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Scaling theory of drying in porous media
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~Received 2 November 1998!

Concepts of immiscible displacements in porous media driven by mass transfer are utilized to model drying
of porous media. Visualization experiments of drying in two-dimensional glass micromodels are conducted to
identify pore-scale mechanisms. Then, a pore network approach is used to analyze the advancing drying front.
It is shown that in a porous medium, capillarity induces a flow that effectively limits the extent of the front,
which would otherwise be of the percolation type, to a finite width. In conjuction with the predictions of a
macroscale stable front, obtained from a linear stability analysis, the process is shown to be equivalent to
invasion percolation in a stabilizing gradient. A power-law scaling relation of the front width with a diffusion-
based capillary number is also obtained. This capillary number reflects the fact that drying is controlled by
diffusion in contrast to external drainage. The scaling exponent predicted is compatible with the experimental
results of Shaw@Phys Rev. Lett.59, 1671~1987!#. A framework for a continuum description of the upstream
drying regimes is also developed.@S1063-651X~99!04604-8#

PACS number~s!: 81.05.Rm
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I. INTRODUCTION

The drying of porous media is a problem of significa
scientific and applied interest. Chen and Pei@1# note that
drying is one of the most energy-consuming processe
industry. Applications include the drying of granular mate
als such as soils, rocks, minerals, building materials,
ceramic powders; drying processes in the wood~Simpson
@2,3#!, paper, and textile industry; coating technology; a
the drying of foodstuff~Fortes and Okos@4#! and pharma-
ceutical products. In a different context,in situ drying of
porous media is involved in recent methods for the reme
tion of contaminated soils by soil vapor extraction or s
venting ~Ho and Udell @5#!, as well as in the recovery o
volatile hydrocarbons from underground oil reservoirs by g
injection ~Le Romanceret al. @6#, Le Galloet al. @7#!.

The development of a general mathematical framewor
model drying of porous media has been a rather challeng
research topic for several decades~Waananenet al. @8#!. Al-
though a plethora of methods have been presented, and w
industrial designers are faced with the demand to des
complicated processes regarding ‘‘real’’ problems, there
still many unresolved questions, even for ‘‘simpler’’ pro
lems ~Prat @9#!. Traditionally, the description of drying in
porous media is based on phenomenological approaches
consider the medium as a structureless continuum. In th
partial differential equations are postulated that relate
evolution in spacetime of volume-averaged quantities, s
as moisture content and temperature. Phenomenologica
empirical parameters are then used to relate fluxes to gr
ents, often drawn from an analogy with nonequilibrium th
modynamics~for example, see Luikov@10#!. However, in
these approaches, the pore microstructure and the under
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phenomena, which are key to the quantitative understand
of the process, are essentially ignored.

On a fundamental level, drying is a phase change o
~usually! one-component liquid into a~usually! two-
component gas, and involves at various stages the mo
~receding! of individual gas-liquid menisci~see schematic o
Fig. 1!. The menisci reside in the pore space of the poro
medium and are subject to the interfacial forces between
uid, gas, and solid surfaces. Due to the disorder in the
respace geometry, however, their distribution is also dis
dered in general. The physical processes involve evapora
of the volatile liquid in the gas phase, driven by concent
tion gradients, countercurrent diffusion in the gas, poss
liquid flow through connected films, and the accompany
receding of menisci. All these interactions are influenced
the porous medium microstructure to a significant degree

In general, four different spatial regimes can be dist
guished during a drying process~Fig. 2!: A far-field regime
consisting of the initial liquid phase, a regime where t
liquid phase is macroscopically connected and where b

FIG. 1. Schematic of liquid-gas interfaces during drying in p
rous media.
4353 ©1999 The American Physical Society
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4354 PRE 59I. N. TSIMPANOGIANNIS et al.
gas and liquid phases are ‘‘macroscopically continuous,
third regime in which the liquid phase has been disconnec
in individual clusters of variable sizes~blobs! as a result of
drying, and a fourth regime consisting of the liquid phase
the form of pendular rings or films covering the solid su
face, the thickness of which is progressively reduced,
wards a ‘‘totally dry’’ regime. In the last three regimes th
gas phase is macroscopically continuous. Shaw@11# has also
postulated that liquid films may provide hydraulic connect
ity to the liquid phase in all three regimes. It is apparent t
an appropriate account of the various pore-scale events i
these regimes is fundamental to the accurate represent
of any macroscopic description~Whitaker @12#!.

Pore-network approaches for describing drying of poro
media were recently proposed by Nowicki, Davis, a
Scriven@13# and in a series of papers by Prat and co-work
~Prat @14,15#, Laurindo and Prat@16,17#!. In a related con-
text, Pot et al. @18# used lattice-gas cellular automata
simulate evaporation phenomena in two-dimensional~2D!
porous media. Nowicki, Davis, and Scriven@13# developed a
rather comprehensive pore-network simulation of the p
cess, and accounted for both capillary and viscous for
However, the authors did not delve into the particular p
terns that develop or on their effect on the drying rates. P
@14,15# and Laurindo and Prat@16,17# studied pattern forma
tion during drying assuming capillary forces only and igno
ing viscous forces. The importance of film flows was a
discussed@17#. Based on the assumption of percolation p
terns and under isothermal conditions, they proceeded
compute evaporation and drying rates by solving a qu
static diffusion equation in the gas phase. However, ea
drying experiments in glass-bead packs by Shaw@11# sug-
gested that viscous forces are not negligible, and in fact
needed to explain the formation of a front width~separating
continuous liquid from gas! of a finite size. This, Shaw@11#
attempted to scale using scaling expressions obtained
external drainage~see below!. Despite the limitation on vis-
cous forces, however, Prat’s studies are important in

FIG. 2. Schematic description of drying regimes in porous m
dia, obtained from 2D pore network simulations. Dots and wh
areas denote liquid-occupied regions, dark shaded areas denot
occupied regions.~Due the 2D topological limitations, a schemat
of the 2-phase bicontinuum regime is not feasible.!
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they represent the first attempt to theoretically characte
drying patterns and their rate of change in porous media

As in other processes involving two-phase, immiscib
flows in porous media, the following two aspects of dryin
patterns need to be understood:~i! Their geometrical struc-
ture, which dictates transport and capacitance and~ii ! their
rates of change. This is the main motivation of this pap
We consider the application of a pore-network approach
in Nowicki, Davis, and Scriven@13#, Prat@14,15#, and Lau-
rindo and Prat@16#, but with specific objectives to under
stand the structure of drying patterns, particularly in the fro
tal region. From such an analysis, the derivation of effect
macroscopic models can then be obtained. Drying, involv
gas-liquid interfaces, can benefit from advances in the an
gous problem of external drainage, which is reviewed belo
What is novel in drying, however, is the additional effect
mass transfer in the gas phase, which actually drives
process. This needs to be analyzed in some detail.

The paper is organized as follows: First, we give a br
review of recent findings in isothermal drainage process
which have a direct bearing on drying. Then, experiments
2D micromodel geometries are presented to visualize me
nisms during drying and to help in the development of t
theory. Based on the experimental observations, a theore
approach is subsequently developed, which combines a
ments borrowed from isothermal drainage and from the
lated bubble growth problem, where mass transfer is a
process. We use scaling arguments to show that dryin
actually a process of invasion percolation in a stabilizi
gradient~IPSG! ~see below for a definition!, from which we
can infer the scaling of the front width as a function of t
drying parameters. To demonstrate the transition from
percolation-only pattern, which was studied by Prat, to
stabilizing gradient and an IPSG, a linear stability analysis
the front in the appropriate geometries must be perform
This analysis will precede the main theoretical develo
ments. We close by providing a framework for a macr
scopic description based on transverse averages, and by
menting on the modeling of the other regimes.

We show that the scaling so obtained is compatible w
Shaw’s @11# experimental results. Thus, although near t
leading edge of the front, the displacement pattern will be
the percolation type~assumed by Prat and co-workers to
valid for the entire pattern!, as the width of the front in-
creases, viscous forces become increasingly important, l
ing to a displacement described by IPSG. Our analysis a
sheds light to a process of liquid flow, termed ‘‘capilla
pumping’’ by Le Romanceret al. @6#, in their modeling of
oil recovery from fractured reservoirs by gas injection. W
show that this effect is actually the consequence of acco
ing for both capillary and viscous terms in the process. As
previous pore-scale studies in drying~Nowicki, Davis, and
Scriven@13#, Prat@15#!, our analysis is restricted to isothe
mal problems. We also neglect convection in the gas ph
which is expected to be progressively of secondary imp
tance, and gravity. The effect of the latter can be direc
incorporated. However, effects of heat transfer and conv
tion need a separate analysis, which will be attempted i
future study.
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PRE 59 4355SCALING THEORY OF DRYING IN POROUS MEDIA
II. PRELIMINARIES

Drying involves gas-liquid interfaces and mass trans
and should be subject to an analysis similar to external dr
age and to bubble growth in porous media. Because of
expected similarities, we briefly review in this section rece
advances in these two areas.

Consider first, drainage, namely, the displacement o
wetting phase by a nonwetting phase in a porous medium
the absence of phase change. In drainage, menisci resi
pores or at the entrance of pore throats with a curva
corresponding to the local capillary pressure, defined as
difference between the nonwetting~gas! and wetting~liquid!
phase pressures,

Pc[Pnw2Pw52gH. ~1!

Here,g is the interfacial tension between the fluids,H is the
mean curvature of the meniscus and a zero contact angle
assumed. In the absence of buoyancy and/or viscous fo
the capillary pressure, thus the mean curvature, is spat
uniform. A meniscus will penetrate a pore throat, adjacen
which it resides, when the capillary pressure first exceeds
capillary entry pressure for that pore throat~roughly equal to
2g/r , wherer is the pore throat size!. In drainage at constan
rate, the sequence of pore penetration can be modele
invasion percolation~IP!, where at each time step only on
pore throat is invaded, that with the least capillary resista
~or, equivalently, the largest radius! among all throats at the
perimeter of the interface. During this step, all other men
remain stationary or fluctuate slightly. This type of displac
ment gives rise to a self-similar fractal pattern in the displ
ing phase, which eventually approaches that of the perc
tion cluster. The properties of the latter have been discus
in detail in various publications@19,20#. Because of the self
similarity involved, however, defining a mean-front positio
is not operationally useful.

However, if gravity and/or viscous forces are also imp
tant, a percolation pattern will not develop over the ent
region of displacement. When only gravity forces are imp
tant, the capillary pressure will vary with the elevationh of
the interface, sincePc5gxDrh, wheregx is the component
of gravity in the direction of displacement andDr5rw
2rnw . Then, the displacement acquires the features o
different pattern, namely, invasion percolation in a gradi
~IPG! @21–26#. In this case, the competition between grav
and capillary forces is expressed through the Bond num

B5
gxDrk

g
, ~2!

wherek is the permeability of the porous medium~which is
roughly proportional to the square of a mean pore s
k;r m

2 , Katz and Thompson,@27#!. Now, one needs to furthe
distinguish two cases:

~i! If B.0, for example, in the downwards displaceme
of a heavier by a lighter fluid, the two phases are separa
by a front of finite widthsG , which scales with the Bond
number as@21,22#

sG;B2n/~n11!, ~3!
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wheren is the correlation length exponent of percolation. F
a nonzeroB, the front width is finite. Then, the front is no
self-similar, but rather self-affine@28# @Fig. 3~a!#. Within the
front, the pattern has the fractal characteristics of the pe
lation cluster. However, upstream of the front, the pattern
compact. Thus, a mean front position can be usefully
fined. In essence, this reflects the transition of the displa
ment from an IP to a pistonlike pattern. The latter is t
pattern that develops when only gravity~and not capillarity!
acts~and which would be pistonlike in this case!. We shall
refer to this as IPSG. Hulinet al. @23# experimentally dem-
onstrated the application of IPG in a drainage problem s
bilized by gravity.

~ii ! On the other hand, ifB,0, for example, in the down-
wards displacement of a lighter by a heavier fluid, the d
placement is invasion percolation in a destabilizing gradi
~IPDG!. This pattern has the different features of capilla
fingering @Fig. 3~b!#, in which the displacement occurs b
invading fingers of a mean width still given by Eq.~3!, the
local characteristics of which are still controlled by perco
tion. This regime has been discussed in detail in Fretteet al.
@29# and Meakinet al. @30#.

The effect of viscous forces is more complex. At larg
scales, where viscous effects predominate, two limiting p
terns are expected, pistonlike displacement~PD! and viscous
fingering, depending on whether the ratioM5mw /mnw , be-
tween the viscosities of the two fluids, is smaller or grea
than 1, respectively. Essentially, this reflects the Saffm
Taylor instability @31#. At smaller scales, however, wher
capillary forces are important, the problem becomes sim

FIG. 3. ~a! Self-affine front during external drainage indicatin
an IPSG process.~From Xu, Yortsos, and Salin@33#.! ~b! Single
finger in external drainage indicating an IPDG process.~From Cha-
oucheet al. @26#.!
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4356 PRE 59I. N. TSIMPANOGIANNIS et al.
to IPSG~case of smallM! or IPDG ~case of largeM! ~Yort-
sos, Xu, and Salin@32#, Xu, Yortsos, and Salin@33#!. In the
first case, in particular, fully developed drainage involves
advancing front of a finite widthsV , as in the case of stabi
lizing gravity, followed by a more compact pattern. The fro
width can be shown to scale with the front capillary numb
CaF5vmnw /g, as@34,33#

sV;S CaF

S D 2n/@11z1n~D21!#

, ~4!

wherev is the front velocity,m denotes viscosity,S is the
dimensionless variance of the pore-size distribution,z is the
conductance exponent of percolation, andD is the fractal
dimension of the percolation cluster. Values for the vario
percolation exponents can be found in classical texts on
colation, for example, in Stauffer and Aharony@35#. The
properties of these patterns and the conditions delineating
various regimes were recently discussed in detail in Yorts
Xu, and Salin@32# and Xu, Yortsos, and Salin@33#.

Although subject to similar considerations, drying al
involves the additional effect of mass transfer in the g
phase, which actually drives the process. A certain anal
can be drawn between drying and the problem of bub
growth in porous media, recently investigated by Li a
Yortsos@36,37#, and Satik and Yortsos@38#, where the driv-
ing force for phase change and the ensuing growth of the
phase is diffusion of mass or heat in the liquid~for the case
of solution gas or boiling, respectively!. When a bubble
~more properly a gas ‘‘cluster’’! grows in a porous medium
its pattern at small bubble sizes will be of the percolat
type. However, at larger sizes, capillary forces are less
nificant, and the displacement pattern is controlled by dif
sion and viscous~and gravity! effects~Satik, Li, and Yortsos
@39#!. Diffusion in the liquid is known to destabilize such
liquid-to-gas phase change, leading to a Mullins-Sekerka
stability ~see@40,41# for the particular application!, thus the
pattern gradually becomes of the viscous fingering type.
boundaries in the parameter space that delineate patter
bubble growth were described in Satik, Li, and Yortsos@39#
by using scaling arguments and pore-network simulatio
The same authors also proposed kinetic expressions to
scribe the rates of growth of bubble-growth patterns. Key
their description was the modeling of the diffusion proce
and its coupling with viscous and capillary phenomena. S
an approach could also be fruitfully used in the context
drying.

It could be noted that because it is essentially a proces
gas displacing liquid, one might naively anticipate drying
involve IPDG patterns of the viscous fingering type, in an
ogy with external drainage in which the displacing fluid
less viscous, or with the bubble-growth problem at lar
sizes. However, this is misleading: drying is not driven
external injection, but byinternal diffusion in the gas phase
This differs from external drainage, but also from bubb
growth, where diffusion occurs in the liquid phase. The
processes conspire to give patterns that are characterize
the stabilizing IPSG process, as will be shown below.
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III. EXPERIMENT

To visualize the mechanisms involved in drying in poro
media we conducted experiments in transparent etched-g
micromodels. These micromodels consist of two glass pla
fused together, on one of which a specific square pore
work pattern is etched. Micromodels have been valuable
providing an understanding of the qualitative features
various displacement processes in porous media~see Buck-
ley @42# for a review!. In the context of phase change, a mo
recent application involves the bubble-growth experime
reported in Li and Yortsos@36# and the drying experiment
by Laurindo and Prat@16#. In our application, the typica
micromodel has size 25 cm310 cm, while the etched pore
are channels with an estimated depth of 100mm. The pore
body/throat thickness is spatially distributed, following
specified Rayleigh distribution, with an average pore thr
radius of 450mm and an average pore body radius of 9
mm. These dimensions are specified before etching the g
plate. Due to imperfections in the glass and the lack of p
cise control in etching and fusion, however, the final dime
sions are somewhat different. Also, although originally re
angular, the channels can become ‘‘eye-shaped’’ a
fusion, as pointed out by Chatzis, Morrow, and Lim@43# and
Vizica and Payatakes@44#. The final shape depends on th
time of fusion among other parameters. Details of the ma
facturing procedure can be found in Chatzis@45#. One entry
port and one exit port on opposite sides of the micromo
serve to inject and recover the fluids. The experimental
paratus shown in Fig. 4 consists of the micromodel, of t
reservoirs for the supply of the liquid and gas phases~de-
noted in the figure as ‘‘oil’’ and ‘‘gas’’! of a syringe pump,
a camera for visualization, a video tape recorder, and a
processing system. Typical liquids used weren-pentane,
n-hexane, and distilled water. The gas phase in the exp
ments was air.

The experiments consist of first saturating the micromo
with the liquid phase and subsequently displacing it with
gas at relatively high injection rates until the liquid phase
macroscopically disconnected from the two ports. At th
time the gas injection rate was decreased to low rates and
drying process commences. This arrangement is actually
ferent on the macroscopic scale than Shaw’s@11#, where
only one side is open to flow, there is no primary drainage
external liquid displacement, and the only mechanism for
movement of menisci is due to mass transfer. However,
basic drying mechanisms at the microscale are the sam

FIG. 4. Schematic of the experimental apparatus.
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PRE 59 4357SCALING THEORY OF DRYING IN POROUS MEDIA
both experiments. In fact, the theoretical model to be de
oped below will pertain to Shaw’s configuration. The ma
difference is in mass transfer, which in our experiments
also occur by forced convection due to the particular c
figuration~see also Jia, Shing, and Yortsos@46# for a related
application!. In most of the experiments, however, the inje
tion rate was kept quite low~of the order of 0.052 ml/min!
resulting into small Peclet numbers and a predominantly
fusive mass transfer mechanism.

Figure 5 shows two snapshots of the interfacial pattern
different times during drying. The evaporation of the liqu
and the resulting receding of the interface at various pla
are apparent. We note the existence of many clusters of
ferent sizes, containing macroscopically disconnected liq
The clusters are disordered and reflect the difference in
capillary characteristics of different pores. The interface
generally ‘‘rough,’’ although it is difficult to ascertain self
affinity or self-similarity. Important findings from the visu
alization experiments included the following:

~i! Typically, the penetration of gas into the liquid and t
receding of the meniscus occured in the form of sudd
jumps, one at a time, which were separated by finite ti
intervals. These jumps known as ‘‘rheon’’ events in exter
drainage, reflect the fact that for a pore to be invaded
capillary pressure threshold must be exceeded, follow
which displacement and filling of the adjacent pore body w
occur rapidly. During that time, interfaces pinned by cap
larity in other pores are adjusted as a result of liquid inco
pressibility~see also below!. Rheon events will predominat
when the displacement is controlled by capillarity, as was
case in many of these experiments. When, however, dry
rates are fast, as was the case with the experiments invol
n-pentane, or at higher gas injection rates, the displacem

FIG. 5. Two different snapshots@~a! and ~b!# of the interfacial
patterns at two different times from the micromodel experime
~system: air/n-hexane!. The linear dimensions are 6.5 cm3 3.5 cm.
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was also found to occur at the same time in more than
pores, although several interfaces remained pinned du
the same time.

~ii ! Even though the plan views in Fig. 5 indicate gas-on
occupied regions, a careful monitoring of the changes in
liquid-gas interface revealed that liquid films existed at t
surfaces of pores invaded by gas. Figure 6 is a close-u
the gas-liquid interface, and shows the trace of wetting fil
left behind during the invasion of a pore by gas. The ex
tence of films was also indirectly deduced from observ
the emptying of some pores occupied by liquid, which wou
be topologically impossible in the absence of connec
films. Wetting films in corners and crevices following drai
age of a wetting liquid have been documented in vario
drainage studies~e.g., see Lenormand, Zarcone, and S
@47#!. In his experiments, Shaw@11# inferred that connected
liquid films help in the transport of liquid towards the ope
edge of the cell where it can evaporate. Prat@14,15# and
Laurindo and Prat@16,17# also reported the existence of th
liquid films.

The above mechanisms of the drying process will be
corporated in the pore-network theory to be developed s
sequently. Before we proceed, however, it is necessar
understand large-scale effects of diffusion and mass tran
These can be studied in the absence of capillarity and p
microstructure.

IV. FRONT STABILITY IN THE ABSENCE
OF CAPILLARITY

It was pointed out in a previous section that while sma
scale features of a displacement process are set by capilla
larger-scale characteristics are set by transport~such as vis-
cous flow or diffusion!. This is certainly the case both i
external drainage~Xu, Yortsos, and Salin@33#! and in bubble
growth ~Satik, Li, and Yortsos@39#!. The percolation pattern
will ultimately ~at large capillary numbers, see also belo!
evolve into a pattern dictated by the large scale. To und
stand this pattern, and thus to infer whether the process
be of the IPSG or the IPDG type, the stability of drying in a
effective porous medium in the absence of capillarity m
be analyzed.

Consider a planar drying front advancing in an isotrop
and homogeneous effective medium, with a geometry t
mimics the experiments by Shaw@11#, as shown in Fig. 7.
The liquid phase consists of a vaporizing single compone
while the gas phase is a mixture of two components at c

s

FIG. 6. Close-up of the gas-liquid interface during drying in t
micromodel experiments. The linear dimensions are 1.0 cm3 0.5
cm.



u
o
s
o
g
id
il

on
io
b

ta
file

o
si
tia
-
e

s
d

re
o

ng
w

e

di-

the

n-
a-

s

the

taken

ter-
e

ce,

f a
are

fo
ea
h
st

4358 PRE 59I. N. TSIMPANOGIANNIS et al.
stant pressure. A sharp interface seperates gas from liq
thus, for the purposes of this section, we ignore effects
microstructure or film flows. Isothermal conditions are a
sumed. The top boundary is open to gas flow, has zero m
concentration of the vaporized liquid, and has a constant
pressure. The bottom boundary is impermeable to liqu
thus all changes in liquid content are due to drying. We w
examine the stability of the front to transverse perturbati
in the absence of capillarity. For the purposes of this sect
which is to reveal macroscopic features, the analysis will
based on a continuum description. We consider quasis
diffusion in the gas phase and assume that the pro
~which are generally time-dependent! are ‘‘frozen’’when the
perturbation is imposed. Quasistatic diffusion is expected
be valid when the ratio of the equilibrium concentration
the volatile component in the gas phase to its molar den
in the liquid phase is small, which is the case at low par
pressures~see Appendix!. The more general problem involv
ing unsteady-state diffusion and convection will be describ
in a separate study~see also Appendix!. Assuming a frozen
state during perturbations is a standard approach for the
bility of time-varying base states~see, for example, Tan an
Homsy @48#!.

Let the front that separates liquid- from gas-occupied
gions be denoted by the following equation in the notation
Fig. 7:

F~z,y,t ![z2F~y,t !50, ~5!

and recall the definitions

n5
“F

u“Fu
~6!

and

vn52
Ft

u“Fu
, ~7!

FIG. 7. A schematic of the planar drying front geometries
the stability analysis of drying in an effective porous medium. N
the indicated protuberance, concentration contours in the gas p
are compressed leading to enhanced mass transfer, hence to
lization of the protuberance.
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for the outer normal~pointing towards the liquid! and the
normal velocity at the front, respectively. The governi
equations in the liquid-occupied region involve Darcy’s la
for the flow of the liquid phase,

ul52
k

m l
“Pl , ~8!

from which, and with the use of the continuity equation, w
obtain a Laplace equation for the liquid pressure,

“

2Pl50. ~9!

This equation is subject to the following boundary con
tions:

Pl5Pv at z5F~y,t !, ~10!

wherePv is the gas pressure, assumed constant, due to
small gas viscosity, and

]Pl

]z
50 at z5L, ~11!

whereL denotes the longitudinal extent.
For negligible convection and transient effects the co

densible componentA satisfies the quasistatic diffusion equ
tion ~see Appendix!,

“

2cA50, ~12!

wherecA is the concentration of the condensible species~see
also, Prat@14,15#!. The corresponding boundary condition
are

cA50 at z50 ~13!

and

cA5ce[xAec at z5F~y,t ! ~14!

at the inlet and the front, respectively. Here, we defined
equilibrium mole fraction,xAe5PvA /Pv , wherePvA is the
partial pressure ofA, and the total gas concentrationc that
because of the assumed constant pressure, can also be
as a constant~c5Pv /RT for an ideal gas, whereR is the
ideal gas constant andT is the absolute temperature!.

Concentration and pressure fields are coupled at the in
face by mass balances. For the vaporizing liquid, we hav

2DAB

]cA

]n
5

r l

MA
~uln2vn! at z5F~y,t !, ~15!

whereDAB is the diffusion coefficient,r l is the mass density
of the liquid,MA is the molecular weight, andn denotes the
normal to the interface. The interface is a material surfa
thus,

vn5ugn . ~16!

The assumption made here is that the liquid consists o
single volatile component and that convection effects
secondary.
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Consider, now, the base state in the absence of pertu
tions ~denoted by superscript bar!. Then, the front is located
at z5 f (t) and we readily find the base state.

c̄5
zce

f ~ t !
for 0,z, f ~ t !, ~17!

P̄l5Pv for f ~ t !,z,L, ~18!

and

v̄n5 v̄z[ ḟ 5
cEMADAB

r l f
. ~19!

The latter can be integrated to yield the front location@as-
suming f (0)50#,

f 5A~2ceMADABt /r l !. ~20!

This expression also results in the quasistatic limit from
more general analysis presented in the Appendix.

For the stability analysis we assume a ‘‘frozen’’ state
t5t0 , take normal modes, varying as exp@iay1v(t2t0)#,
namely,

c5 c̄1es~z,t !exp~ iay1vt !, ~21!

Pl5Pv1eP~z,t !exp~ iay1vt !, ~22!

and

F~y,t !5 f ~ t !1e exp~ iay1vt !, ~23!

and inquire about the sign of the rate of growthv, of distur-
bances of wave-numbera. In the above notation,e has di-
mensions of length. Substituting Eq.~21! to Eq.~12! and the
boundary condition~13! gives

s52A sinh~az!. ~24!

The constantA is evaluated by using boundary conditio
~14! and the base state solution evaluated at the front lo
tion. After some calculations we arrive at the result,

s52
cAesinh~az!

f sinh~a f !
. ~25!

Working likewise with the pressure field we find thatP sat-
isfies a Laplace equation, the solution of which is subjec
the no-flux and constant pressure conditions at the
boundaries, respectively, is identically zero,P50. Thus, at
this level of approximation, the liquid phase is stagnant,
intuitively expected. However, consideration of capillarity
the microscale~and the interfacial curvature it implies! leads
to viscous flow in the liquid phase, as will be shown belo
This flow will set the main features of the drying pattern
the microscale.

A final substitution of the above into the coupling equ
tion at the front leads to the following expression for the r
of growth of disturbances:

v52
DABMAcxAea

r l f tanh~a f !
,0. ~26!
a-

e

t

a-

o
o

s
t

.
t

-
e

It is apparent that the rate of growthv is negative, which
implies that this displacement is unconditionally stable. T
physical intrepretation of the stability result is straightfo
ward: If a protuberance of the front into the gas region form
gas-phase diffusion rates will be higher at the tip compa
to the base, due to the compression of isoconcentra
curves at the tip~Fig. 7!. In the absence of liquid flow, this
will result in a locally larger velocity at the tip, hence in th
smoothing of the protuberance, and in stability. Thus, ev
though it is effectively a process of a less viscous fluid d
placing a more viscous fluid in a porous medium~where in
external drainage one would expect a viscous fingering
stability!, the fact that the process is driven internally b
diffusion in the gas phase renders the frontal displaceme
stable process. In a sense, this is analogous to the meltin
a solid, in which the receding interface is also linearly sta
~Langer@40#!. On the other hand, this is in contrast with th
problem of bubble growth in porous media referred to abo
where the process is also internally driven by diffusion,
though in the liquid phase, and where in the absence of c
illarity, the problem is linearly unstable~Li and Yortsos
@41#!. The phase change analogy with that problem is sol
fication in a supersaturated solution.

The important implication of the previous analysis is th
in the absence of capillary forces the drying pattern in
porous medium will be PD. Because of the relatively lo
drying rates in applications, however, capillarity will be im
portant over sufficiently small scales~compare with Fig. 5!
and must be considered, as shown below. Before we proc
we note that a qualitatively similar result to Eq.~26! is also
expected in the more general problem, where net gas p
convection is considered. This analysis, which also inclu
spherical geometries, will be considered in a separate st

V. FRONT DESCRIPTION USING A PORE-NETWORK
ANALYSIS

Consider now a description of the frontal region duri
drying by accounting for the effect of the pore structu
~Figs. 5 and 6!. Locally, the interface is described by a
equation similar to Eq.~5!, across which boundary cond
tions ~15! and~16! apply. However, here menisci in the po
space must conform to the curvature of the pore in wh
they reside. Thus, across the meniscus, liquid and va
pressures are related through the capillary pressure

Pl5Pv2
2g

r
, ~27!

where, assuming locally spherical shapes, the mean por
dius of curvature isr. A convection-diffusion equation de
scribes mass transfer in the vapor phase, while the fluid fl
in both phases is described locally by Stoke’s law. In t
following, we will focus on the structure of the front. Fo
this, capillarity must be considered. We will show first th
the latter induces a viscous flow, the magnitude of wh
dictates the extent of the front and its pattern. Then,
scaling of the front width and the basic properties of t
pattern are discussed.



r
e

e;

as
in

id
il

re

ie
o
lk

tio
m
ce
d

E
rd
th

a-
g

w
s

ob-
re
of

a

g

re in

be
ere

as-
e

ca-
he
ch,
a

the

nt

t
ed
all
ve,
a
re

r is
ally
n of

s-

dies
a

he
a
ous

of
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A. Capillarity-induced flow „capillary pumping …

Because of the capillary forces in the constriction of po
throats, a meniscus will not penetrate a pore throat, for
ample, throati of radius r p,i in Fig. 6, until the capillary
pressure across the meniscus exceeds for the first time
capillary barrier of that throat, 2g/r p,i . Until this happens,
the normal velocity of this meniscus will be negligibl
therefore, the meniscus will remainpinned. During this pe-
riod of time, however, diffusion proceeds over the entire g
liquid interface that requires that menisci will be receding
other pores of size greater thanr p,i ~for example, porej in
Fig. 6! or along corners containing nondisplaced liqu
Thus, at any time during the process, the drying front w
reside in pores of two different types:~i! completely empty
~CE! @Fig. 8~a!#, in which menisci are stationary at the po
throats and~ii ! partly empty~PE! @Fig. 8~b!# in which me-
nisci are receding. Partly empty pores are either pore bod
or pores containing liquid left behind in corners, crevices,
films and which might be connected hydraulically to the bu
liquid. The rate of meniscus displacement due to evapora
is determined from the solution of the overall proble
When the capillary pressure barrier across a throat adja
to a CE pore is exceeded, the corresponding pore is inva
and becomes a PE pore.

Consider now Eq.~15! applied to the meniscus on the C
pore throati. Since evaporation continues occurring, rega
less of whether the meniscus is stationary or moving,
normal liquid velocityuln in Eq. ~15! must be negative. This
implies a liquid flow in the direction from receding to st
tionary menisci~for example, from the PE pore containin
capillary j to the CE pore containing capillaryi!. It follows
that capillary forces in a drying process will induce a flo
the magnitude of which depends on the drying rates. Thi

FIG. 8. Experimental visualization of two different types
pores during drying: ~a! CE pores and~b! PE pores. The linear
dimensions are~a! 0.6 cm3 0.4 cm and~b! 1.4 cm3 0.8 cm.
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to be contrasted to the prediction of a stagnant liquid
tained from the linearized stability analysis above, whe
capillarity was neglected. This flow is due to the variation
pore throat curvatures and it is capillarity driven~from
‘‘large’’ to ‘‘small’’ capillaries !. In the particular application
involving gas injection to recover oil from fractured rocks,
simplified process of the same type was termedcapillary
pumpingby Le Romanceret al. @6#.

B. Drying patterns

The capillarity-induced flow will impart a correspondin
viscous pressure gradient; hence,

Pl , j.Pl ,i . ~28!

Then, under the further assumption of a constant pressu
the gas,

Pc,i.Pc, j , ~29!

namely, as drying continues, the capillary pressure will
positive and may also increase with time in locations wh
the meniscus is stationary and pinned~CE pores of typei!.
An analogous statement was also made by Shaw@11#, al-
though in his analysis it was attributed to countercurrent g
liquid flow. It is possible, therefore, that after sufficient tim
has elapsed, the capillary barrier at such a pore throati will
be exceeded for the first time and the meniscus at that lo
tion will also start receding. This mechanism restricts t
development of the front that cannot be extended too mu
or become very tortuous, but will be limited instead to
finite width. To estimate its extent, we need to analyze
pattern developed.

Assume for a moment that the drying pattern of the fro
is of the IP type, as assumed, for example, by Prat@14,15#.
Then, all but one of the pore bodies containing the fron
would be of the CE type, the only PE pore being that invad
from a pore throat with the least capillary barrier, among
throats currently containing front menisci. As shown abo
however, there would be liquid flow from the PE pore to
CE pore, which may ultimately cause one or more po
throats to be invaded, even though their capillary barrie
not the smallest among the perimeter throats, as origin
assumed. Under such conditions, therefore, the evolutio
the IP pattern would be disrupted.

The analysis is facilitated if we make the following a
sumptions:

~a! The pressure drop across two adjacent pore bo
~e.g., sitesk and m in Fig. 6! can be approximated by
Poiseuille-type law,

Qk→m5
Gkm

m l
~Pl ,k2Pl ,m!, ~30!

where Qk→m is the flow rate across the two sites and t
conductanceGkm depends only on the geometry. This is
standard assumption in modeling displacements in por
media~e.g., see@13,36,37,49,50#!.
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PRE 59 4361SCALING THEORY OF DRYING IN POROUS MEDIA
~b! The pressure in the gas phase is spatially unifo
Given the small value of the gas viscosity compared to t
of the liquid, this assumption is expected to be valid even
relatively large drying rates.

~c! The transport in the gas phase is by quasistatic di
sion only. Under certain conditions that favor large dryi
rates~for example, elevated temperatures!, convection in the
gas phase can be important. To infer its effect, however,
momentum balance in the gas phase needs to be consid
An extensive account of the more general problem us
pore-network simulation will be considered in a separ
study.

As inferred from the linearized stability analysis above,
the absence of capillarity, the front would be pistonlike, w
some local roughness. Capillarity will keep interfaces, oth
wise favored to grow by diffusion, pinned in place, un
their capillary pressure barrier is exceeded. The character
length over which percolation rules apply and the pattern
of the IP type is estimated below.

Consider drying in a pore network of lateral extentL. We
will denote the dimensionless mean position of the front
Xf(t) and its width bys f t(t), or by s f(t), where after suf-
ficiently large times f t(t) @or s f(t)# !Xf(t). Here, lengths
have been dimensionalized using the pore lengthl, subscript
ft indicates front tail in 3D and subscriptf indicates front in
2D geometries~e.g., see Gouyet, Rosso, and Sapoval@24#,
for the difference in the two geometries!. Contrary to the
case of a 2D square lattice, to be discussed below, here
phases can be continuous simultaneously.

If we were to neglect any viscous pressure drop in
liquid phase, the capillary pressure, hence the percola
probability p, on the front would be spatially constant~the
percolation probability being equal to the percolation thre
old p5pc , where, for 3D cubic lattices,pc50.25 and for 2D
square lattices,pc50.5!. Due to the capillary pumping
mechanism described earlier, however, the capillary p
sure, hence the percolation probability, will vary spatial
For a constant gas pressure, the characteristic varia
uDPcu across the front is related to that of the liquid pressu
namely,

uDPcu5uDPl u. ~31!

Because the flow of the liquid in a pore network can
described by Poiseuille’s law, and the displaced phas
continuous, then,

uDPl u;
uDm ls f tl

k
, ~32!

where we introduced the characteristic velocityuD and the
permeabilityk ~which scales approximately asl 2!. The char-
acteristic velocityuD is due to diffusion, and to a first ap
proximation,

uD;
DABMAc

r l
U]xA

]n U;DABMAcxAe

r l lX f
, ~33!

where we estimated concentration gradients in the gas p
by their base-state values. Substitution into Eq.~31! gives the
following result for the variation ofPc in the front region;
.
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uDPcu;
DABMAcxAem l

r l l
2

s f t

Xf
. ~34!

Equations~32!–~34! are order-of-magnitude estimates. D
termining the exact pressure and concentration fields requ
the solution of flow and transport problems in a disorde
pore network, which are coupled at the front according
Eq. ~15!, with vn50 for all CE pores and with
un5S fun /Nf , for the single PE pore, where the sum is ov
all Nf CE pores at the front. The development of such
simulator is currently in progress@51#. Nonetheless, order o
magnitude estimates are useful for obtaining scaling re
tions.

Consider now the variation of the percolation probabil
in the front region, which will be affected by the variation o
Pc . The two are related as follows:

uDPcu;
2gS

r m
uDpu, ~35!

whereS is the dimensionless variance of the pore size d
tribution a(r ), and r m is a characteristic pore size. In th
derivation of Eq. ~35! we made use of the result
Pc52g/r and p5* r

`a(r )dr. Use of Eq.~35! in Eq. ~34!
and substitutingr m; l gives the following expression for th
variation ofp:

uDpu;
CaD

2S

s f t

Xf
, ~36!

where we introduced a diffusion-based capillary numb
CaD5DABMAm lcxAe /g lr l . This capillary number includes
the supersaturationCe5cxAe , which drives the drying pro-
cess, leading to the characteristic velocityDAB / l
;DAB /Ak. A similar diffusion-based capillary number wa
used in the related phase change problem involving bub
growth by Li and Yortsos@36,37#, and Satik, Li, and Yortsos
@39#. This reflects the fact that drying is internally driven an
differentiates the process from external injection.

The final step for determinings f t makes use of a self
consistency argument, similar to IPG. As the process in
frontal region is in the percolation regime, thenp must fol-
low the percolation scaling@24#,

up2pcu;s f t
2~1/n! . ~37!

Substitution of Eq.~37! in Eq. ~36! gives the final scaling
result,

s f t;S 2SXf

CaD
D n/~11n!

, ~38!

This equation sets the length scale at the front over which
IP pattern is valid. By definition, this length scale coincid
with the front-tail width. The scaling is identical to that i
IPSG, provided that the Bond number is identified asB
5CaD/2SXf . According to Eq.~38!, the front width in-
creases as the capillary number decreases, as the front
tion increases~namely, as the drying rates slow down!, or as
the disorder in the medium increases. Thus, wider fronts
expected for higher values in the interfacial tension, sma
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4362 PRE 59I. N. TSIMPANOGIANNIS et al.
liquid viscosities, and larger drying times. Given that t
velocity of the frontv f is inversely proportional to its mea
position ~recall the base-state scalingXf;At!, we further
rewrite Eq.~38! as

s f t;S 2S

v fCaD
D n/~11n!

. ~39!

This expression will be used below for a comparison w
the experimental data. Finally, it is worth noting that t
exponent found is identical to Lenormand’s@49# for the de-
lineation of the percolation limit in the drainage of a visco
fluid, even though the two problems are actually quite diff
ent.

We summarize this section as follows: During drying t
frontal region consists of a front of a finite widths f t . Within
the front, the displacement has the fractal properties of a
interface. Upstream of the front, however, the displacem
is compact. Therefore, the process can be approximate
IPSG. Xu, Yortsos, and Salin@33# show how various prop-
erties of the front during displacement processes can be
proximated by simple versions of IPSG. The scaling of
width of the front is given by Eq.~38!; thus, the front width
is predicted to increase with increasing distance from
boundary. As in other problems, where growth is control
internally, namely, by diffusion within one of the tw
phases, the appropriate capillary number is based on the
fusive strength and the supersaturation applied. Typical
ues obtained fall within the range of external drainage
porous media.

VI. COMPARISON WITH EXPERIMENTS

To check the validity of the theory we used the expe
mental results of Shaw@11#. These experiments were con
ducted in a Hele-Shaw cell of thickness 15–20mm, packed
with glass beads of size 0.5mm. We estimate that the ce
consisted of 30–40 bead layers, thus pertaining effectivel
a 3D geometry. The experimental configuration is similar
that studied theoretically above, with one side of the mo
open to purge the drying liquid, while all other sides we
impermeable to flow. For these experimental conditions
estimated thatCaD is of the order of 1028. Figure 9 re-
printed from Shaw@11# shows in logarithmic coordinates th
scaling of the front width with the front velocity. The leas
squares fit to the data gives a straight line with slo
20.4860.1. Compared to the theoretical equation~39!,
which also predicts a straight line with slope20.47 for 3D
and 20.57 for 2D, the agreement is, at first glance, qu
good. However, a more careful comparison shows that
cannot be considered conclusive. Given that the front wi
in Shaw’s experiments is several times larger than the s
ing of the cell, it is likely that the pattern development
quenched along the third dimension, and that the experim
is effectively in a 2D geometry. Under such conditions, t
agreement is not as strong. Furthermore, the 3D scaling
developed for the front tail widths f t , where the pattern is
fractal, which may not be the same quantity experimenta
measured. Thus, even under the assumption of a 3D pat
theoretical predictions and experimental results may actu
pertain to two different quantities~different definitions of
-

IP
nt
as

p-
e

e
d

if-
l-

n

-

to
o
l

e

e

is
h
c-

nt

as

y
rn,
ly

front width!. For these reasons, although compatible with
experiments, the theory presented cannot be conclusi
confirmed from these experiments.

Shaw @11# used Wilkinson’s @34# theory for external
drainage to interpret the experimental results. As discus
in a previous section, this power law has the depende
shown in Eq.~4! with an exponent that equals20.38 or
20.25 in 2D or 3D, respectively. We believe, however, th
the immiscible, external drainage theory is actually not r
evant to the present problem that as explained abov
driven by diffusion in the gas phase, and where the co
sponding viscous pressure drop is in the displaced wet
phase. By contrast, scaling Eq.~4! reflects the stabilizing
effect of viscous forces occurring in thedisplacing phase
~which here is the relatively nonviscous gas phase, thus le
ing to an apparent contradiction! ~see also Xu, Yortsos, an
Salin @33#!. The inadequacy of Eq.~4! was recognized by
Shaw@11# who subsequently proposed a different power l
similar to Eq. ~39!, without, however, elaborating on th
mass transfer aspects of the problem.

VII. IMPLICATIONS FOR A MACROSCOPIC
DESCRIPTION

The previous section described the structure of the fro
region that because of its percolation and fractal characte
tics requires a local analysis. In the upstream regimes, h
ever, a macroscopic description is possible. The element
this description are discussed below.

Consider first the pattern upstream of the front. The d
cussion will be restricted to 3D geometries, where flow
this regime is bicontinuous. Immediately adjacent to t
front, there exists a bicontinuous region upstream of
leading edge, where the pattern is locally IP, except that n
the process is above the percolation threshold, as an incr
ing number of smaller-size throats have been invaded.
suming a sufficiently small slope in the liquid saturation pr
file, volume-averaged quantities can be defined; hence,
can postulate a continuous description in this region. T
analogous problem for drainage processes was studied in

FIG. 9. Variation of the width of the drying front with its aver
age velocity. A least-squares fit to the data gives an exponen
20.4860.1. ~From Shaw@11#.!
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Yortsos, and Salin@33#. Using transverse averages, the ma
balance on the liquid reads as

r lFf ]Sl

]t
1

]ql ,z

]z G52R, ~40!

where the liquid flow rateql ,z is expressed using a genera
ized Darcy’s law,

ql ,z52
kkr ,l~Sl !

m l

]Pl

]z
, ~41!

involving the relative permeability functionkr ,l(Sl). The liq-
uid pressure is related to the capillary pressure func
Pc(Sl) via

Pl5Pv2Pc~Sl !. ~42!

The two functionskr ,l(Sl) andPc(Sl) correspond to primary
drainage, and they can be computed in a straightforw
fashion using IP. The rate of evaporatio
R[(DABMAc/V)*Alg

(]xA /]n)dA, expresses the net mas
transfer from the liquid to the gas phase, occurring over
gas-liquid interfacial areaAlg , whereV is volume andn is
the unit normal to the interface pointing towards the liqu
In the dilute-limit approximation considered here, this pr
cess is linear with respect to the concentrations; thus,
may further take

R5
DABMAc

l 2 ~xAe2xAg!G~Sl !, ~43!

wherexAg is the transverse average of the mole fraction
the gas phase. Because the pattern of all interfaces is
dictated by IP~although here it is above the percolatio
threshold!, the effective gas-liquid area and the dimensio
less scaling functionG(Sl) can be computed by solving
quasistatic diffusion problem around a percolation clus
The results of this study will be reported elsewhere. We
pect, however, thatG has a nonmonotonic dependence, va
ishing both near the front~whereSl→1! and far upstream o
the front ~whereSl approaches zero!.

The system of Eqs.~40!–~43! is completed with a mas
balance for the volatile component in the gas phase. In
dilute limit, the overall mass balance reads

f
]Sg

]t
1

]qg,z

]z
50, ~44!

while the mass balance for the volatile component becom

fSg

]xAg

]t
1qg,z

]xAg

]z
5

]

]z SD~Sl !
]xAg

]z D1
R
c

, ~45!

where the diffusion coefficientD(Sl) is to be computed from
a percolation study. The system of Eqs.~40!–~45! can be
solved to determine the saturation profiles in the regime
bicontinuous phases.

The regime far upstream of the front consists of disc
nected ganglia of the liquid phase. Reasoning as in the s
ing analysis for the front, we can conclude that their char
teristic size has the same scaling as given for the fro
s

n

rd

e

.
-
e

till

-

r.
-
-

e

s

f

-
al-
-
t,

namely, Eq.~38!, where nowXf denotes the average locatio
of these stationary ganglia. The description of this probl
can still be obtained with the above equations~40!–~45!,
except that the liquid velocity must now be set to zero. Th
problems are currently under study.

VIII. CONCLUSIONS

In this paper we used concepts of immiscible displa
ments in porous media driven by mass transfer to mo
certain aspects of drying of porous media. Visualization
periments of drying in 2D glass micromodels were co
ducted to identify mechanisms concerning the motion of g
liquid interfaces at the pore scale. Then, a pore netw
approach was introduced, utilizing arguments from isoth
mal drainage, particularly IPSG, and from the relat
bubble-growth problem.

A specific objective of this work was the analysis of th
frontal region separating the initial liquid from the upstrea
two-phase region. A linear stability analysis in an effecti
porous medium, in the absence of capillarity or microstru
ture, showed that planar drying fronts are stable due to
fusion in the gas phase. For a porous medium with a mic
structure, however, capillarity induces a viscous flow, term
in other contexts as ‘‘capillary pumping.’’ The developin
pressure gradients effectively limit the extent of the fro
which would otherwise be of the percolation type, to a fin
width. In conjunction with the prediction of a macrosca
stable front, capillarity, diffusion, and viscous effects res
in a process similar to IPSG. A power-law scaling relation
the front width with a diffusion-based capillary number w
then developed. This capillary number reflects the fact t
the process is internally driven due to diffusion, as in bubb
growth problems but in contrast to external drainage. T
scaling exponent predicted was found to be consistent w
the experiments of Shaw@11#, although a conclusive proo
was not obtained. A continuum description was also dev
oped for the regimes upstream of the front; the detai
analysis of which will be reported in a separate study.
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APPENDIX

In this appendix we consider the base state for the m
general problem that includes unsteady-state diffusion
convection. The condensible componentA satisfies the mass
balance
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]cA

]t
1“•NA50, ~A1!

whereNA is its molar flux, expressed for a binary mixture

NA52cDAB“xA1xA~NA1NB!. ~A2!

Here,cA is the molar concentration,xA is the molar fraction
of A (cA5cxA), andNB is the molar flux of the nonconden
sible species. The latter is also conserved,

]cB

]t
1“•NB50. ~A3!

The corresponding boundary conditions read

xA50 at z50 ~A4!

and

xA[xAe5
PvA~T!

Pv
at z5F~y,t ! ~A5!

at the inlet and the front, respectively. The equilibrium vap
pressurePvA is a function of temperature, among other fa
tors.

For a porous medium, the mass-averaged velocity in
gas phase,uv5(MANA1MBNB) /(rA1rB) , satisfies Dar-
cy’s law

uv52
k

mv
“Pv , ~A6!

whereM denotes molecular weight. Because of the small
viscosity, however, the gas pressure can be assumed
stant, which for isothermal conditions also implies a const
molar concentrationc. Note also, that from Eq.~A6! and the
definition of the mass-averaged velocity, we have the gen
relation

“3uv50. ~A7!

This can be used in the more general case where 2D con
tration and pressure fields must be evaluated. Concentra
and pressure fields are coupled at the interface by mass
ances. For the vaporizing liquid,

j An[MANAn2rAevn5r l~uln2vn! at z5F~y,t !,
~A8!

while for the noncondensible componentB,

j Bn[MBNBn2rBevn50 at z5F~y,t !, ~A9!

where j is the mass flux,vn is the velocity of the receding
interface,r l is the mass density of the liquid, andrAe and
rBe denote mass density of speciesA or B in the gas phase a
equilibrium; thusrAe5xAecMA .

Consider now the base state in the absence of pertu
tions ~denoted by superscript bar!. Then, all fluxes are along
the z direction only, the front is located atz5 f (t) and the
base state is described as follows. The base-state liquid p
sure corresponds to a stagnant liquid,
r
-

e

s
on-
t

al

en-
on
al-

a-

es-

P̄l5Pv for f ~ t !,z,L. ~A10!

The base-state fluxes are

N̄Az'2
r l

MA
vz and N̄Bz5

rBe

MB
vz , ~A11!

where we impliedrAe!r l , while the mole fraction is given
from

N̄Az52cDAB

dx̄A

dz
1 x̄A~N̄Az1N̄Bz!. ~A12!

To solve the unsteady-state problem we take theansatzthat
the front position is proportional to the square root of tim

f ~ t !52lADABt, ~A13!

wherel is a dimensionless parameter to be determined. N
ing that for constantc, the total molar flux is constant,

NAz1NBz5r l ḟ F rBe

r lMB
2

1

MA
G , ~A14!

the mass balance for speciesA, Eq. ~A1! reads

c
]xA

]t
1r l ḟ F rBe

r lMB
2

1

MA
G ]xA

]z
5cDAB

]2xA

]z2 , ~A15!

where we made use of Eq.~A11!, dot denotes derivative with
respect to time and we evaluatedvz at z5 f (t). We will seek
the solution of this problem using the similarity variab
h5z/2ADABt. Then, Eq.~A15! becomes

x912x8~h2f!50, ~A16!

where primes denote derivative with respect toh and we
defined

f5l
r l

c F rBe

r lMB
2

1

MA
G . ~A17!

This equation is to be solved subject to the boundary con
tions

xA5xAe at h5l ~A18!

and

xA50 at h50. ~A19!

Note that because the integration interval here is 0,z
, f (t) and f (0)50, there is no need to satisfy an initia
condition, in contrast to the problems considered by Bi
Stewart, and Lightfoot@52# and Cussler@53#. The latter au-
thors solved a similar problem, except that they made
assumptions of a fixed interface@52# or of a vanishing flux
for speciesB @53#.

The solution of Eqs.~A16!–~A19! is

xA5xAe

erf~h2f!1erff

erf~l2f!1erff
. ~A20!
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The unknown parameterl is obtained by substitution of thi
solution in the first equation of~A11!. After some manipu-
lations, we find thatl solves the transcendental equation,

l~12xAe!5
cxAeMA exp@2~l2f!2#

Apr l@erf~l2f!1erff#
. ~A21!

In Eq. ~A21!, it must be recalled thatf is proportional tol
@see Eq.~A17!#, and we assumed that the gas density is m
smaller than the liquid density. Equation~A21! shows that
the front grows proportionally to the square root of time,
expected. Of interest is the dilute limituxAe@(MA /MB)
3(rBe /r l)21#u!1, considered in the main text, in whic
casel!1 and Eq.~A21! gives
de

G.

g

s

-

ki

M

y

C

h

s

l25
xAecMA

2r l
, ~A22!

which when inserted in Eq.~A13! gives

f 5A~2cDABMAxAe /r l !t, ~A23!

which is the equation in the text. In this limit, the convecti
term vanishes and the concentration field is quasist
~namely, it satisfies a Laplace equation, the base-state pr
for the mole fraction being linear!.
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