PHYSICAL REVIEW E VOLUME 59, NUMBER 4 APRIL 1999

Stacking entropy of hard-sphere crystals
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Classical hard spheres crystallize at equilibrium at high enough density. Crystals made up of stackings of
two-dimensional hexagonal close-packed layersg., fcc, hep, etgdiffer in entropy by only about 10°kg per
sphere(all configurations are degenerate in engrdgyo readily resolve and study these small entropy differ-
ences, we have implemented two different multicanonical Monte Carlo algorithms that allow direct equilibra-
tion between crystals with different stacking sequences. Recent work had demonstrated that the fcc stacking
has higher entropy than the hcp stacking. We have studied other stackings to demonstrate that the fcc stacking
does indeed have the highest entropyatif possible stackings. The entropic interactions we could detect
involve three, four, andalthough with less statistical certaiftfive consecutive layers of spheres. These
interlayer entropic interactions fall off in strength with increasing distance, as expected; this falloff appears to
be much slower near the melting density than at the maxiraiose-packing density. At maximum density
the entropy difference between fcc and hcp stackings is 0.08101800 04kg per sphere, which is roughly
30% higher than the same quantity measured near the melting trans8t063-651X99)06504-§

PACS numbg(s): 82.70.Dd, 61.56-f, 81.05.Rm, 02.70.Lq

[. INTRODUCTION tropy difference per sphere:0.001<As* <0.002 in units
of kg, WhereAs* =S — Spcp.

The question of which crystalline stacking of hard spheres Recently, Bolhuis, Frenkel and the present autjad
near close packing has the lowest free energy is a long standsed both a new implementation of the multicanonical
ing one. The interest is partly due to the extreme anharmoMonte Carlo (MCMC) method [12,13, and the Einstein
nicity of hard-core interactions and partly due to the fcc-hcperystal method to reduce the statistical errors down to the
phase transition in solid heliufid]. This problem is difficult 10 “kg per sphere level. This allowed us to accurately re-
both experimentally and theoretically. Experimentally, clas-solve the entropy difference of roughly 1tz per sphere
sical hard spheres are approximated by spherical colloiddietween fcc and hcp crystals, with the fcc crystal having the
particles with interactions whose ranges are very short comRigher entropy 11]. These quantitatively corrected the recent
pared to their radius. Deviations from ideal hard spheres arpressure-integration study of Woodcddi], confirming his
due to polydispersity of the spheres, and due to interactiongesult that the fcc crystal has higher entropy. More recently,
The van der Waals interaction can be reduced by matchingruce, Wilding, and Ackland have found a superior imple-
the dielectric coefficients of the particles and the solventmentation of the multicanonical method for this problem,
[3,4]. Since, for ideal hard spheres, the free energy differreducing the statistical error ihs* down to near the 10kg
ences between the different stackings are very small, as wevel [15]. The various results foAs* are summarized in
will see, one would expect the equilibration time to be veryTable I. It is clear from the table that MCMC is able to
long. Most studies have seen a random stacking patteribtain substantially smaller statistical errors for this problem,
However, some experiments have reported that the observedmpared to the more conventional integration methods.
random stacking patterns in slowly grown or well-annealedSpeedy’s recent pressure-integration study within the crystal-
colloidal crystals are biassed more towards fcc rather thatine phasd16] obtained theehangeof roughly 3x 10~ *kg in
hcp stackind 2]. As* between the melting and close-packed densities, consis-

The free energy difference between different classicatent with our higher-precision resulttSpeedy’s absolute
hard-sphere crystals at fixed volume is only due to the enmeasurement ofAs* had too large statistical errors to be
tropy difference, since the energy is the same for all allowedignificant[16]).
configurations. The numerical work, before the present pa- The reason why integration methods were used initially
per, had only looked at the hcp and fcc stackings. The firstvas that it did not appear possible for the hard-sphere system
studies calculated pressure using molecular dynamics simue equilibrate between the fcc and hcp crystal structures, due
lations [5] and then obtained entropies by integrating theto the very large, or even infinite, free energy barrier sepa-
pressure vs. volume along reversible paths from states witrating them. This was certainly true for standard molecular
known entropy{6—9]. These studies were not able to detectdynamics or Monte Carlo methods. However, the MCMC
the entropy difference between fcc and hcp crystals. Latemmethod, the implementations of which we will summarize
Frenkel and Ladd10] instead integrated along a path con- below, is designed precisely to eliminate such large free en-
necting the hard-sphere model to Einstein crystals of thergy barriers and allow equilibration between very different
same lattice structure, by adding to the model ideal springstates. This permits a direct measurement of the relative en-
tethering each sphere to its lattice site. In this approach theyopies of the two states simply by comparing the probabili-
integrate the derivative of free energy with respect to theies of their occurrences in a single simulation.
spring constant. They came up with the bounds on the en- Since only the hcp and fcc crystals had been examined in
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TABLE I. Recent results of fcc-hcp simulations for various densitgesled by the close-packed density
pep)-N is the number of spheres in the samples simulated. The entropy difference per serevsth the
statistical errors in parentheséftc has higher entropyPlease note that the errors are particularly small for
the overlap implementation of MCMC developed by Bruce, Wilding, and Ackland.

plpep N 10°PAs* [kg Method Ref.
0.736 12 000 23@00 pressure integration [14]
0.736 12 096 820 Einstein crystal [11]
0.7778 5832 8B®) MCMC, overlap implementation [15]
1.00 1000 1184 MCMC, overlap implementation present
1.00 512 11®0) MCMC, shear implementation present
0.731 512 8610 MCMC, shear implementation present

previous work, we have also looked at other stackings ofurther neighbor interactions have been taken into account.
hexagonally close-packed planes of spheres to make certairhis result of ours shows that it does not matter within the
that neglecting the other possible stackings was reasonablsolid phase at the presently available resolution of the en-
The entropy differences between the stackings can be déropy.
scribed as due to interactions between layers. We have been
able to detect the entropic interaction between a given layer Il. MODEL
and its nearby layers that are two, three, and possibly even
four layers away. These interactions are all of the sign that The model we study is hard spheres: classical monodis-
favors the fcc stacking, so we confirm, as is no surprise, tha@erse spheres that are forbidden to overlap. All permitted
the fcc stacking has higher entropy thalh other stackings; —configurations(with no overlaps between spheyégave the
it is not just higher than hcp. At the maximum packing den-same energy, which we may set as zero energy. At high
sity, we find that the interaction with the third-neighbor layer eénough density this system crystallizes at equilibrium, and it
is roughly an order of magnitude smaller than that with theis this crystalline equilibrium phase that we study here. Some
second-neighbor layer, as seems quite reasonable. For lowe¥our results are for the maximum possible, or close-packed
density, near the melting transition, the falloff of these en-density, which means the system is being treated perturba-
tropic interactions with distance appears to be much sloweitjvely to lowest order in the difference between the density
presumably reflecting the larger fluctuations of the individualand the close-packed density. In this limit the system is
sphere positions. equivalent to a simpler system of aligned, hard dodecahedra
For any given stacking, the entropy varies as a function of9], and the displacements of the spheres from their ideal
any homogeneous lattice deformation ainstantvolume lattice positions are infinitesimal compared to a sphere’s ra-
fraction. For the fcc stacking, the undeformed lattice has cudius. We simulate this limit directly in terms of the spheres’
bic symmetry, so must by symmetry be a stationary point oflisplacements. The system’s available phase space vanishes
the entropy vs deformation, and it is the maximum. For then this close-packing limit. Nevertheless, thiéferencesin
other stackings, there is no such symmetry, and the maxgntropy between different stackings have finite, nonzero val-
mum entropy may be obtained for a deformation where tha!es in this limit.
expansion of the lattice away from close packing is not iso- We consider close-packed crystal structures that consist
tropic. We have looked for this possible effect in the hcpof planes of hexagonally close-packéd two dimensions
stacking by measuring the entropy vs the uniaxial lattice despheres stacked up in the vertical direction. As is standard in
formation (the c/a ratio). If there is an anisotropy, we were discussing close-packed crystals, the stacking sequence can
unable to detect it. If there is an entropy difference betweetpe denoted by a sequence of the lett&rsB, and C, with
the highest entropy state and the isotropically expanded staftearest-neighbor layers in the sequence always having dif-
for the hcp stacking, this difference is less than W, per ~ ferent letters. Any global permutation on the letters in the
sphere, so it is well below the statistical errors in our com-seéquence simply represents a rotation, reflection or transla-
parisons to the other stackings. tion of the structure, so will not change the entropy.
Another issue that arises in simulating hard-sphere crys---ABCABCA .- is a sequence that represents the fcc
tals is whether collisions between spheres that are not nearesfecking, while- - -ABABABA - - represents the hcp stack-
neighbors can be neglected. It is certainly more conveniering. To fully remove the degeneracy associated with the per-
to make the approximation of including the hard-sphere inmutations, we may assign a Ising-like “sping; to each
teraction only between nearest neighbors. Of course this agayeri based on the local stacking sequence of that layer and
proximation is terrible in the liquid phase, but we have foundits nearest-neighbor layers immediately above and below it.
that it is actually quite good in the solid phase even at thdf that local stacking matches the fcc pattdire., BAC or
melting density. There we detected no differenceAis*  any sequence of thredifferentletters then o=+ 1, while
between the model where only nearest-neighbor spheres iithe spin iso;= — 1 if it instead matches the hcp pattdire.,
teract and the model where second neighbors also interadhBA, ACA, BAB, BCB,CAC, or CBC). For example, the
indicating that the difference is also smaller than our statismiddle five layers of the stacking sequer@BCACBCis
tical errors when comparing the entropies of different stack+epresented as + —+ — in terms of the spins. A given
ings. It is usually not clear in the literature whether or notstacking sequence @f’'s (the sping is equivalent to any of
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six different sequences of the letters, and these six sequencelsange in any reasonable time scale. The multicanonical
of letters are all equivalent to one another under the globainethod[12,13 was invented to allow systems to transform
permutations of the label8, B, and C. The stackings we at equilibrium between states that are separated by a high
study are periodic repetitions of a given spin sequence. Fdree energy barrier. This method has been generalized and
example, “+—" represents the repeated spin sequenceapplied to this hard-sphere crystal problem in two ways,
-+++—+—+—+--.. One realization in terms of the let- which we describe next.
tersis---ABACABACA- -; note that the repeat length of In both implementations the position of sphérns given
the letter sequenddour in this casgis generally longer than asr;=R;+u;, whereR; is the ideal reference lattice position
that of the spin sequencgéwvo in this casg. We denote the in the absence of fluctuations angdis the displacement of
entropy per sphere of this particular stackingsas . spherei away from that reference position. The algorithms
The entropy of a given stacking is a function of the stack-both have Monte Carlo moves that change the reference lat-
ing sequence, which is described by the spins It is rea-  tice without changing the displacemenis as well as more
sonable to expect that the shortest-range entropic interactiorstéandard moves that move individual spheres without chang-
are the largest, so that the total entropy may be expanded &¥ the reference lattice. We describe the shear implementa-
tion first; this method we developed and used to obtain our

. - . first results[11]. However, Bruce, Wilding, and Ackland
S=Ans0+Ah2,l Ui+AJ2‘1 o'io'Hl-i-AJ'iZl Oi0i+2 [15] subsequently developed the simpler overlap implemen-
tation, which we find is computationally more efficient and
n easier to program, so we used it for all of our more recent
+Ah’i21 Oi0+104427F -+, (1)  simulations.
for a stack ofn layers containingA spheres per layer. We A. Shear implementation
have periodic boundary conditions so tha{,;=o,, etc. In the shear implementation we used an equally spaced

The bulk of the entropy is independent of the stacking sesequence of ideal reference lattic&(\), labeled by an
quence and given by, per spheres, is strongly density index,A=0,1,2 ... h, that linearly interpolate between the
dependent. The shortest-range entropic interactiorh,is two stackings of interest, which are the beginning=0)

which involves the sequence over three consecutive layers @ind the end X =h) of that sequence. Thus we have
spheres; this is the shortest sequence that can have distinct

stackings. This term is the magnetic field in the correspond- hR;(N)=(h—X\)R;(0) +\R;(h). 2

ing one-dimensional Ising model. The next term is the inter-_ ]

actionJ between adjacent spins, and arises from the entropi¢Nis produces a-dependent relative shear between each
interactions among four consecutive layers of spheres th&@ir of adjacent layers whose local stacking pattern changes.
are not already captured by the first termWe find, as is The reference sites in the intermediate lattices {6<h) are
reasonable, that<h. The next longer-range interactiorts’(  Not all equally spaced, and generally some are too close to-
and J') that involve five consecutive layers are also dis-9€ther for the hard spheres to fit without touching. In the
played above; only in one cask’(for density near melting orlgmal.model, twq spheres are assgmed to touch if their
could we detect these interactions in our simulations at &eparation|ri—r;, is less thard, the diameter of a sphere,
level that may be statistically significant. anc_J this must remain true for the two stackl_ngs of interest,

The intuition behind this model is that the entropy of aWhich are represented by=0 andh. For the intermediate
sphere is mostly determined by how it is caged by its nearedgttices, on th(_a other hand, we allow the d|stanc_e of contact,
neighbors and to a progressively lesser extent by the furthefij(A) to be either larger or smaller for each pair of nearby
neighbors. The interaction parameters do depend on the defiPheres in adjacent layers whose relative reference position,
sity. We find that, in units of 10°kg per sphere, the entropic Ri—R;j. changes with changing. We attempt, using feed-
interactions that we could detect change frorh,J)  Pack, to choose thesk;(\) so that the entropy is a mono-
=(55,6) at the highest densitglose packingto (h,J,h’) ftonlc funct!on of\ and the average d!sp!ace_merm,)_ van-
=(37,18,9) at the lowest density that the equilibrium crystaliSh for all i andA. Note that the pairwise interactions are
can have before it melt@t roughly 74% of the close-packed different for _each interpolation poink. This is dlffer_ent
density. All detected interactions are of the sign such thatfrom the original MCMC method12,13, where the Gibbs
the fcc stacking has the largest entropy. distribution is multiplied by ax-dependentbut otherwise
configuration-independenteweighting factor, in order to
make the free energy monotonic between the two states of
interest, thus eliminating the free energy barrier.

To make direct comparisons of the entropies of hard- To start simulating one has to choose how many interpo-
sphere crystals with different stacking sequences, we want dation points to useh, and values for thel;;(\). There are
algorithm that will produce direct equilibration between thetwo types of moves. One is a single-sphere move, changing
two sequences. Then the entropy difference is simply th@ne of the displacements . The other is an move that
logarithm of the ratio of the equilibrium probabilities of the increases or decreasedy one without changing any of the
system exhibiting the two sequences in question. Of coursephere displacements. Any attempted move of either type is
near close packing the hard spheres in a physically realistiaccepted if it does not result in any contact between spheres.
molecular dynamics or Monte Carlo simulation are stronglyThe entropies and average displacements, as well as the ac-
trapped by their neighbors, so the stacking pattern will noteptance rates of the moves are measured. Based on these

IIl. MULTICANONICAL MONTE CARLO METHOD
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resultsh is adjusted to attempt to maximize the rate of equili- P(0)
bration between the two stackings of interest, anddihn) Po=—— +ME<O P(M), )
are adjusted to attempt to make the entropy monotonic and
eliminate the average displacements. If this feedback is suc-
cessful, we then measure the relative entropy of the two . . -
stackings. and the entropy difference we are interested in is

We succeeded in getting this procedure to work for com-
paring the fcc and hep stackings for lattices of size up%o 8
However, the difficulty of getting the feedback to converge
appeared to be increasing strongly with lattice size. Typi- S —S.—kaln Pa )
cally, “bottlenecks” would form between the two stackings @ ZA B 1-P,)
of interest where th&-move acceptance rate was very small
or zero, preventing equilibration, and the attempts at elimi-
nating these bottlenecks through the feedback were timep( A1) has a local minimum at=0 and local maxima at
consuming and not always succesful. However, we were ablgositive and negativeV that represent the most probable
to obtain the entropy difference between the fcc and hcpyeriaps for the two different stackings. The weigh\1)
stackings to within statistical errors of roughly 1&g per are chosen to be nonzero only between these two local

spherd 11], as is summarized in Table I. Then we learned Ofmaxima of P(M). The unnormalized, biased probability
the much more staightforward overlap implementation Ofdistribution for M is

MCMC for this problem reported by Bruce, Wilding, and
Ackland[15], which we discuss next.

o

P(M[{n})=P(M)e" M. ()
B. Overlap implementation

The overlap implementation of MCMC15] uses only ] o )

two reference lattices, which are the two different stackings¥Ve choose the weightsy} so thatP(M|{#}) is linear in

the entropies of which we are comparing. Let us call theseM between the maxima oP(M). A simulation with a
two reference latticesr and 3. Again there are standard given set of weights produces estimates”¢f\1) and also a
single-sphere moves and changes of the reference lattice. Fogw estimate of what the appropriate weights are to achieve
any reasonable sized lattice, the move that changes refereniduds linearity. These new weights are then used for the next,
lattices will be rejected due to sphere overlaps for all but adonger simulation if the statistical errors have not yet been
infinitesimal fraction of the sphere configurations. What isreduced down to the desired level. This procedure straight-
needed is to bias the simulation towards those rare spheferwardly and effectively eliminates the free energy barrier

configurations that allow the stacking to be changed. between the two stackings and allows an accurate measure-
To do this, Bruce, Wilding, and Acklanfdl5] introduce  ment of the entropy difference.
the overlap order parameter The overlap implementation of MCMC does not suffer
from the tendency to form “bottlenecks” that slowed down
M{uh=M({u},&)~M({u}.B), 3 ¢

the equilibration between the two stackings in our shear
implementation of MCMC. We used the overlap method to
whereM ({u}, y) is the number of pairs of spheres that over-obtain most of the data reported in this paper. Where we
lap in the configuratiodu} for stackingy. For any allowed compared the two implementations the measured entropy
configuration with stacking/,M ({u},y) =0, but for configu-  differences were, of course, the same.
rations of the other stacking, usual§({u},y)>0. To have
the change of stacking be an allowed move, we need
M({u})=0, so no overlaps are produced by the move that C. Boundary conditions
changes the reference lattice.

The overlap multicanonical simulation samples the bi-
assed, but unnormalized, distribution

Suppose one stacks; planes of two-dimensionallghex-
agonally close-packed spheres to form an arbitrary stacking.
Each plane habl; X N, spheredN; in thei direction and\,
in thej direction.(We always chooshl; =N, to preserve the
P{u}, y[{n})=P({u},y)e7Miu), (4)  hexagonal in-plane symmetjyThe i direction is chosen to
coincide the thex direction and thg direction is chosen at
60° counterclockwise from the direction looking from

whereP({u}, ) for (unbiasegihard spheres is simply a con- above.i andj are the two basis directions of the two-

stant for all allowed sphere configurations in stackingand dimensional close packing. Each site has coordinatd (
is zero otherwise. The weigh{s;} are chosen to eliminate in-plane,i = 0,1 N,—1 and j=0,1 N,—1
the free energy barrier separating the two stackings, thus Any s’tacki'ng,; can t}e formed by fi’xihg the position of the

allowing equilibration between them. - o . ;
Let P(M) be the equilibrium, normalized, unbiassed (!,j_,k)+refe.rence sitdin layer k) relatlv.eéto_trle_sa_lmesne

[ 7(M)=0 for all M] probability distribution of the over- (1:1.k=1) in the nearest layers. Def!nﬁk— R(.J.k+1)

lap, assuming the system does fully equilibrate between the R(i,j,k), whereR are the reference sites. We take our unit

two stackings. Then the probability of being in stackimgs  length to be the lattice spacing so that|=1. We use
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TABLE II. This table summarizes the entropy differences per sphere between various pairs of stackings
at the densities we studied. The subscriptsois a sequence of;’s that is repeated to get the stacking
sequence, se- denotes fcc,~ denotes hcp, and the others are less simple stackiegsSec. )l

plpcp N As 10°As/kg

1 43 S,—S_ = 2h+2h’ 91(5)

1 6° S.—S_ = 2h+2h’ 107(4)

1 8s S,—S_ = 2h+2h’ 1193)

1 10° S,—S_ = 2h+2h’ 1134)

1 s Si4__—S4_ J-2J' 6.1(1.5

1 9 Sy =S, = $h+33+30 82.62.7)

1 8® S, —Si4__ = h+J+2J' +h’ 61.22.2)

1 8® S,_—S_ = h—2J+h’ 44(4)

1 g Sttt —— Sttt = %J‘F%J""h’ 8.22.2)

0.739 g S,—S_ = 2h+2h’ 90.24.3

0.739 g Sis__—S,_ = J—2J 13.72.9

0.739 g Sy_—S_ = h—2J+h’ 10.55.0)

0.739 & -V S = 1J+33 +h’ 19(3)

0.739 & Sttt —Si44_ = 1) +3n 6.23.2)

0.739 & St b4 4b——Sipo 4o = th+3J —in 18.01.9)
1 1 \F . . .

S.=(=,—,\/=], if from layerk to layerk+ 1 is a forward permutation GABC

bV

Ek: 1 1 2 (8

So=|-,-—, \ﬁ , if from layerk to layerk+1 is a backward permutation 8fB C.

-V

Taking jk:§+ for all k gives an fcc stacking. For the hcp Sizes 8 and larger, and we use those data for calculating the
stackingfk=i+ for k even andszf_ for k odd (or vice values of the entropic interactions using our Eb.

versa. At close packing we fit, using the results dfl
All simulations are done with periodi®C which is =8 9% and 10 and the various different stackings, first
implemented in the usual way: letting all four parametergh,J,J’,h’} vary, and then setting
h'"=J"=0 and only varying{h,J}. In the former case we
sphere at sitéi, j,k)=sphere at sitéi + N ,j,k) obtain h=54.6+2.8,J=6.1+1.6,J'=—-0.3+1.1 andh’
=3.4+2.7 in units of 10°%kg with x?/[(df)=3]=1.5 and
=sphere at sitéi,j + N, ,k) for theh’=J"=0 fits: h=57.2+2.1 and J=6.0x=2.2 with
X2I[(dfy=5]=1.9, where(df) means degrees of freedom of
=sphere at sitéi, j,k+Nj), the fit. We can see that the first fit wih andh’ allowed to

vary gives values of them consistent with zero. Comparing
so thatS, =3, .. Our implementation of periodiBC al-  the two fits we also see that the inclusion of these two
3 . B . . - .pe
. : : longer-range interactions in the fit does not significantly per-
lows anyN; that is a multiple of both of the periods of the . )
YNs P P turb the values of the shorter-range interactibrendJ. We

2 pattlernrs1 of the (;V}’O ?tac_kings iIn a g“’ehf?l sir;:ulaftiort:. FOlherefore conclude that our data can be explained using the
example, the period for fcc is one layer, while that for NCp IS, ge| with only h and J nonzero. Indeed)’and h’ not

two layers, sdN3 can be any even number when we comparé, e important is consistent with the small system $ize

fcc and hep entropies. =82 being close to the thermodynamic limit. The signs of
the nonzero interactions all favor fcc stacking; therefore fcc
IV. RESULTS has higher entropy than all other stackings, consistent with
experimen{ 2]. Notice thath>J>J',h’ shows that the en-
Our results for entropy differences between differenttropic interactions decrease rapidly as their range increases.
stackings for both the close-packing limip/p,,=1) and Similar fits of our data at a density/{p,=0.739) near
near melting p/p.,=0.739) for different system sizes are melting yield h=36.9+3.1,J=18.2-3.0,J' =2.5+2.2,
summarized in Table II. A statistically significant finite-size and h’ =8.8+2.8 with x?/[(df)=2]=0.2. Thus it appears
effect was detected only for the smallest siZe Based on that the entropic interactions decrease in relative magnitude
this, we assume that the finite-size effect is negligible forwith distance much more slowly at this lower density than
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they do near close packing, which is perhaps expected, given TABLE Ill. The entropy differences per sphere between hard-
the larger free volume that allows the spheres to make largephere crystals with only nearest-neighbor interactidpfysand the
excursions away from their ideal lattice positions. Again, theotherwise identical system with both nearest- and next-nearest-
interactions are all of the sign that favor the fcc stacking. Oufeighbor interactiongNN). The systems with added interactions
detection ofh’ is only at the three standard deviation level, have lower entropy, but th_e _change is independent of the stacking
so has a small chance of being just a statistical fluctuation jR2tern at the present statistical accuracy.

the data. However, if we fit assumitng=J’' =0 the quality

of the fit declines strongly, givinh=43.2-3.7 andJ  P/Per N As 10°Aslkg
=17.3+3.8 with y?/[(df)=4]=5.4. 0.739 8 sfee—sfee 8.31.9
For a general stacking pattern, the expansion as the deg-739 8 sheP— ghep 7.81.9

sity is reduced from close packing need not be isotropic. Fox
the fcc stacking it must, by the cubic symmetry, but for the
other stackings, the expansion along the direction normal tg

the layers can be different from that along the directionsmCIUdeS only nearest-neighbor interactions between spheres,

parallel to the layers. We have tested for this by allowing thethe cr,){stal is actually only_ metastable: once a sphere es-
ratio of these two expansions to vary in a simple simulatiorcP€s” from the cage of its nearest neighbors it wanders
of the hcp stacking at close packing, measuring the entropVeeB_’- We find that for densities at_or above the mgltlng
vs the ratio, and fitting to find the ratio that maximizes thedensity, the rate of these “escapes” is very low, allowing a
entropy. We find that this optimal ratio is within0.002 of =~ 900d measurement of the entropy of tirow metastable
isotropic, and the entropy difference between isotropic excrystal. We have also measured the entropy differences be-
pansion and the optima| expansion ratio is no more thariween the model with only nearest-neighbor interactions and
10 °kg per sphere, so it is smaller than the statistical uncerthe otherwise identical model with nearest and next-nearest-
tainties in our simulations. Because of this we have alway#eighbor interactionssy—syy, near meltingsee Table II).
assumed isotropic expansion in the the entropy comparisorf3f course, adding the extra interactions does reduce the en-
we have made. tropy a little (roughly 8x 10~ °kg per spherg but this reduc-

The issue of further-neighbor interactions arises fortion is the same, within errors, for both fcc and hcp stack-
plpep<1. At close packing it suffices to test only for colli- ings. Thus we conclude that any systematic error in our
sions between nearest-neighbor spheres because furthetropy comparisons due to using only nearest-neighbor in-
neighbors cannot touch. Not testing for further-neighbor colteractions are smaller than the statistical errors. Therefore,
lisions speeds up the computer program. As the density i&/e have used the faster nearest-neighbor only model in most
reduced can we keep this approximation? For a model thaif our simulations near the melting density.
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