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Dissipative properties of vibrated granular materials
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We investigate collective dissipative properties of vibrated granular materials by means of molecular-
dynamics simulations. Rates of energy losses indicate three different regimes or ‘‘phases’’ in the amplitude-
frequency plane of the external forcing, namely solid, convective, and gaslike regimes. The behavior of
effective damping decrement in the solid regime is glassy. Practical applications are discussed.
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The dominating approach in the world of vibration contr
and suppression by granular systems has been mainly p
tical @1#. Granular motion relaxes rapidly once the ener
supply is switched off, and dampers can efficiently abs
energy released by shocks of external forcing. Engine
classify granular dampers aspassiveones.

For the case of ‘‘granular gases,’’ i.e., particulate syste
in a state where the mean free path is large as compared
particle sizes, the cooling rate, which is the dissipation r
of the system, has been investigated@2#, and applications of
this work require an analysis of granular gas~hydro!dynam-
ics in a given experimental setup. Damping in dense gran
arrangements is a much more difficult problem which
mostly studied experimentally.

In this work, by using molecular-dynamics simulation
we show that granular systems reveal different damping
gimes indicatingcollectivedissipation modes. Our study o
these regimes leads to a ‘‘phase diagram’’ of horizonta
vibrated granular systems~see Fig. 4!. By using this diagram
along with the presented estimates for damping decreme
practitioners may accelerate the design and testing pr
dures.

In simulations we focus on two-dimensional containe
which are partially filled with granular material and shak
horizontally. The motion of the container is sinusoidal,x(t)
5A sin(vt); it mimics practical situations where dampers a
tested in the vicinity of the eigenmodes of the vibrati
mechanism. We study the reaction of the system to
choice of parameters of shakingA andv, keeping all other
parameters~size, roughness and hardness of particles, fill
factor, and size and shape of the apparatus! fixed @3#.

Our primary objective is the rate of energy dissipatio
computed by cycle averaging under steady conditions of
cillatory motion. Dissipation is obtained by using two diffe
ent ways to ensure consistency of the data:~i! from the total
power transmitted to the container walls, and~ii ! from the
dissipative work in interparticle collisions. Numerically, bo
results coincide within a few percent.

For the molecular-dynamics simulations, we use a mo
fied soft-particle model by Cundall and Strack@4#: Two par-
ticles i and j , with radii Ri andRj and position vectorsrW i and
rW j , interact if their compressionj i j 5Ri1Rj2urW i2rW j u is
PRE 591063-651X/99/59~4!/4422~4!/$15.00
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positive. In this case the colliding spheres feel forcesFi j
N @5#

and Fi j
S @6#, in normal and shear directions denoted by u

vectorsnW N andnW S, respectively,

Fi j
N5~YARi j

eff!/~12n2!S 2

3
j3/21aAjj̇ D , ~1!

Fi j
S5sgn~v i j

rel!min$gSmi j
effuv i j

relu,muFi j
Nu%, ~2!

and the resulting momenta acting upon the particles areMi

5Fi j
SRi , M j52Fi j

SRj . The constanta is the characteristic
dissipation rate of the material,Y is the Young modulus, and
n is the Poisson ratio. The normal and shear friction coe
cients, gn[aY/(12n2) and gS , model dissipation during
particle contact. Equation~2! takes into account that the pa
ticles slide upon each other for the case that the Coulo
conditionmuFi j

Nu,uFi j
Su holds, otherwise they feel some vis

cous friction. Ri j
eff5RiRj /(Ri1Rj ) is the effective radius,

and the effective massmi j
eff is defined analogously. The rela

tive velocity at the point of contact is

v i j
rel5~rẆ i2rẆ j !•nW S1RiV i1RjV j , ~3!

with V i andV j being the angular velocities of the particle
The values of the coefficients used in the simulations

Y/(12n2)57.53107, gn573102, gS530, m50.5. Cgs
units are implied throughout the paper.

With the system parameters specified above, depen
on forcing one may find intensive convection~Fig. 1!. Con-
vection patterns in horizontally vibrated granular mater
have been recently reported@7#. In our case only two rolls
could be observed. Different aspect ratios or material par
eters give different convection patterns, with two, four@7#, or
more convection rolls~not shown here! @8#.

The velocity profiles in Fig. 1 have been produced
averaging particle velocities in the regime of steady osci
tions. We do not intend to discuss the effect of convection
horizontally shaken material in detail, although we note t
the onset of convection in the system is due to a criti
amplitude of driving velocity (Av)cr . Figure 2 shows the
maximum absolute value of convective motion in the syste
i.e., the length of the longest arrow in Fig. 1, over the velo
4422 ©1999 The American Physical Society
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ity amplitudeAv for different frequenciesf ~in Hz!. Below
(Av)cr'60 there is slow collective motion in the system, b
close to this point there is a transition into a rapid convect
regime@see also Fig. 1~d!#.

To characterize the dissipation in the system, we int
duce an effective damping parameterb which is proportional
to the ratio between the averaged dissipated power per c
T and the mean translational kinetic energy of the granu
system@9#,

b5

1

TET
Wdiss~ t !dt

2(
n

mnE
T
vn

2~ t !dt

. ~4!

Here summation is performed over all granular particles
the container. In the reference case of a linear oscillator
damping decrementb equals the inverse of the amplitud
relaxation time.

Figure 3 shows the dampingb as a function of the effec
tive accelerationG5Av2/g and the amplitude of the veloc
ity of vibration, Av. Different symbols~filled or open! dis-
play different frequencies. Except for the very low frequen
range,b scales with the amplitude of the velocity of vibra

FIG. 1. Images of the cycle-averaged motion of the system
brated atf 520 for different velocities of forcing,Av: ~a! 1900,~b!
1250,~c! 600, ~d! 100, ~e! 15 ~cm/s!.

FIG. 2. Maximum velocity of collective flowV ~cm/s! over the
amplitude of shaking velocityAv (cm/s), for the different fre-
quencies analyzed:L, 5; h,10; s, 20; x,40; n, 80 ~Hz!.
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tion, Av @Fig. 3~a!#. A transition from theAv scaling into
another regime takes place atG'1 @Fig. 3~b!#. Below this
point the effective damping parameter becomes less sens
to G and fluctuates very strongly.

Figure 3 reveals three regions, indicative of different d
namic regimes. The local minimum in Fig. 3~a! is the region
of spatially organized behavior with well developed conve
tion rolls, where the entire granular mass participates in c
lective motion @Fig. 1~c!#. For higher velocity amplitudes
Av, the dissipation rate increases, as particles begin to
across the box and the ordered structure of the rolls star
disappear@cf. Figs. 1~a! and 1~b!#. The minimum corre-
sponds to a characteristic velocity at which the system be
to display the ‘‘gas’’ state. This characteristic velocity can
estimated by equating the characteristic time of motion
horizontal and vertical directions for a particle with veloci
of the order ofAv,

L/Av5Av/g. ~5!

For L5100, this givesAv5313, which gives an order-of
magnitude estimate of the minimum of Fig. 3~a!. Additional
analysis reveals that the correct prefactor is close to 2@see

i-

FIG. 3. Effective damping parameterb vs ~a! the amplitude of
velocity of vibration, Av ~in cm! and vs ~b! the dimensionless
forcing acceleration parameter,G. Different symbols refer to differ-
ent frequencies;v, 2.5; L, 5; h, 10; s, 20; x, 40; n, 80
~Hz!. Open symbols refer to fast cooling schedule, filled symb
refer to slow cooling~see text for details!. The solid line in~a!
shows a fit using Eqs.~6! and~7!. Observe the fit lines with slope
21 and11 for b}(Av)21 and b}(Av)11 in the ‘‘liquid’’ and
‘‘gas’’ regimes, respectively.
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Fig. 4~a! and discussion below#. At higher velocities par-
ticles continue to stay airborne, and gravity becomes un
portant. Thus, the boundaryAv;ALg separates the ‘‘liq-
uid’’ and gaslike regimes@10#.

To the left of the minimum, with amplitude decrease
any frequency, the depth of the rolls diminishes progr
sively until a critical value (Av)cr'60 is reached. At this
velocity the rolls vanish completely and we do not find o
ganized motion in the system anymore@cf. Figs. 2 and 1~d!#.
The system seems to be in a ‘‘solid’’ state. The critical va
of velocity is manifested in Fig. 3~a! by a change in the
damping slope. Given that the acceleration of shaking h
exceedsg, critical velocity in this range points toAv
;ARg, whereR is the particle radius. This is consistent wi
our particle sizes@3#.

In the solid regime one has to switch from velocities
accelerations. Following Fig. 3~b! to small accelerations, on
finds a change in the behavior atG'1, i.e., when the maxi-
mal acceleration of shaking becomes comparable with g
ity g. For G*1 the curves are smooth, but forG&1 sud-
denly the data become very noisy. At this point the gra
form a glassy ‘‘solid’’ phase. We note that our understand
of the transition atG&1 is different from the solid-fluid
transition reported recently@11# as long asAv&ARg. At
higher velocities our results lead to the same conclusion
the results reported in Ref.@11#.

To reiterate, the transition point found in Ref.@11# is

FIG. 4. Phase diagram of our system, and the damping regim
~a! Explicitly analyzed regions, the value of the damping parame
b shown by gray scale vs the adimensional frequency and ampli
of shaking~white, highest damping!. ‘‘Mountains’’ at low ampli-
tudes are caused by fluctuations in the glassy state. The black s
at the very top of the picture represents empty data and should
be taken into account. The diagram~b! is a summary of regimes
based on the entire analysis. The narrow region between the
state and the dashed line is found to be a nonglassy ‘‘solid.’’
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given by Av25g in our notation. It is unclear whether th
nonglassy solid phase atG*1 can be identified by the
method of granular temperature used in Ref.@11#. If our
understanding is correct, the nonglassy regime is not ne
sarily fluidized, and the region of increasing granular te
perature may overlap the region of nonvanishing configu
tional order associated with a ‘‘solid’’ state. This is a
intriguing issue, and it is worth a separate study.

At the glass transition point,G'1, particleensemblesget
trapped in their momentary position. In the glassy regime
rate of dissipated energy is strongly sensitive to the confi
rational arrangement of the particles i.e., to the history of
system. In other words, depending on initial conditions,
the same parameters of oscillationA andv, the system can
settle in different configurational arrangements, and exh
different dissipation rates. Transitions between different c
densed phases based on multiparticle condensation
been suggested earlier by two of the authors@2#.

To demonstrate this fact, in Fig. 3~a! two different sets of
data points are shown by filled and open symbols; they re
to ‘‘fast’’ and ‘‘slow’’ cooling. By fast cooling we mean an
instantaneous transition from any fluidized initial state to
specified amplitude and frequency of vibration. The init
conditions, namely, random positions and velocities of p
ticles, are kept the same for each data point. Thus, there i
memory of the preceding evolution. Having the first 3
cycles of the driving oscillation discarded, the mean dissi
tion is obtained by averaging over 30 cycles of shaking. T
large fluctuation of the dissipation rateb is not due to insuf-
ficient data averaging: averaging over 100 cycles, instea
30, leads to the same results. In the case of slow cooling,
system is initialized only once for each frequency, and
final state for a certain amplitudeA serves as the initial one
for the next amplitude to be investigated. The amplitude
vibration in each simulation is diminished by a factor of 1
The behavior in this case can be sensitive to the entire
tory of the experiment. According to the mechanism d
cussed in Fig. 3~a!, in the regionG&1 the fast cooling data
points begin to fluctuate, whereas the slow cooling data
relatively smooth. Thus, for accelerationsG&1 one identi-
fies a glass regime.

The different damping regimes can be clearly apprecia
in Fig. 4~a!, where a shaded contour plot of the effecti
damping parameter is shown as a function of the adim
sional amplitude and frequency of shaking@10#. These re-
sults suggest that, on the (A,v) plane, the regime boundarie
form a diagram similar to the Van der Waals system, w
the ‘‘triple point’’ roughly located at (L,Ag/L). Above this
point, direct ‘‘sublimation’’ is achieved atAv2'g. Convec-
tion rolls can develop atA,L above a critical velocity, as
has been discussed. This diagram is shown schematical
Fig. 4~b!, where for the sake of clarity the boundaries b
tween regimes are sharpened. The damping decrement a
with convection dynamics provide indicative suggestio
about ‘‘phases’’ which we discuss here. Any sound inden
fication of transitions and phases can only be based on s
ies of appropriate order parameters. In principle, it is co
ceivable that some ‘‘phases’’ may represent only prefer
dynamic states.

The fluidized regime is amendable to hydrodynamical
guments. Let us consider the ‘‘gas’’ state, where the diss
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tion is dominated by collisions with the walls of the co
tainer. The pressure transmitted to the vertical wall by
granular cloud of densityr which moves with velocityv
5Av relative to the wall is;rA2v2. Neglecting other con-
tributions, the dissipated power during the collision is th
roughly a fraction of the quantityrv3L. Using Eq.~4! one
finds

b5Cg

Av

L
. ~6!

Formula~6! is applicable atAv*ALg. Cg is some unknown
numerical prefactor. This expression is simply proportio
to the collision frequency of independent gas particles m
ing at velocityAv and having a mean free path of the ord
of L. In other words, collective modes are irrelevant in t
‘‘gas’’ phase as it should be.

For velocitiesAv,ALg, the system is only partially flu-
idized. This means that the pressure transmitted by the
tainer walls does not exceed the static stress that the
densed particles can sustain. The latter is roughly of
order ofp5rgL in the horizontal direction. As long as ther
is any fluidized material in the system, these stresses ca
be lower. Therefore, the dissipated power ispHv, whereH
is the height of the system. Dividing it by the total kinet
energy1

2 rHLv2, one gets

b5Cl

g

Av
. ~7!

Formula ~7! is applicable atAv2*g, Av*ARg, Av
&ALg, and Cl is the unknown numerical prefactor. Ver
roughly, in this regime some condensed particles trans
their motion to other particles and the latter can move aga
is
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gravity. b is the inverse time needed to decelerate them. T
best fit of the curves of Fig. 3 provides the valuesCg50.1
andCl50.45 for our simulated system, giving a value for t
minimum (Av)G52.1ALg. This is obviously consisten
with the upper curve shown in Fig. 4~a!, separating the
‘‘fluid’’ and ‘‘gas’’ regimes.

To summarize, by means of MD simulations we ha
shown how the analysis of energy-loss rate displays differ
damping regimes. In particular, one finds that fully conve
tive states correspond to minimal damping decrement. P
forming two types of measurements, referred as to slow
fast cooling, one identifies a glass regime. This regime
which configurational states affect the dynamical proper
of the system, is separated from the fluidized regime by
value of the forcing parameter,G[Av2/g;1. For higher
forcing one may find a non-glassy solid phase as long as
velocity of shaking is smaller thanAv&ARg. TheAv scal-
ing of the damping curves signals the beginning of t
‘‘fluid’’ regime. Here convective states can develop in a r
gion of the plane (v,A) above the critical velocityAv
;ARg, critical accelerationAv2/g*1, and below ‘‘evapo-
ration’’ threshold A5ALg/v. The damping decremen
passes through the minimum for velocitiesAv;ALg, and at
higher velocities a gaslike state can be identified, where
effects of gravity are negligible.
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