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Short-time dynamics of colloidal suspensions in confined geometries
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We analyze the short-time dynamical behavior of a colloidal suspension in a confined geometry. We analyze
the relevant dynamical response of the solvent, and derive the temporal behavior of the velocity autocorrelation
function, which exhibits an asymptotic negative algebraic decay. We are able to compare quantitatively with
theoretical expressions, and analyze the effects of confinement on the diffusive behavior of the suspension.
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I. INTRODUCTION phases are treated on the same footing, and all the dissipation
arises due to the momentum exchange between the fluid and
The dynamics of fluids in confined geometries is a subjecthe solid when they are in relative motion. This dissipation is
of interest, both for its relevance in chemical engineering andncluded as a frictional force acting on the fluid, with a fric-
environmental science, and because of the new phenomeﬁgn coefficient that is either left undetermined or is com-
that arise as a consequence of the competition between tiited assuming that the solid frame is a porous medium and
dynamical intrinsic features of the fluid and the geometricalthe fluid is filling it. One of the predictions of Biot's theory is
restrictions introduced by the walls. Such an interaction mayhat this coupling induces two sound modes in the fluid, one
give rise to a qualitatively different behavior from those pre-of which has a velocity smaller than the corresponding sound
dicted in unbounded systems. For example, it is well knowrvelocities in the two media. Subsequently, it was pointed out
that in equilibrium new thermodynamic phases may be inthat the velocity of the slow sound could give rise to a dif-
duced by the geometrical constraints. Here we will analyzdusive sound modg4]. Analogous ideas were used to ana-
the effects on the dynamics of suspended particles suspendbge the dynamics of a thin fluid layer adsorbed on a solid
as a consequence of the modification of the solvent hydrosubstrate5], as well as the dynamics of gel6], where it
dynamics. was argued that, due to the characteristic small sizes of the
In a previous papelrl], we showed how the presence of pores, such a diffusive mode could play an important role in
constraining walls modifies the dynamics of colloidal par-the low frequency response of the gel.
ticles. We indicated there that the effect of the surfaces on In this paper we will restrict ourselves to a simple geom-
the dynamics of the fluid depends on the specific momenturgtry, namely, a fluid between plane walls, where an exact
exchange mechanisms at the interfaces, and not only on tigydrodynamic calculation can be carried out without making
geometrical constraints. For example, for slip boundary conany assumption about the force that the solid exerts on the
ditions we saw that the fluid behaved as an effective mediurfiuid. It then becomes apparent that it is only the role of the
of dimensionalityd* equal to the dimensions of the system boundary conditions that determines the hydrodynamic
that were unconstrained by the presence of the boundariegodes of the fluid, and from which the diffusive sound mode

On the other hand, for stick surfaces, the propagation o¢an be completely characterized. Although a careful hydro-

sound modes in the fluid was modified. Depending on thélynamic analysis of the modes of a fluid layer confined be-

geometry of the constraining medium, the effective soundween two parallel plates has previously been carried ot
velocity may become imaginary, developing into a diffusive it was restricted to high frequencies. We will concentrate on
sound wave. This effect, in turn, qualitatively changes thethe low frequency regime, and in particular we will consider
short-time dynamical behavior of a suspended particle. Théhe behavior of the velocity autocorrelation function
asymptotic decay is controlled by the diffusive sound mode(VACF), defined as

rather than by vorticity diffusion, as happens in unbounded

fluids [2]. N

The effect that the coupling of a fluid to an elastic matrix Cv(t)EE {vi(t)-v;(0)) 1)

has on the dynamical properties of the fluid has been consid- =1

ered previously following the model introduced by BJ&i.

According to this model, the dynamics of the solid and fluidfor N suspended particles with velociti€s;(t)}, where the
average is carried out on an equilibrium fluid over initial
conditions. The VACF contains many of the features that

*Present address: Department of Physics and Astronomy, Univecharacterize the dynamics of the suspension, and it is the
sity of Edinburgh James Clerck Maxwell Building, The King's simplest example where we can understand the macroscopic

Buildings, Mayfield Road, Edinburgh, EH9 3JZ U.K. properties of the suspension in terms of its microscopic dy-
"Present address: Unilever Research, Port Sunlight Laboratoryiamics, since the time integral of the VACF is related to the
Quarry Road East, Bebington, Wirral L63 3JW, U.K. self-diffusion coefficient of the suspension. We will analyze
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the short-time regime for the colloidal dynamics, a time scaleand
in which colloid displacements can be neglected, but in
which the solvent hydrodynamics has time to develop.

In Sec. Il we will theoretically consider the VACF of a
particle suspended in a fluid. To this end, we will determine
the relevant fluid modes characteristic of the confined solwe can rewrite Eq92) and(3) as a set of ordinary differen-
vent. In Sec. Il we present the simulation results, and comtial equations
pare quantitatively with the theoretical predictions. We look
in detail at the behavior of the fluid, and we study both the d ~ -
translational and rotational motion of a suspended particle. In EVZ DV+1, ®)
Sec. IV we use the results of the preceding sections to study
the effect of confinement on the diffusion of colloidal sus-\yhere the vectory andf are defined as
pensions. We end with a discussion of our results. In Appen-

5(E>=f ek (ndr,

dix A we give some of the quantities used in Sec. I, and in - . koo v
Appendix B we present an intuitive derivation of the results V= kx-u,—,uy,—y , (6)
ay ay
of Sec. Il.
R 1. .
Il. THEORETICAL ANALYSIS f= O,Ekx-xfo,o,o S(t)8(y—VYo). ©)

In order to study the VACF, we start by analyzing the ~
velocity generated by a localized force perturbation in a pure The hydrodynamic matriD, which is written down in
solvent in the presence of walls, which will show clearly the Appendix A, has, as eigenvalues,
connection between the dynamics of the suspended particle

and the relevant hydrodynamic modes of the solvent. We N2= K2+ lo

will consider a fluid confined between two parallel plates, ™0y

located aty= *=L/2. For simplicity, we restrict ourselves to

the two-dimensiona(2D) situation, in which the confining w2

walls are slits, but it is straightforward to generalize the cal- 7\§= K- 50— 8

X 2, .
culation to higher dimensions. csti(v+lo

Since the force pertubation is weak, the fluid dengity o
L s , i o From Eqg.(5) we can express the velocity field at any
and.velocuy fle|dSv,. obey the I|.near|zed continuity and point in the fluid as
Navier-Stokes equations, respectively,

> - > y >
v(y.kx.w):M~D(y)'C+J_L/zdy’M-D(y—y’)'f(y’),

P e o¥-5=0 2
- .0=0,
ot p (9)
oo c2 1 with D being the diagonalized hydrodynamic matrix avid
E'i‘—sz—VVZJ—PVV-l;: ~F, (3) the corresponding eigenvector matrix. Explicit expressions
p

for both of them are given in Appendix A. Finallyf, is a

. . vector of constants that should be specified by imposing the

whe_recs is the speed Of sou_n_d, andandl“_ are the k|ne_- . boundary conditions in Eq9). Although the derivation so

.m-a.tlc shear and bulk viscosities, respectively. The f|lj|d ISar has been focused on a localized force, we view it as a

initially at rest, perturbed only by the external weak fofee  (smal) colloidal particle. In the limit of a vanishing radius,

applied in the center of the slit and pointing along the directhe identification will be exact.

tion of the slit,x, F=fx5(t)8(y—Yo). In Eqs.(2) and(3) It is well established that the dynamics of suspended par-

we have disregarded thermal effects, assuming the processtioles can be understood in terms of couplings between the

be isothermal, but its generalization to adiabatic processgsarticle variables and the hydrodynamic mofils Since we

will not modify the features presented in this paper. consider times at which the displacement of the colloid can
Since the fluid is confined between two walls, in order tobe neglected, we can take advantage of Onsager’s regression

study the dynamics of the flow generated by a given force ihypothesi§9], and can relate the decay of the velocity of the

is necessary to specify the boundary conditions at the wallfluid at pointy, (where the force has been appliedth the

We will assume that stick boundary conditions are satisfied/ACF of a particle placed at that position. The velocity of

at the boundaries, which is the usual situation for solid interthe fluid at the point where we have initially applied the

faces. In this case, the velocity of the fluid is equal to that offorce is given by

the wall, namelyﬂ(y= +L1/2)=0. i

thelrr‘r]1.0|r3(§irn§gg50|ve Eqs(2) and (3), we Fourier transform 0 (Y=Yo,K, ,w)=cle*1V0+cze"‘1y0+c3)\—zxe”2y0

) —fw foty () dt 4 —&eﬂzyo (10)
v(w)= e v(t) (4) ~ ,
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and the constants;, . . . ,c, are the components of the vecor Substituting their appropriate expressions for stick boundary
conditions, one obtains

_ fo H(ka\ll)\Z!L!yO)
Aov(N2—k2) {—2Kk2\ ;o[ 1—cosHLA1)cosHLA,) ]+ (ki +A2\3)sinh(LA;)sinh(LA,)}

Ux(y01kX1w) (11)

where we have introduced the functibt{k,,N1,\5,L,yg), tended to explore the effect of different kinds of boundary
which is written down explicitly in Appendix A. If we now conditions on the hydrodynamic response of the fluid. For
transform back to real space and time, we find example, for slip boundary conditions, the hydrodynamic
modes correspond to those of a fluid with an effective di-
do . [ dks mensionalityd* =D —1 [1]. In this case sound is always a
27C fﬁ”(yo’kx’w)' propagative mode.
(12 From Egs.(12) and (13), we can derive the asymptotic

) ) ) ] . decay of the velocity of a suspended particle,
This equation contains the complete information on the

dynamics of the particle. We will now focus on its

asymptotic behavior, in the situation of strong confinement,

i.e.,\;L<1 and\,L<1. The opposite limit has been exam- 33 o 2y, ?]?

ined in the literaturd7], in the context of interfacial hydro- vx(Y=Yo, Ix=0)=~— W c \/—t3/z[ _(T) }

dynamic modes. In that case, the observed modes differ from T bV

the usual bulk ones in the sense that, although qualitatively ( 1 )
O .

o]

UX(X:OI y:yO!t): f

they are not modified, the damping increases due to the pres-
ence of the solid walls.

From the structure of Eq.l1), one can see that the dy-
namics of the particle is determined by the relevant hydro-

dynamic modes. The expression of the denominator shows The asymptotic behavior is algebraic, and the velocity
that different dynamical behaviors will exist at different time reverses its direction during its decay A]so for unbounded
scales. For exafnp'e’ the confinemgnt will ind'uce resonanceg,;ys an algebraic long-time tail is obsérv@j. In this case,

of the propagatln_g modes at the time scale in Wh".:h souniﬁ‘le slow decay is due to the coupling of the particle velocity
propagates the width of the system. At low frequencies, hOWfo vorticity diffusion. The velocity does not change sign, and
ever, a diffusive mode develops and controls the asymptotig, predicted exponent is different. In fact, on the basis of

relaxation of fluid perturbations. In this time regime, Etfl) vorticity, one would have expected an exponential decay of
reduces to the velocity of the suspended particle in the present situation
[10]. As we will show in Sec. lll, vorticity cannot develop at
long times due to the interaction with the walls. It was this
(13 fact which led previous authors to predict an exponential
decay for the VACF of a particle between wa|tk0]. Our
result shows that the particle velocity couples to the slowest
decaying mode in the fluid. The solid walls qualitatively
modify the low frequency modes with respect to those char-
acteristics of an unbounded fluid, and the coupling to the
diffusing compressible mode leads to a qualitatively different
2 2 decay for the VACF.
D*:CS _ (14) We have restricted our analysis to a two-dimensional
12v fluid, but it can be easily generalized to higher dimensions.
In all cases a diffusive sound mode is present, and, accord-
As already pointed out, sound diffusion corresponds tangly, a power law characterizes the long-time tail of the
the relevant low frequency dynamical response of the fluid iIVACF of a suspended particle. The value of the exponent
the tube. In this case we have derived an expression for thean be easily related to the number of dimensions of the fluid
diffusion coefficient, which comes from the exact hydrody-that are not constrained; [1]. In Appendix B we present a
namic analysis, and which presents a simple dependence omore intuitive derivation of the negative algebraic long-time
the geometry considered. It clearly shows that sound diffusail. It gives a simple physical picture of the role of the walls
sion arises purely from the dissipation at the walls, withouton the development of sound modes, and predicts the corre-
making any assumption about the momentum exchangeaponding exponent of the long-time tail for any dimension.
Nevertheless, the expression we obtain coincides with the So far we have presented a hydrodynamic analysis. If the
predictions made on the basis of permeabil#y, which in  colloidal particle is diffusing, the amplitude of the long-time
this case isL?/12. The previous analysis is also easily ex-tail will be modified. It is easy to account for it by making

s (15)

2 212
ifocgkag{ 1- (%)

B 212338(\, — ki) 0*(0— wgq)

Ux(y:yO!kx ,(1))

where wq=i(c2L?/12v)k2, which is a diffusive mode.
Therefore, density perturbations in the tube will decay diffu-
sively, and we can define an effective diffusion coefficient
for sound,D*, as
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use of mode-coupling theofyL1]. In this case the algebraic 40.0 . . . .
decay is not modified, and the amplitude of the long-time tail
will depend both onv and the diffusion coefficient of the

particle in the usual way. Finally, we have always assumed 30.0 | .
that the solid surfaces are completely rigid, which ensures a
complete time scale separation between the propagation of
the fluid and wall modes. If the surfaces are deformable, «

200 | i
sound modes can partially propagate through the walls, lead- S
ing also to a decrease in the amplitude of the long-time tail.
100 b
Ill. COMPUTER SIMULATIONS
We have performed computer simulations to gain a better 00 . . . .
understanding of the dynamical effects induced by the con- ~0.0 20 40 6.0 8.0 10.0
fining walls, using the lattice Boltzmann model to simulate a Itv

fluid [12]. This method is a preaverag_ed version qf a Iattlcg- FIG. 1. The effective diffusion coefficient of density perturba-
gas cellular automaton model of a fluid. The basic dynamlqions D* as a function of 1. Results were obtained in a two-
quantity is the fraction of particles moving in a given direc- gimensional slit of widthL =9. The points denote the simulation

tion at a certain lattice node. With this technique it is easy tGegyts, and the line is a guide to the ePé. and are expressed in
simulate the dynamics of colloidal particles. These are introtattice units.

duced as surfaces where the collision rules of the populations

in the neighboring nodes are modified in order to ensure thgjidth of the tube. We have analyzed the behavior of the
appropriate boundary conditions. Therefore, it is also simplejiffusion coefficient obtained from the second moment of the
to introduce bounding walls for the fluid. We use an implicit density distribution, i.eD* = %(d/dt)(x(t)?) at long times,
updating scheme for the moving boundarfdS] to avoid  as a function of the viscosity and the radius of the tube. In
instabilities, and to allow us to simulate buoyant particles,Fig. 1 we display the diffusion coefficient measured as a
while the original scheme could only deal with heavy par-function of the inverse of the shear viscosity. The depen-
ticles [12]. We have taken the lattice spacing as the unit ofgence of the diffusion coefficient of sound on the viscosity
length, and the time step as the unit of time. In these UnitSpredicted in Eq(]_4) is C|ear|y recovered. We have analo-
the speed of sound of the fluid &=1/y2, and the kine- gously checked its dependence on the width of the slit. Both
matic viscosity used ig'= 3 unless otherwise stated. scalings also allow us to deduce that the diffusion coefficient
In order to compute the VACF we should, in principle, measured in the simulations behaves as
perform equilibrium averages for the velocities of the par-
ticles, taking into account that they move in a fluctuating L CALP-1) 1
fluid. Since we are interested in the short-time dynamics, as sm™ 19y 2 (16)
far as their displacements can be neglected, we can make use
of an Onsager regression hypothd€isand study the decay which agrees quantitatively with E¢L4), except for the fac-
of their velocities from an initial perturbation. In this case, tors 3 and 1, which are due to lattice artifacts.
we can then disregard the fluctuations of the fluid, with the In order to understand how the diffusive regime settles
corresponding improvement in the simulation performancedown, in Fig. 2 we show the second and fourth moments of
[14]. In all the simulations we will consider times such that the distribution as a function of time, normalized by the cor-
sound has not had time to travel the length of the wallsresponding values for Gaussian diffusion, i.éx?(t))
Therefore, the system can be regarded as infinite, and we de2D*t and(x*(t))=12(D*t)2. We use as a value fd*
not have to consider finite-size effects. the one given in Eq(16). At long times, both moments ap-
Throughout this section we will constrain ourselves to theproach 1, which means that the diffusive regime settles in.
simplest geometry. In this sense, the confining walls will beThe diffusive regime is reached on a time scale in which
either planegin 2D slit9 or a cylindrical tube. When we momentum can diffuse the width of the tubg=L?/v. One
look at particle dynamics, they will always be sphefgisks  can also see that the second moment approaches the Gauss-
in two-dimensional ian behavior faster than the fourth moment. This effect is
readily seen by looking at the second cumulani(t)
=(x*(t))/(3(x*(t))®»—1, which characterizes the non-
Gaussianity of the diffusion process, which is also displayed
The simplest way to show the diffusive character of soundn Fig. 2. One can see that it is a slowly decaying function. In
modes in a confined geometry is by analyzing the temporafact, a study of its asymptotic behavior shows that it vanishes
decay of a localized density perturbation in the absence adis a,(t)~1/t, which implies than, even when the diffusive
any solid particle. Initially, the density of the fluid is homo- regime is achieved, still diffusion will be non-Gaussian until
geneous except for a node located in the center of a tube. Wenger times.
compute then the moments of the density distribution along Finally, in Fig. 3 we display the time evolution of the
the direction of the tube, averaging across the transverse ditensity profile generated by the initially localized density
rection, i.e.,(x(t)"=/"_dxS"2(p(x,y,t)—po)"dy, with  perturbation. At short times two peaks start to displace in
n=1,2, ... wherepg is the equilibrium density ant is the  opposite directions at the speed of sound. As time proceeds,

A. Diffusive sound modes
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4t FIG. 4. Normalized VACF of a colloidal particle with radius

=2.5 in the center of a cylindrical tube with radi&&s=4.5, both
FIG. 2. Second and fourth moments, and second cumalant ~ |engths expressed in lattice units.

of the density distribution as a function of time for an initially

localized density perturbation in a 2D slit of width=10 and ki- B. Velocity correlation function for a particle

nematic viscosityw=0.5. The moments are normalized by the cor- i Vi h f h f .
responding moment for Gaussian diffusion. Dimensional quantities We wi start by ana yzing the VACF ofa sphere o radius
are expressed in lattice units. r=2.5in the center of a cylinder of radil&= 4.5, as shown

in Fig. 4. The initial velocity of the particle is parallel to the

] axis of the cylinder. The decay coincides with the one ob-
these peaks are progressively damped. On the other hand, thgneqd for an unbounded fluid until the initial velocity per-

region between the two peaks does not relax to the equilibyrpation has reflected back from the wall on the particle.
rium density. The inhomogeneity generated in this region aghjs deviation will scale linearly with the tube width, be-
a result of the successive collisions of the initial density percause it is controlled by sound propagation. At longer times,
turbation with the solid wall, develops subsequently into asuperposition of sound reflections modifies the decay of the
Gaussian and decays diffusively. It is on this time scale thavelocity which becomes negative, exhibiting a minimum.
the dynamics is controlled by the diffusion coefficiddt Such a minimum appears, roughly, at a time=L/c,, when
derived in Sec. Il. momentum has propagated the tube width. It is, subse-
quently, at timesr,, when momentum has diffused the tube
width that the decay becomes algebraic. As shown in the
inset of Fig. 4, the exponent of the algebraic decay &in

0.0035 this case, which coincides with the theoretical prediction for
a 2D fluid of the preceding section.
0.0030 - In order to test the prediction for the amplitude of the
long-time tail, we have studied the asymptotic decay of a
0.0025 - localized velocity perturbation, and of particles of radius
" =0.5 and 2.5, all of them located at the center of a two-
S 00020 - dimensional slit of width 16. In Fig. 5 we compare the am-
& plitude of the algebraic tail predicted by E(L.5) with the
& 00015 simulation results in all three cases. Due to the discreteness
of the lattice, there exists an uncertainty about the actual
0.0010 1 location of the solid boundarigd.2]. Both for a point force
——————— and for the particle of radius 0.5 this indeterminacy is negli-
00005 L—:;/ N gible. For a particle of radius 2.5 we have fitted the curve
0.0000 - / ‘ . \ N multiplying the distance from the center of the particle to the
T7Z700 500 -30.0 -10.0 100 300 500 700 wall by a factor 1.1. This assumes a 10% error in the loca-
x tion of the interfaces, leading to errors in the distance that are

FIG. 3. Time evolution of an initial localized density perturba- SMaller than one lattice spacing, and which are in agreement
tion in a two-dimensional slit of width = 10 and kinematic viscos- With previous estimates of the uncertainty in the particle-wall
ity »=0.5. The density perturbation Bp=0.1py, po being the Separation$15]. . .
equilibrium density. Density profiles at times 0.1, 0.15, 0.2, 0.25, We have focused on motions of the particles parallel to
0.3, and 0.35 correspond to continuous lines, and times 0.5 and 11§€ directions that are not confined. If the particle initially
to dashed lines. The lower the curve in the center, the larger thehoves perpendicularly to the walls, an exponential decay is
time it corresponds to. Time is expressed in units of the diffusiveobtained as could be expected, since in this case the density
time 7,, and distance is expressed in lattice units. perturbation generated by the motion of the particle cannot
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) ) ) ) ) FIG. 6. Decay of the VACF for a disk of radius=2.5 in the
FIG. 5. Amplitude of the long-time tail measured in the simu- center of a box of sidels, =9 andL,=199. The coefficient: used

lation Agir, relative to the theoretical predictighy, given in Eq.(15) o show the long-time exponential decay has been fitted. We have
as a function of the distance from the center of the disturbance qfiseda=0.006. Lengths are expressed in lattice units.

from the particle centey to the center of the two-dimensional tube,

expressed in lattice units. The tube widthlis-16, and the i

Yo, €XP S8 ’ C. Hydrodynamic fields

viscosity v=3. ) i ) ]

We will now look in detail at the flow fields that are

. generated in a fluid confined between two parallel plates as a
propagate through the system. Therefore, even if in a suspeflssnonse of an initially moving sphere in an otherwise qui-

sion particles move at random, the long-time behavior willogcent fluid. We will consider a particle of radius-2.5

be controlled by the components parallel to the walls.  |attice units, placed in the center of a tube of radRis8.5,
One can also analyze the behavior of the angular velocityn a fluid of shear viscosity=%. We focus on the features

autocorrelation functiofAVACF). The decay is always ex- of the flow, vorticity, and density fields for a particle diffus-

ponential as long as the particle is in equidistant from theng along the axis of the tube, during the initial decay of the

walls. This is due to the fact that the angular velocity doesvACF, i.e., for times at which the asymptotic decay has not

not couple to any compressible mode, and its decay is corbeen reached yet.

trolled by vorticity. However, when it is not equidistant, then  The total simulation time corresponds tor,~1. The

it will induce a translational velocity, and therefore it will flow, vorticity, and density fields depend on the three spatial

decay algebraically at long times, with the same exponentsoordinates. The fields are examined in #€0 plane. The

as those corresponding to the VACF. Again, if slip boundaryvelocity field and density are directly calculated in the

conditions are considered the situation is qualitatively differ-lattice-Boltzmann scheme. The vorticity, at a lattice point

ent. In this case the fluid has an effective dimensiin  (X,y), which is a local quantity is given by

=D -1, vorticity can diffuse in this effective medium, and 1

the AVACF decays algebraically with the corresponding al- o(X,y)= =y (X+1y)—v,(X,y+1)—v,(x—1y)

gebraic power, without changing its direction of motion dur- 2

ing its decay[16]. +o(xy—1)). (17)
If we would have considered the VACF of a particle in a

closed container, one expects that eventually the decay Wilthis is a two-dimensional discretization af= Ly xv, the

be exponential. For a roughly isotropic container, in whichiree-dimensional definition of vorticity. The time evolution
all its dimensions are of the same magnitude, either the desf the various fields is shown in Figs. 7 and 8.

cay of the VACF is purely exponential or vorticity develops, |nitially, the velocity field contains the vortex pair that is
when the system is large enough, showing a later crossovegsponsible for the positive long-time tail in the VACF for an
to the final exponential decdy7]. If we consider an elon-  ynpounded fluid, although as soon as the perturbation in-
gated axisymmetric container, even if vorticity cannot dif- quced by the particle reaches the walls vortices creeping at
fuse, if the long lengtth.|| and the short onk, are related in  the wall of the tube are also seen. On the other hand, the
such a way that momentum can diffuse the short distancgotion of the particle produces an increase of the density in
before travelling the long one, i.d.;j/ce>L%/v, then diffu-  the front, and a decrease in the back, as expected. In Fig. 7 it
sion of sound alond; will have time to develop. In this is already seen that the two vortices cannot grow diffusively,
case, for times. || /cs>t> Lf/v the decay of the VACF of a and that meanwhile the vortices that were creeping along the
particle will be algebraic, and only at later times it will be- wall are already outside the picture. The density plot indi-
come exponential. In this case, the algebraic decay is not theates that in front of the particle there is a sizable density
asymptotic behavior of the short-time dynamics, as seen iincrease. At later times, when the particle velocity reverses
Fig. 6. direction, a clear change in the qualitative behavior of the
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FIG. 7. Flow f|e|d’ Vortici’[y’ and densityl from top to bottom’ FIG. 9. Diffusion coefficient of a pal‘tiC|e with radiusin the

respectively {/ r,=0.47). The velocity field, which is at the top, is center of a cylindrical tube with radilR, normalized with respect
scaled withs=Max v, in the x direction, whereas for the direc- to its value at the center of the tube. The points denote simulation
tion 4s is used to scale the arrows. For the sake of clarity one halfesults, and the line corresponds to the center-line approximation.
of the velocity vectors in both directions are omitted from the pic-
ture. The vorticity field is obtained by applying E(L7) to the V. DIFFUSION COEFFICIENTS
velocity field, and is shown in the middle. It is scaled such thatten  The self-diffusion of the suspended particle can be related
isovorticity lines are shown, at heights which vary linearly betweento the integral of the VACF by means of a Green-Kubo ex-
the maximum and minimum vorticities. The Iargest VOFtiCity is de- pression_ We can then obtain macroscopic information about
picted by_ the darkest colqr. The same procedure was performed f9fe hehavior of the suspension, from the knowledge gained
the density, the bottom picture. in the analysis of its macroscopic behavior.

In Fig. 9 we show the values for the diffusion coefficient
or a sphere of radius 2.5 at the center of a cylindrical tube of
variable radius, normalized by the value of the diffusion co-
T o o P efficient in the absence of the tube. We also plot the predic-
and over a 5|gn|f|pant_area the _velocny in ‘?'““"“fec“o_” IS tion of the center-line approximatidi 8], calculated assum-
opp(_)sed to the direction at which the pamcle was !n't'a"ying a purely incompressible fluid, i.e., neglecting sound
moving. Th|s.feat_ure becqmes more salient at Iater Umes, a%facts. We obtain a perfect agreement with the theoretical
can be seen in Fig. 8, which corresponds to the MINIMUM Of e gictions. This can be understood, because the algebraic
the .V.ACF' Due to thg back ﬂ.OW around the p_arncle, thedecay we have described in the preceding sections arises
vorticity near the colloidal particle has almost disappearedg. ) “iha coupling to the compressible modes of the fluid
At later times the _negative flow field keeps_ growing in Siz‘_a’and these vanish in the stationary limit. These modes do n(’)t
at the end spanning th_e to'FaI plotted_ region. The Ve_loc'tyaffect the integral of the VACF since their amplitude is in
f'elq rgsembles the_ Poiseuille flow field fqr these tiMesS, ¢4t proportional to the frequency itself. The diffusion coef-
which IS the parabolic steady state flow prqflle for flow in ficient is determined by the decay of transverse velocity per-
tube, with a pressure drop, and the density field becomeﬁnbations[lO] which, in a confined system, is exponential.
more one dimensional. So, while compressibility effects dominate the long-time dy-
namics, they still do not contribute to the diffusion coeffi-
cient. However, it is important to resolve all the time scales
in order to obtain the proper diffusion coefficient from the
integral of the VACF. In Fig. 10, we show the time depen-
dent diffusion coefficient, which is the integral of the VACF
from O to timet. One can see that it exhibits a maximum. If
we would have assumed an exponential decay for the VACF
we would have obtained an overestimate for the value of the
diffusion coefficient.

Due to the flexibility of the lattice Boltzmann method to
deal with complex geometries, we can use the technique as a
means to derive profiles for the diffusion coefficient of sus-

flow field is observed. The two vortices have been dampe
out, which shows that the perturbation induced by vorticity
decays exponentially due to the presence of the val,

& \\\\ \\ a //// < pended particles in general geometries. In Fig. 11, we show
( \) \,} j\/xﬂ ( the va!ues of the diffu;ion coefficie_nt for a spherical particle
N // P L of radius 2.5 in a cylinder of radius 9. As we move off-
NN T = ~ 4 center, the three components of the diffusion coefficient are

not equal. In particular, the component of the diffusion par-
FIG. 8. t/7,=0.78. For caption, see Fig. 7. allel to the tube D, in the figurg, exhibits a maximum as
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FIG. 10. Dependence of the diffusion coefficient with time fora ~ FIG. 12. Profile for the component of the diffusion coefficient
particle of radius =2.5 in a slit of widthL,=7. ty=(L/2)%v is parallel to the walls in a two-dimensional slit for two different tube

the time needed the vorticity to diffuse the width of the tube. widths, L, . The particle has always radius- 2.5 lattice units.

we move toward the plate. A perturbative calculatid®] presence of a single wall a theoretical expression exists that
implies the existence of a maximum in the parallel compo-s sufficiently accurate except close to contafl]. The plot
nent of the diffusion for the motion inside a cylinder, al- shows that the agreement is very good, even for a relatively
though we do not know of any explicit calculation of the narrow fluid layer as the one considered, in which the aspect
value of the maximum. The same behavior persists for aatio ish=2r/L,=1/3, withr being the radius of the colloid
two-dimensional fluid, as shown in Fig. 12. However, theand L, the width of the tube. The deviations that can be
diffusion coefficient parallel to the the walls is a monotonousexpected close to contact, where lubrication will be impor-
function for a three-dimensional fluid between two paralleltant, cannot be resolved in a lattice Boltzmann calculation
plates. In Fig. 13 we show the corresponding profile, and wavith the small sphere considered in these simulations.
compare it with the value for the density predicted theoreti-
cally if we neglect the hydrodynamic interactions between
the two walls. In this case, the diffusion coefficient of the
sphere is the sum of the diffusion coefficients induced by
each wall independently, corrected by the value at the center We have also considered the VACF for a suspension in a
of the layer. For the diffusion coefficient of a sphere in theslit. The time dependence observed is analogous to the ob-
tained in the preceding sections for a single particle. By in-

Diffusion coefficient for a confined suspension
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FIG. 11. Profile of the diffusion coefficient of a particle of ra-
dius 2.5 in a tube of width 9 lattice spacings, as a function of its FIG. 13. Profile for the component of the diffusion coefficient
position off-centerx is the direction of the axis of the cylinder, and parallel to the walls for a sphere of radius 2.5 confined between
we move off-center in the direction.D refers to the average local two plane walls at located at a distancg=15 from each other.
diffusion coefficient defined as the mean of its three components.Lengths are expressed in lattice units.
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FIG. 14. Linear-log plot of the component of the diffusion co- ) e - .
efficient parallel to the walls of a two-dimensional tube as a func- FIG. 15. l_\lormahzed dlffusmn coefﬂu_ent asa functhn of the
tion of the width of the tubey, for an equidistributed particle. In all Volume fraction for a confined suspension, as a function of the
cases particles have a radius 2.5. The diffusion coefficient and aspect ratio. In all cases the particles have a rag.5 lattice
the radius are expressed in lattice units. units.

tegrating, we obtain the short-time diffusion coefficient for a@nd it becomes the leading hydrodynamic response at low
colloidal suspension, and we analyze its behavior as a fundrequencies. The dynamics of the suspension will couple to
tion of the aspect ratia. It is clear that the wider the tube the longest-lived solvent mode. Therefore, the long-time de-
the larger the diffusion coefficient, since the mobility is hin- cay of the velocity autocorrelation function is controlled by
dered due to the hydrodynamic interaction of the particle$ound, contrary to what happens in an unbounded fluid,
with the walls. This is clearly depicted in Fig. 14, where we Where itis controlled by vorticity. The diffusive decay of the
show the decay of the value of the diffusion coefficient for ainitial density perturbation induces a change in the direction
particle equidistributed in the tube, as a functionoHow-  Of the suspended objects, as was clearly seen from the pic-
ever, if we normalize the diffusion coefficients of the suspen{ures of the hydrodynamic fields. Also, the angular velocity
sion by the average mobility at zero volume fraction, then@utocorrelation function differs from the usual behavior in
the curves for the diffusion coefficients of suspensions cortinbounded fluids. Since its decay is due to vorticity, it al-
responding to differenk look much more similar to each Ways exhibit an exponential decay, insofar as it is not
other, as shown in Fig. 15. In fact, a significant deviationcoupled with the velocity. Due to the presence of the walls,
from the general behavior is only observed for strong conlhis is an unreahsup requirement fqr_collmdal suspensions.
finement. As soon as roughly two layers of suspended paA\S SO0n as the part!cles.ar.e not eqwdlstant_from the walls, an
ticles fit between the walls, their relative motion becomeghitial angular velocity will induce a translational velocity of
dominant, and the walls can be seen as if they provide onlfh€ particle[21]. This coupling term will decay slower and

the mean friction felt by the colloidal particles. will control the subsequent decay of the AVACF.
From the analysis of the VACF we have extracted the

values for the diffusion coefficient of a confined suspension.
In order to obtain proper values, it is necessary to take into
account the algebraic decay of the VACF, although the final
In this paper we have analyzed the short-time dynamics ofalues for the diffusion coefficients agree with the predic-
confined colloidal suspensions. We have restricted ourselva®ns for incompressible fluids. We have looked at the local
to the simplest geometry, namely, a tube, where exact anaalues of the diffusion coefficient for different geometries.
lytical results can be derived for point particles and one cabue to the presence of the walls the diffusion is no longer
focus on the basic dynamical features of the short-time colisotropic, and we have focused on the component of the dif-
loidal dynamics. fusion parallel to the walls. We have seen that it may exhibit
We have shown that the presence of stick walls qualitaa maximum, although it is not a generic feature. For ex-
tively modifies the hydrodynamic modes that characterizeample, in the case of two parallel plates it has a monotonous
the response of the fluid. The coupling of the fluid to a solidbehavior, and we have been able to compare our values with
elastic medium(which is a typical example where stick the predictions obtained from the additivity assumption,
boundary conditions are fulfillgdnduces the development which neglects the hydrodynamic interactions between the
of a diffusive sound mode at low frequencies. We have alsewo walls. This approximation is seen to work quite well
shown that this diffusive mode is initially non-Gaussian, andeven for quite narrow tubes. The flexibility of the lattice
it is only on longer time scales that it becomes GaussianBoltzmann method in dealing with general boundaries con-
This diffusive mode decays slower than vorticity, which verts it into a useful technique to obtain maps of the diffu-
cannot propagate diffusively due to the presence of the wallsion coefficient in general geometries, that can be used as

V. CONCLUSIONS
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inputs for other simulations techniques that work in the par- Finally, if we would have considered that the fluid is con-

ticle diffusion time scale, such as Brownian dynarrji2g]. tained between slip walls, then the fluid would develop after
The development of the diffusive sound mode can be una transient into an effective fluid of dimensiai. This

derstood on a simple physical basis. For time and lengtlclearly shows that the dynamical behavior of the suspensions

scales in which the fluid is interacting with the solid inter- in confined geometries will be sensitive to the specific mo-

faces, momentum is no longer a conserved variable. Undenentum fluxes that occur at the boundaries.

these conditions, only mass is conserved, and has therefore a

diffusive character. This interpretation provides also an anal-

ogy with a Lorentz gas. This model is known to exhibit an

algebraic velocity decay at long times with an exponent ACKNOWLEDGMENTS

—D/2+1 [23] for a D-dimensional system, and which is

precisely the one we have obtained from solving the Navier- The wo;kthof chOeMFOMd I_nst|tute |st %ag O,:hthil sg|erl‘1t|f|§
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algebraic decay, with an exponent that can be understood as
the number of unconstrained dimensions. In these two sys-

tems, the solid walls do not completely restrict any of the

spatial dimensions, and we find, consistend{y=D, D be- APPENDIX A: HYDRODYNAMIC EIGENVECTORS

ing the dimensionality of the system. This also implies that

the same kind of dynamical behavior we have described here In this appendix we write down expressions for some of
should apply to the dynamics of particles embedded in gelthe quantities used in Sec. Il during the theoretical derivation
or in suspended membranes, where in the latter case the pax-the VACF. All the symbols appearing in the subsequent
sibility of developing diffusive sound modes has also beerexpressions are defined in Sec. II.

pointed out{ 24]. The hydrodynamic matrix introduced in E) is
0 1 0 0
1 c2k? C2ky+ik, v
Siw—i—=+(r+T)k2 0 0 -=r
- 14 w rvw
D= 0 0 0 1 : (AD)
0 c2ky+i oIk, w(iw+ vk2) 0
ic2—(v+Dew  ic2—(v+DN)w
|
which after diagonalizing gives i i ik, ik,

Ay O 0 0 M=| K ke A A (A3)
0 -x, 0 O

D= ! (A2) 2+ 11
0 0 )\2 0 )\l )\1 )\2 )\2
0 0 0 —-x 1 1 1 1

The eigenvector matrik corresponding t@®, and which  Finally, the functionH(k,,\;,\,,L,Y,) introduced in Eq.
is needed to derive the appropriate expression for the velog11) and which specifies the velocity at the point where an
ity field from Eg. (9), has the form initial perturbation is applied in the fluid is given by
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H(ky ,N1,M2,L,Y0) = —k& sinh(L\1)[ cosi2yo\ ;) — cosLA2) ]+ A3N3 sinh(LA )[ cosh2ygh 1) — coshLA4)]

(2yo— L))\z}cos%(ZYO_ LNy

> > }(MM‘Fki)_4k§7\1)\2()\17\2_k§)

—4Kk2\ 1\, sinr{

) }_{(ZYM'L))\Z} %(Zyo"‘l—))\l
Xsin 2 COoSs 2

} + KNN3 sint(LA 1)cosH L\ )

—2 sini(2yghq)cosiLN;)]— kf)\l)\z[z sinf(LA,)cosHLA 1)+ sinh(LA,)cosi2yg\q)]. (A4)

APPENDIX B: INTUITIVE DERIVATION The fact that, even in the hydrodynamic limit, the wave
vectors in they direction do not vanish implies that the rel-
evant modes will depend on the width of the tube. In the
%ydrodynamic regime, which corresponds to the lirkit
—0, the compressible modes read

Although the analysis of Sec. Il is rigorous, here we will
present an alternative derivation that provides a simpl
physical understanding of the role of the walls in the devel
opment of the sound diffusing mode. We will consider a
D-dimensional fluid confined between parallel walls a dis- 12 2 4
tanceL apart in they direction. The basicpidea is that, due to @+ =1 KT +Odk), (B4)
the geometrical constraints imposed by the tube, at long
times the transversal component of the velocity field has al-
most relaxed, and thereforeyv>dyv,, whered; means
the derivative with respect to the components parallel to the
walls. Then, although the velocity can be thought as having Therefore, in this regime we can identify an effective
one dimension less, it still keeps the dependence in all thgound diffusion coefficient
spatial coordinates, because at all times it has to vanish at the

2c?
w_=i—ki+O0(k. (B5)
vky

walls. At long times what happens is that thdependence is 2¢2
important only close to the boundary, and the existence of D=—2, (B6)
such boundary layers will dominate the hydrodynamic Vk)z,
modes.
If we introduce the previous assumption from E@.and  Which has the same functional dependence as the one we
(3), we end up with have rigorously derivedlEq. (14)]. Incidentally, if we sum
over all the perpendicular wave vectors, we recover
ap - - L2 S 1 ciL?
— 4+ . = A s - _ s

(B1)
5 which is precisely Eq(14). In terms of the previous modes,
adl IV - the velocity induced by the applied the force will decay as

2 —
Ea e K aev

L —id-kkpF —iwkky-F
sty=—Lkikp-F 1K)

—— — — . (B8)
The hydrodynamic modes that determine the dynamical Wi (0~o)(w-w_)

response of the fluid are then Both contributions to the velocity dynamics from the in-

(B2) compressible mode anadl, will decay exponentially in time,
because, cannot tend to zero. However, sinee is diffu-
i 1 sive, it will induce an algebraic decay of the velocity, and
wi=§(vk2+ Fkﬁ)iz\/—(vkz-i- T'k)))2+4cskf, this will become the dominant contribution at long times. If
(B3) we transform Eq(B8) back to time and space, we asymp-
totically obtainv (t)~ —t~(°*1’2 Since in this case there is
which correspond to one incompressible mode and two conrenly one constrained directiod* =D — 1, which implies
pressible modes. The wave vectois defined such that its

component parallel to the wall is given by the ve&gr and

its component perpendicular to the walj=2zn/L is dis-
cretized and chosen from the appropriate sine or cosine
transform to ensure that stick boundary conditions are fulwhich for D=2 agrees with the results of Sec. Il, and gen-
filled. The integem will therefore not contain the value 0. eralizes it for a general dimension.

w;=ivk?,

U(t)’”—m. (Bg)
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