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Short-time dynamics of colloidal suspensions in confined geometries

I. Pagonabarraga,1,* M. H. J. Hagen,1,† C. P. Lowe,1,2 and D. Frenkel1
1FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
2Computational Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
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We analyze the short-time dynamical behavior of a colloidal suspension in a confined geometry. We analyze
the relevant dynamical response of the solvent, and derive the temporal behavior of the velocity autocorrelation
function, which exhibits an asymptotic negative algebraic decay. We are able to compare quantitatively with
theoretical expressions, and analyze the effects of confinement on the diffusive behavior of the suspension.
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I. INTRODUCTION

The dynamics of fluids in confined geometries is a sub
of interest, both for its relevance in chemical engineering a
environmental science, and because of the new phenom
that arise as a consequence of the competition between
dynamical intrinsic features of the fluid and the geometri
restrictions introduced by the walls. Such an interaction m
give rise to a qualitatively different behavior from those p
dicted in unbounded systems. For example, it is well kno
that in equilibrium new thermodynamic phases may be
duced by the geometrical constraints. Here we will anal
the effects on the dynamics of suspended particles suspe
as a consequence of the modification of the solvent hyd
dynamics.

In a previous paper@1#, we showed how the presence
constraining walls modifies the dynamics of colloidal pa
ticles. We indicated there that the effect of the surfaces
the dynamics of the fluid depends on the specific momen
exchange mechanisms at the interfaces, and not only on
geometrical constraints. For example, for slip boundary c
ditions we saw that the fluid behaved as an effective med
of dimensionalityd* equal to the dimensions of the syste
that were unconstrained by the presence of the bounda
On the other hand, for stick surfaces, the propagation
sound modes in the fluid was modified. Depending on
geometry of the constraining medium, the effective sou
velocity may become imaginary, developing into a diffusi
sound wave. This effect, in turn, qualitatively changes
short-time dynamical behavior of a suspended particle.
asymptotic decay is controlled by the diffusive sound mo
rather than by vorticity diffusion, as happens in unbound
fluids @2#.

The effect that the coupling of a fluid to an elastic mat
has on the dynamical properties of the fluid has been con
ered previously following the model introduced by Biot@3#.
According to this model, the dynamics of the solid and flu
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phases are treated on the same footing, and all the dissip
arises due to the momentum exchange between the fluid
the solid when they are in relative motion. This dissipation
included as a frictional force acting on the fluid, with a fri
tion coefficient that is either left undetermined or is com
puted assuming that the solid frame is a porous medium
the fluid is filling it. One of the predictions of Biot’s theory i
that this coupling induces two sound modes in the fluid, o
of which has a velocity smaller than the corresponding so
velocities in the two media. Subsequently, it was pointed
that the velocity of the slow sound could give rise to a d
fusive sound mode@4#. Analogous ideas were used to an
lyze the dynamics of a thin fluid layer adsorbed on a so
substrate@5#, as well as the dynamics of gels@6#, where it
was argued that, due to the characteristic small sizes of
pores, such a diffusive mode could play an important role
the low frequency response of the gel.

In this paper we will restrict ourselves to a simple geo
etry, namely, a fluid between plane walls, where an ex
hydrodynamic calculation can be carried out without mak
any assumption about the force that the solid exerts on
fluid. It then becomes apparent that it is only the role of t
boundary conditions that determines the hydrodynam
modes of the fluid, and from which the diffusive sound mo
can be completely characterized. Although a careful hyd
dynamic analysis of the modes of a fluid layer confined
tween two parallel plates has previously been carried out@7#,
it was restricted to high frequencies. We will concentrate
the low frequency regime, and in particular we will consid
the behavior of the velocity autocorrelation functio
~VACF!, defined as

Cv~ t ![(
i 51

N

^vW i~ t !•vW i~0!& ~1!

for N suspended particles with velocities$vW i(t)%, where the
average is carried out on an equilibrium fluid over initi
conditions. The VACF contains many of the features th
characterize the dynamics of the suspension, and it is
simplest example where we can understand the macrosc
properties of the suspension in terms of its microscopic
namics, since the time integral of the VACF is related to t
self-diffusion coefficient of the suspension. We will analy
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PRE 59 4459SHORT-TIME DYNAMICS OF COLLOIDAL . . .
the short-time regime for the colloidal dynamics, a time sc
in which colloid displacements can be neglected, but
which the solvent hydrodynamics has time to develop.

In Sec. II we will theoretically consider the VACF of
particle suspended in a fluid. To this end, we will determ
the relevant fluid modes characteristic of the confined s
vent. In Sec. III we present the simulation results, and co
pare quantitatively with the theoretical predictions. We lo
in detail at the behavior of the fluid, and we study both t
translational and rotational motion of a suspended particle
Sec. IV we use the results of the preceding sections to s
the effect of confinement on the diffusion of colloidal su
pensions. We end with a discussion of our results. In App
dix A we give some of the quantities used in Sec. II, and
Appendix B we present an intuitive derivation of the resu
of Sec. II.

II. THEORETICAL ANALYSIS

In order to study the VACF, we start by analyzing th
velocity generated by a localized force perturbation in a p
solvent in the presence of walls, which will show clearly t
connection between the dynamics of the suspended par
and the relevant hydrodynamic modes of the solvent.
will consider a fluid confined between two parallel plate
located aty56L/2. For simplicity, we restrict ourselves t
the two-dimensional~2D! situation, in which the confining
walls are slits, but it is straightforward to generalize the c
culation to higher dimensions.

Since the force pertubation is weak, the fluid densityr

and velocity fieldsvW , obey the linearized continuity an
Navier-Stokes equations, respectively,

]r

]t
1r¹•vW 50, ~2!

]vW

]t
1

cs
2

r
¹r2n¹2vW 2G¹¹•vW 5

1

r
FW , ~3!

wherecs is the speed of sound, andn and G are the kine-
matic shear and bulk viscosities, respectively. The fluid
initially at rest, perturbed only by the external weak forceFW
applied in the center of the slit and pointing along the dir
tion of the slit,x̂, FW 5 f 0x̂d(t)d(y2y0). In Eqs.~2! and~3!
we have disregarded thermal effects, assuming the proce
be isothermal, but its generalization to adiabatic proces
will not modify the features presented in this paper.

Since the fluid is confined between two walls, in order
study the dynamics of the flow generated by a given forc
is necessary to specify the boundary conditions at the w
We will assume that stick boundary conditions are satis
at the boundaries, which is the usual situation for solid int
faces. In this case, the velocity of the fluid is equal to tha
the wall, namely,vW (y56L/2)50.

In order to solve Eqs.~2! and ~3!, we Fourier transform
them. Defining

vW ~v!5E
2`

`

eivtvW ~ t !dt ~4!
e
n
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-
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and

vW ~kW !5E
2`

`

eikW•rWvW ~rW !drW,

we can rewrite Eqs.~2! and~3! as a set of ordinary differen
tial equations

d

dt
V5D̃V1 fW , ~5!

where the vectorsV and fW are defined as

V5S k̂x•vW ,
] k̂x•vW

]y
,vy ,

]vy

]y
D , ~6!

fW5S 0,
1

r
k̂x• x̂ f 0,0,0D d~ t !d~y2y0!. ~7!

The hydrodynamic matrixD̃, which is written down in
Appendix A, has, as eigenvalues,

l1
25kx

21
iv

n
,

l2
25kx

22
v2

cs
21 i ~n1G!v

. ~8!

From Eq. ~5! we can express the velocity field at an
point in the fluid as

vW ~y,kW x ,v!5M•D~y!•CW 1E
2L/2

y

dy8M•D~y2y8!• fW~y8!,

~9!

with D being the diagonalized hydrodynamic matrix andM
the corresponding eigenvector matrix. Explicit expressio
for both of them are given in Appendix A. Finally,CW is a
vector of constants that should be specified by imposing
boundary conditions in Eq.~9!. Although the derivation so
far has been focused on a localized force, we view it a
~small! colloidal particle. In the limit of a vanishing radius
the identification will be exact.

It is well established that the dynamics of suspended p
ticles can be understood in terms of couplings between
particle variables and the hydrodynamic modes@8#. Since we
consider times at which the displacement of the colloid c
be neglected, we can take advantage of Onsager’s regre
hypothesis@9#, and can relate the decay of the velocity of t
fluid at pointy0 ~where the force has been applied! with the
VACF of a particle placed at that position. The velocity
the fluid at the point where we have initially applied th
force is given by

vx~y5y0 ,kx ,v!5c1el1y01c2e2l1y01c3

ikx

l2
el2y0

2
ikx

l2
e2l2y0, ~10!
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and the constantsc1 , . . . ,c4 are the components of the vectorCW . Substituting their appropriate expressions for stick bound
conditions, one obtains

vx~y0 ,kx ,v!5
f 0

l2n~l1
22kx

2!

H~kx ,l1 ,l2 ,L,y0!

$22kx
2l1l2@12cosh~Ll1!cosh~Ll2!#1~kx

41l1
2l2

2!sinh~Ll1!sinh~Ll2!%
, ~11!
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where we have introduced the functionH(kx ,l1 ,l2 ,L,y0),
which is written down explicitly in Appendix A. If we now
transform back to real space and time, we find

vx~x50, y5y0 ,t !5E
2`

` dv

2p
e2 ivtE dkx

2p
vx~y0 ,kx ,v!.

~12!

This equation contains the complete information on
dynamics of the particle. We will now focus on it
asymptotic behavior, in the situation of strong confineme
i.e., l1L!1 andl2L!1. The opposite limit has been exam
ined in the literature@7#, in the context of interfacial hydro
dynamic modes. In that case, the observed modes differ f
the usual bulk ones in the sense that, although qualitativ
they are not modified, the damping increases due to the p
ence of the solid walls.

From the structure of Eq.~11!, one can see that the dy
namics of the particle is determined by the relevant hyd
dynamic modes. The expression of the denominator sh
that different dynamical behaviors will exist at different tim
scales. For example, the confinement will induce resonan
of the propagating modes at the time scale in which so
propagates the width of the system. At low frequencies, h
ever, a diffusive mode develops and controls the asympt
relaxation of fluid perturbations. In this time regime, Eq.~11!
reduces to

vx~y5y0 ,kx ,v!5

i f 0cs
8kx

8L9F12S 2y0

L D 2G2

21233n6~l12kx
2!v2~v2vd!

~13!

where vd5 i (cs
2L2/12n)kx

2 , which is a diffusive mode.
Therefore, density perturbations in the tube will decay dif
sively, and we can define an effective diffusion coefficie
for sound,D* , as

D* 5
cs

2L2

12n
. ~14!

As already pointed out, sound diffusion corresponds
the relevant low frequency dynamical response of the fluid
the tube. In this case we have derived an expression for
diffusion coefficient, which comes from the exact hydrod
namic analysis, and which presents a simple dependenc
the geometry considered. It clearly shows that sound di
sion arises purely from the dissipation at the walls, witho
making any assumption about the momentum exchan
Nevertheless, the expression we obtain coincides with
predictions made on the basis of permeability@4#, which in
this case isL2/12. The previous analysis is also easily e
e
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tended to explore the effect of different kinds of bounda
conditions on the hydrodynamic response of the fluid. F
example, for slip boundary conditions, the hydrodynam
modes correspond to those of a fluid with an effective
mensionalityd* 5D21 @1#. In this case sound is always
propagative mode.

From Eqs.~12! and ~13!, we can derive the asymptoti
decay of the velocity of a suspended particle,

vx~y5y0 , r x50,t !52
3A3

32Ap

f 0

csAnt3/2F12S 2y0

L D 2G2

1OS 1

t5/2D . ~15!

The asymptotic behavior is algebraic, and the veloc
reverses its direction during its decay. Also for unbound
fluids an algebraic long-time tail is observed@2#. In this case,
the slow decay is due to the coupling of the particle veloc
to vorticity diffusion. The velocity does not change sign, a
the predicted exponent is different. In fact, on the basis
vorticity, one would have expected an exponential decay
the velocity of the suspended particle in the present situa
@10#. As we will show in Sec. III, vorticity cannot develop a
long times due to the interaction with the walls. It was th
fact which led previous authors to predict an exponen
decay for the VACF of a particle between walls@10#. Our
result shows that the particle velocity couples to the slow
decaying mode in the fluid. The solid walls qualitative
modify the low frequency modes with respect to those ch
acteristics of an unbounded fluid, and the coupling to
diffusing compressible mode leads to a qualitatively differe
decay for the VACF.

We have restricted our analysis to a two-dimensio
fluid, but it can be easily generalized to higher dimensio
In all cases a diffusive sound mode is present, and, acc
ingly, a power law characterizes the long-time tail of t
VACF of a suspended particle. The value of the expon
can be easily related to the number of dimensions of the fl
that are not constrained,d* @1#. In Appendix B we present a
more intuitive derivation of the negative algebraic long-tim
tail. It gives a simple physical picture of the role of the wa
on the development of sound modes, and predicts the co
sponding exponent of the long-time tail for any dimensio

So far we have presented a hydrodynamic analysis. If
colloidal particle is diffusing, the amplitude of the long-tim
tail will be modified. It is easy to account for it by makin
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use of mode-coupling theory@11#. In this case the algebrai
decay is not modified, and the amplitude of the long-time
will depend both onn and the diffusion coefficient of the
particle in the usual way. Finally, we have always assum
that the solid surfaces are completely rigid, which ensure
complete time scale separation between the propagatio
the fluid and wall modes. If the surfaces are deformab
sound modes can partially propagate through the walls, le
ing also to a decrease in the amplitude of the long-time t

III. COMPUTER SIMULATIONS

We have performed computer simulations to gain a be
understanding of the dynamical effects induced by the c
fining walls, using the lattice Boltzmann model to simulate
fluid @12#. This method is a preaveraged version of a latti
gas cellular automaton model of a fluid. The basic dynam
quantity is the fraction of particles moving in a given dire
tion at a certain lattice node. With this technique it is easy
simulate the dynamics of colloidal particles. These are in
duced as surfaces where the collision rules of the populat
in the neighboring nodes are modified in order to ensure
appropriate boundary conditions. Therefore, it is also sim
to introduce bounding walls for the fluid. We use an impli
updating scheme for the moving boundaries@13# to avoid
instabilities, and to allow us to simulate buoyant particl
while the original scheme could only deal with heavy p
ticles @12#. We have taken the lattice spacing as the unit
length, and the time step as the unit of time. In these un
the speed of sound of the fluid iscs51/A2, and the kine-
matic viscosity used isn5 1

2 unless otherwise stated.
In order to compute the VACF we should, in principl

perform equilibrium averages for the velocities of the p
ticles, taking into account that they move in a fluctuati
fluid. Since we are interested in the short-time dynamics
far as their displacements can be neglected, we can mak
of an Onsager regression hypothesis@9# and study the decay
of their velocities from an initial perturbation. In this cas
we can then disregard the fluctuations of the fluid, with
corresponding improvement in the simulation performan
@14#. In all the simulations we will consider times such th
sound has not had time to travel the length of the wa
Therefore, the system can be regarded as infinite, and w
not have to consider finite-size effects.

Throughout this section we will constrain ourselves to
simplest geometry. In this sense, the confining walls will
either planes~in 2D slits! or a cylindrical tube. When we
look at particle dynamics, they will always be spheres~disks
in two-dimensional!.

A. Diffusive sound modes

The simplest way to show the diffusive character of sou
modes in a confined geometry is by analyzing the temp
decay of a localized density perturbation in the absence
any solid particle. Initially, the density of the fluid is homo
geneous except for a node located in the center of a tube
compute then the moments of the density distribution alo
the direction of the tube, averaging across the transverse
rection, i.e.,^x(t)n&5*2`

` dx*2L/2
L/2 (r(x,y,t)2r0)ndy, with

n51,2, . . . ,wherer0 is the equilibrium density andL is the
il
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width of the tube. We have analyzed the behavior of
diffusion coefficient obtained from the second moment of
density distribution, i.e.D* 5 1

2 (d/dt)^x(t)2& at long times,
as a function of the viscosity and the radius of the tube.
Fig. 1 we display the diffusion coefficient measured as
function of the inverse of the shear viscosity. The dep
dence of the diffusion coefficient of sound on the viscos
predicted in Eq.~14! is clearly recovered. We have analo
gously checked its dependence on the width of the slit. B
scalings also allow us to deduce that the diffusion coeffici
measured in the simulations behaves as

Dsim* 5
c2~L221!

12n
1

1

2
, ~16!

which agrees quantitatively with Eq.~14!, except for the fac-
tors 1

2 and 1, which are due to lattice artifacts.
In order to understand how the diffusive regime sett

down, in Fig. 2 we show the second and fourth moments
the distribution as a function of time, normalized by the co
responding values for Gaussian diffusion, i.e.,^x2(t)&
52D* t and ^x4(t)&512(D* t)2. We use as a value forD*
the one given in Eq.~16!. At long times, both moments ap
proach 1, which means that the diffusive regime settles
The diffusive regime is reached on a time scale in wh
momentum can diffuse the width of the tube,tn5L2/n. One
can also see that the second moment approaches the G
ian behavior faster than the fourth moment. This effect
readily seen by looking at the second cumulanta2(t)
[^x4(t)&/„3^x2(t)&2

…21, which characterizes the non
Gaussianity of the diffusion process, which is also display
in Fig. 2. One can see that it is a slowly decaying function.
fact, a study of its asymptotic behavior shows that it vanis
as a2(t);1/t, which implies than, even when the diffusiv
regime is achieved, still diffusion will be non-Gaussian un
longer times.

Finally, in Fig. 3 we display the time evolution of th
density profile generated by the initially localized dens
perturbation. At short times two peaks start to displace
opposite directions at the speed of sound. As time proce

FIG. 1. The effective diffusion coefficient of density perturb
tions D* as a function of 1/n. Results were obtained in a two
dimensional slit of widthL59. The points denote the simulatio
results, and the line is a guide to the eye.D* andn are expressed in
lattice units.
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these peaks are progressively damped. On the other hand
region between the two peaks does not relax to the equ
rium density. The inhomogeneity generated in this region
a result of the successive collisions of the initial density p
turbation with the solid wall, develops subsequently into
Gaussian and decays diffusively. It is on this time scale t
the dynamics is controlled by the diffusion coefficientD*
derived in Sec. II.

FIG. 2. Second and fourth moments, and second cumulanta2 of
of the density distribution as a function of time for an initial
localized density perturbation in a 2D slit of widthL510 and ki-
nematic viscosityn50.5. The moments are normalized by the co
responding moment for Gaussian diffusion. Dimensional quanti
are expressed in lattice units.

FIG. 3. Time evolution of an initial localized density perturb
tion in a two-dimensional slit of widthL510 and kinematic viscos
ity n50.5. The density perturbation isdr50.1r0 , r0 being the
equilibrium density. Density profiles at timest50.1, 0.15, 0.2, 0.25,
0.3, and 0.35 correspond to continuous lines, and times 0.5 and
to dashed lines. The lower the curve in the center, the larger
time it corresponds to. Time is expressed in units of the diffus
time tn , and distance is expressed in lattice units.
the
b-
s
-

a
at

B. Velocity correlation function for a particle

We will start by analyzing the VACF of a sphere of radiu
r 52.5 in the center of a cylinder of radiusR54.5, as shown
in Fig. 4. The initial velocity of the particle is parallel to th
axis of the cylinder. The decay coincides with the one o
tained for an unbounded fluid until the initial velocity pe
turbation has reflected back from the wall on the partic
This deviation will scale linearly with the tube width, be
cause it is controlled by sound propagation. At longer tim
superposition of sound reflections modifies the decay of
velocity which becomes negative, exhibiting a minimu
Such a minimum appears, roughly, at a timetc5L/cs , when
momentum has propagated the tube width. It is, sub
quently, at timestn when momentum has diffused the tub
width that the decay becomes algebraic. As shown in
inset of Fig. 4, the exponent of the algebraic decay is2 3

2 in
this case, which coincides with the theoretical prediction
a 2D fluid of the preceding section.

In order to test the prediction for the amplitude of th
long-time tail, we have studied the asymptotic decay o
localized velocity perturbation, and of particles of radiusr
50.5 and 2.5, all of them located at the center of a tw
dimensional slit of width 16. In Fig. 5 we compare the am
plitude of the algebraic tail predicted by Eq.~15! with the
simulation results in all three cases. Due to the discreten
of the lattice, there exists an uncertainty about the ac
location of the solid boundaries@12#. Both for a point force
and for the particle of radius 0.5 this indeterminacy is neg
gible. For a particle of radius 2.5 we have fitted the cur
multiplying the distance from the center of the particle to t
wall by a factor 1.1. This assumes a 10% error in the lo
tion of the interfaces, leading to errors in the distance that
smaller than one lattice spacing, and which are in agreem
with previous estimates of the uncertainty in the particle-w
separations@15#.

We have focused on motions of the particles parallel
the directions that are not confined. If the particle initia
moves perpendicularly to the walls, an exponential deca
obtained as could be expected, since in this case the de
perturbation generated by the motion of the particle can

s

.5
e

e

FIG. 4. Normalized VACF of a colloidal particle with radiusr
52.5 in the center of a cylindrical tube with radiusR54.5, both
lengths expressed in lattice units.
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propagate through the system. Therefore, even if in a sus
sion particles move at random, the long-time behavior w
be controlled by the components parallel to the walls.

One can also analyze the behavior of the angular velo
autocorrelation function~AVACF!. The decay is always ex
ponential as long as the particle is in equidistant from
walls. This is due to the fact that the angular velocity do
not couple to any compressible mode, and its decay is c
trolled by vorticity. However, when it is not equidistant, the
it will induce a translational velocity, and therefore it wi
decay algebraically at long times, with the same expone
as those corresponding to the VACF. Again, if slip bound
conditions are considered the situation is qualitatively diff
ent. In this case the fluid has an effective dimensiond*
5D21, vorticity can diffuse in this effective medium, an
the AVACF decays algebraically with the corresponding
gebraic power, without changing its direction of motion du
ing its decay@16#.

If we would have considered the VACF of a particle in
closed container, one expects that eventually the decay
be exponential. For a roughly isotropic container, in wh
all its dimensions are of the same magnitude, either the
cay of the VACF is purely exponential or vorticity develop
when the system is large enough, showing a later cross
to the final exponential decay@17#. If we consider an elon-
gated axisymmetric container, even if vorticity cannot d
fuse, if the long lengthL uu and the short oneL' are related in
such a way that momentum can diffuse the short dista
before travelling the long one, i.e.,L uu /cs@L'

2 /n, then diffu-
sion of sound alongL uu will have time to develop. In this
case, for timesL uu /cs.t.L'

2 /n the decay of the VACF of a
particle will be algebraic, and only at later times it will be
come exponential. In this case, the algebraic decay is no
asymptotic behavior of the short-time dynamics, as see
Fig. 6.

FIG. 5. Amplitude of the long-time tail measured in the sim
lation Asim relative to the theoretical predictionAth given in Eq.~15!
as a function of the distance from the center of the disturbanc
from the particle centery to the center of the two-dimensional tub
yc , expressed in lattice units. The tube width isL516, and the
viscosityn5
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C. Hydrodynamic fields

We will now look in detail at the flow fields that ar
generated in a fluid confined between two parallel plates
response of an initially moving sphere in an otherwise q
escent fluid. We will consider a particle of radiusr 52.5
lattice units, placed in the center of a tube of radiusR58.5,
in a fluid of shear viscosityn5 1

6 . We focus on the feature
of the flow, vorticity, and density fields for a particle diffus
ing along the axis of the tube, during the initial decay of t
VACF, i.e., for times at which the asymptotic decay has n
been reached yet.

The total simulation time corresponds tot/tn'1. The
flow, vorticity, and density fields depend on the three spa
coordinates. The fields are examined in thez50 plane. The
velocity field and density are directly calculated in th
lattice-Boltzmann scheme. The vorticity,v, at a lattice point
(x,y), which is a local quantity is given by

v~x,y!5
1

2
„vy~x11,y!2vx~x,y11!2vy~x21,y!

1vx~x,y21!…. ~17!

This is a two-dimensional discretization ofv5 1
2 ¹3v, the

three-dimensional definition of vorticity. The time evolutio
of the various fields is shown in Figs. 7 and 8.

Initially, the velocity field contains the vortex pair that
responsible for the positive long-time tail in the VACF for a
unbounded fluid, although as soon as the perturbation
duced by the particle reaches the walls vortices creepin
the wall of the tube are also seen. On the other hand,
motion of the particle produces an increase of the densit
the front, and a decrease in the back, as expected. In Fig
is already seen that the two vortices cannot grow diffusive
and that meanwhile the vortices that were creeping along
wall are already outside the picture. The density plot in
cates that in front of the particle there is a sizable den
increase. At later times, when the particle velocity rever
direction, a clear change in the qualitative behavior of

or

FIG. 6. Decay of the VACF for a disk of radiusr 52.5 in the
center of a box of sidesLy59 andLx5199. The coefficienta used
to show the long-time exponential decay has been fitted. We h
useda50.006. Lengths are expressed in lattice units.
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flow field is observed. The two vortices have been dam
out, which shows that the perturbation induced by vortic
decays exponentially due to the presence of the walls@10#,
and over a significant area the velocity in thex direction is
opposed to the direction at which the particle was initia
moving. This feature becomes more salient at later times
can be seen in Fig. 8, which corresponds to the minimum
the VACF. Due to the back flow around the particle, t
vorticity near the colloidal particle has almost disappear
At later times the negative flow field keeps growing in siz
at the end spanning the total plotted region. The veloc
field resembles the Poiseuille flow field for these tim
which is the parabolic steady state flow profile for flow in
tube, with a pressure drop, and the density field beco
more one dimensional.

FIG. 7. Flow field, vorticity, and density, from top to bottom
respectively (t/tn50.47). The velocity field, which is at the top, i
scaled withs5Max vx in the x direction, whereas for they direc-
tion 4s is used to scale the arrows. For the sake of clarity one
of the velocity vectors in both directions are omitted from the p
ture. The vorticity field is obtained by applying Eq.~17! to the
velocity field, and is shown in the middle. It is scaled such that
isovorticity lines are shown, at heights which vary linearly betwe
the maximum and minimum vorticities. The largest vorticity is d
picted by the darkest color. The same procedure was performe
the density, the bottom picture.

FIG. 8. t/tn50.78. For caption, see Fig. 7.
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IV. DIFFUSION COEFFICIENTS

The self-diffusion of the suspended particle can be rela
to the integral of the VACF by means of a Green-Kubo e
pression. We can then obtain macroscopic information ab
the behavior of the suspension, from the knowledge gai
in the analysis of its macroscopic behavior.

In Fig. 9 we show the values for the diffusion coefficie
for a sphere of radius 2.5 at the center of a cylindrical tube
variable radius, normalized by the value of the diffusion c
efficient in the absence of the tube. We also plot the pred
tion of the center-line approximation@18#, calculated assum
ing a purely incompressible fluid, i.e., neglecting sou
effects. We obtain a perfect agreement with the theoret
predictions. This can be understood, because the algeb
decay we have described in the preceding sections a
from the coupling to the compressible modes of the flu
and these vanish in the stationary limit. These modes do
affect the integral of the VACF since their amplitude is
fact proportional to the frequency itself. The diffusion coe
ficient is determined by the decay of transverse velocity p
turbations@10# which, in a confined system, is exponentia
So, while compressibility effects dominate the long-time d
namics, they still do not contribute to the diffusion coef
cient. However, it is important to resolve all the time sca
in order to obtain the proper diffusion coefficient from th
integral of the VACF. In Fig. 10, we show the time depe
dent diffusion coefficient, which is the integral of the VAC
from 0 to timet. One can see that it exhibits a maximum.
we would have assumed an exponential decay for the VA
we would have obtained an overestimate for the value of
diffusion coefficient.

Due to the flexibility of the lattice Boltzmann method t
deal with complex geometries, we can use the technique
means to derive profiles for the diffusion coefficient of su
pended particles in general geometries. In Fig. 11, we sh
the values of the diffusion coefficient for a spherical partic
of radius 2.5 in a cylinder of radius 9. As we move of
center, the three components of the diffusion coefficient
not equal. In particular, the component of the diffusion p
allel to the tube (Dx in the figure!, exhibits a maximum as

lf
-

n
n

for

FIG. 9. Diffusion coefficient of a particle with radiusr in the
center of a cylindrical tube with radiusR, normalized with respect
to its value at the center of the tube. The points denote simula
results, and the line corresponds to the center-line approximati



o
l-
e
r
he
u

lle
w

et
e

he
b
nt
he

that

ely
ect

be
or-
ion

in a
ob-
in-

r a

-
it
d
l
ts

nt
e

nt

PRE 59 4465SHORT-TIME DYNAMICS OF COLLOIDAL . . .
we move toward the plate. A perturbative calculation@19#
implies the existence of a maximum in the parallel comp
nent of the diffusion for the motion inside a cylinder, a
though we do not know of any explicit calculation of th
value of the maximum. The same behavior persists fo
two-dimensional fluid, as shown in Fig. 12. However, t
diffusion coefficient parallel to the the walls is a monotono
function for a three-dimensional fluid between two para
plates. In Fig. 13 we show the corresponding profile, and
compare it with the value for the density predicted theor
cally if we neglect the hydrodynamic interactions betwe
the two walls. In this case, the diffusion coefficient of t
sphere is the sum of the diffusion coefficients induced
each wall independently, corrected by the value at the ce
of the layer. For the diffusion coefficient of a sphere in t

FIG. 10. Dependence of the diffusion coefficient with time fo
particle of radiusr 52.5 in a slit of widthLy57. tw5(L/2)2/n is
the time needed the vorticity to diffuse the width of the tube.

FIG. 11. Profile of the diffusion coefficient of a particle of ra
dius 2.5 in a tube of width 9 lattice spacings, as a function of
position off-center.x is the direction of the axis of the cylinder, an
we move off-center in thez direction.D refers to the average loca
diffusion coefficient defined as the mean of its three componen
-

a

s
l
e
i-
n

y
er

presence of a single wall a theoretical expression exists
is sufficiently accurate except close to contact@20#. The plot
shows that the agreement is very good, even for a relativ
narrow fluid layer as the one considered, in which the asp
ratio isl[2r /Ly51/3, with r being the radius of the colloid
and Ly the width of the tube. The deviations that can
expected close to contact, where lubrication will be imp
tant, cannot be resolved in a lattice Boltzmann calculat
with the small sphere considered in these simulations.

Diffusion coefficient for a confined suspension

We have also considered the VACF for a suspension
slit. The time dependence observed is analogous to the
tained in the preceding sections for a single particle. By

s

.

FIG. 12. Profile for the component of the diffusion coefficie
parallel to the walls in a two-dimensional slit for two different tub
widths,Ly . The particle has always radiusr 52.5 lattice units.

FIG. 13. Profile for the component of the diffusion coefficie
parallel to the walls for a sphere of radiusr 52.5 confined between
two plane walls at located at a distanceLy515 from each other.
Lengths are expressed in lattice units.
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tegrating, we obtain the short-time diffusion coefficient fo
colloidal suspension, and we analyze its behavior as a fu
tion of the aspect ratiol. It is clear that the wider the tub
the larger the diffusion coefficient, since the mobility is hi
dered due to the hydrodynamic interaction of the partic
with the walls. This is clearly depicted in Fig. 14, where w
show the decay of the value of the diffusion coefficient fo
particle equidistributed in the tube, as a function ofl. How-
ever, if we normalize the diffusion coefficients of the suspe
sion by the average mobility at zero volume fraction, th
the curves for the diffusion coefficients of suspensions c
responding to differentl look much more similar to each
other, as shown in Fig. 15. In fact, a significant deviati
from the general behavior is only observed for strong c
finement. As soon as roughly two layers of suspended
ticles fit between the walls, their relative motion becom
dominant, and the walls can be seen as if they provide o
the mean friction felt by the colloidal particles.

V. CONCLUSIONS

In this paper we have analyzed the short-time dynamic
confined colloidal suspensions. We have restricted ourse
to the simplest geometry, namely, a tube, where exact a
lytical results can be derived for point particles and one
focus on the basic dynamical features of the short-time
loidal dynamics.

We have shown that the presence of stick walls qual
tively modifies the hydrodynamic modes that character
the response of the fluid. The coupling of the fluid to a so
elastic medium~which is a typical example where stic
boundary conditions are fulfilled! induces the developmen
of a diffusive sound mode at low frequencies. We have a
shown that this diffusive mode is initially non-Gaussian, a
it is only on longer time scales that it becomes Gauss
This diffusive mode decays slower than vorticity, whic
cannot propagate diffusively due to the presence of the w

FIG. 14. Linear-log plot of the component of the diffusion c
efficient parallel to the walls of a two-dimensional tube as a fu
tion of the width of the tube,l, for an equidistributed particle. In al
cases particles have a radiusr 52.5. The diffusion coefficient and
the radius are expressed in lattice units.
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and it becomes the leading hydrodynamic response at
frequencies. The dynamics of the suspension will couple
the longest-lived solvent mode. Therefore, the long-time
cay of the velocity autocorrelation function is controlled b
sound, contrary to what happens in an unbounded fl
where it is controlled by vorticity. The diffusive decay of th
initial density perturbation induces a change in the direct
of the suspended objects, as was clearly seen from the
tures of the hydrodynamic fields. Also, the angular veloc
autocorrelation function differs from the usual behavior
unbounded fluids. Since its decay is due to vorticity, it
ways exhibit an exponential decay, insofar as it is n
coupled with the velocity. Due to the presence of the wa
this is an unrealistic requirement for colloidal suspensio
As soon as the particles are not equidistant from the walls
initial angular velocity will induce a translational velocity o
the particle@21#. This coupling term will decay slower an
will control the subsequent decay of the AVACF.

From the analysis of the VACF we have extracted t
values for the diffusion coefficient of a confined suspensi
In order to obtain proper values, it is necessary to take i
account the algebraic decay of the VACF, although the fi
values for the diffusion coefficients agree with the pred
tions for incompressible fluids. We have looked at the lo
values of the diffusion coefficient for different geometrie
Due to the presence of the walls the diffusion is no long
isotropic, and we have focused on the component of the
fusion parallel to the walls. We have seen that it may exh
a maximum, although it is not a generic feature. For e
ample, in the case of two parallel plates it has a monoton
behavior, and we have been able to compare our values
the predictions obtained from the additivity assumptio
which neglects the hydrodynamic interactions between
two walls. This approximation is seen to work quite we
even for quite narrow tubes. The flexibility of the lattic
Boltzmann method in dealing with general boundaries c
verts it into a useful technique to obtain maps of the dif
sion coefficient in general geometries, that can be used

FIG. 15. Normalized diffusion coefficient as a function of th
volume fraction for a confined suspension, as a function of
aspect ratio. In all cases the particles have a radiusr 52.5 lattice
units.
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PRE 59 4467SHORT-TIME DYNAMICS OF COLLOIDAL . . .
inputs for other simulations techniques that work in the p
ticle diffusion time scale, such as Brownian dynamics@22#.

The development of the diffusive sound mode can be
derstood on a simple physical basis. For time and len
scales in which the fluid is interacting with the solid inte
faces, momentum is no longer a conserved variable. Un
these conditions, only mass is conserved, and has theref
diffusive character. This interpretation provides also an an
ogy with a Lorentz gas. This model is known to exhibit
algebraic velocity decay at long times with an expone
2D/211 @23# for a D-dimensional system, and which
precisely the one we have obtained from solving the Nav
Stokes equations, takingD as the effective dimension in
which the density is the only conserved variable. This sim
connection explains the robustness of the results present
this paper. We have studied the decay of the VACF for p
ticles moving in a porous medium built up with fixed rando
particles, and also the decay of a particle moving in a reg
array of fixed rectangles, obtaining in all cases a nega
algebraic decay, with an exponent that can be understoo
the number of unconstrained dimensions. In these two
tems, the solid walls do not completely restrict any of t
spatial dimensions, and we find, consistently,d* 5D, D be-
ing the dimensionality of the system. This also implies th
the same kind of dynamical behavior we have described h
should apply to the dynamics of particles embedded in g
or in suspended membranes, where in the latter case the
sibility of developing diffusive sound modes has also be
pointed out@24#.
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Finally, if we would have considered that the fluid is co
tained between slip walls, then the fluid would develop af
a transient into an effective fluid of dimensiond* . This
clearly shows that the dynamical behavior of the suspens
in confined geometries will be sensitive to the specific m
mentum fluxes that occur at the boundaries.
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APPENDIX A: HYDRODYNAMIC EIGENVECTORS

In this appendix we write down expressions for some
the quantities used in Sec. II during the theoretical derivat
of the VACF. All the symbols appearing in the subseque
expressions are defined in Sec. II.

The hydrodynamic matrix introduced in Eq.~5! is
D̃5S 0 1 0 0

1

nF iv2 i
cs

2kx
2

v
1~n1G!kx

2G 0 0 2
cs

2kx1 ikxGn

nv

0 0 0 1

0
cs

2kx1 ivGkx

ic22~n1G!v
2

v~ iv1nkx
2!

ics
22~n1G!v

0
D , ~A1!
an
which after diagonalizing gives

D5S l1 0 0 0

0 2l1 0 0

0 0 l2 0

0 0 0 2l2

D ~A2!

The eigenvector matrixM corresponding toD, and which
is needed to derive the appropriate expression for the ve
ity field from Eq. ~9!, has the form
c-

M5S i

kx

i

kx

ikx

l2
2

ikx

l2
2

2
il1

kx

il1

kx
2

ikx

l2

ikx

l2

2
1

l1

1

l1
2

1

l2

1

l2

1 1 1 1

D . ~A3!

Finally, the functionH(kx ,l1 ,l2 ,L,y0) introduced in Eq.
~11! and which specifies the velocity at the point where
initial perturbation is applied in the fluid is given by
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H~kx ,l1 ,l2 ,L,y0!52kx
6 sinh~Ll1!@cosh~2y0l2!2cosh~Ll2!#1l1

3l2
3 sinh~Ll2!@cosh~2y0l1!2cosh~Ll1!#

24kx
2l1l2 sinhF ~2y02L !l2

2 GcoshF ~2y02L !l1

2 G~l1l21kx
2!24kx

2l1l2~l1l22kx
2!

3sinhF ~2y01L !l2

2 GcoshF ~2y01L !l1

2 G1kx
2l1

2l2
2@3 sinh~Ll1!cosh~Ll2!

22 sinh~2y0l1!cosh~Ll1!#2kx
4l1l2@2 sinh~Ll2!cosh~Ll1!1sinh~Ll2!cosh~2y0l1!#. ~A4!
ill
p
e
a

is
to
on
a

th
in
th
t t

ic

ic

om

sin
fu

ve
l-
he

e

we

,
s

n-

nd
If

p-
s

n-
APPENDIX B: INTUITIVE DERIVATION

Although the analysis of Sec. II is rigorous, here we w
present an alternative derivation that provides a sim
physical understanding of the role of the walls in the dev
opment of the sound diffusing mode. We will consider
D-dimensional fluid confined between parallel walls a d
tanceL apart in they direction. The basic idea is that, due
the geometrical constraints imposed by the tube, at l
times the transversal component of the velocity field has
most relaxed, and therefore,] uuv uu@]yvy , where] uu means
the derivative with respect to the components parallel to
walls. Then, although the velocity can be thought as hav
one dimension less, it still keeps the dependence in all
spatial coordinates, because at all times it has to vanish a
walls. At long times what happens is that they dependence is
important only close to the boundary, and the existence
such boundary layers will dominate the hydrodynam
modes.

If we introduce the previous assumption from Eqs.~2! and
~3!, we end up with

]r

]t
1r0¹ uu•vW uu50,

~B1!

]v uu

]t
1a¹ uur2G¹ uu

2v uu2n
]2v uu

]y2
5FW .

The hydrodynamic modes that determine the dynam
response of the fluid are then

v i5 ink2, ~B2!

v65
i

2
~nk21Gkuu

2!6
1

2
A2~nk21Gkuu!

214cs
2kuu

2,

~B3!

which correspond to one incompressible mode and two c
pressible modes. The wave vectorkW is defined such that its
component parallel to the wall is given by the vectorkW uu , and
its component perpendicular to the wallky52pn/L is dis-
cretized and chosen from the appropriate sine or co
transform to ensure that stick boundary conditions are
filled. The integern will therefore not contain the value 0.
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The fact that, even in the hydrodynamic limit, the wa
vectors in they direction do not vanish implies that the re
evant modes will depend on the width of the tube. In t
hydrodynamic regime, which corresponds to the limitkuu
→0, the compressible modes read

v15 i ~nk21Gkuu
2!1O~kuu

4!, ~B4!

v25 i
2cs

2

nky
2

kuu
21O~kuu

4!. ~B5!

Therefore, in this regime we can identify an effectiv
sound diffusion coefficient

D̂5
2cs

2

nky
2

, ~B6!

which has the same functional dependence as the one
have rigorously derived@Eq. ~14!#. Incidentally, if we sum
over all the perpendicular wave vectors, we recover

(
n51

`

D̂5
cs

2L2

2p2n
(
n51

`
1

n2
5

cs
2L2

12n
, ~B7!

which is precisely Eq.~14!. In terms of the previous modes
the velocity induced by the applied the force will decay a

vW ~ t !5
2 i ~1WW 2 k̂uuk̂uu!•FW

v2v i
1

2 iv k̂uuk̂uu•FW

~v2v1!~v2v2!
. ~B8!

Both contributions to the velocity dynamics from the i
compressible mode andv1 will decay exponentially in time,
becauseky cannot tend to zero. However, sincev2 is diffu-
sive, it will induce an algebraic decay of the velocity, a
this will become the dominant contribution at long times.
we transform Eq.~B8! back to time and space, we asym
totically obtainv(t);2t2(D11)/2. Since in this case there i
only one constrained direction,d* 5D21, which implies

v~ t !;2
1

t ~d* /2!11
. ~B9!

which for D52 agrees with the results of Sec. II, and ge
eralizes it for a general dimension.
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