initial conditions lead to escape and conv
gence towards zero generalization error. If the teacher is
terministic, as in this example, then the generalization e
converges to zero exponentially unless the learning rat
chosen too large@see the inset to Fig. 1~a!#. If the teacher’s
output is corrupted by noise then the learning rate must
annealed in order for the generalization error to decay
ymptotically ~we will consider this regime in more detail i
Sec. V B!.

The dynamics differs from the GD result in that the sym
metric phase is typically less pronounced, although
dashed line in Fig. 1~a! shows how the symmetric phas
increases in duration asN increases~because of a reduce
asymmetry in the initial conditions!. The dynamics for GD
and NGD are qualitatively different for small learning rate
where fluctuations in the gradient are completely suppres
and theh2 terms in Eq.~10! can be neglected. In this limi
the symmetric phase disappears completely for NGD, wh
it still dominates the learning time for GD. The symmetr
phase is a fluctuation driven phenomena for NGD, rat
than a perturbation around the deterministic result. As
scribed in the next section, this makes analysis of the s
metric phase more difficult than for GD since a small lea
ing rate expansion is no longer meaningful.

A quantitative comparison of GD and NGD is difficu
because both algorithms have a free parameter, the lear
rate h, which can be chosen arbitrarily and which will b
critical to performance. In order to make a principled co
parison we choose to compare the algorithms when t
learning rates are chosen to be optimal. This can be achie
by using a variational method that allows us to determine
globally optimal time-dependent learning rate for each al
rithm @14#. The resulting learning rate optimizes the tot
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FIG. 2. The optimal performance of a two-node student (K52) for NGD ~solid line! and GD~dashed line! for ~a! overrealizable:M
51, ~b! realizable:M52 and~c! unrealizable:M53 learning scenarios. The optimal learning rate schedule for NGD is shown by the
to each figure. The teacher is isotropic (Tnm5dnm), noise free and initial conditions are as in Fig. 1.
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change in generalization error over a fixed time-window a
is found by extremitization of the following functional~see
@14# for details and results for optimized GD!:

Deg@h~a!#5E
a0

a1deg

da
da5E

a0

a1
L@h~a!,a#da. ~11!

Numerical results suggest that the optimal learning rates
termined here are close to the critical learning rate within
symmetric phase for both methods, above which the stud
weight vector norms increase without bound.

In Fig. 2 we compare the performance of optimized G
and optimized NGD for a two-node student learning from
noiseless, isotropic teacher starting from the same initial c
ditions (K52, Tnm5dnm). Figures 2~a!, 2~b!, and 2~c! show
results for teachers withM51, M52, and M53 hidden
nodes respectively. In each case the optimal learning
schedule for NGD is shown by the inset. It should be no
that although there is a significant temporal variation in
optimizedh, very similar performance would be achieved
choosingh to be fixed at its average value. We see that NG
significantly outperforms GD in each example. For the ov
realizable example shown in Fig. 2~a! the difference is mos
significant, with NGD displaying no obvious symmetric pl
teau. Performance of the NGD algorithm seems to reflect
difficulty inherent in the task, while GD displays very simila
performance in each case. It is interesting to compare
results with those found using a locally optimal rule deriv
by variational arguments@15#. The variational approach re
quires rather detailed information about the teacher’s st
ture and would be difficult to approximate with a practic
algorithm. However, we find rather similar performance w
NGD, especially for theK5M52 example shown both her
and in@15#. The performance bottleneck for GD is due to
inherent symmetry in the student parametrization, while
NGD the task complexity seems to be more important. A
notice that the generalization error is significantly lower d
ing the symmetric plateau for NGD in each case, which
due to reduced weight vector norms~this is also true for the
locally optimal algorithm!. It is the growth of these norm
which limits increases in the learning rate for GD and
appears that NGD is much more effective in controlling t
effect. Another interesting difference between the NGD a
GD dynamics is in the short transient prior to the symme
phase. The NGD dynamics seems to converge much slo
to the symmetric fixed point, as shown in Fig. 2, reflecti
the fact that the strong eigenvalues, related to eigenvec
d

e-
e
nt

n-

te
d
e

-

e

ur

c-
l

r
o
-
s

t

d
c
er

rs

that lead the dynamics to the symmetric pixed point,
effectively reweighed and suppressed by the NGD rule.

V. GENERIC RESULTS FOR A SYMMETRIC SYSTEM

Although our equations of motion are sufficient to d
scribe learning for arbitrary system size, the number of or
parameters is12 K(K11)1KM so that the numerical integra
tion soon becomes rather cumbersome asK andM grow and
analysis becomes difficult. To obtain generic results in ter
of system size we therefore exploit symmetries which app
in the dynamics for isotropic tasks and structurally match
student and teacher (K5M and T5Tdnm). This site-
symmetric ansatz is only rigorously justified for the spec
case of symmetric initial conditions and further investig
tions are required to determine the validity of this appro
mation in general for large values ofK ~fixed points other
than those considered here have been reported for GD@12#
and it is unclear whether or not their basins of attraction
negligible!. Simulations of the GD dynamics forK up to 10,
with random initial conditions, show good corresponden
with the symmetric system. In this case we define a fo
dimensional system viaQi j 5Qd i j 1C(12d i j ) and Rin
5Rd in1S(12d in) which can be used to study the dynami
for arbitraryK andT ~here,d i j denotes the Kroneckerd). In
Appendix A we show how the Fisher information matrix ca
be inverted for the reduced dimensionality system and
resulting equations of motion are given in Appendix B 1.

Analytical study of the symmetric phase for GD is on
feasible for small learning rates, since in this case the s
metric fixed point is easily determined and a linear expans
around this fixed point is possible@9,13#. Such an analysis is
not feasible for NGD because the dynamics never
proaches this fixed point~the Fisher information matrix be
comes singular whenQ5C). In any case, a smallh analysis
will be of limited value since it is the fluctuation drive
terms in the dynamics@terms proportional toh2 in Eq. ~10!#
that set the learning time scale and determine the optimal
maximal learning rate during the symmetric phase. In or
to study the performance of both methods for larger learn
rates we will therefore apply the optimal learning rate fram
work described in the preceding section@14#.

The impact of output noise on the symmetric phase
namics is not considered explicitly here. For low noise lev
there is no noticeable effect on the length of the symme
phase, or on the order parameters and generalization e
within this phase. For larger noise levels the symme
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FIG. 3. In ~a! the generalization error is shown for optimal NGD~solid line! and optimal gradient descent~dashed line! for K510 in the

site-symmetric system~we defineã51022a). The inset shows the optimal learning rate for NGD. In~b! the time required for optimal NGD
to reach a generalization error of 1024K is shown as a function ofK on a log-log scale. The inset shows the optimal learning rate within
symmetric phase. In both~a! and ~b! we usedT51, zero noise and initial conditionsR51023, Q5U@0,0.5# andS5C50. A brief stage
of GD is used before NGD is started.
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phase increases in length and the student norms incre
resulting in a larger generalization error. We expect t
these are secondary effects and that most essential featu
this phase are captured by the noiseless dynamics. This i
true for later stages of learning, where the inclusion of no
completely alters qualitative features of the dynamics. Th
asymptotic effects are considered in Sec. V B below.

A. Globally optimal performance

The optimal learning rate is determined as describe be
Eq. ~11! in Sec. IV. In the following examples we use a bri
initial learning phase with GD~until a51) as this results in
faster entry into the symmetric phase and also leads
quicker convergence of the learning rate optimization. T
effect on learning time will be negligible asK becomes very
large, but this procedure might be used to improve per
mance in practice for realistically sized networks.

Figure 3 summarizes our results for transient learning
the absence of noise. In Fig. 3~a! we compare optimal per
formance forK510 andT51, which indicates a significan
shortening of the symmetric phase for NGD~the inset shows
the optimal learning rate for NGD!. Figure 3~b! shows the
time required for NGD to reach a generalization error
1024K as a function ofK ~for T51). The learning time is
dominated by the symmetric phase, so that these results
vide a scaling law for the length of the symmetric phase
terms of task complexity. We find that the escape time
NGD scales asK2, while the inset shows that the learnin
rate within the symmetric phase approaches aK22 decay.
Scaling laws for GD were determined in@13# ~also using a
site-symmetric ansatz!, showing aK8/3 law for escape time
and a learning rate scaling ofK25/3 within the symmetric
phase. The escape time for the adaptive learning rule stu
in @13# scales asK5/2, which is also worse than NGD.

B. Asymptotic convergence with noise

After the symmetric phase, the order parameters be
convergence towards their asymptotic values (R`5Q`5T,
S`5C`50) and for the realizable scenario considered h
the generalization error converges towards zero~recall that
we have defined the generalization error to be the expe
se,
t
s of
not
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error in the absence of noise!. In the absence of output nois
this convergence is exponential for a fixed learning rate
long as we do not choose the learning rate too high. Ho
ever, in the presence of output noise the learning rate m
be annealed in order to achieve zero generalization error
ymptotically. It is known that NGD is asymptotically opti
mal, in terms of the covariances of the student-teac
weight deviations~the quadratic estimation error!, with h
51/a, saturating the Cramer-Rao bound and equalling
performance even the best batch methods@2#. However, the
quadratic estimation error has no direct interpretation
terms of generalization ability. In Fig. 4 we show results f
optimized NGD dynamics withK55 andT51. Figure 4~a!
shows the generalization error and Fig. 4~b! shows the cor-
responding optimal learning rate schedules for three no
levels (s250.1, s250.01 ands250.001). The graphs are
on log-log scales and show that the optimized learning ra
indeed converge to a 1/a decay after leaving the symmetri
phase. The generalization error decays at the same rate
with a prefactor that depends on the noise level.

In order to determine the asymptotic generalization er
decay analytically we apply recent results for the annea
dynamics of GD@16#. This allows a comparison between th
asymptotic generalization error for NGD and the result
GD. In Appendix B 2 wesolve the asymptotic dynamics fo
annealed learning. As expected, the optimal annealing sc
ule for NGD is found by settingh51/a at late times. By
contrast, although the optimal learning rate for GD is a
inversely proportional toa, the optimal prefactor depends o
K andT in a nontrivial manner@16#. For both optimized GD
and NGD the generalization error decays according to
inverse power law:

eg;
e0s2

a
as a→`. ~12!

The exact result for NGD takes a very simple forme0
5 1

2 K independent of the value ofT. This equals the univer-
sal asymptotics for optimal maximum likelihood and Bay
estimators, which depend only on the learning machin
number of degrees of freedom@17#. NGD is therefore
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FIG. 4. Optimal NGD with teacher corrupted by Gaussian noise forK55 andT51 in the site-symmetric system, shown on a log-l
scale. The generalization error and optimal time-dependent learning rates are shown in~a! and ~b! respectively, withs250.1 ~solid line!,
s250.01 ~dashed line!, ands250.001~dot-dashed line!.
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asymptotically optimal in terms of both generalization er
and quadratic estimation error.

In Fig. 5 we compare the prefactor of the generalizat
error decay for NGD and optimal GD. Figure 5~a! shows the
result for T51 as a function ofK, indicating an approxi-
mately linear scaling law for GD~The result above show
that the NGD scaling is linear inK.) In Fig. 5~b! we com-
pare the decay prefactors for each method as a function oT,
showing how the difference diverges asT is reduced~the GD
results are for largeK). This can be explained by examinin
the asymptotic expression for the Fisher information mat
shown in Eq.~A6!. For largeT the diagonals of this matrix
are O(1/AT) and equal~for large N) while all other terms
are at mostO(1/T), so that the Fisher information is effec
tively proportional to the identity matrix in this limit and
NGD is asymptotically equivalent to GD. However, fo
small T the diagonals areO(T2) while the off-diagonals re-
main finite, so that the Fisher information is dominated
off-diagonals in this limit.

VI. CONCLUSION

We have used a statistical mechanics formalism to so
and analyze the dynamics of NGD for learning in a two-lay
feedforward neural network. In order to quantify the co
parative performance of NGD and GD we compared the
timized performance of each algorithm by determining
r

n

,

y

e
r
-
-

e

optimal learning rate in each case. We found that NGD p
vided significant gains in performance over GD in every ca
examined, both in the transient and asymptotic stages
learning. A site-symmetric ansatz was applied in order
simplify the dynamical equations for a realizable and isot
pic task. This allowed the dynamics of large networks to
integrated efficiently so that we could determine generic
havior for large networks. We found that the learning tim
scaled asK2 whereK is the number of hidden nodes, com
pared to a scaling ofK8/3 for GD @13#. Asymptotically NGD
is known to provide optimal performance withh51/a in
terms of the quadratic estimation error. An asymptotic so
tion to the annealed learning rate dynamics showed
schedule to also be optimal in terms of generalization er
with the error decay saturating the universal asymptotics
optimal maximum likelihood and Bayes estimators@17#. We
compared this result with the optimized schedule for GD a
plotted the relative performance for various values of ta
nonlinearityT. The difference in performance was found
be largest for small values ofT. However, in the case o
NGD the optimal annealing schedule at late times is kno
while for GD it is a complex function ofK andT that will be
difficult to estimate in general.

One possible drawback for NGD is the rather comp
transient behavior of the optimal learning rate. For examp
in the realizable isotropic case the optimal learning r
scales asK22 in the symmetric phase andK21 asymptoti-
FIG. 5. Prefactor for the asymptotic decay of the generalization error:~a! shows the prefactor forT51 as a function ofK for optimal GD
~circles! and NGD~crosses! while ~b! shows how the prefactor for optimal GD~largeK) decays towardsK/2 asT increases, which is the
prefactor for NGD. The inset to~b! shows the GD result on a log-log scale.
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cally in the absence of noise. It is also unclear where learn
rate annealing should begin in the presence of output no
Asymptotically the optimal annealing schedule is known,
the situation is better than for GD, but the problem of sett
a good learning rate in the transient remains. In pract
applications there will also be an increased cost require
estimating and inverting the Fisher information matrix@4#.
Here, we have only considered the idealized situation
which the Fisher information matrix is exactly known. In@8#
we adapt a matrix momentum algorithm due to Orr and Le
@7# in order to obtain efficient averaging and inversion of t
Fisher information matrix on line. This algorithm is shown
provide a good approximation to NGD, although this is at
cost of including an extra parameter.

We would like to thank Shun-ichi Amari for useful dis
cussions. This work was supported by EPSRC Grant
GR/L19232.

APPENDIX A: INVERTING THE FISHER INFORMATION
MATRIX

In general the Fisher information matrix should be
verted using the block inversion method described in@4#.
The parameters in Eq.~9! are then complicated functions o
Q which must be determined iteratively~see@19# for a simi-
lar method applied to the Hessian matrix forM5K52).
Below we consider the simpler situation of a site-symme
system, in which case the inversion can be carried ou
closed form for arbitraryK. Asymptotically the result is
shown to be further simplified.

1. Site-symmetric system

Exploiting symmetries in the dynamics of realizable is
tropic learning (K5M and Tnm5Tdnm) we consider a re-
duced dimensionality system withQi j 5Qd i j 1C(12d i j ).
We can then write block (i , j ) of the Fisher information ma
trix as @see Eq.~6!#,

A i j 5~ad i j 1b!I1~cd i j 1d!JiJi
T1dJjJj

T1e~JiJj
T1JjJi

T!,
~A1!
g
e.

o
g
al
in

n

n

e

o.

c
in

-

where we have defined

b5
2

pA@~11Q!22C2#
, a5

2

pA112Q
2b,

c5
4~11Q2C!

p„~11Q!22C2
…

3/2
2

4

p~112Q!3/2
,

d5
22~11Q!

p„~11Q!22C2
…

3/2
, e5

2C

p„~11Q!22C2
…

3/2
.

Block (i , j ) in the inverse ofA is then given by

A i j
215S 1

a
d i j 2

b

a~a1bK! D I1 (
k51

K

(
l 51

K

G i j
klJkJl

T , ~A2!

and symmetries suggest the following general form forG:

G i j
kl5g1d i j d ikd i l 1g2~d ikd i l 1d jkd j l !1g3~d ikd jk1d i l d i j !

1g4dkld i j 1g5d ikd j l 1g6d jkd i l 1g7~d j l 1d ik!

1g8~d jk1d i l !1g9dkl1g10d i j 1g11. ~A3!

We therefore have to set 11 free parameters in order to f
specify G. This is achieved by substituting Eqs.~A1! and
~A2! into the definition of the inverse,

(
k51

K

A ikAk j
215d i j I ; i , j . ~A4!

Equating like terms leads to a set of 15 equations and we
choose any linearly independent subset of 11 equation
order to determineg. For one particular choice we find

g5M21b, ~A5!

where the nonzero terms inM113115@mi , j # and b1311
5@b i # are defined below:
m1,15m2,25m4,35~Q2C!~d1e!1cQ1a,

m1,25m2,95m4,85c@Q1C~K21!#,

m1,35m2,85m4,105~Q2C!~dK1c!,

m1,45m1,65c~Q2C!, m2,45m4,65cC,

m2,65m4,45m5,45m5,65d~Q2C!,

m3,25m6,45m8,65m11,85a,

m3,35m6,65m7,45m7,65m8,45m11,105e~Q2C!,

m5,15m9,55b1dQ1eC,

m5,25m7,25m10,95~d1e!~Q1C~K21!!,
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m5,35d~Q2C!1Kb1a, m7,15m10,25m10,35eQ1dC,

m7,35m10,105e~Q2C!1cC1~d1e!KC,

m7,55m10,75~Q2C!~d1c1e!1a1cC1K~Qe1Cd!,

m7,75m10,115~Q2C!~K~d1e!1c!1cCK1~d1e!CK2,

m9,25b, m9,35m10,45m10,65~d1e!C,

m9,75Kb1a1~d1e!~Q1C~K21!!,

m10,85~Q2C!~d12e!1cC12KC~d1e!,
o

e,
b152
c

a
, b45

b~c1dK!

a~a1bK!
2

d

a
, b552

d

a
,

b75b852
e

a
, b105b115

eb

a~a1bK!
.

2. Asymptotic inversion

For realizable rules the asymptotic form for each block
A is ~to leading order!,

A i j 5~ad i j 1b!I1~cd i j 1d!BiBi
T1dBjBj

T , ~A6!

where

a5
2

pA112T
2

2

p~11T!
, b5

2

p~11T!
,

c5
4

p~11T!2
2

4

p~112T!3/2
, d52

2

p~11T!2
.

Block (i , j ) in the inverse ofA is then given by

A i j
215S 1

a
d i j 2

b

a~a1bK! D I1 (
n51

K

G i j
n BnBn

T , ~A7!
f

Substituting these expressions into Eq.~A4! and using the
orthogonality of the teacher weight vectors (Tnm5Tdnm) we
obtain a matrix equation forGn5@G i j

n #,

Gn5P21X, ~A8!

where

P5aI1S en

u D TS cT 2dT

2dT b D S en

u D ,

X5
1

aS en

u D TS 2c ~da2bc!/~a1bK!

d 2db/~a1bK!
D S en

u D .

Here, we have defineden to be aK-dimensional row vector
with a one in thenth element and zeros everywhere els
while u is a row vector of ones. Solving forGn we find

Gn5
1

DS en

u D T

QS en

u D , ~A9!

where
Q5S K~d2T2bc!2ac d2T2bc2ad

d2T2bc2ad ~d2T~a1b!22abd2b2c!/~a1bK!
D ,

D5a2~a1bK!1a2T~c22d!1aT~K21!~cb2d2!.
APPENDIX B: EQUATIONS OF MOTION

Using the definition ofA21 given in Eq.~9! we find

dRin

da
5h(

j
S u i j f jn1(

kl
Qkl

i j Rknc j l D ,
dQir

da
5h(

j
S u i j c j r 1u r j c j i 1(

kl
c j l ~Qkl

i j Qkr1Qkl
r j Qki! D

1h2(
jk

u i j u rky jk . ~B1!

Here f in[^d i yn&$j% , c ik[^d ixk&$j% and y ik[^d idk&$j%
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where xi[Ji
Tj and yn[Bn

Tj are activations of thei th
student andnth teacher hidden nodes, respectively, andd i

m

[g8(xi
m)@(n51

M g(yn
m)2( j 51

K g(xj
m)1rm#. The brackets de-

note averages over inputs that can be written as aver
over the multivariate Gaussian distribution of student a
teacher activations. The explicit expressions forf in , c ik ,
y ik depend exclusively on the weight overlaps~the covari-
ances of the activation distribution! and are given in@9#.

1. Site-symmetric system

We substitute the definition of the inverse Fisher inform
tion for a symmetric system from Eq.~A2! into Eq.~3! to get
the weight update equation:

Ji
m115Ji

m1
h

NF S sd i
m1t(

j
d j

mD jm1(
jkl

G i j
kld j

mxl
mJk

mG ,
~B2!

wheres51/a and t52b/a(a1bK). Differential equations
for the order parameters can then be derived by the meth
described in@9# and for the reduced dimensionality syste
we find

dR

da
5h@sfs1t~fs1~K21!fa!1vR1wR1zRR#,

dS

da
5h@sfa1t~fs1~K21!fa!1wR1zRS#,

dQ

da
5h@scs1t~cs1~K21!ca!12~vQ1wQ1zQQ!#

1h2@s2ys1~2st1t2K !~ys1~K21!ya!#,

dC

da
5h@sca1t~cs1~K21!ca!12~wQ1zQC!#

1h2@s2ya1~2st1t2K !~ys1~K21!ya!#, ~B3!

where
es
d

-

ds

vR5~g41g6!~R2S!~cs2ca!,

wR5~g41g6!@~R2S!ca1S~cs1~K21!ca!#

1~R1~K21!S!@~g21g31Kg7!cs

1~2g81g91g101Kg11!@cs1~K21!ca##,

zR5~g11g5K !cs1~g21g31Kg7!@cs1~K21!ca#,

and vQ , wQ and zQ are the same except thatR and S are
replaced byQ and C respectively everywhere they appe
explicitly. Here,g5@g i # is defined in Eq.~A5! and we have
defined

^d i yn&$j%5d infs1~12d in!fa ,

^d id j&$j%5d i j ys1~12d i j !ya ,

^d ixj1d j xi&$j%5d i j cs1~12d i j !ca ,

where d i j with two indices denotes the Kroneckerd and
brackets denote averages over the inputs. These average
again be calculated in closed form@9#.

2. Asymptotic dynamics

The asymptotic dynamics for GD with an annealed lea
ing rate have recently been solved under the statistical
chanics formalism and the optimal generalization error de
is known in this case@16#. Here we extend those results
NGD.

Following the notation in@16# we defineu5(R2T,Q
2T,S,C)T to be the deviation from the asymptotic fixe
point. If the learning rate decays according to some pow
law then the linearized equations of motion around this fix
point are given by

du

da
5haMu1ha

2s2b, ~B4!

wherehaM is the Jacobian of the equations of motion to fi
order in h while the only nonvanishing second order term
are proportional to the noise variance. ForT51 we find
M5
1

DS c1 c2 26~K21!c3 3~K21!c3

2
16

A3
c3 c4 212~K21!c3 6~K21!c3

8A3 24A3 c5 29~K21!

16A3 28A3 2c4 2
8

A3
c3

D ,
D5p„25216A31K~8A329!…,

c152@32A32412K~16A329!#,

c25@57248A31K~24A329!#/2,
c352~2A32613K !,

c457216A31K~918A3!,

c5516A32431K~2728A3!,
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and the two nonzero entries inb are

b25
p„38A32661K~51230A3!1K2~6A329!…

@21~K21!A3#~A322!2
,

b45
23p„724A31K~2A323!…

@21~K21!A3#~A322!2
.

The solution to Eq.~B4! with ha5h0 /a is

u~a!5s2VXV 21b, ~B5!

where V21MV is a diagonal matrix whose entriesl i are
eigenvalues ofM . We have defined the diagonal matrixX to
be
-
,

d

y

d

X i
diag52

h0
2

11l ih0
F 1

a
2al ih0a0

2~11l ih0!G , ~B6!

where annealing begins whena5a0. For natural gradient
learning we find two degenerate eigenvaluesl1,2521,
l3,4522 and by substituting Eq.~B6! into a first-order ex-
pansion of the generalization error it is straightforward
show h051 to be optimal. In this case the modes corr
sponding tol1,2 do not contribute to the asymptotic gene
alization error and for all values ofT we find

eg52
s2h0

2K

2a~11h0l3,4!
5

s2K

2a
. ~B7!
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