PHYSICAL REVIEW E VOLUME 59, NUMBER 4 APRIL 1999

Strongly dipolar fluids at low densities compared to living polymers
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We carried out extensive canonical Monte CgltC) simulations of the dipolar hard-sphei@HS) fluid,
with N=1024 particles at fixed reduced densityy=0.05, in order to investigate the chainlike structure that
occurs at low densities, for sufficiently large reduced dipole momehtsThe dissociation and recombination
of chains during equilibrium runs suggest an analogy between the DHS'’s and a system of living polymers. This
was checked quantitatively by comparing the results of the simulations with those of a theory for living
polymers taking into account the indistinguishability of the particles in self-assembled chains. Quantitative
agreement between theoretical and simulated mean chain lengths and number of monomers, was found for
particular choices of the parameters used in the working definition of the MC chains.
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[. INTRODUCTION number of chains of a given length and then the equilibrium
chain length distribution, the mean chain length, etc., are
In recent years there has been renewed interest in thealculated easily by performing the appropriate averages.
thermodynamic and structural properties of dipolar fluid A similar approach was taken Kyt2] that considers the
models, hardDHS) or soft spheres with an embedded pointlow-density DHS fluid as a system d@independent self-
dipole. Numerical simulations revealed an entirely new be-assembled chains, with a free energy that corresponds to that
havior, not predicted by existing theories: formation of of an ideal mixture of chains of all lengths. The chains are
chainlike structures for strongly dipolar fluidsith [1-3] or  formed by dipolar hard spheres with a bonding energy given
without [4,5] an applied magnetic fieldat low densities, by the minimum of the dipolar pair potentidtouching
appearance of a ferromagnetically ordered fluid pH&s8  spheres with dipoles aligned “head to tajil” The mean
and absence of liquid-vapor condensation unless externghain length was calculated as a function of the density and
magnetic fields[1,3] or isotropic interactions between dipole momentor temperatureand compared with simula-
spheres are consider¢]. Various theoretical approaches tjon results. The comparison suggested qualitative agreement
were proposed to investigate these new features: integrghr the exponential growth of the mean chain length with
equationg9] and density-functional theofyL0] were used to  increasing dipole momeror decreasing temperatirét was
describe the ferromagnetic fluid phase, and models for ass@rgued in[12] that the large discrepancies found in some
ciating fluids, treated within mean field approximations, werecases were due to finite size effects of the simulation and/or
used to describe the absence of condensation of DHS and thgk of equilibration for systems with the strongest dipole
onset of chain formation at low densities1-13. moments.

~ The simulations of strongly dipolar fluids, at low densi-  |n this work we carry out the comparison between theo-
ties, revealed that the spheres associate into linear chainlik@tical and simulation results in more detail. In Sec. Il, we
structures, that grow or shrink as the dipole moment ingescribe Monte CarlMC) simulations of DHS for a system
creases or decreases. Moreover, it was shown that the chaig®&h 1024 particles and reduced densijtj,=0.05. We have
break up and recombine in the course of equilibrium simuperformed longer runs to ensure that equilibrium is reached
lation runs[4], suggesting that the system behaves as a syssyen for systems with the strongest dipollesvest tempera-
tem of living polymers. As the spatial and orientational tyreg. The definition of a MC chain required in the analysis
many-body correlations that describe these aggregates cagf the simulation results is discussed in detail. In Sec. Iil, we
not be calculated directly during a simulation run, an alter-apply the theory of living polymers to the DHS fluid, im-
native description of the structure was proposef4is] and prove on some of the results pf2] and compare the theo-

[1,2], by defining ar(off-lattice) “living” chain based on an  retical and simulation results. We make some concluding
energetic criterium: two spheres belong to a chain if theifremarks in Sec. IV.

interaction energy is lower than a given threshold. For each
equilibrium configuration it is then possible to determine the

II. SIMULATIONS

*The Laboratoire de Physique Tdreque et Hautes Energies is We consider a system of hard spheres with radiusnd
associeau Centre National de Recherche Scientifighie. URA  embedded dipoles of strength interacting through the pair
0063. potential,
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TABLE I. Details of the simulation rundJ is the dipolar inter- The dipole-dipole potentia(l) has a global minimum
nal energy calculated through the Ewald siMEC is the number  when the dipoles of two spheres at contact are aligned head
of equilibrium configurations stored to analyze the structufep™  to tail. It is expected that, at sufficiently high dipole mo-
andN are defined in the text. ments, this structure reveals itself, at least locally. Indeed,
snapshots of equilibrium configuratiopd show that dipolar

w* N p* trial moves/N ~ BU/N ~ NEC spheres self-assemble forming linear structures that may
295 1024 0.05 172 000 6.59 344 Span the simulation box, indicating that.the dipole-dipole po-
o5 1024 005 222500 -10.70 445 ter_mal induces strong many-body spatial and angula}r corre-
275 1024 0.05 260 000 14.38 520 lations, at low density and temperatytarge reduced dipole
momeny.
A direct calculation of these many-body correlations is
o <o not feasible in a simulation or theoretically. An app(oximqte
12 approach that is useful both in the analysis of the simulation
dpHS™ wE .. - . results and in the construction of a theoretical description has
— 5 [B(p1r)(pa rip) = pmy-p2] ri=o. been used, by advancing the hypothébsed on the analy-
M2 sis of simulation result$4]) that these correlations are de-

@) scribed rather accurately by the size distribution function of

R an assembly of chairl4,2,4,5,11,12 The equilibrium struc-
r12is the distance between the centers of sphergshe unit  ture of the system is then given in terms of the thermal dis-
interdipolar vector, angt; and ., the unit dipolar vectors of tribution of chain lengths.
spheres 1 and 2, respectively. Canonical MC simulations are In [1,2,4,9 chains were defined as follows. For a given
carried out for a system with=1024 spheregtwice the  equilibrium (MC) configuration, the lowestH};) and second
largest number used in previous simulations of this model lowest E) energies of interaction of each partidie are
at fixed reduced density* =o3p=0.05, for several values calculated; if both energies are above a certain thresip)d
of the reduced dipole momefr square root of the inverse the particle is &*“free” ) monomer. Otherwise the particle is

reduced temperaturelefined as in a chain, being at one of the ends if oy is less thark.. .
In [4,5] this procedure was implemented for a set of equi-
2 12 librium configurations yielding the description of the struc-
pr= (20 ture in terms of the thermal distribution of chain lengths. The
kgTo® mean chain length and the number of “free” monomers are

calculated from the equilibrium distribution. As we will see
kg is Boltzmann’s constant anfl the absolute temperature. these results depend on the threshold endggy In [4,5] the

Each MC step consists of the attempt of simultaneouslythreshold was set tB.= —1.4u*2, a value suggested by the
moving a sphere and rotating its dipole. The maximum disanalysis of the mean values &, ,E,, and E; (the third
placement and angles of rotation were chosen to ensure dowest energy of interactigrior several equilibrium configu-
acceptance ratio of-40%. Systems were equilibrated with rations. Aggregation into chains occurs if the mean values of
20000-30 000 MC trials. To accelerate equilibration we E} andE}, are close to each other and much lower than the
used, when possible, the last equilibrium configuration for anean value oEi3. Stevens and Grest, however, chége
given dipole momeng*, as the initial configuration for the —(0.5,*2 in [1]. The effect of this choice on the structural
simulation with the nex.*. The equilibration process was parameters of the systefmean chain length, number of
controlled by inspection of the internal energy. To handle th&nonomersy etg.was not considered by these authors.
long-range dipolar forces we used the Ewald sum technique we define the functionsiN;(E),N,(E), and N5(E), as
exactly as in 6], where details can be found. Surface effectsthe number of particles with first, second, and third lowest
were included through an infinite dielectric Constiﬂnr' energies of interaction in the energy |nter\{£_dE,E
rounding conducting medium, s¢@]), although, at this den- 1 dg]. These functions are defined in-Pu*?2;+%[ and
sity, the system is not expected to be polarized and thus thigormalized,
effect is negligible.

The goal of the new simulations is the systematic study of -
chain formation at low reduced density, as a function of the N:f N;(E)dE. 3
dipole momeni*. We performed preliminaryshor) simu- *2
lations for values ofu* in the range 1.5—-3. These indicated
that self-assembly starts at* ~2 and chains with lengths The number of free monomels;,, is the number of particles
similar to that of the simulation box appear often, whenwith lowest energy of interaction greater thig,
u*=3. Thus we choseu* =2.25, 2.5, 2.75 to perform
longer simulations to investigate the structural properties of w
the system. We avoided higher values of the dipole moment Nmzf N, (E)dE. 4
to minimize finite size effects that cannot be neglected when Ec
chains become as long as the linear dimension of the simu-
lation box. Table | summarizes the details of the simulationf p is the total density of spheres, the density of free mono-
runs. Note the number of MC steps after equilibration that ismers isp;=(N,/N)p. The number of chainsN.;) is half
much larger than that of earlier works.g.,[5]). the number of particles at the end of chaind.§),N.y
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FIG. 1. FunctiondN,,N,, andNj; for the simulated system&* =E/u*2. (a) u*=2.25,(b) u* =2.5, (c) u*=2.75.

=Nc/2. A particle is at the end of a chain if its lowest
energy of interactioribut not its second lowests less than

E., and thus

Ec

_J_

Finally the number of monomers in the middle of chdihg;
is given by

[N1(E)—Na(E)]dE. ©)

2#*2

mc

JE° Na(E)dE. (6)
*Z,U«*

The mean chain Iengtﬁ is the ratio of the total number of

N

N+ Nep'” @

N=

N;(E),N,(E), andN3(E) were obtained from the simu-
lation of systems withu* =2.25, 2.5, and 2.75Figs. 1a)—
1(c)] as follows. The interval —2u*2;0] is divided into 80
subintervals of equal length centeredgatk=1 . .. 80); for
each equilibrium configuration the lowest, second, and third
lowest energies of interaction of each particle were deter-
mined and histogrami;(E,) were calculated and averaged
over all configurations.

The structure of the fluid is chainlike, if most of the par-
ticles have nearegall particles except free monomgmsnd
second nearegall particles except free monomers and par-
ticles at the end of chaihseighbors with energies close to
—2u*2, which is clearly illustrated in Figs.(4)—1(c). An

particles and chains, including chains of length 1, i.e., freéncrease of the fraction of particles in chains with increasing

monomerd4,17],

dipole moment is evident in these figures, where the maxima
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100 T proach assumes that chains are linear and inspection of
% / N1(E),N>(E), andN(E) indicates that there is a range of

// E. consistent with this hypothesis. In Table I, we list the
80 / number of free monomers and mean chain length calculated
7 // using Eqs{(4,5,7 for different threshold energiek,, all of

/ which are consistent with the neglect of branching. The
i structural parameters are more sensitiveEtofor stronger
dipole moments.

Given a value oE_, the equilibrium distribution of chain
lengths is calculated. In Fig.(&—-4(c) we plot the distribu-
tions for the three dipole moments and two threshold ener-
gies: E¢,E.=—1.4u*? and E.=—1.5u*2. These figures
are discussed in more detail in the next section where the
simulations are compared with theoretical results.

0 Ill. THEORY FOR THE DIPOLAR HARD SPHERE FLUID:
-20 -18 -16 -14 -12 -1.0 -0.8 -06 -04 -02 0.0 COMPARISON WITH SIMULATIONS

The simulations of/4] revealed that the self-assembled

FIG. 2. Mean chain length as a function of the threshold energychains, characterizing low density dipolar fluids, break up

E. for the simulated system& =E./u*>. and recombine during typical equilibrium runs. In living
) ) polymer systems, monomers redjtin a polymer chain or

of N; andN; (corresponding to the lowest enejdgcrease, pecome fregin dynamical(chemica) equilibrium. Changes
are closer to each other and closer to the absolute minimufp, temperature affect the degree of polymerization and the
of the dipole-dipole potential, g8* increases. mean chain length of the distribution. This suggests that the

Absence of isotropic clustering is also clear from the po-gipolar fluid may be considered as a weakly-interacting mix-
sition of the absolute maximum &f3(E), that occurs at a ture of chains of all lengthgl1—13. In the following para-
much higher energy than those b and N,. N3 has a graphs we derive the free energy of the ideal mixture of
maximum close to-0.25u* 2 corresponding to the energy of chains(introduced with limited discussion fii1-13). Con-
a head-to-tail configuration at a distance af,2.e., to the sjder a system oN monomers in volume/, assembled as
energy of third neighbors on a chain. noninteracting chains of length=1 . . .N. If M, is the num-

A quantitative description of the chained structure re-per of chains of length, the partition function is
quires, however, the specification of the threshold energy
E.. In Fig. 2 we plotN and in Figs. 83-3(c) N,,,N¢,, and
Nme. as functions o, . These were calculated frohh (E) Z=
andN,(E), Eqgs.(4,5,6,7 using a simple numerical integra-
tion. One obvious criterium for the choice &, is that
which minimizes the dependence of the structure on thi
choice. Unfortunately, inspection of Figs. 2 anth)3-3(c)

shows thatN and N,,. increase whileN,, decreases with N

increasingE, and thus there is no sudf.. The number of N= E iM;. (9)
chains in the system exhibits a maximum corresponding to i=1

N1(E)=N,(E). This is to be expected since all the particles o

are free monomers .= —2x*2 while all particles are in Ir_1 the thermodynamlc limit, the Helmlhqltz free energy den-
chains if a very large number is chosen fg. Thus the Sity f can be derived from Eq8), obtaining

number of chains increases wheg, close to—2u*?, in- "

creases, and decreasesks—o0, exhibiting one maximum B ~

at an intermediate energy. The choice of this valueHgr ﬁf—Z,l pi(lnpi—1-Ing;), (10
corresponds to maximizing the number of chains and there is

no reason why we shpu]d do this. Clearly the quan'titatiquherepi:Mi/V andG;=q;/V. In this limit, the constraint
description of the chainlike structure of the DHS fluid de- (9) becomes

pends on the choice &, but there appears to be no obvi-

ous preferred choice. A similar exercise has been carried out o

using a definition of chain via a distance criteridh,5], p=> ipi. (12)
which requires the specification of a distance The con- i=1

clusions are similar to those for the energetic criterium.

N3(E), in Figs. ¥a)—1(c), tends to zero rapidly aE— From Eq.(10) the chemical potential of speciési.e., of
—2u*2. In fact, N3(E)=0 for energies less thafE~ chains of length, is derived straightforwardly and is found
—1.5u*2. If N3(E,)#0, we may account for branching, to be
since there is at a least one particle with the three lowest _
energies of interaction less thdf.. Our theoretical ap- Bui=Inp;—Ingq;. (12

M

g
o) (8)

'zz
=

Il
s

whereq; is the partition function of a chain withmonomers.
*The number of monomers is conserved and thus
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FIG. 3. Number of free monomeis,, number of chaindN., and number of monomers in the middle of chains, as a function of the
threshold energy for the simulated systefB$=E./u*?. (a) u* =2.25,(b) u*=2.5, (c) u*=2.75.

chemical reaction that conserves the number of monomers,
such as

Chemical equilibrium among chains obtains through any 3i p2
I h3| ldeSIeX;{ BE )q| 1 (16)

i monomers=1 chain withi monomers, (13)  wherehis Planck’s constantn the mass of a monomer, and
p%' the set of Cartesian coordinates of the linear momenta of

requiring that the chemical potentials satisfy the monomersqiC is the configurational partition function,
=i, (14 - >
s qufdrl...dridwl...dw
Using Egs.(12) and(14) the density of a chain of lengthis
Xexg —Bo(ry, ... r,o1...0)], a7
P1
pi= Q| . (15 > -, . .
a; with r, the position vector of a dipolar hard sphere in the

chain andw, the set of angles that describe the orientation of
The explicit calculation of the distribution of chain lengths the dipole.¢ is the sum of the potenti&l) between all pairs
requires an approximation for the partition function of indi- of spheres in the chain. Integrating the momenta in (E6).
vidual chains. The latter may be written as we find for the partition function of a chain,
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FIG. 4. Number of monomers in chains as a function of chain lefigitbrmalized chain length distributiprTriangles, simulations with
E.=—1.5u*?; circles, simulations withE,= — 1.4u*?; asterisks, theoretical results frof®2). (a) u* =2.25,(b) u* =2.5,(c) u* =2.75.

a; iqu The integrations in Eq(19) are carried out using standard
i:(V) A (18  methods in the theory of semiflexible polymers and are de-
' scribed in detail if12]. The result is
with g;=V/\® and\ the de Broglie wavelength of a mono- g°=Vexd (i—1)S], (20)

mer.
We proceed by calculating;ic, using an approximate whereS,, the free energy of a bondlivided by kgT), is

method that is valid for short-range interactions in the limitgiven by[14]

of strong dipoles, i.e., for long chaip$2]. We substitute the

dipole-dipole interaction in Eq17) by a sum of pair poten- 5

tials between nearest neighbors and wejfeas So=2p*"+In

’7TO'3

24/-’“*6

3
_2,LL*2.

(21)

Substituting Eqs(20) and Eq.(18) in (15), we obtain for the

c (.- N
g _f dry...drde; ... do density of chains of length

i-1 .
Xexp( 'lw (22)

~B2, bons(Mi=Tj41,0),0150) |- (19 pi=ph——
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TABLE I1l. Number of free monomerd\,, and mean chain 7
lengthN obtained by simulation for several choices of the threshold
energyE. (see text Theoretical results obtained using E¢23)
and(24) and the corresponding expressions frgtg].

u* 2.25 2.5 2.75
Nm N Nm N Nm N

Simulations
E.=—1.4u*? 410 161 155 268 50  4.79
E.=—1.5u*? 523 1.41 249 2.08 104 3.23
E.=—1.6u*? 656 1.25 393 162 213 222
E.=—1.7u*? 800 113 591 1.32 407 159

Theory
This work 594 130 253 1.86 62 2.98
[12] 405 159 275 293 26 7.3

The distribution functiorp; depends on the translational par-

tition function through the factoriall!, which differs from FIG. 5. Comparison of the theoretical results of this wak)

other works on dipolar chaifd1,12,18, surfactant systems gull line) Wlth those off12] (dashed lingfor the mean chain Ieng-th.
N as a function ofu*, at p* =0.05. The scale is chosen to exhibit

[16] and living polymers[17]. The translational partition the exponential dependence of the resulfX] on u*2, for high
. . w*2,
function of the aggregates is usually neglecteet to 2 and dipole moments.

the inclusion of this factor is not discussed in the literature

(with the exception of15]). If the chains(or, more gener- , her of free monomers and for the mean chain length for

ally, the aggregatgsare solidlike, then this factor does not e yajues ofe* and four threshold energies. We have also

appear _in the distribution fun_ction sinc_e the monomers afhcluded the results from the theory described in this section
distinguishable. The assumption of solid aggregates may b

for the simulati £ livi | latti Snd from that of12]. These results indicate that reasonable
c&rrectdc;r td(_e s:muﬂat.gng ot living polyrgers on a ?.tt'lcée agreement is found fon* =2.25 andu* =2.5 if the thresh-
[17] an or dipolar Tiulas in strong appiie magnen'c 1€10S o1d energy is,E.=—1.5u*2. For the highest value of the
[15] (that induce freezing of the DHSs in columns, aligned 'ndipole moment, the choice of thresdid= — 1.5u*2 yields
the direction of the field However, this assumption does not o0od agreemer’n for the mean chain length, but agreement for
seem to be reasonable for the dipolar hard sphere fluid, sin e number of monomers requirEs= — 1 4M’*2
simulations have showj#] that the spheres diffuse through In Figs. 4a-4(c) the equilibrium(un.ormallize()l chain
all the chains in the course of equilibrium runs. Thus We jis :

X tribution function obtained from Eq22) is compared
have accounted for the internal energy of bonds afLE] with simulation results. Inspection of the figures clearly

hEhows that the theory underestimates the number of long

ability of the monomers. Shorter equilibrium chains are thenChains and that this difference becomes more pronounced for
expected to self-assemble.

e . . the highest values of the dipole moment.

. Substituting Eq(22) in (11) we obtain for the total den- Finally, in order to check quantitatively the effect of the
sity of spheres, indistinguishability in Eq.(22), we compared the results of
p=p1expp1e%). (23 Eqg. (25 with those of[12] for the mean chain lengttFig.

5). We confirmed that the growth of chains with the dipolar

The density of monomerg,, is calculated through this re- strength is much slower within the present theory. However,
lation, for a givenp and u*, and using again Eq22) the  a comparison of theories and simulation for other values of
equilibrium chain distribution is determined. The mean chairthe density and dipole momefg] (see Table Il shows that
lengthN defined as the inclusion of this factor eliminates the discrepancies, in
order of magnitude, for systems with strong dipoles found in
previous work[12]. For the lowest density and highest di-

2 ipi pole momeni{where the theory is expected to hgltl]) the
N= = p (24) present theoretical results are in quantitative agreement with

” ' simulation, while the results dfL2] differ markedly.

21 Pi él Pi

IV. CONCLUSIONS
is easily calculated from Eq$22) and (23) and is found to

be We have carried out extensive MC simulations of DHS
fluids at low density, in order to investigate quantitatively the

N pe% (25) structure of the fluid in the regime of chainlike correlations.

" exp(pe%)—1" At present, the only practical way to quantify the many-body

spatial and orientational correlations that characterize the
In Table Il we collect the results of the simulations for the low density phase of strongly dipolar fluids is through the
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TABLE Ill. Mean chain length: comparison of the theoretical We have shown that, for the lowest density and highest di-
results of this work, those froifi.2] and the simulations d5]. p*  pole moment(where the theory is expected to hplthe
is the reduced density ang” the reduced dipole moment, as de- present theoretical results are in quantitative agreement with

fined in the text. earlier simulations, while the results 2] predict chains
. - — — — that are too long by about one order of magnitude. The re-
P M N [5] N [12] N maining differences between the theoretical and simulation

results may be traced to an overestimate of the theoretical

0.3 2.0 2.7 1.94 1.36 . - .

03 25 59 709 279 m_ternallenergx.owmg to the assumption that the Iong—range

0.3 3.0 165 60.0 6.19 dipolar interactions may be ne_glected beyonq nearest neigh-
' ' ' ' ' borg and/or to a large correction to the leading termSgf

03 35 21.0 966 1.2 for short chains. Interactions between chains are expected to

0.2 35 24.6 789 108 be small at these rather low densities.

0.1 2.0 2.6 143 116 We conclude that the chain description is a useful tool to

0.1 2.5 6.7 4.36 2.18 characterize the structure of strongly dipolar fluids, at low

0.1 3.0 24.5 34.8 5.27 density, and that a simple living polymer theory is capable of

0.1 35 24.2 558 10.2 describing semiquantitatively the structure of a system ex-

0.05 3.5 30.4 395 9.57 hibiting strongly anisotropic many-body correlations.

0.02 2.0 2.3 1.11 1.04

0.02 35 84 250 8.75
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