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Scaling theory of drying in porous media
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Concepts of immiscible displacements in porous media driven by mass transfer are utilized to model drying
of porous media. Visualization experiments of drying in two-dimensional glass micromodels are conducted to
identify pore-scale mechanisms. Then, a pore network approach is used to analyze the advancing drying front.
It is shown that in a porous medium, capillarity induces a flow that effectively limits the extent of the front,
which would otherwise be of the percolation type, to a finite width. In conjuction with the predictions of a
macroscale stable front, obtained from a linear stability analysis, the process is shown to be equivalent to
invasion percolation in a stabilizing gradient. A power-law scaling relation of the front width with a diffusion-
based capillary number is also obtained. This capillary number reflects the fact that drying is controlled by
diffusion in contrast to external drainage. The scaling exponent predicted is compatible with the experimental
results of ShawPhys Rev. Lett59, 1671(1987]. A framework for a continuum description of the upstream
drying regimes is also developd&1063-651X99)04604-9

PACS numbd(s): 81.05.Rm

I. INTRODUCTION phenomena, which are key to the quantitative understanding
of the process, are essentially ignored.

The drying of porous media is a problem of significant On a fundamental level, drying is a phase change of a
scientific and applied interest. Chen and PEj note that (usually one-component liquid into a(usually two-
drying is one of the most energy-consuming processes ifomponent gas, and involves at various stages the motion
industry. Applications include the drying of granular materi- (receding of individual gas-liquid meniscisee schematic of
als such as soils, rocks, minerals, building materials, andid. 1. The menisci reside in the pore space of the porous
ceramic powders; drying processes in the wd&impson medium and are subject to the interfacial forces between lig-
[2,3]), paper, and textile industry; coating technology; anduid, gas, and solid surfaces. Due to the disorder in the po-
the drying of foodstuff(Fortes and Oko$4]) and pharma- respace geometry, however, their distribution is also disor-
ceutical products. In a different contesity situ drying of ~ dered in general. The physical processes involve evaporation
porous media is involved in recent methods for the remedia®f the volatile liquid in the gas phase, driven by concentra-
tion of contaminated soils by soil vapor extraction or soil tion gradients, countercurrent diffusion in the gas, possible
venting (Ho and Udell[5]), as well as in the recovery of liquid flow through connected films, and the accompanying
volatile hydrocarbons from underground oil reservoirs by gageceding of menisci. All these interactions are influenced by
injection (Le Romanceet al. [6], Le Galloet al.[7]). the porous medium microstructure to a significant degree.

The development of a general mathematical framework to In general, four different spatial regimes can be distin-
model drying of porous media has been a rather challenginguished during a drying proce$Big. 2): A far-field regime
research topic for several decad¥¢aananeret al.[8]). Al-  consisting of the initial liquid phase, a regime where the
though a plethora of methods have been presented, and whif@luid phase is macroscopically connected and where both
industrial designers are faced with the demand to design
complicated processes regarding “real” problems, there are
still many unresolved questions, even for “simpler” prob-
lems (Prat [9]). Traditionally, the description of drying in
porous media is based on phenomenological approaches that
consider the medium as a structureless continuum. In these,
partial differential equations are postulated that relate the
evolution in spacetime of volume-averaged quantities, such
as moisture content and temperature. Phenomenological and
empirical parameters are then used to relate fluxes to gradi-
ents, often drawn from an analogy with nonequilibrium ther-
modynamics(for example, see Luikoy10]). However, in
these approaches, the pore microstructure and the underlying

FIG. 1. Schematic of liquid-gas interfaces during drying in po-
* Author to whom correspondence should be addressed. rous media.
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they represent the first attempt to theoretically characterize
v drying patterns and their rate of change in porous media.
Trapped 2 phases As _in other processes involviljg two-phase, immisci_ble
Disconnected | & . '~ | Fractal front flows in porous media, the following two aspects of drying
Sg Liquid patterns need to be understoodi) Their geometrical struc-
ture, which dictates transport and capacitance @ndheir
rates of change. This is the main motivation of this paper.
We consider the application of a pore-network approach, as
in Nowicki, Davis, and Scrivel13], Prat[14,15, and Lau-
rindo and Praf16], but with specific objectives to under-
stand the structure of drying patterns, particularly in the fron-
tal region. From such an analysis, the derivation of effective
~—~—_ macroscopic models can then be obtained. Drying, involving
0 gas-liquid interfaces, can benefit from advances in the analo-
gous problem of external drainage, which is reviewed below.
x What is novel in drying, however, is the additional effect of
FIG. 2. Schematic description of drying regimes in porous me-NasSS transfer in the gas phase, Wh'Ch actually_drlves the
dia, obtained from 2D pore network simulations. Dots and whitePr0C€SS. This needs to be analyzed in some detail.
areas denote liquid-occupied regions, dark shaded areas denote gas-1h€e paper is organized as follows: First, we give a brief
occupied regions(Due the 2D topological limitations, a schematic review of recent findings in isothermal drainage processes,
of the 2-phase bicontinuum regime is not feasjble. which have a direct bearing on drying. Then, experiments in
2D micromodel geometries are presented to visualize mecha-

gas and liquid phases are “macroscopically continuous,” 6pisms during drying and to help in the development of the

third regime in which the liquid phase has been disconnectel{!€C"y- Based on the experimental observations, a theoretical
in individual clusters of variable sizéblobs as a result of &PProach is subsequently developed, which combines argu-

drying, and a fourth regime consisting of the liquid phase inments borrowed from isothermal drainage and from_ the re-
the form of pendular rings or films covering the solid sur-!ted bubble growth problem, where mass transfer is a key
face, the thickness of which is progressively reduced, toProcess. We use scaling arguments to show that drying is
wards a “totally dry” regime. In the last three regimes the actually a process of invasion percolation in a stabilizing
gas phase is macroscopically continuous. Shlly has also ~ gradient(IPSG (see below for a definition from which we
postulated that liquid films may provide hydraulic connectiv-can infer the scaling of the front width as a function of the
ity to the liquid phase in all three regimes. It is apparent thadrying parameters. To demonstrate the transition from a
an appropriate account of the various pore-scale events in gercolation-only pattern, which was studied by Prat, to a
these regimes is fundamental to the accurate representatistabilizing gradient and an IPSG, a linear stability analysis of
of any macroscopic descriptidiwhitaker[12]). the front in the appropriate geometries must be performed.
Pore-network approaches for describing drying of porousThis analysis will precede the main theoretical develop-
media were recently proposed by Nowicki, Davis, andments. We close by providing a framework for a macro-
Scriven[13] and in a series of papers by Prat and co-workersscopic description based on transverse averages, and by com-
(Prat[14,1ﬂ, Laurindo and Pra,f_l6,1ﬂ) In a related con- menting on the mode“ng of the other regimes'
text, Potetal. [18] used lattice-gas cellular automata to e show that the scaling so obtained is compatible with
simulate evaporation phenomena in two-dimensio2®)  ghaw's[11] experimental results. Thus, although near the
porous media. Nowicki, Davis, and ScrivgtB] developed a  |o54ing edge of the front, the displacement pattern will be of
rather comprehensive pore-network simulation of the Prothe percolation typéassumed by Prat and co-workers to be

cess, and accounted fo_r both Cap”'fi“y and viscpus force%/alid for the entire pattepn as the width of the front in-
However, the authors did not delve into the particular pat- . . . .

. X reases, viscous forces become increasingly important, lead-
terns that develop or on their effect on the drying rates. Praf . . .
[14,15 and Laurindo and Pr41.6,17 studied pattern forma- ihg to a displacement descrlb_ed _by IPSG. Our arlalys_|s also
tion during drying assuming capillary forces only and ignor-Sheds_ "9,“‘ 10 a process of liquid ﬂ.OW' t(_armed (_:aplllary
ing viscous forces. The importance of film flows was alsoPUMmPing” by Le Romanceet al. [6], in their modeling of
discussed17]. Based on the assumption of percolation pat_on recovery .from fra_ctured reservoirs by gas injection. We
terns and under isothermal conditions, they proceeded tghow that this effect is actually the consequence of account-
compute evaporation and drying rates by solving a quasii"d for both capillary and viscous terms in the process. As in
static diffusion equation in the gas phase. However, earliePrevious pore-scale studies in dryitijyowicki, Davis, and
drying experiments in g|ass_bead packs by Sﬂiam] sug- Scriven[13], Prat[15]), our analysis is restricted to isother-
gested that viscous forces are not negligible, and in fact arghal problems. We also neglect convection in the gas phase,
needed to explain the formation of a front wideparating which is expected to be progressively of secondary impor-
continuous liquid from gasof a finite size. This, Shall1l] tance, and gravity. The effect of the latter can be directly
attempted to scale using scaling expressions obtained froincorporated. However, effects of heat transfer and convec-
external drainagésee below. Despite the limitation on vis- tion need a separate analysis, which will be attempted in a
cous forces, however, Prat's studies are important in thafuture study.
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Il. PRELIMINARIES

Drying involves gas-liquid interfaces and mass transfer
and should be subject to an analysis similar to external drain-
age and to bubble growth in porous media. Because of the
expected similarities, we briefly review in this section recent
advances in these two areas.

Consider first, drainage, namely, the displacement of a
wetting phase by a nonwetting phase in a porous medium in
the absence of phase change. In drainage, menisci reside in
pores or at the entrance of pore throats with a curvature
corresponding to the local capillary pressure, defined as the
difference between the nonwettiigas and wetting(liquid)
phase pressures,

(b)
Pc=Phw—Pw=2yH. (1)

Here, v is the interfacial tension between the fluids,is the
mean curvature of the meniscus and a zero contact angle was
assumed. In the absence of buoyancy and/or viscous forces,
the capillary pressure, thus the mean curvature, is spatially
uniform. A meniscus will penetrate a pore throat, adjacent to
which it resides, when the capillary pressure first exceeds the
capillary entry pressure for that pore thr@edughly equal to
2vlIr, wherer is the pore throat sizeln drainage at constant
rate, the sequence of pore penetration can be modeled by
invasion percolatior{IP), where at each time step only one _ _ ) o
pore throat is invaded, that with the least capillary resistance F!G- 3. (@) Self-affine front during external drainage indicating
(or, equivalently, the largest radjuamong all throats at the 2N IPSG processFrom Xu, Yortsos, and Salif83].) (b) Single
perimeter of the interface. During this step, all other menisci{"9¢" in external drainage indicating an IPDG procéssom Cha-
remain stationary or fluctuate slightly. This type of displace—oUCheet al. [26])
ment gives rise to a self-similar fractal pattern in the displac- _ _ _
ing phase, which eventually approaches that of the percoléNhereV is the correlat|0r_1 Iength_e_xponent of percolat|_0n. For
tion cluster. The properties of the latter have been discussed "onzeroB, the front width is finite. Then, the front is not
in detail in various publicationfl9,20]. Because of the self- Self-similar, but rather self-affing28] [Fig. 3(a)]. Within the
similarity involved, however, defining a mean-front position fro_nt, the pattern has the fractal characteristics of the perco-
is not operationally useful. lation cluster. However, upstream (_)f_ the front, the pattern is
However, if gravity and/or viscous forces are also impor-compact. Thus, a mean front position can be usefully de-
tant, a percolation pattern will not develop over the entirefined. In essence, this rgflect; the transition of the d|§place—
region of displacement. When only gravity forces are impor-ment from an IP to a pistonlike pattern. The IatFer is the
tant, the capillary pressure will vary with the elevatiorof ~ Pattern that develops when only gravignd not capillarity
the interface, sinc®,=g,Aph, whereg, is the component acts(and WhICh would be'plstonllke in thl§ caséVe shall
of gravity in the direction of displacement antip=p,, refer to this as IPS_G. _Huluet al. [2_3] expe_rlmentally dem-
—pnw. Then, the displacement acquires the features of g_n_strated the e_lppllcatlon of IPG in a drainage problem sta-
different pattern, namely, invasion percolation in a gradien®ilized by gravity. , ,
(IPG) [21—2§. In this case, the competition between gravity (i) On the other hand, B<0, for example, in the down-

and capillary forces is expressed through the Bond numbepvards displacement of a lighter by a heavier fluid, the dis-
placement is invasion percolation in a destabilizing gradient

9.A pk (IPDG). This pattern has the different features of capillary
B= , (2)  fingering [Fig. 3(b)], in which the displacement occurs by
Y invading fingers of a mean width still given by E@®), the
) N ) o local characteristics of which are still controlled by percola-
wherek is the permeability of the porous mediuwhich is  tion, This regime has been discussed in detail in Frettt.
roughly proportional to the square of a mean pore sizefzg] and Meakinet al. [30].
k~r7, Katz and Thompsori27]). Now, one needs to further ~ The effect of viscous forces is more complex. At larger
distinguish two cases: scales, where viscous effects predominate, two limiting pat-
(i) If B>0, for example, in the downwards displacementterns are expected, pistonlike displacem@td) and viscous
of a heavier by a lighter fluid, the two phases are separateihgering, depending on whether the rakib= .,/ ., be-
by a front of finite widtho, which scales with the Bond tween the viscosities of the two fluids, is smaller or greater
number ag21,22, than 1, respectively. Essentially, this reflects the Saffman-
Taylor instability [31]. At smaller scales, however, where
og~B VD, (3)  capillary forces are important, the problem becomes similar
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to IPSG(case of smalM) or IPDG (case of largeM) (Yort- Electronic Data Processing NMSHITGE
sos, Xu, and Salif32], Xu, Yortsos, and Salif33]). In the s Ele #rﬂ‘;‘}‘ ]
first case, in particular, fully developed drainage involves an %% —

advancing front of a finite widtler,,, as in the case of stabi- ver
lizing gravity, followed by a more compact pattern. The front R =
width can be shown to scale with the front capillary number, “®as” Reservoir  gyinge

pump
Ca‘F: v,unW/y, as [34’33 “Oil"R@esm Video Camera
Stereomicroscope

. (4) v

CaF —vl[1+{+v(D-1)]

3

oy~ Outlet

— >
Micromodel

wherev is the front velocity,u denotes viscosity}, is the FIG. 4. Schematic of the experimental apparatus

dimensionless variance of the pore-size distributipis the . EXPERIMENT
conductance exponent of percolation, ands the fractal

dimension of the percolation cluster. Values for the various To visualize the mechanisms involved in drying in porous
! ! P ' media we conducted experiments in transparent etched-glass

percqlation exponents can be found in classical texts on P€hicromodels. These micromodels consist of two glass plates
colation, for example, in Stauffer and Aharof§5]. The sy together, on one of which a specific square pore net-
properties of these patterns and the conditions delineating thg, pattern is etched. Micromodels have been valuable in
various regimes were recently discussed in'detail in YOrtsoSyroviding an understanding of the qualitative features of
Xu, and Salin[32] and Xu, Yortsos, and Salif83]. various displacement processes in porous mésba Buck-

Although subject to similar considerations, drying alsojey [42] for a review. In the context of phase change, a most
involves the additional effect of mass transfer in the gasecent application involves the bubble-growth experiments
phase, which actually drives the process. A certain analoggeported in Li and Yortsof36] and the drying experiments
can be drawn between drying and the problem of bubbléy Laurindo and Praf16]. In our application, the typical
growth in porous media, recently investigated by Li andmicromodel has size 25 cxil0cm, while the etched pores
Yortsos[36,37], and Satik and Yortsd$8], where the driv- are channels with an estimated depth of %0@. The pore
ing force for phase change and the ensuing growth of the gasody/throat thickness is spatially distributed, following a
phase is diffusion of mass or heat in the liqidr the case specified Rayleigh distribution, with an average pore throat
of solution gas or boiling, respectivelyWhen a bubble radius of 450um and an average pore body radius of 900
(more properly a gas “clustep’grows in a porous medium, um. These dimensions are specified before etching the glass
its pattern at small bubble sizes will be of the percolationplate. Due to imperfections in the glass and the lack of pre-
type. However, at larger sizes, capillary forces are less sigeise control in etching and fusion, however, the final dimen-
nificant, and the displacement pattern is controlled by diffu-sions are somewhat different. Also, although originally rect-
sion and viscougand gravity effects(Satik, Li, and Yortsos angular, the channels can become “eye-shaped” after
[39]). Diffusion in the liquid is known to destabilize such a fusion, as pointed out by Chatzis, Morrow, and Li#8] and
liquid-to-gas phase change, leading to a Mullins-Sekerka invizica and Payatakegt4]. The final shape depends on the
stability (see[40,4] for the particular application thus the  time of fusion among other parameters. Details of the manu-
pattern gradually becomes of the viscous fingering type. Théacturing procedure can be found in Chat$]. One entry
boundaries in the parameter space that delineate patternsport and one exit port on opposite sides of the micromodel
bubble growth were described in Satik, Li, and Yort$89]  serve to inject and recover the fluids. The experimental ap-
by using scaling arguments and pore-network simulationsparatus shown in Fig. 4 consists of the micromodel, of two
The same authors also proposed kinetic expressions to deeservoirs for the supply of the liquid and gas phagis
scribe the rates of growth of bubble-growth patterns. Key tanoted in the figure as “oil” and “gas) of a syringe pump,
their description was the modeling of the diffusion processa camera for visualization, a video tape recorder, and a data
and its coupling with viscous and capillary phenomena. Suclprocessing system. Typical liquids used wargentane,
an approach could also be fruitfully used in the context ofn-hexane, and distilled water. The gas phase in the experi-
drying. ments was air.

It could be noted that because it is essentially a process of The experiments consist of first saturating the micromodel
gas displacing liquid, one might naively anticipate drying towith the liquid phase and subsequently displacing it with the
involve IPDG patterns of the viscous fingering type, in anal-gas at relatively high injection rates until the liquid phase is
ogy with external drainage in which the displacing fluid is macroscopically disconnected from the two ports. At that
less viscous, or with the bubble-growth problem at largetime the gas injection rate was decreased to low rates and the
sizes. However, this is misleading: drying is not driven bydrying process commences. This arrangement is actually dif-
external injection, but bynternal diffusion in the gas phase. ferent on the macroscopic scale than Shajl's], where
This differs from external drainage, but also from bubbleonly one side is open to flow, there is no primary drainage or
growth, where diffusion occurs in the liquid phase. Theseexternal liquid displacement, and the only mechanism for the
processes conspire to give patterns that are characterized lyovement of menisci is due to mass transfer. However, the
the stabilizing IPSG process, as will be shown below. basic drying mechanisms at the microscale are the same in
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FIG. 6. Close-up of the gas-liquid interface during drying in the
micromodel experiments. The linear dimensions are 1.0c®.5
cm.

was also found to occur at the same time in more than one
pores, although several interfaces remained pinned during
the same time.

(i) Even though the plan views in Fig. 5 indicate gas-only
occupied regions, a careful monitoring of the changes in the
liquid-gas interface revealed that liquid films existed at the
surfaces of pores invaded by gas. Figure 6 is a close-up of
the gas-liquid interface, and shows the trace of wetting films
left behind during the invasion of a pore by gas. The exis-
tence of films was also indirectly deduced from observing

FIG. 5. Two different snapshofga) and (b)] of the interfacial  the emptying of some pores occupied by liquid, which would
patterns at two different times from the micromodel experimentsbe topologically impossible in the absence of connected
(system: aim-hexang. The linear dimensions are 6.5 cn3.5cm.  films. Wetting films in corners and crevices following drain-

age of a wetting liquid have been documented in various
both experiments. In fact, the theoretical model to be dEV9|drainage Studiegée_gq see Lenormand, Zarcone, and Sarr
oped below will pertain to Shaw’s configuration. The main[47)). In his experiments, Shaji1] inferred that connected
difference is in mass transfer, which in our experiments cafiquid films help in the transport of liquid towards the open
also occur by forced convection due to the particular conedge of the cell where it can evaporate. Ark4,15 and

figuration(see also Jia, Shing, and Yortdas] for a related | aurindo and Praft16,17] also reported the existence of thin
application. In most of the experiments, however, the injec- |iquid films.

tion rate was kept quite lowof the order of 0.052 mi/min - The above mechanisms of the drying process will be in-
resyltmg into small Peclet numbers and a predominantly difcorporated in the pore-network theory to be developed sub-
fusive mass transfer mechanism. sequently. Before we proceed, however, it is necessary to

Figure 5 shows two snapshots of the interfacial pattern atinderstand large-scale effects of diffusion and mass transfer.

different times during drying. The evaporation of the liquid These can be studied in the absence of capillarity and pore
and the resulting receding of the interface at various placegicrostructure.

are apparent. We note the existence of many clusters of dif-
ferent sizes, containing macroscopically disconnected liquid.
The clusters are disordered and reflect the difference in the
capillary characteristics of different pores. The interface is

IV. FRONT STABILITY IN THE ABSENCE
OF CAPILLARITY

generally “rough,” although it is difficult to ascertain self- It was pointed out in a previous section that while small-
affinity or self-similarity. Important findings from the visu- scale features of a displacement process are set by capillarity,
alization experiments included the following: larger-scale characteristics are set by transfsrth as vis-

(i) Typically, the penetration of gas into the liquid and the cous flow or diffusiof. This is certainly the case both in
receding of the meniscus occured in the form of sudderexternal drainagéXu, Yortsos, and Salif33]) and in bubble
jumps, one at a time, which were separated by finite timegrowth (Satik, Li, and Yortso$39]). The percolation pattern
intervals. These jumps known as “rheon” events in externalwill ultimately (at large capillary numbers, see also below
drainage, reflect the fact that for a pore to be invaded, @&volve into a pattern dictated by the large scale. To under-
capillary pressure threshold must be exceeded, followingtand this pattern, and thus to infer whether the process will
which displacement and filling of the adjacent pore body willbe of the IPSG or the IPDG type, the stability of drying in an
occur rapidly. During that time, interfaces pinned by capil-effective porous medium in the absence of capillarity must
larity in other pores are adjusted as a result of liquid incom-be analyzed.
pressibility (see also beloy Rheon events will predominate ~ Consider a planar drying front advancing in an isotropic
when the displacement is controlled by capillarity, as was th@and homogeneous effective medium, with a geometry that
case in many of these experiments. When, however, dryingnimics the experiments by Sha@1], as shown in Fig. 7.
rates are fast, as was the case with the experiments involvinbhe liquid phase consists of a vaporizing single component,
n-pentane, or at higher gas injection rates, the displacememthile the gas phase is a mixture of two components at con-
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720 a0 Open boundary for the outer normalpointing towards the liquidand the
normal velocity at the front, respectively. The governing
©as (vapor of A + inert gas B equations in the liquid-occupied region involve Darcy’s law

for the flow of the liquid phase,
k
u=- —V I:)I ’ (8)
M

from which, and with the use of the continuity equation, we
obtain a Laplace equation for the liquid pressure,

V2P, =0. 9)
This equation is subject to the following boundary condi-
tions:
£=L, v ;mpermeoblé boundc;ry P=P, at z=F(y,t), (10

whereP, is the gas pressure, assumed constant, due to the
FIG. 7. A schematic of the planar drying front geometries for small gas viscosity, and
the stability analysis of drying in an effective porous medium. Near
the indicated protuberance, concentration contours in the gas phase JdP,
are compressed leading to enhanced mass transfer, hence to stabi- 9z =0 at z=L, (13)
lization of the protuberance.

! . .whereL denotes the longitudinal extent.
stant pressure. A sharp interface seperates gas from liquid; gq, negligible convection and transient effects the con-

thus, for the purposes of this section, we ignore effects Ofjgnsible componer satisfies the quasistatic diffusion equa-
microstructure or film flows. Isothermal conditions are as-jigp, (see Appendix

sumed. The top boundary is open to gas flow, has zero molar

concentration of the vaporized liquid, and has a constant gas V2c,=0, (12)
pressure. The bottom boundary is impermeable to liquid;

thus all changes in liquid content are due to drying. We willwherec, is the concentration of the condensible speties
examine the stability of the front to transverse perturbationslso, Praf14,15). The corresponding boundary conditions
in the absence of capillarity. For the purposes of this sectionare

which is to reveal macroscopic features, the analysis will be

based on a continuum description. We consider quasistatic ca=0 at z=0 (13
diffusion in the gas phase and assume that the profiles

(which are generally time-dependgate “frozen”when the ~and

perturbation is imposed. Quasistatic diffusion is expected to
be valid when the ratio of the equilibrium concentration of
Fhe VOI‘."‘“I? component in the gas phase to its molar denslt)o(lt the inlet and the front, respectively. Here, we defined the
in the liquid phase is small, which is the case at low partlale uilibrium mole fractionx..—P /P . whereP. . is the
pressuregsee Appendix The more general problem involv- <4 Xae= T vAl T s vA

! i . ! . artial pressure of, and the total gas concentrationthat

ing unsteady-state diffusion and convection will be describe

) . ecause of the assumed constant pressure, can also be taken
in a separate studfsee also Append)x Assuming a frozen

state during perturbations is a standard approach for the st @ constantc=P, /RT for an ideal gas, wher® is the

bility of time-varying base statesee, for example, Tan and ideal gas congtant ariis the at;scrlute temper?tt)re he |
Homsy[48)). Concentration and pressure fields are coupled at the inter-

Let the front that separates liquid- from gas-occupied rejace by mass balances. For the vaporizing liquid, we have

gions be denoted by the following equation in the notation of

CA=Co=XpcL at z=F(y,t) (19

JCa

Fig. 7: Dy =g () at z=F(v0, (15
Fzy,t)=z—F(y,t)=0, (5
whereD,g is the diffusion coefficientp, is the mass density
and recall the definitions of the liquid, M, is the molecular weight, and denotes the
normal to the interface. The interface is a material surface,
n= E 6) thus,
V7
Un=Ugn- (16)
and
The assumption made here is that the liquid consists of a
Fi 7) single volatile component and that convection effects are

secondary.
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Consider, now, the base state in the absence of perturb#-is apparent that the rate of growth is negative, which
tions (denoted by superscript BaiThen, the front is located implies that this displacement is unconditionally stable. The

at z=1f(t) and we readily find the base state. physical intrepretation of the stability result is straightfor-
ward: If a protuberance of the front into the gas region forms,
— ZC gas-phase diffusion rates will be higher at the tip compared
T f(t) for 0<z<f(v), (17) to the base, due to the compression of isoconcentration
curves at the tigFig. 7). In the absence of liquid flow, this
P=P, for f(t)<z<L, (18  Wwill result in a locally larger velocity at the tip, hence in the
smoothing of the protuberance, and in stability. Thus, even
and though it is effectively a process of a less viscous fluid dis-
placing a more viscous fluid in a porous medigwhere in
=i CEMADng (19 external drainage one would expect a viscous fingering in-
n z— ' .

stability), the fact that the process is driven internally by
diffusion in the gas phase renders the frontal displacement a
The latter can be integrated to yield the front locatjas-  stable process. In a sense, this is analogous to the melting of
sumingf (0)=0], a solid, in which the receding interface is also linearly stable
(Langer[40]). On the other hand, this is in contrast with the
f=1(2CeMaDagt /p)). (200 problem of bubble growth in porous media referred to above,

i i ) L where the process is also internally driven by diffusion, al-
This expression also' results in the guasistatic Ilmlt from thechough in the liquid phase, and where in the absence of cap-
more general analysis presented in the Ap‘p‘)end|x.” illarity, the problem is linearly unstabléLi and Yortsos

For the stability analysis we assume a frozen” state at[41])_ The phase change analogy with that problem is solidi-
t=to, take normal modes, varying as @+ w(t—t)l  fication in a supersaturated solution.
namely, The important implication of the previous analysis is that
in the absence of capillary forces the drying pattern in the
porous medium will be PD. Because of the relatively low

_ : drying rates in applications, however, capillarity will be im-
Pi=Pyt+ell(zUexpiay + ot), 22 portant over sufficiently small scalésompare with Fig. b
and and must be considered, as shown below. Before we proceed,
we note that a qualitatively similar result to E@6) is also
F(y,t)=f(1)+ eexpiay+ wt), (23 expected in the more general problem, where net gas phase
convection is considered. This analysis, which also includes

and inquire about the sign of the rate of growshof distur-  spherical geometries, will be considered in a separate study.
bances of wave-number. In the above notationg has di-

mensions of length. Substituting E@1) to Eq.(12) and the
boundary conditior(13) gives V. FRONT DESCRIPTION USING A PORE-NETWORK
ANALYSIS

c=c+ea(zt)expiay+ wt), (21

o=2Asinh az). (24
Consider now a description of the frontal region during
The constantA is evaluated by using boundary condition drying by accounting for the effect of the pore structure
(14) and the base state solution evaluated at the front locaFigs. 5 and & Locally, the interface is described by an

tion. After some calculations we arrive at the result, equation similar to Eq(5), across which boundary condi-
. tions (15) and(16) apply. However, here menisci in the pore

__ CaeSinM(az) (25  Space must conform to the curvature of the pore in which

fsinhaf) ° they reside. Thus, across the meniscus, liquid and vapor

pressures are related through the capillary pressure
Working likewise with the pressure field we find tHdtsat-

isfies a Laplace equation, the solution of which is subject to

the no-flux and constant pressure conditions at the two 2y

boundaries, respectively, is identically zefd=0. Thus, at Pi=P,— r (27

this level of approximation, the liquid phase is stagnant, as

intuitively expected. However, consideration of capillarity at

the microscaldand the interfacial curvature it impliekeads  where, assuming locally spherical shapes, the mean pore ra-

to viscous flow in the liquid phase, as will be shown below.dius of curvature ig. A convection-diffusion equation de-

This flow will set the main features of the drying pattern atscribes mass transfer in the vapor phase, while the fluid flow

the microscale. in both phases is described locally by Stoke’s law. In the

A final substitution of the above into the coupling equa-following, we will focus on the structure of the front. For

tion at the front leads to the following expression for the ratethis, capillarity must be considered. We will show first that

of growth of disturbances: the latter induces a viscous flow, the magnitude of which
dictates the extent of the front and its pattern. Then, the

(26) scaling of the front width and the basic properties of the
pattern are discussed.

DABM AC XAer

@ pftaniaf)
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to be contrasted to the prediction of a stagnant liquid ob-
tained from the linearized stability analysis above, where
capillarity was neglected. This flow is due to the variation of
pore throat curvatures and it is capillarity drivéfrom
“large” to “small” capillaries). In the particular application
involving gas injection to recover oil from fractured rocks, a
simplified process of the same type was ternueghillary
pumpingby Le Romanceet al. [6].

B. Drying patterns
The capillarity-induced flow will impart a corresponding
viscous pressure gradient; hence,

P i>Pi. (28

Then, under the further assumption of a constant pressure in
the gas,

Pci>Pcj, (29

namely, as drying continues, the capillary pressure will be
positive and may also increase with time in locations where

FIG. 8. Experimental visualization of two different types of the meniscus is stationary and pinnéZE pores of type).
pores during drying: (@) CE pores andb) PE pores. The linear An analogous statement was also made by Spb, al-

dimensions aréa) 0.6 cmx 0.4 cm andb) 1.4 cmx 0.8 cm. though in his analysis it was attributed to countercurrent gas-
liquid flow. It is possible, therefore, that after sufficient time
A. Capillarity-induced flow (capillary pumping) has elapsed, the capillary barrier at such a pore throait

Because of the capillary forces in the constriction of porebe exceeded for the first time and the meniscus at that loca-

throats, a meniscus will not penetrate a pore throat, for extion will also start receding. This mechanism restricts the

ample, throati of radiusr . in Fig. 6, until the capillary development of the front that cannot be extended too much,
, p.i . 6, : e .

pressure across the meniscus exceeds for the first time t i{% i?e\(/:vci)(;?re\ \_/I_ery tg:rt]uc?[usi:[ bu)t(twrllltl t\:ve “r:n'tzdt ms’r[]ealldztotr?
capillary barrier of that throat, &/, ;. Until this happens, atteern dev.eloo :ds ate 1is extent, we need to analyze the
the normal velocity of this meniscus will be negligible; P ped.

therefore, the meniscus will remapinned During this pe- Assume for a moment that the drying pattern of the front

riod of time, however, diffusion proceeds over the entire gas!S of the IP type, as assumed, for example, by P1&{19.

A ; S .~ =" "Then, all but one of the pore bodies containing the front
g?# éc: Q;?:;a%? g:f ; rgerqel;trgrs ttr?:;inzfor:lsez e;’;;l:):f :)%crgdilgg "would be of the CE type, the only PE pore bein_g that invaded
Fig. 6 or along comers contéining nondisplaced quuid'from a pore throat Wlth_ the least cap|ll_ary barrier, among all
Thus, at any time during the process, the drying front Wi”throats currently contalnmg frpnt menisci. As shown above,
reside in pores of two different typesii) completely empty gcl)zwever, th(;r.ehwould b?_hqmdl flow from the PE pore to a
(CE) [Fig. 8@)], in which menisci are stationary at the pore pore, which may ulimately cause one or more pore
throats and(i) partly empty(PE) [Fig. &b)] in which me- throart]s to beillnvaded, evin thOl_Jgh the|L capillary ba_rrl_er I||s
nisci are receding. Partly empty pores are either pore bodieggt the §m3 ZSt am(;]ng t de_t_perlmtehter } roaﬁ, as o|r|?_|na yf
or pores containing liquid left behind in corners, crevices, orﬁ}jlljpmea;[ter?] \(/avroEIL:jcbec?jri]sruotﬁj' eretore, the evolution o
films and which might be connected hydraulically to the bulk Th P sis is facilitated pf ) ke the followi i
liquid. The rate of meniscus displacement due to evaporation € an§y5|s IS faciiitated It we make the foflowing as
is determined from the solution of the overall problem.sumpuons' . :
When the capillary pressure barrier across a throat adjacent @ T_he pressure dro_p across two adjace_nt pore bodies
to a CE pore is exceeded, the corresponding pore is invad 9 s_|tesk and m in Fig. & can be approximated by a
and becomes a PE pore. oiseuille-type law,

Consider now Eq(15) applied to the meniscus on the CE
pore throati. Since evaporation continues occurring, regard- Kkm
less of whether the meniscus is stationary or moving, the Qkﬂm:T(Pl,k_ Pim), (30)
normal liquid velocityu,, in Eq. (15 must be negative. This '
implies a liquid flow in the direction from receding to sta-
tionary menisci(for example, from the PE pore containing where Q, ., is the flow rate across the two sites and the
capillary j to the CE pore containing capillaiy. It follows  conductances,,, depends only on the geometry. This is a
that capillary forces in a drying process will induce a flow, standard assumption in modeling displacements in porous
the magnitude of which depends on the drying rates. This isnedia(e.g., sed13,36,37,49,5]).
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(b) The pressure in the gas phase is spatially uniform. DagM ACXact) Tt
Given the small value of the gas viscosity compared to that |AP[~ T X,
of the liquid, this assumption is expected to be valid even at : f

relatively large drying rates. _ . Equations(32)—(34) are order-of-magnitude estimates. De-
_(c) The transport in the gas phase is by quasistatic diffuyermining the exact pressure and concentration fields requires
sion only. Under certain conditions that favor large dryingthe solution of flow and transport problems in a disordered
rates(for example, elevated temperaturesonvection in the pore network, which are coupled at the front according to
gas phase can be important. To infer its effect, however, thgq_ (15, with v,=0 for all CE pores and with

momentum balance in the gas phase needs to be consid_er@ﬂzzfun/,\lf, for the single PE pore, where the sum is over
An extensive account of the more general problem using| N, CE pores at the front. The development of such a
pore-network simulation will be considered in a separatesimylator is currently in progre$s1]. Nonetheless, order of

StUdY-. ) ] - . . magnitude estimates are useful for obtaining scaling rela-
As inferred from the linearized stability analysis above, intjons.

the absence of capillarity, the front would be pistonlike, with  ~qnsider now the variation of the percolation probability

some local roughness. Capillarity will keep interfaces, othery, the front region, which will be affected by the variation of
wise favored to grow by diffusion, pinned in place, until p  The two are related as follows:

their capillary pressure barrier is exceeded. The characteristic®

length over which percolation rules apply and the pattern is 2y3

of the IP type is estimated below. |AP [~ r—IApI, (35
Consider drying in a pore network of lateral exténiWe m

will denotg the.dimensionless mean position of the front by, heres is the dimensionless variance of the pore size dis-
X;(t) and its width byo,(t), or by o((t), where after suf-  yipytion a(r), andr,, is a characteristic pore size. In the
ficiently large timeo(t) [or o¢(t)] <X(t). Here, lengths  gerivation of Eq. (35) we made use of the results
have been dimensionalized using the pore lehg#ubscript P.=2y/r and p=[Za(r)dr. Use of Eq.(35) in Eq. (34)

; . . .

ft indicates front tail in 3D and subscripindicates front in - ; ; ;
. and substituting ,,~1 gives the following expression for the
2D geometriede.g., see Gouyet, Rosso, and Sapddl, variation ofp: Im~19 g exp

for the difference in the two geometrjesContrary to the
case of a 2D square lattice, to be discussed below, here both Cap oy
phases can be continuous simultaneously. |Ap|~ 25 X

If we were to neglect any viscous pressure drop in the f

liquid phase, the capillary pressure, hence the percolatiofjnere we introduced a diffusion-based capillary number
probability p, on the front would be spatially constafihe Cap=DagM apC¥ao! ¥l p; . This capillary number includes

percolation probability being _equa_l to the percolation threshv[he supersaturatioB = cx,,, which drives the drying pro-
old p=p;, where, for 3D cubic latticeq.=0.25and for 2D coqq |eading to the characteristic velocitP,g/l

squa;]re _Iattlcgs,pcanS). Dlge tr? the ca;:;!lary p_ﬁmplng ~Dug/ k. A similar diffusion-based capillary number was

mechanism described earlier, however, the capiiiary PréSiseq iy the related phase change problem involving bubble

sure, hence the percolation probability, will vary spathlly. rowth by Li and Yortso§36,37], and Satik, Li, and Yortsos

For a constant gas pressure, the charactgnguc variatl 9]. This reflects the fact that drying is internally driven and

|AP| across the front is related to that of the liquid Pressure yitterentiates the process from external injection.

namely, The final step for determining;; makes use of a self-
IAP,|=|AP| (31) consistency argument, similar to IPG. As the process in the

¢ o frontal region is in the percolation regime, thprmust fol-
low the percolation scalinfR4],

(34

(36)

Because the flow of the liquid in a pore network can be
described by Poiseuille’s law, and the displaced phase is

| ()
continuous, then, [P=pel~aq ™. (37
Substitution of Eq.37) in Eq. (36) gives the final scaling
Upp oy result
|AP||~ Kk ’ (32) ’
22Xf vl(1+v)
where we introduced the characteristic veloaity and the O™ Cap ) (39

permeabilityk (which scales approximately &%). The char-
acteristic velocityup is due to diffusion, and to a first ap- Thjs equation sets the length scale at the front over which the

proximation, IP pattern is valid. By definition, this length scale coincides
with the front-tail width. The scaling is identical to that in
y _ DagMAC |9Xa|  DaMaCXae (33 'PSG, provided that the Bond number is identified Bs
D Py an plXe =Cap/23X;. According to Eq.(38), the front width in-

creases as the capillary number decreases, as the front posi-
where we estimated concentration gradients in the gas phasen increasegnamely, as the drying rates slow dowor as
by their base-state values. Substitution into €4) gives the the disorder in the medium increases. Thus, wider fronts are
following result for the variation oP; in the front region; expected for higher values in the interfacial tension, smaller
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liquid viscosities, and larger drying times. Given that the
velocity of the frontv; is inversely proportional to its mean
position (recall the base-state scalig~ 't), we further
rewrite Eq.(38) as

2.0 1

vl(1+v)

23
ft ( (39

UfcaD

This expression will be used below for a comparison with
the experimental data. Finally, it is worth noting that the
exponent found is identical to Lenormandi49] for the de-
lineation of the percolation limit in the drainage of a viscous
fluid, even though the two problems are actually quite differ-
ent.

We summarize this section as follows: During drying the VELOCITY OF THE FRONT (mm/sec)
frontal region consists of a front of a finite widtfy, . Within
the front, the displacement has the fractal properties of an IP  FIG. 9. Variation of the width of the drying front with its aver-
interface. Upstream of the front, however, the displacemendge velocity. A least-squares fit to the data gives an exponent of
is compact. Therefore, the process can be approximated as0.48+0.1. (From Shaw[11].)
IPSG. Xu, Yortsos, and Salif83] show how various prop-
erties of the front during displacement processes can be agnt width).

proximated by simple versions of IPSG. The scaling of thegyperiments, the theory presented cannot be conclusively
width of the front is given by Eq(38); thus, the front width  .nsirmed from these experiments.

is predicted to increase with increasing distance from the gpa. [11] used Wilkinson's[34] theory for external

boundary. As in other problems, where growth is controlledy ainage to interpret the experimental results. As discussed

internally, namely, by diffusion within one of the two i, 3 nrevious section, this power law has the dependence
phases, the appropriate capillary number is based on the difqwn in Eq.(4) with an exponent that equals0.38 or

fusive strength and the supersaturation applied. Typical val-_q 55 iy 2D or 3D, respectively. We believe, however, that

ues obtained fall within the range of external drainage inhe immiscible, external drainage theory is actually not rel-

porous media. evant to the present problem that as explained above is
driven by diffusion in the gas phase, and where the corre-
VI. COMPARISON WITH EXPERIMENTS sponding viscous pressure drop is in the displaced wetting
- . phase. By contrast, scaling E¢) reflects the stabilizin
To check the validity of the theory we used the eXpe”'gffect of )\//iscous forces ocgcurﬁig in thdisplacing phaseg
mental results of Shal1]. These experiments were CONn- hich here is the relatively nonviscous gas phase, thus lead-
ducted in a Hele-Shaw cell of thickness 15—2@, packed

; . X ing to an apparent contradictipfsee also Xu, Yortsos, and
with glass beads of size 0,am. We estimate that the. cell Salin [33]). The inadequacy of Eq4) was recognized by

consisted of 3040 bead Ia}yers, thus pgrtaini.ng Qﬁept|yely t%haw[ll] who subsequently proposed a different power law
a 3D geometry. The experimental configuration is similar to imilar to Eq. (39), without, however, elaborating on the

that studied theoretica!ly al_:)ov_e, With one side of _the mode ass transfer aspects of the problem.
open to purge the drying liquid, while all other sides were
impermeable to flow. For these experimental conditions we
estimated thaCap is of the order of 108. Figure 9 re-
printed from Shaw11] shows in logarithmic coordinates the
scaling of the front width with the front velocity. The least-
squares fit to the data gives a straight line with slope The previous section described the structure of the frontal
—0.48+0.1. Compared to the theoretical equati®9), region that because of its percolation and fractal characteris-
which also predicts a straight line with sloped.47 for 3D tics requires a local analysis. In the upstream regimes, how-
and —0.57 for 2D, the agreement is, at first glance, quiteever, a macroscopic description is possible. The elements of
good. However, a more careful comparison shows that thishis description are discussed below.

cannot be considered conclusive. Given that the front width Consider first the pattern upstream of the front. The dis-
in Shaw’s experiments is several times larger than the spacussion will be restricted to 3D geometries, where flow in
ing of the cell, it is likely that the pattern development is this regime is bicontinuous. Immediately adjacent to the
guenched along the third dimension, and that the experimeritont, there exists a bicontinuous region upstream of the
is effectively in a 2D geometry. Under such conditions, theleading edge, where the pattern is locally IP, except that now
agreement is not as strong. Furthermore, the 3D scaling wake process is above the percolation threshold, as an increas-
developed for the front tail widtlr¢,, where the pattern is ing number of smaller-size throats have been invaded. As-
fractal, which may not be the same quantity experimentallysuming a sufficiently small slope in the liquid saturation pro-
measured. Thus, even under the assumption of a 3D patterfile, volume-averaged quantities can be defined; hence, we
theoretical predictions and experimental results may actuallgan postulate a continuous description in this region. The
pertain to two different quantitiegdifferent definitions of analogous problem for drainage processes was studied in Xu,

[ | N
0.001 0.002

[l
0.004 0.01

—
£
£
~
—
Z
O 4,
o
L 0.
L)
I o
L
(@2
I
—
=
=

For these reasons, although compatible with the

VII. IMPLICATIONS FOR A MACROSCOPIC
DESCRIPTION
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Yortsos, and Salifi33]. Using transverse averages, the massmamely, Eq(38), where nowX; denotes the average location
balance on the liquid reads as of these stationary ganglia. The description of this problem
can still be obtained with the above equatidd®)—(45),

0§ 9| except that the liquid velocity must now be set to zero. These
pi|d—= =-R, (40)
ot 0z problems are currently under study.
where the liquid flow rate, , is expressed using a general-
ized Darcy’s law, VIIl. CONCLUSIONS
kk, (S) 9P, In this paper we used concepts of immiscible displace-

:_T > (41)  ments in porous media driven by mass transfer to model
|

|,z
certain aspects of drying of porous media. Visualization ex-

involving the relative permeability functioky (S). The lig-  Periments of drying in 2D glass micromodels were con-
uid pressure is related to the capillary pressure functiofluctéd to identify mechanisms concerning the motion of gas-
P.(S) via liquid interfaces at the pore scale. Then, a pore network

approach was introduced, utilizing arguments from isother-
Pi=P,—P.S). (42) mal drainage, particularly IPSG, and from the related
bubble-growth problem.
The two functionsk; |(§) andP¢(S,) correspond to primary A specific objective of this work was the analysis of the
drainage, and they can be computed in a straightforwarérontal region separating the initial liquid from the upstream
fashion using IP. The rate of evaporation, two-phase region. A linear stability analysis in an effective
R=(DpgM Ac/V)fAlg(axA/&n)dA, expresses the net mass porous medium, in the absence of capillarity or microstruc-
transfer from the liquid to the gas phase, occurring over théure, showed that planar drying fronts are stable due to dif-
gas-liquid interfacial area,y, whereV is volume andn is fusion in the gas phase. For a porous medium with a micro-
the unit normal to the interface pointing towards the liquid. Structure, however, capillarity induces a viscous flow, termed
In the dilute-limit approximation considered here, this pro-in other contexts as “capillary pumping.” The developing
cess is linear with respect to the concentrations; thus, weressure gradients effectively limit the extent of the front,

may further take which would otherwise be of the percolation type, to a finite
width. In conjunction with the prediction of a macroscale

DagMaC stable front, capillarity, diffusion, and viscous effects result

R=——17 (Xae=Xag G(S), (43 in a process similar to IPSG. A power-law scaling relation of

the front width with a diffusion-based capillary number was
whereXxa, is the transverse average of the mole fraction inthen developed. This capillary number reflects the fact that
the gas phase. Because the pattern of all interfaces is stfine process is internally driven due to diffusion, as in bubble-
dictated by IP(although here it is above the percolation growth problems but in contrast to external drainage. The
threshold, the effective gas-liquid area and the dimension-scaling exponent predicted was found to be consistent with
less scaling functiorG(S,) can be computed by solving a the experiments of Shayd 1], although a conclusive proof
quasistatic diffusion problem around a percolation clusterwas not obtained. A continuum description was also devel-
The results of this study will be reported elsewhere. We exoped for the regimes upstream of the front; the detailed
pect, however, tha® has a nonmonotonic dependence, van-analysis of which will be reported in a separate study.
ishing both near the fror{tvhereS,— 1) and far upstream of
the front(whereS, approaches zejo

The system of Eqs(40)—(43) is completed with a mass ACKNOWLEDGMENTS
balance for the volatile component in the gas phase. In the The research of I.N.T. and Y.C.Y. was partially supported
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while the mass balance for the volatile component become

IXag Xag
Pt T,
where the diffusion coefficier?(S)) is to be computed from
a percolation study. The system of Eqd40)—(45) can be
splved_ to determine the saturation profiles in the regime of APPENDIX

bicontinuous phases.

The regime far upstream of the front consists of discon- In this appendix we consider the base state for the more
nected ganglia of the liquid phase. Reasoning as in the scaffeneral problem that includes unsteady-state diffusion and
ing analysis for the front, we can conclude that their characeonvection. The condensible componénsatisfies the mass
teristic size has the same scaling as given for the frontbalance
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9Ca P=P, for f(t)<z<L. (A10)

n +V-N,=0, (A1)
The base-state fluxes are

whereN, is its molar flux, expressed for a binary mixture as
— P — _ PBe
Na=—CcDagVXa+Xa(Na+Ng). (A2) NAﬁ—M—sz and NBZ=M—sz, (A1)

Here,c, is the molar concentratiorx, is the molar fraction  \ypere we impliedopc<<p;, While the mole fraction is given
of A (ca=cXa), andNg is the molar flux of the nonconden- f.om

sible species. The latter is also conserved,

Jc Na,=—CD —X + (N N ) (AlZ)
B C X + .
p V'”B 0. (A3) Az AB 4z AUINAZ Bz

To solve the unsteady-state problem we takeahsatzthat

The corresponding boundary conditions read the front position is proportional to the square root of time,

Xa=0 at z=0 (A4) F(1)= 2\ \Dagl. (A13)
and where\ is a dimensionless parameter to be determined. Not-
P,A(T) ing that for constant, the total molar flux is constant,
XA=Xpe= UP at z=F(y,t) (A5) .
v | PB
, _ o Naz+Ng,=pif Me vl (Al4)
at the inlet and the front, respectively. The equilibrium vapor PN A

pressureP 4 is a function of temperature, among other fac-the mass balance for specidsEq. (A1) reads

tors.
For a porous medium, the mass-averaged 've.locity in the X [ pee 1 ] oxa 2%
gas phasel,=(MaNa+MgNg)/(pa+ps) . satisfies Dar- et T Wil 5y ~CPas 7 (ALD)
cy's law PVl Mal 0z z
K where we made use of EGA11), dot denotes derivative with
u,=——VP,, (AB) respect to time and we evaluategat z=f(t). We will seek

Ll the solution of this problem using the similarity variable

whereM denotes molecular weight. Because of the small ga§7:Z/2 VDagt. Then, Eq.(A15) becomes

viscosity, however, the gas pressure can be assumed con- X"+ 2x' (7— ) =0 (A16)
stant, which for isothermal conditions also implies a constant '

molar concentratios. Note also, that from EqAG) and the  \yhere primes denote derivative with respect/cand we
definition of the mass-averaged velocity, we have the generglefined

relation

PBe 1

P -
pMg My

V xu,=0. (A7) $=\~

. (A17)

This can be used in the more general case where 2D concen-
tration and pressure fields must be evaluated. Concentratiq
and pressure fields are coupled at the interface by mass pdfons
ances. For the vaporizing liquid,

is equation is to be solved subject to the boundary condi-

Xa=Xpae at 7]:)\ (A18)

JaAn=MaNa = pacn=pi(Up—v,) at z=F(y,t), and
(A8)

while for the noncondensible componet Xa=0 at 7=0. (A19)
i =MaNp.— =0 at z=F(y,1), A9 Note that because the integration interval here isz0
Jen=NeNen™ Paeln (V0. (A9 L) and £ (0)=0, there is no need to satisfy an initil
wherej is the mass fluxy, is the velocity of the receding condition, in contrast to the problems considered by Bird,
interface,p, is the mass density of the liquid, apd, and ~ Stewart, and Lightfoof52] and Cusslef53]. The latter au-
pee denote mass density of speciesr B in the gas phase at thors solved a similar problem, except that they made the
equilibrium; thuspae=XaeCMa . assumptions of a fixed interfa¢62] or of a vanishing flux
Consider now the base state in the absence of perturb&r speciesB [53].
tions (denoted by superscript BaiThen, all fluxes are along ~ The solution of Eqs(A16)—(A19) is
the z direction only, the front is located at=f(t) and the
base state is described as follows. The base-state liquid pres- o erf(n— ¢)+erfe (A20)
sure corresponds to a stagnant liquid, AT Rearf(N— ) +erfe
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The unknown parameteris obtained by substitution of this
solution in the first equation ofA11). After some manipu-
lations, we find thah solves the transcendental equation,

XpaeCMp

)\2
2p

: (A22)

M1—Xp0)= CXpcM a XH — (A — ¢)°] _ (A21) which when inserted in EqA13) gives
T Jmperin - ¢) +erfg]

In Eq. (A21), it must be recalled thap is proportional tox f=\(2CDAgM aXpo/ p)1, (A23)

[see Eq(A17)], and we assumed that the gas density is much

smaller than the liquid density. EquatidA21) shows that

the front grows proportionally to the square root of time, aswhich is the equation in the text. In this limit, the convective
expected. Of interest is the dilute limitxad (Ma/Mg)  term vanishes and the concentration field is quasistatic
X(pgel/ p1) —1]|<1, considered in the main text, in which (namely, it satisfies a Laplace equation, the base-state profile

case\<1 and Eq.(A21) gives for the mole fraction being linear
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