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Randomly driven granular fluids: Large-scale structure
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The nonequilibrium steady state of a granular fluid, driven by a random external force, is demonstrated to
exhibit long-range correlations, which behave-as/r in three and~In(L/r) in two dimensions. We calculate
the corresponding structure factors over the whole range of wave numbers, and find good agreement with
two-dimensional molecular dynamics simulations. It is also shown by means of a mode coupling calculation,
how the mean field values for the steady-state temperature and collision frequency, as obtained from the
Enskog-Boltzmann equation, are renormalized by long wavelength hydrodynamic fluctuations.
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I. INTRODUCTION restitutiona or their inelasticitye=1— a?. We assume this
coefficient of restitution to be a constant, independent of the
Systems of granular particles, like grains of sand or moreelative velocity between the colliding particles, and refer to
ideally glass, plastic, or metal beads, exhibit different flowthe model as the inelastic hard-sphéi¢S) model. Dissipa-
regimeg/1], depending on the external forcing. A systematictive collisions complicate the dynamics in a nontrivial way:
experimental study of the rapid or collisional flow regime asthey may cause the system to become unstable, and give rise,
compared to the quasistatic, slow, or frictional regime wador instance, to clustering; they create several new intrinsic
first performed by Bagnolfi2] using an annular shear cell. length scales that might interfere for small inelasticity with
Later, a similar but more refined characterization was madéhe system sizé, and for large inelasticity with the mean
in Ref. [3]. The possibility of coexistence of different flow free pathl,.
regimes was observed in an experimental study of flows By driving an IHS fluid by boundaries or external fields it
down an inclined chuté4]. can reach a steady or oscillatory state. Due to the existence
In several more recent experimental studies ofrdq@d  of these new “cooling” lengths, this state is frequently in-
granular flow regime, more microscopic properties have homogeneous, where the spatial gradients become larger at
been measured. In Ref5] the fluidization behavior of a higher inelasticity. Only for small inelasticity, the mean-free
vertically vibrated two-dimensional model granular materialpath is well separated from the scale on which the macro-
has been investigated using high-speed photography. Pageopic fields vary, and a hydrodynamic descriptidri]
terns at the surface of a vertically vibrated granular layerthrough Navier-Stokes or Burnett equations is expected to
analogous to Faraday waves in molecular fluids, have beemold. In fact, one of the primary goals in the study of rapid
observed in Ref[6] and stimulated the interest of many granular flows atarger inelasticities is to find the proper
theorists[7]. An understanding of these patterns through areduced set of macroscopic fields and the correct form of the
derivation of, e.g., an amplitude equati@] from the hydro-  relevant macroscopic continuum equations. The conceptual
dynamic description of the system, is still lacking, however.basis for the validity of the Navier-Stokes and Burnett equa-
In Ref.[9] the effect of inelastic collisions on the formation tions of fluid dynamics in rapid granular flows breaks down
of clusters is investigated in a system of particles rolling ondue to the lack of scale separation. Therefore, we restrict
a smooth surface and driven by a moving wall. Finally, Ref.ourselves mostly to small inelasticities, and explore the re-
[10] studies the steady state of a vertically shaken granulagion of validity of the standard fluid dynamic description.
monolayer, and discusses clustering, inelastic collapse, and In the present paper we investigate the properties of an
long-range order. IHS fluid that is heated uniformly so that it reaches a spa-
Even rapid flows ofmodelgranular materials are poorly tially homogeneous steady state. This way of forcing, where
understood in general, since complicating effects, such aa random external force accelerates a particle, was proposed
gravity and interactions with boundaries, have to be takemy Wiliams and MacKintosh[12] for inelastic particles
into account. If the model granular material consists ofmoving on a line. Peng and Ohta3] performed simulations
spherical grains with a smooth surface, collisions betweemn a 2D version of this model. In two dimensions the model
particles can be characterized only by their coefficient ofmay be considered to describe the dynamics of light disks
moving on an air table, a system that has been investigated
experimentally in Ref[14]. In three dimensions it can be
*Present address: Laboratoire de Physiquéofifae et Hautes extended to include gravitational and drag forces, making it
Energies, Bament 211, Université®aris—Sud, 91405 Orsay Cedex, to some extent relevant for gas-fluidized b&tls| when hy-
France. drodynamic interactions are unimportant. A similar IHS

1063-651X/99/504)/432616)/$15.00 PRE 59 4326 ©1999 The American Physical Society



PRE 59 RANDOMLY DRIVEN GRANULAR FLUIDS: LARGE-. .. 4327

model with random external accelerations has been used HYESS. Computational details of our molecular dynamics
Bizon and Swinney16] in their computer simulations to test (MD) simulations are described in Sec. VI, and Sec. VII
continuum theories for vertically vibrated layers of granularcompares our predictions with simulations. Some general

material. comments and conclusions are presented in Sec. VIII.
In the present paper we will describe the randomly driven
IHS fluid in two and three dimensions, and characterize its Il. MACROSCOPIC EQUATIONS

nonequilibrium steady stattNESS. The single-particle ve- ) ) o

locity distribution function in the NESS has been calculated ~Consider a system of inelastic disks or sphetetsS) (d

in Ref. [17] from the Enskog-Boltzmann equation and was=2,3), driven by a heat source, which is described as a
shown to be well approximated by a Maxwellian, except forrandom acceleratio ,

an overpopulated tai-exp(—Ac®?), wherec is the velocity
scaled by the thermal velocity and~1/\e. Computer
simulations of the one-dimensional system of REE2]
showed the existence of long-range spatial correlations in the ] ) _
steady state, which were addressed theoretically in[Ref. ~ Here F; is the systematic force on particle=(1,2,...N)

Here we will give quantitative predictions for long-range due to inelastic collisions. If the time constant of the heat
correlations[19] in the two- and three-dimensional NESS. source is much smaller than the mean free tijéetween
Moreover, we extend the mode coupling theory of Brito andcollisions, theng(t) can be considered as Gaussian white
Ernst[20] to analyze how long wavelength fluctuations in noise with zero mean and correlation,

the NESS renormalize the mean-field predictions of kinetic

theory, and use thl_s theory to calc_ulate the renormalized tem- fia(t)fjg(t'): 5(2)5” 50(,35('(_'[’), (5)
perature and collision frequency in the NESS.

To obtain an adequate description of the structures inwherea,3={x,y, ...} denote Cartesian components of vec-
steady granular flows, one does not only need the equatioriers or tensors. The overline indicates an average over the
of fluid dynamics for the average macroscopic behavior, buhoise source. It is understood that the ensemble average in
also the spatial correlation functioi®,,(r), and their Fou- Egs. (1) and (2), denoted by the angular brackets, also in-
rier transforms, the structure facto®,,(k). Let Sa(r,t) cludes this noise average. To guarantee conservation of total
=a(r,t)—(a(r,t)) with (a=n,T,u,) be the fluctuations of momentum, the random force has to obey the constraint
the slowly varying fields(r,t), i.e., the local density(r,t),  .&(t)=0. In thermodynamically large systems this con-
local temperature T(r,t), and local flow velocity straint gives a correction to E¢5) of O(1/N), which can be
Uy(r,t) (a=x,y,...), around their average values neglected.

(a(r,t)). Then the objects of interest are the correlation The uniformly heated fluid is described by the standard

dvi . Fi ~
H—EJrfi(t)- (4)

functions in the NESS, which are given by the limit, macroscopic equations of fluid dynamics, where the tem-
perature equation is supplemented with an additional source
1 2 : .
Gop(F) = I'm_f dr'(Sa(r+r’,t)b(r" 1)), termmég, and a sink termi” to account, respectively, for the
ooV heating and the energy loss through inelastic collisions:
oY)
Sap(K)=limV =Y sa(k,t) sb(—k,t)). an+V-(nu)=0,
t—oo
1
Here (---) is an average over some initial distribution, dutu-Vu=— ;VTL (6)

da(k,t) is the spatial Fourier transform ofa(r,t), and
S,p(K) is that of G,,(r). Moreover, we consider the unequal- 2
time correlation functions in the NESS, defined as HT+u-VT=— E(V~J+H:Vu)—l“+m§§,

Fap(k,t)= lim V™Y sa(k,t’+t)sb(—k,t")), (2

t' —oo

where p=mn, u is the flow velocity, and3dnT is the
kinetic-energy density in the local rest frame of the IHS
whereF,q(k,t) is theintermediate scattering functiof21].  fluid. The pressure tensdi,z=pJ,s+ 811, contains the

The dynamic structure factois then local pressurgp and the dissipative momentum il z,
_ which is proportional toV ,uz and contains the kinematic
Sin(k, Q) =ReF(k,z=1Q+0), (3)  and longitudinal viscositiess and »,, defined below Eq.
_ (A1) of Appendix A. The constitutive relation for the heat
whereF ,,(k,2) is the Laplace transform d¥ ,(k,t). flux, J=— «VT, defines the heat conductivity. For small

The paper is organized as follows. In Sec. Il we showinelasticity the transport coefficients, v, and x are as-
how the macroscopic equations for granular flow are modisumed to be given by the Enskog theory for a dense gas of
fied to account for the external driving/heating by the ran-elastic hard spherg&HS) [22].
dom accelerations. Section Ill characterizes the noise of ex- To lowest order in the spatial inhomogeneities, the sink
ternal and internal fluctuations, and the structure factors angkrm, representing the energy loss through inelastic colli-
spatial correlation functions are calculated in Secs. IV and Vsijons, is given by23]

The latter section also presents the mode coupling calcula-
tions for the temperature and the collision frequency in the I'=2yywT. (7)
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It is proportional to the granular temperature, to the averagéent solution of Eq(9) can be obtained implicithft as a
Enskog collision frequenclyw~ T, explicitly given in Eq.  function of temperatude and reads
(A2) of Appendix A], and to the coefficient of inelasticity

e=1—a’=2dy,, wherea is the coefficient of normal res- ; T(t) ¢ To| 3 mé5 12
titution. To explain the ternm¢3 in Egs. (6), we calculate Te | T 2Tt (12
the energy gain of a single particle due to the random force
in a small timedt. This is done by formally integrating Eq. Where
(4) and averaging over the noise source, i.e.,
2x+1
_ 4 f(x)=|n|x—1|—%In(x2+x+1)+\/§arcta76 .
Smlv7(t+ o0 (D)1= 5 mé ot, ® V3

(13

where Eq.(5) has been used. Note that we have defined thend T, is the temperature at=0.

granular temperature as twice the average random Kkinetic

energy per translational degree of freedom, so that the Boltz- IIl. NOISE CHARACTERISTICS IN THE NESS
mann constankg does not appear in its definition.

The above equations provide a consistent description for The goal of this paper is to analyze the effects of spatial
the heated IHS fluid at small inelasticity. The energy is noffluctuationséa(r,t) with (a=n,T,u,) around the NESS on
conserved in inelastic collisions, and consequently, the temhydrodynamic space and time scales. As we are dealing with
perature isnot a hydrodynamicmode, but akinetic mode fluctuations, we linearize the nonlinear equatig@saround
with a relaxation ratex yow. Nevertheless, at small inelas- the NESS, with the resulA1) of Appendix A. Moreover, to
ticities (yo<1), it is consistent to include temperature extend the average equations to fluctuating equations, valid
among the slowly changing macroscopic variables, whiclbn mesoscopic spatial and temporal scales, we need to cal-
describe the dynamics of the system on time scalesge  culate theexternal noiseermsZ®(r,t) and 6(r,t) that con-
compared to the mean free tintg=1/w, and on spatial tribute to 4,u and 4,T in Egs. (Al). These terms originate
scalesk large compared to the mean free paifr=volo,  from the random acceleratici(t), which enters in the mi-
wherevo=y2T/m is the thermal velocity. croscopic equations of motio@). By starting from the mi-

At large inelasticities, where~ (1), weexpect that the  ¢roscopic expressions for the momentum and energy density,

temperature is dast kineti(; mode, that decays on the time gne finds that the noise sources are given byldheg wave-
scalety, and cannot be included among the slow macrojength components of

scopic variables. In that case, the IHS fluid becoratmer-

mal, and the slow macroscopic fields only involve the den- . 1 .

sity and flow field, as is the case in lattice gas cellular §ex(r,t)=ﬁz &) s(r—ri(1)),
automata without energy conservati@4,25. However, the '

proper constitutive relations for the IHS fluid at large inelas- om (14)
ticities are not known. ()= =—2 vi(t)- &(t)S(r—r;(1)).
Let us consider the decay of temperature in more detail. dn

For a homogeneous state, the fluid dynamic equatiéhs . . . . ) )
will have as a solutiom(r,t)=n, u(r,t)=0, and T(r,t) These fields are again Gaussian white noise with zero mean

=T(t), the latter satisfying and correlations
- 2 . 1
AT =—T+mé. ® DB 1) = = €88,50(r 1) Bt 1),
For long times the system approaches a steady state with a (15)
constant temperature, determined mgzzyom. As w e e o AmT ) .
~ /T, we obtain the mean-field predictidiEq. (A2)], as 0%(r, ) 6%(r' ") = gn_ Sod(r=—rHat—t’),

deduced from the Enskog theory,
o3 as follows from Eq.(5).
65\/; Next, we argue on the basis of the hydrodynamic equa-
1 10 tions (6) that there exists, close to the NESS, a range of
hydrodynamic wave numberie>k*, the so-calledelastic

Further symbols are defined beldgs.(A1)] in the Appen-  'egime where the dynamics of the fluctuations is the same as
dix. To obtain the final approach to the NESS, we linearizd" @ fluid of elastic hard spheres or disks, and is driven by

Eqg. (9) aroundTg in Eq. (10). This yields an exponential intérnal noisethat will be studied next. The validity of the
approach, i.e., hydrodynamic equationgs) and Eqgs.(Al) is restricted to

wave number&<27/l, (to guaranteeseparationof kinetic
ST(t)=T(t)— Te=6T(0)exH — 3yowt]. (11)  and hydrodynamic scalgsand tok<2#/o, whereo is the
disk or sphere diametéto guarantee that the Euler equations
In fact, 3yyw can be identified as the decay ratg0) of the  involve strictly local hydrodynamick So, for the existence
long wavelength components of the temperature fluctuation®f an elastic regime in the IHS hydrodynamics, the following
as derived in Sec. IV below Eq&5). The exact time depen- constraints must be satisfied:

Te=m| —2"
= (27’09an‘Td
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|27 27
k* <k<mini —,—1.
|0 g

componentu,(k,t)=R-u(k,t), anda=1 refers to @—1)
transverse components ofk,t). The matrixM ,, with a,b
={n,T,l,L} is given explicitly in Eq.(A3), and f,(kt) is
Gaussian white noise withonvanishingcomponents foa
=T,l,1L and correlation function

(16)

Moreover, following McNamard26] we can distinguish a
dissipative regimeklo<e [typically klo<O(€?)], and a
standard regimeklo,> € [typically, klo=O(\/€)], separated
by acrossover r_eglmearpundklo~(9(e). I_n the dissipative V1, (kD) F (=K t')=Cap(K) (t—t"). (19)
regime, dissipation dominates compression effects and sound

propagation, which aré(kl,), as well as heat conduction, The noise strengtl (k) = 5,,Cap(K) is obtained by taking
which is O(k?13). In the standard regime, dissipation effectsthe Fourier transform of Eq€15) together with Eqs(17),
are of the same order as heat conduction. As a consequen@nd is only nonvanishing for the following diagonal ele-
the hydrodynamic modes and their propagation velocities arments:

those of a fluid ofelastic particles, while the corresponding

damping rates of heat and sound modes still depend on the 4mT§§ 8xkT2k?> 4TI 8kTk?
inelasticity. Only in theelastic regimekly>k* 1o~ O(\e); Crrlk)=—5— 422 dn + 22
also, these damping coefficients attain their elastic values.
The above argument applies for small enoughl— a? &£ 25Tk T 2pTK
=2dy,, where the inequalitiegl6) are obeyed, and an elas- Ci(k)= 00 =— ! , (20)
tic regime exists and is well separated from the dissipative n P p
regime. 2

In the elastic regimethe equations for the macroscopic C, (k)= @4_ 2vTk? — £+ ZVTkZ,
deviations from the NESS are the same as those for a fluid of n P p

elastichard spheres, deviating frothermalequilibrium. To

describe fluctuating mesoscopic hydrodynamics on thes\ﬁ’herg the NESS condition of Eq9), ie., I'=2yowT
Lo =még, has been used.
length scales, one can addternal noise £"(r,t) and

on(r,t), desc_ribing the rapid mi(_:roscopic degre_es of free- IV. STRUCTURE FACTORS
dom. The noise strength of the internal fluctuations can be _ _ .
obtained from the fluctuation-dissipation theorg2ii,23 for The equal-time structure factors, introduced in Eds,

the EHS fluid, and is given in Fourier representation by ~ obey the equations of motion,

—1%i i ,
VL Ep(—kit) 7:Sap(K) = 2 {Mac(K)Sen(K) + Mue —K) Sa(K)} + Ca(K),
2T N I
= —K [ v(Sp—Kokp)+ vk kgl S(t—1"), @D
P which follows by formally integrating Eq18) and using Eg.

8T2 17) (19). The left-hand side of Eq21) vanishes since the struc-
—17%n I P ture factors do not depend on time in the NESS. The result-
V7HoM(kt) 0M(—k,t") keo(t—t"), ; X ; .
d?n? ing equation can be solved by spectral analysis, or numeri-

cally. The spectral analysis is summarized in Appendix A,
where v, v, and « are the transport coefficients for the wherew,, andv,, are, respectively, thath component of
EHS fluid, and Ra is a component of the unit vectde  the right and left eigenvectors of the hydrodynamic matrix
=k/k. Theeffectivenoise in the heated IHS fluid may, there- M, andz, (k) is the corresponding eigenvalue.
fore, be described by the sum of external and internal noise, Taking then the scalar product of E@1) on both sides

%(k t)=%ex(k t)+:§‘”(k t), with a similar expression for with left eigenvectorgA5) of the Appendix, yields
(k,t). The noise characteristics gtk,t) and 6(k,t) inter-

polatebetween two limiting behaviors and the corresponding % (vxa(K)[Sap(K) v up(—K))
noise strengths are given by the sum of E4$) and (17).
Having specified the characteristics of the noise sources in (va(K)[Cap(K)|v 4 —k))
the macroscopic equations, we conclude this section by sum- == ;;4 20 (K)+2,(K) (22

marizing the Langevin-type equations that describe the dy-

namics of the slow fluctuations. To do so, it is convenient toysing the completeness relatigA6) and the fact that off
introduce the Fourier modesa(k,t)exlik-r] of the linear-  diagonal elements dof,;, in Egs.(20) vanish, we obtain

ized hydrodynamic equation®1). The mesoscopic equa-
tions, valid on hydrodynamic space and time scales, t.e., Wy a(K)vo(K) Cec(K)v e =KW up(— k)
>t, andkly<<1, then take the form San(k) = _éc z,(k) +2,(k) '

(23

ada(k,t)=M (k) sa(k,t)+F(k,t), (19
which is the final result for the static structure factors. The
where the components of the vectarare labeled witha  time correlation functior(2) in the NESS reduces in a simi-
={n,T,l,L}. Herea=1 refers to the longitudinal velocity lar manner to
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FIG. 1. Dispersion relationg,(k)/w versusko for ¢=0.4, k
a=0.9; the solid lines refer to the real parts forL, =, andH, o

respectively. Dashed lines represent the imaginary parts of the FIG. 2. Structure factorsS
sound-mode relaxation ratea € +). Here, l,/0=0.34, yoo/l, s v
=0.14, andyyyo/l,=0.64.

(k) and (k) in units Too?/m, as
obtained from the full theorysolid lineg with externalandinternal
noise. The dotted line represelﬁﬁitho“‘(k) without internal noise
with the plateau value addégee discussion at the end of Sec.)VII
The parameters are=0.92, ¢=0.63, andTg=0.41T,. Figure 6
shows that the5; simulation data agree much better with the solid
line than with the dotted line.
The above result corresponds to the Landau-Placzek theory
[21] for hydrodynamic correlations in the NESS. w, (k)=(0,0,0,3, wv,(k)=(0,0,0,3,

To obtain more explicit results we need the explicit forms
of eigenvalues and eigenvectors, which have only been cal-

Fab<k,t>=§ exl 2, (K) 1wy a(K) v\ o(K)Sep(K).  (24)

culated for smalk. The eigenvalue equation can be solved w. (k)= i[l —g(n)T/3n, vy /n,0]
numerically for any given wave number, and the results are - 2 ’ 7
illustrated in Fig. 1 for the two-dimensional case. Transport (26)
coefficients, equation of statg(n,T), and pair-correlation 1

function at contact are obtained from Enskog’s theory for v.(K)=—=(1,02n/vp,0),

elastic hard spheres or disks. The generic features of the - \/E

spectrum in Fig. 1 are the same as McNamara’'s case *

=B=0," illustrated in Fig. &a) of his study[26] on hydro- wy(K)=(0,1,0,0, wy(k)=(g(n)T/3n,1,0,0.

dynamics of granular materials, which corresponds to a

temperature- and density-independent heat source. Howevelrhe coefficientsy(n), vp, andD, with A\={1 ,H,=} are
) D A - ) ) —

neither the equation of state, nor the transport coefficients ' . oot .
used in Ref[26], correspond to the heated fluid of inelastic calculated in the Appendix. In the dissipative regime there

hard sphere;, used in the pre;ent simulations. In the hydr?i-cr)?] 2’;’)2&;}?2%?:%;;:?:9 nggz:é[i.)mg?;sp;ﬁi%?
dynamlc regime KI(.’S.l)’ all eigenvalues are founq to be heat mode X=H), with a long WaveIanth relaxation rate
negatlllvefo(rjnonvanllshm?yth\l/e numbesee Appendix A 24(0)=—3y,w ir; agreement with Eq11). Therefore, on
So, all modes are linearlgtable " o N

With the help of MATHEMATICA, the structure factors in the largest spatial scales, the temperature deviations have

the steady state have been calculated numerically from E ecayed to zero, and temperature gradients do not exist;

(21) with 9,S,p(k) =0 for a given wave number. The result- here is no hleat' Condl#:t'on' Ir(; adcﬁtlon,ht'h(ra]re ad&a.)l
ing structure factors are shown by solid lines in Fig. 2, anolransverse velocity or shear modas<{(L ), which are purely

: - - ; - diffusive. The corresponding diffusivityD, = v, has the
will be tested against MD simulations in Sec. VII. L .
Next, we present analytic results for the dissipative re-Same form as for EHS. In EqA7)—(A10), the coefficients

gime (ko< o). The eigenvalues on the largest spatial S’Calegre expressed explicitly in terms of thermodynamic quanti-

can be determined as an expansion in powels atfa fixed 'eTnat?]i tsrgnnsdp;rr(;[ f:?g:g?is' (and y, small, the eigen-
value of y,, with the results gim&lo> yo Yo , 19

values for shear and sound modes are to leading nonvanish-

z, (k)= — vk, ing order the same as for the EHS fluid, where the sound
waves propagate with thadiabatic sound speea g of the
z.(k)=Fikvp—Dgk?, (25) elastic fluid, which is larger than the propagation spgegdh
Eqg. (A7). The damping of the sound and heat modes, on the
z(K)=—3ypw+Dyk>2. other hand, are larger than in the elastic fluid due to the

inelastic collisions. In the elastic regime, defined in Sec. I,
In later applications, the explicit form of the eigenvectors ofwherekl,>/y,, all transport coefficients are equal to their
M (k) is needed to lowest order in They read EHS values.



PRE 59 RANDOMLY DRIVEN GRANULAR FLUIDS: LARGE-. .. 4331

In summary, the eigenvalue spectrug(k) for the uni- TABLE I. CoefficientsB,;, in Eg. (29).
formly heated IHS fluid is quite different from that of the
freely evolving IHS fluid, linearized around the homoge- ab Bab
neous cooling statg26]. In the free case, all shear modes I 1
(A=1) and the heat moden(=H) are unstable in the dissi- 2, 2
. . . . nn n“lvg
pative regimgsmallk), and propagating modes do not exist ) o0 o
D : TT g°(n) T*/9vp
for kly<<y,. Moreover, there exist in this regime a stable 2
nT —g(n)nT/3vp

diffusive density mode and a kinetic temperature mode,
which combine into two propagating modes fdl,
~O(y0), where crossover occurs from the dissipative to thencfions. The calculations are given in Appendix B. One
standard regime. In theeatedcase, however, all modes are finjg for the leading large-behavior inthreedimensional
linearly stable, and the sound modes remain propagating 8y stems,

the dissipative regime down to=0.

V. EFFECTS OF LONG-RANGE CORRELATIONS G”(r):<8wpv)?

In this section we study static and dynamic structure fac- r /1 1\1 (30)
tors and corresponding correlation functions at the largest Gl(f)z—(—Jr —)—,
spatial scales. Moreover, we show by means of a mode cou- 16mp\ v~ 2Dg/T
pling calculation, how average properties, which were calcu- d intwo-di ional t
lated in Sec. Il on the basis of a mean-field theGrg., the anc infwo-dimensionat systems.
Enskog-Boltzmann equatignare renormalized by spatial r /1 1 L
fluctuations. G(r)=G,(r)= %(; + Z_DS) |n(7) : (39

The static structure factors have been calculated in Eq.
(23). In thedissipative regimgklo= o), the relevant eigen- yalid for r<L, whereL is the linear dimension of the sys-
values(25) and eigenmode§26) are discussed belofEd.  tem. The subleading largeeorrections to Eq(31) are con-
(26)]. The dominant singularity at small wave number of thestant terms, independent of In the calculations given in
structure factorsS,y(k)~O(1k?) in Eq. (23) originates  Appendix B, these constants depend on a cutoff wave vector
from pairs of transverse modes, whem &) =—2vk? and k. —27/L, used to evaluate the divergektintegrals oc-
from antiparallel sound modes, where, (k)+2z_(k)=  curring in the Fourier inversion d,,(k). To calculate their
—2Dgk?. We start with the transverse structure factor,precise values, the subleading smalkorrections to Egs.
where only the shear modes in E¢86) contribute, and de-  (27) and (28) are required.
duce from the equations above, The long wavelength behavior of the time-dependent cor-
relation functionF 4,(k,t) in Eq. (24) can be evaluated in a
similar manner. We quote the result in terms of the Laplace
transformF ,,(k,z), from which the dynamic structure factor
(3) follows. In thedissipative regimdkly<<y,), we find to
where the relation20) has been used fokly<y,. The leading order for small wave numbers,
structure factorsS,,(k) for a,b#_1 derive their dominant

S (k)=S,, (k)= (27

2pvk2’

smallk behavior from two antiparallel sound modes and we B (k2= S (k)
obtain with the help of Eq€$23), (25), (26), and(20) at small 11 (K, e
K, (32
= Si(k)
(=8 (k)= — (29) A i vyt
St=S= e prs

In a similar manner we obtain
where the sound damping constant in the dissipative regime

Ds has been calculated in EGA9). It depends on the inelas- Fan(K,2)=BapFi(k,2), (33
ticity. The contribution of the internal noise is subdominant o o ) )
in this regime. In a similar manner, we find where all nonvanishing coefficienBs,, are listed in Table I.

The dynamic structure fact@B) then becomes

San(K)=BapSi(k)  (k—0), (29)
RTINS S L (34)
where all nonvanishing coefficients labeledabj e et (Q+\kvp)?+ Dék“'
=(ll,nn, TT,nT) are listed in Table I. The remaining struc-
ture factors are o©O(1) ask—0. It contains only Brillouin peaks, coming from the sound
Next, we consider the spatial correlation functionsmodes. There is no central Rayleigh peak, because the heat

G,p(r), which are the inverse Fourier transformsSjf,(k). mode is not a slow, but a fast kinetic mode in this regime. In

The smallk behavior ofS,(k), obtained above, enables us the elastic regimeS,,(k,2) has the standard Rayleigh and
to calculate the large-behavior of the spatial correlation Brillouin lines of the EHS fluid.
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The existence of long-range spatial correlations showsactor, the dotted line coincides with the solid line in Fig. 2,
that the NESS is quite different from a thermal equilibriumas can be shown analytically from Eq80) and(21). Only
state[19]. In fact, the spatial fluctuations also modifenor-  the structure factor for the longitudinal flow fiela‘{v“ho”‘(k)
malize) the mean-field predictions for the averages and theliffers appreciably fronS(k) in the relevant intermediate
particle distribution functions. In AppendiC a mode cou- regime, 0.2ko=<0.5.
pling calculation is presented to estimate the renormalization |n Sec. VII the simulation results will be compared with
effects on the average energy per particle& the theoretical predictions with and without internal noise.
=(1/N)Ei<%mvi2> and average collision frequenay in the ~ As it turns out, the comparison shows convincingly that the
NESS, and we reca” their mean_ﬁe|d Va|ues7 IE‘E theory with/without internal noise agreesldisagrees with the
=1dTe and wg given by Eq.(A2), i.e., wgxny(n)Tg  Simulations.
whereTg is given in Eq.(10).

As it turns out, the fluctuation contributionSE and dw, VI. COMPUTATIONAL DETAILS
are finite and well-behaved threedimensions, but logarith-
mically divergent in the system sizein two dimensions, so
thatd=2 is the upper critical dimension. The mode coupling
calculations of Appendix C yield then in two dimensions, for
largelL,

In the two subsequent sections we describe molecular dy-
namics simulations performed to verify our theoretical pre-
dictions. In this section we present the computational details,
before testing our theoretical results against simulations in
the next section.

c L The model studied here has been extensively used in com-
Taese=Te+ _E|n(7L), puter simulations for the freely evolving cageo forcing
4 lo [28-30,23, as well as for the randomly accelerated case in
(35 one[12] and two dimensiongl3]. We consider a system of
Co [ 7L N inelastic hard disks having diameter in a two-
WNESS™ WET E'”(_)v dimensional square cell of length with periodic boundary
conditions. The disks interact via inelastic collisions with
whereCe andC,, are calculated in Appendix C. The argu- coeffic?ent of no_rmal restitutioa. For a coIIiding pair Gi) N
ment of the logarithmy,L/l, is an estimate for the ratio of ©Of Particles having equal masses, the postcollision velocities
the values for the rightk~ y,/lo) and left Ky,=2m/L) &€
boundaries of the dissipatiderange, where the smaltl-be-

havior in Egs.(27) to (29) is valid. The logarithmic correc- vi=v;i—3(1+ a)(vij- 0)o,
tion becomes only appreciable for large systems with a size o (36)
L, much larger than the so-called homogeneous cooling v]-* =v;+ 2(1+ a)(vjj- o) 0o,

lengthl+=14/v,, Which diverges in the elastic limit. Then
the renormalization corrections for small inelasticity vanishwherev;;=v;—wv;, the asterisk denotes velocities after col-
as 8T~ eIn(el/lp) and Sw~ € In(el/lp). Here, we have used lision, and o is a unit vector along the line connecting the
the relation<’g~ € andC ,~ €2 for e—0, as can be deduced centers of particlg¢ and particlei.
from the results in Appendix C. A similar mode coupling  The energy loss in consecutive collisions, which is pro-
theory has been recently used in R@0] for freely evolving  portional to e=1—«a?, is compensated by a periodiin
granular fluids to calculate the long-time decay of the entime) and instantaneous perturbation of all velocities by a
ergy, which deviates from Haff's cooling law due to inho- random amount. After every time stext, the velocity of
mogeneities in the hydrodynamic fields, and good agreememgach particle is modified according to
between theory and simulations was found.

Before concluding this section, we compare the theoreti- vi—vite, 1sisN, (37)
cal predictions for the structure factors, with and without
internal noise in Egs(20) and (21), as shown in Fig. 2. Where the components of the vectaps are taken from a
Inspection of Eqs(27) and(28) shows that only the external random distribution of zero mean and variangg(in prac-
noise determines their dominant smiabbehavior. The ques- tice, a Gaussian or a flat function of finite suppofthe time
tion then arises, what are the effects of internal noise, and igtep At of this “heating” or “kicking” is chosen much
it meaningful to include it in the theoretical description? Thesmaller than the mean time between successive collisions of
answer is affirmative, as we will show below. The steadya tagged particlétypically a factor 18 smalley, so that the
state solution of Eq(21) without internal noiseclearly be-  System under scrutiny reduces to that described in Sec. Il.
haves at small wave numberslas?, but thek-independent The opposite limit, wherét is much bigger or comparable
plateau values, shown by the full thedfsolid lines in Fig.  to the mean-free path, was considered in R81] (in the
2), are missing. These plateau values represent a very shofttesence of an additional external damping or drag force
distance correlatior- 5(r). Calculation of the plateau value and in that limit, clustering was observed. The relation be-
for S,p(k) yields (1h2V)<2iUianB>:(T/P) S.p, €., the tweengy and &y, the variance of the n_oise term in E¢),
self-correlation termi(=j) in the definition(1) of S,5(k), or ~ can be deduced from the energy fed into the system by the
more explicitly in Eq.(40) below. Then, addition of this Kicks. This yields straightforwardly,
plateau value to the numerical solution of Eg1) without
internal noise yields the structure fact(SSEh"“‘(k), shown
as dotted lines in Fig. 2. For the transverse velocity structure

2
¢
=71 (38
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Between the heating events, the motion of the disks is free,

which enables us to implement an event-driven molecular 14r
dynamics scheme with a linked-list methf@2]. The CPU
time, however, scales likdl?> because the lists in all cells 12r
need to be updated after each heating event.
Four parameters determine the state of the system: the or
inelasticity e=1—a? the packing fraction ¢ [
=mNo?/(4L?), the reduced lower wave number cutoff }\0'8 |
Kmino=2mol/L, and the heating ratég. The values ofN E— o6l 1 — Simulation

investigated in this article vary between®iand 1¢, and we

shall restrict our attention to high packing fractions for which 0.4

the use of linked lists implies the most significant reduction

of computer time. We consider the cases of moderate inelas-

ticities (0.6<a<1) and complete inelasticitya(=0). For

the latter case, inelastic collapse occurs, i.e., the collision g4 ‘ ‘

frequency involving only a small number of correlated par- 0 10 20 30 40

ticles diverges, as observed first by McNamara and Young t/1,

[29] in freely evol\_/ing fluids Of. inelas_tic_: hard diSkSi Also in FIG. 3. Granular temperature as a function of time for

our system, for high enough inelasticity, the heating seems. g5, 078 (,/0~3.5), and\= 1600 particles. The simula-

never SUff_'C'em _to prevent the 'neIaSt'C_ coIIaps_e. Feor . tion result is compared to the analytical expressit8) (dashed

<0.5, the inelastic collapse has been avoided by introducingryg. The initial condition corresponds to a fluidlike configuration

a slight modification of collision rule36), as proposed in  of elastic hard disks. HereAt=3.8x10"3(ma?/Ty)Y?=1.5

[30]: in each collision, the velocities are first computed ac-x10-3t, and p,=5.77x 10 2 (To/m)Y2 T is the temperature ex-

cording to the standard procedure;(v,)— (v ,v3); the  pected on the basis of the Enskog thefsge Eq.(10)]. For the

relative velocity v}, is then rotated by a random angle above parameters, there are on average 3.7 collisions per time in-

smaller than a maximum valu® (typically less than a few tervalAt in the NESS, ande/T,=9.3.

degrees keeping the center-of-mass velocity fixed. Note

that this modified collision rule does not change the total 1 A

energy loss of the colliding pair, and does not introduce any n?s (k)= v< > (vi-k) exp—1k-1)

spurious drag or forcing on the particles. '
The structure factors in the NESS have been computed for . .

wave vectors compatible with the periodic boundar;l/D condiﬁn practice, the differenS,,(k) have been computed for ev-

tions, i.e., of the form (2/L)(n,.n,). We have obtained the €'Y K I¥ing in the disk|k| <kma=6/o, then averaged over
dens}ty—d’ensity structure fact(;r’s y shells of thicknesk,,=2#/L, to achieve better accuracy.
' Moreover, the statistics in the NESS has been increased by

> averaging over time. Note that the above procedure, which

—— Kinetic theory

2> . (42

gives insight into the microscopic to large scale structure of
the system, does not require the knowledge of the hydrody-
2> namic (coarse-graineddensity and velocity fields.

1
snn<k>=v<2 exp(—1k-ri))

1]

1
:V<’Ei exp(—1k-r;) (39)

VII. SIMULATION RESULTS
and the velocity-velocity structure factor, defined as A. Approach and characterization of the NESS
1 Before addressing the question of the large scale structure
2 =_ S U —1k-r::
N"Sap(k)= V< % Vialjp EXP—1K r,,)>. 40 of the inelastic fluid, we investigate the validity of the mac-
roscopic description given in Secs. Il and V. The former
Here, the averages are taken in the spatially uniform NESSection gives the mean-field results for the steady-state tem-
The fluctuation g, in the momentum densitygg, (k) peratureTg in Eq. (10) and collision frequencywg in Eq.
=3,mv;,exp(=1k-r;,), and those in the flow field are related (A2), based on the Enskog-Boltzmann equation. The latter
as 8g,=pdu,, wherep is the average mass density in the section and Appendix C show how the long-range spatial
steady state. The second rank tenSgg(k) is isotropic and  fluctuations renormalize these mean-field values and lead to

can be split into a longitudinal and transverse patrt, estimates in Eqgs(35) for the correctionssT=T—Tg and
o L dw=w— wg, Using a mode coupling calculation.
Sep(K) =K KgS|(K)+ (8,5~ KoKp)S, (K), (41 When the system is initially prepared in a configuration

. having a temperaturg, different from the steady-state tem-
wherek=k/k. From Eq.(39), it appears that the knowledge peratureTg, the time dependence predicted by the mean-
of S,, requires the computation of af?(N) quantity. We field result(12) is in good agreement with the numerical
can rewrite the velocity-velocity structure factor so that itsdata. This is shown in Fig. 3 for a system with small inelas-
computation also increases linearly with the number of particity. When the initial temperatur&, is much larger than
ticles. For example, for the longitudinal part8fs(k) in Eq.  Tg, the heating at short times is dominated by the inelastic
(41) we have, dissipation, and Eq12) becomes Haff's homogeneous cool-
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FIG. 4. Time dependence of the granular temperature obtained o
in the simulation for the two-dimensional system of Fig. 3, with ~ FIG. 5. Measured excess temperatdiie=T—Te and collision
At=3.8x10"2 (Mo To) M2 0o=1.7X10"3(To/m)*2  Compari- frequency dw=w—we versus coefficient of restitutio, for L

son is made with Haff's law43) for homogeneous coolinglashed ~ =600, N=917 (¢=0.2, lo=1.10), and a maximal random ro-
curve, and with the full solution of Eq(12) (long-dashed curye  tation angle®=10°, together with the predictions of the mode
Here, T¢/T,=0.018. coupling theory, Eq(35).
ing law for a freely evolving system, decrease the temperatufE)). These trends are at variance
with the observations. The discrepancy between the mea-
_ (43) sured and predicted temperatures and collision frequencies is

more likely due to large scale fluctuations, at least for not too
large inelasticities §=0.6). These long-range spatial fluc-
wherety= 1/wg(Ty) is the mean-free time in the initial state. tuations renormalize the mean-field Enskog values for the
This can be seen from the asymptotic expansion of the fundemperaturelg and collision frequencywg by amountssT
tion f defined in Eq(13), and Sw. The theoretical estimat€85), based on mode cou-
pling arguments, show the correct trends for the dependence
of these corrections on the inelasticity, i.6T~¢€ and dw
~ €% ase—0, and give a rough estimate of the magnitude of
these terms as illustrated in the inset of Fig. 5. We also point
These analytic results for short times are confirmed by MDout that the system size considered in Fig. 5 is much too
simulations, as shown in Fig. 4. Moreover, for initial tem- small for the asymptotic theory85) to be applicable. For
peraturesT,<Tg, Eq. (12) predicts at short times a linear instance, ate=0.8, we deduce from the datd,E1.10,L
increase off, as in a heated fluid of elastic hard spheres. Our=600) in the caption of Fig. 5 thaty,L/l,=4.9. Conse-
simulations confirm this behavior. quently, the leading asymptotic term 4g(/l5)=1.6 does not
Figure 5 shows that the measured kinetic energy per padominate the full mode coupling contributigé@2) in Appen-
ticle T is larger than the temperatui: predicted on the dix C, where subleading terms 6f(1) have been neglected.
basis of mean-field theory. This effect is noticeable albeifThe corresponding ratioggL/ly for Figs. 6 (@=0.92), 8
small in the results reported in Figs. 3 and 4, which corre{a=0.6), and 11 &¢=0) are, respectively, 46, 127, and 297.
spond to the nearly elastic limit. For the densities studiedrhis predicts for the systems in Figs. 6, 8, and 11, respec-
here, we observésee Fig. 5 that the correctioST is posi-  tively, Tyess/ Te=1.07, 1.41, and 1.77, whereas the simula-
tive and decreases with decreasing inelasticity. The positivéons yield for the observed value&/Tg=1.05, 1.45, and
excess in temperature is already present for small inelasticity.5, which agrees quite well. The good agreement=a0 is
(see, e.g., Fig. ¥ and vanishes as— 0. Note that the above unexpected, as the theory is constructed under conditions
results are at variance with those reported by Peng and Ohthat apply at small inelasticity. However, the renormalized
[13], who find thatT/Tg does not depend oa. The mea- values for the collision frequency, as predicted by the mode
sured collision frequencw is also larger than the Enskog coupling theory, are much too small. We find in the above
estimatewg, as shown in Fig. 5. The exceg® increases Figs. 6, 8, and 11, respectively, for the theoretical values
with increasing inelasticity. wness/ wg=1.003, 1.06, and 1.12, whereas the simulations
We first observe that the simulation data in Fig. 5, whereyield w/wg=1.05, 1.36, and 22.9.
bothw>wg andT>Tg, cannot be explained consistently as  For large inelasticity £<0.5), the temperaturgé and col-
a possible over or underestimation of the IHS pair correlatiorlision frequencyo depend on the maximum angk of the
function yys at contact by its value for elastic disks. On the random rotations, used to avoid the collapse singularity, as
basis of Eqs(10) and (A2), we note that an overestimation explained in Sec. VI. In factp diverges at® =0 (inelastic
of xiys would increase the collision frequengp2), and collapse, in agreement with the observations of Peng and

To (14 yytlty)?’

3
f(x)= ﬁg— = for x—=. (44)
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TABLE II. Collision frequency (normalized by the Enskog 4.0 . |
value as a function o®, for a totally inelastic systema(=0) with
N=1600 particles, and packing fractieb~ 0.07.

(C) 15° 3.5° 5° 45° 90°

wlwg 8.2 7.4 7 4.3 4.3

Ohta[13]. Intuitively, one expects that larger randomiza-
tion of the postcollision velocitieglarger ®) more effec-
tively destroys the correlations leading to inelastic collapse,
and consequentlgdecreaseshe deviations inl and w from

the mean field and the mode coupling predictions. This does
happen indeed for both temperature and collision frequency,
as can be seen from Table II.

15.0

FIG. 7. Same as Fig. 6, witk beyond the dissipative regime.
) ) The dashed curve corresponds to the density-density structure factor
B. Fluctuations in the NESS of an elastic hard disk system of the same size and packing fraction
In this section we analyze the effects of inelasticity on the(dashed curve All results are deduced from MD simulations.
large distance behavior of the fluid. We have computed the
structure factors in the spatially homogeneous NESS of théhat the large scale behavior of the structure factors was
inelastic hard disk fluid as explained in the previous sectionproperly equilibrated before accumulating the data used to
and have focused either on valuesmfclose to the elastic compute the averages.
limit, where the theoretical description is supposed to apply, First of all, we have tested the isotropy of ten$4@) by
or on values close to 0, in order to test how large deviationshecking that the average,
from the theory might be. Local mean-field values, like
andwg, reach their steady-state values rapidly. However, the E (v-~R)(v-~R )exp(1k-r;) with k-k. =0
time scale needed for the structure factSg(k) and the i I n -
contributions of spatial fluctuation®§T and dw, to reach (45
their steady-state values are diffusive, and increask s
~L2 with system size. We have checked in the simulations/anishes fok values compatible with the periodic boundary
conditions.

4.0 , , ‘ In Fig. 6 we show the density-density structure factor and
the relevant components of the velocity-velocity structure
factors. Forelastic hard disks the plateau values 8f,(k)
aroundko=2 extend all the way down tk=0. The excess
correlations in the dissipative regimi<t y,/1,), which for
S, (k) extend up tdk=/y,/l,, are characteristic of the ran-
domly driven inelastic fluid. Figure 6 shows that for small
inelasticities the agreement between simulations and theory
is quite reasonable. The structure factors diverge at small
scales likek 2, in agreement with the theoretical predictions
(27)—-(29). The packing fraction has been chosen fairly high
(¢=0.63) but lower than the two-dimensional random close
packing of monodisperse diskfrcp=0.82[33], and inside
theliquid region of the phase diagram for elastic hard disks.
In addition to the gain in computer time, such a packing
_ _ ) fraction leads to a mean-free-pathsmaller than the particle
FIG. 6. Structure factor§, andS; (in units Too“/m) andS;, diametero (e.g.,1,=0.095 for ¢=0.63). Therefore, the

(in units 1b?) versus wave vector for=0.92, $=0.63 (/o - : - . . .
=0.095), andN=10201. The noise strength is chosen such thathydrodynamlc regime will hold up to typical particle diam

T.=0.41T,. The simulation datdsymbol3 have been averaged eters, enlarging the range of wave vectors where comparison

over 1¢ successive configurations, separated by a time interval ok)/letween Slfmuéauons antd theoretlcall %r((ejdlctls[)nstls fteaSIbIFi.
20 collisions per particleS; and Sp.,,=S, are, respectively, the Oreover, for dense Systems, a marked density Structure 1S to

parallel and perpendicular parts of the velocity-velocity structure®® €Xxpected at the molecular scale, especially at wavelengths
factor, defined by Eq40). Comparison is made with the theoretical l0S€ t0o" (ko=2m). Figure 7 shows that for close to 1,
expressiondfull, dashed, and long-dashed curveduced from this structure is indistinguishable from the structure for elas-
Eq. (23) (compare also Fig.)2 There is a dissipative regime for tic hard disks. Note tha§, (k) and S, (k), although quite
ko= yo0/l,=0.40, and an elastic regime féw=\yoo/l,~2.1.  Structureless foko>1, show a weak and broad peak corre-
Here, T/Tg= o/ wg=1.05, whereas the mode coupling approach oflated with the maximum ofS,,(k). This feature is more
Sec. V predictsT yess/ Te=1.07 andwyess/ wg=1.003. pronounced as the inelasticity increases, as shown in Figs. 10
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FIG. 8. Structure factors foe=0.6, ¢»=0.55 (,/0=0.15),
N=10201, andTg=1.0T,. The lines are the corresponding theo-
retical predictions. The measured temperaflf€c=1.45 and our

mode coupling theory giveSyess/ Te=1.41. Units as in Fig. 6.
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FIG. 10. Same as Fig. 8 beyond the dissipative regime. The
theoretical structure factors are not displayed.

the granular temperatur€, whereas for the system corre-

and 13. As the molecular structure of the fluid has not beePonding to Fig. 8T=1.45Tg. Our mode coupling theory
taken into account in the long wavelength hydrodynamic apPredicts her&yess=1.41T¢. Figure 9 displays the compari-
proach of Sec. IV, the present theory cannot explain th&on between theory and simulation when the measured
structure in Figs. 10 and 13, and the structure factors predranular temperature is taken as an input for the hydrody-
dicted by the theory reach a plateau in the elastic regim&amic description. It appears that the large scale correlations

(klo=0), given by

Sun(K)—n2T x.,

S, 5(K) Ts
(4943 p af

whereXT=(¢9n/¢9p)T/n is the isothermal compressibility of

the elastic hard disk fluid. Far close to 1, the above limit-
ing behavior is observed numerically f8; or S, , and for
S,n, only in the limit of small packing fraction, where the

molecular structure disappears.

(46)

(for which the present theory has been constrycted well
described by the theory, as long as the temperature is cor-
rected from the mean-field Enskog predicti¢tO) to the
measured valud. In the case ofS, , the amplitude only
depends on the shear viscosity. The good agreement of the
amplitude when the temperature is rescaled, while keeping
for the shear viscosity the elastic hard disk value, suggests
that the dependence of the shear viscosity on the inelasticity
could be attributed only to the change in temperature. At the
molecular scale$, (k) andS, (k) appear to be correlated to
the density-density structure fact(gee Fig. 19, in marked
contrast to the elastic situation, where a plateau value would
be reached. Such an effect is beyond the scope of our hydro-

When the inelasticity is increased, the structure factorsglynamic approach, and is currently under investigation.

exhibit the samé 2 behavior at large scale, but the theoret-
ical expressions are less accurétee Fig. 8 However, the
theoretical curves are based on the Enskog estimatfor

20.0

15.0

100

50 r

Surprisingly, in the case of complete inelasticity (
=0), the theoretical structure factors give a reasonable pic-
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FIG. 11. Structure factors fat=0, ¢=0.63, N=10201, and

FIG. 9. Same as Fig. 8 where for the theoretical expression3g=0.76T,. Comparison is made with the hydrodynamic theory
(lines), the temperature has been set to the measured kinetic energhnes). Here, T/Tg=1.5, whereas mode coupling giv8gess/ Te

per particle,T=1.45T¢.

=1.77. Units as in Fig. 6.
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FIG. 12. Same as Fig. 11,_ where the_sir_nulation cda;@*lbols) FIG. 14. loggS— Sy versus logy(ka), for the same param-
are compared to the theoretical predictidiiaes) for which the  gters as in Fig. 11. Her8,,, denotes the lowest value of structure
temperature has been set to the measured kinetic energy per PgketorS The full, dashed, and long-dashed curves ref&,ip S, ,

ticle, T=1.5Tg. andS, , respectively. Units as in Fig. 6.

ture of the large wavelengths correlations in the fldpe-  gjmyations with two different theoretical predictions in Fig.
cially for the longitudinal velocity componen®(k), as 5 gptained by including or excluding internal noise. First,
shown in Fig. 11 When the theoretical structure factors are 5j,carve that all parameters in Fig. 2 and Fig. 6 are identical
deduced from the measured granular temperafurd .5T ¢
and not fromTg (our mode coupling theory prediciess
=1.77Tg), the agreement foB, (k) improves, but the mis-

match for$; (k) increasessee Fig. 12 At small scales, the i Fig. 2 (internal plus external noiseThe dotted linewith-
density correlations differ significantly from the elastic ones

: , - € ®Sout internal noisgfor S""*(k) in Fig. 2 disagrees with the
l(F'g' 13 ;\nd_the ?/elogny structure flz:;\_ctoasoexhllr)]lt thekoscn-_ simulations in the relevant interval 6sko=<0.5.
atory behavior already present in Fig. 10, with peak posi- oq06 inclusion of internal noise extends the validity of

tions chked in on the peaks Bhn(k). As can b? expected the asymptotic theory to intermediate wave numbers.
from Figs. 11 and 12, the large scale correlations are com-

patible with the expected 2 law (see Fig. 1% unlike the

results of Peng and Ohta who reporkal** asymptotic be- VIIl. CONCLUSION

havior for «=0. However, a log-log plot such as Fig. 14 :

- : We have presented a theory for the large scale dynamics
does not allow an accurate _evaluatlon of the s_calmg expo(—)f a ranularpfluid that is drivenyinto a noneg uilibrium )s/tead
nents. Thek™ 2 law is better inferred from the direct com- 9 quitio ay
parison with theory(Figs. 6,9,12 state by a randpm exte_rnal force. _Our description combmgs

Before concluding this section we compare the structur he macroscopic equations of motion for the hydrodynamic

factors for the longitudinal flow fields, obtained from MD 1€lds, accounting for energy dissipation through inelastic
' collisions and uniform heating, together with the fluctuating

forces. The long-range character of the spatial correlation
4.0 ‘ ; ‘ ; . . )
functions is determined by the small wave number diver-
gence~k 2 of the corresponding structure factors. Tkig’
behavior is typical for systems that combine conserving de-
terministic dynamicsconservation of particle number and
momentum in collisions with nonconserving nois¢34],
thus violating the fluctuation-dissipation condition, and is ge-
neric for rapid granular flows that are driven by external
noise. We also draw attention to the analogy of our equations
of motion for the fluctuating fields to the Edwards-Wilkinson
model[35] that was proposed for growth of a granular sur-
face. In that case the dynamic variable is a scalar field,
namely, the height of the surface that obeys a similar equa-
 Helmemed® | s ‘ tion of motion as any of thed— 1) components of the trans-
0.0 5.0 1,38 15.0 20.0 verse velocity fieldu, ,(k,t), in our case. The only differ-
ence is that in the Edwards-Wilkinson model there is only
FIG. 13. Structure factors up to the molecular scale, for thenonconserving noise, whereas in our case both nonconserv-
same parameters as in Fig. 13, for elastic hard disks and the ing (externa) and conservinginterna) noise are present.
same packing fraction has also been plottesses Units as in We have tested our predictions for the structure factors
Fig. 6. against molecular dynamics simulations and have demon-

as well as units on both axes. The simulation results for
S(k) in Fig. 6 are in excellent agreement with the theoretical
prediction(dashed ling which corresponds to the solid line
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strated that there is quantitative agreement over the wholgFundamenteel Onderzoek der Mate(EOM),” which is

wave-number range, if internal fluctuations are taken intdinancially supported by the Dutch National Science Founda-

account. In our two-dimensional simulations we have foundion (NWO).

deviations in the steady-state temperature and collision fre-

guency that grow with the inelasticity and the system size. APPENDIX A

For not too large inelasticities= 0.6), we have explained

these deviations in terms of mode coupling effects of the In this appendix we derive expressions for the transport

long-range fluctuations. coefficients that govern the decay of fluctuations in the
The phenomenological mode coupling theory, proposedteady state. Linearization of the macroscopic equatihs

in [20] and extended here to the driven IHS fluid, starts fromaround the NESS, defined in Eq®) and (10), gives the

the same basic ingredients as in the case of elastic fl8&]s  deterministic part of the following set of equations:

where that theory was used to calculate the long-time tails of

the velocity autocorrelation function and other current- don=—nV-u,
current time correlation functions. For the elastic case the
. . . L 1 -
mode coupling theory can be derived from ftikeg kinetic du=——=Vp+vV2u+(y—v)VV-u+§ (A1)
theoryin the low-density limit[37], which accounts for dy- P

namic correlations built up by sequences of correlated binary
collisions, leading to nonlocal effects in space and time. 8,6T=—-——=V25T— —V-u— 8 +4.
Such collision sequences correct the mean-field-type Boltz- dn dn
mann or Enskog kinetic equations for the errors induced b¥rne noise termsi(r,t) and 9(r,t) have been discussed in
the breakdown of the molecular chaos assumption. The ringgc. |11 The pressure is assumed to be that of EH,
kinetic theory for rapid granular flows of IHS has been de'znT(1+denad/2d), where Qg=2792T(d/2) is the
veloped in Ref[38], but has not yet been used to derive they jimensional solid angle, ang(n) is the equilibrium value
present phenomenological mode coupling theory from they e haircorrelation function of EHS of diameter and
more fundamental kinetic theory, valid in the low-density ,,qqm at contact. The kinematic and longitudinal viscosities
limit. . . v and v;, as well as the heat conductivity, are also as-

In detailed balance models, such as elastic hard sphere&lmed to be approximately equal to the corresponding quan-

dynamic correlations created by correlated collision S€iities for EHS. as calculated from the Enskog thef2g]
quences lead to long-time tails, which imply that transport, o e pv=1 ’and py=27(d—1)/d+¢ are expressed ’in

coefficients in two dimensions diverge asLiffor large sys-  gpaar viscosityp and bulk viscosityz. The collisional en-

tems[36,37]. : _ : . .
Nondetailed balance models, such as IHS fluids, generiergy loss in Eq(7), I'=2y,@T, is proportional to the col
o i . lision frequency
cally exhibit long-range spatial correlatiorid9]. In ran-
domly driven IHS fluids, as studied in this paper, these cor- B 41 T
relations between densities and flow fields at distant points in w=Qqxno™ "\ —,
the fluid behave as d/in 3D and Inr in 2D, and already ) ) )
modify (renormaliz¢ the mean-field Enskog-Boltzmann val- as obtained from the Enskog thepry._ In two dimensions we
ues for steady-state properties, such as the temperature aref tzhe Verlet-Levesque approximatigr=(1—7¢/16)/(1

collision frequency. In 2D systems these renormalization~ ®

2p

2k

(A2)

corrections,sT and dw, exhibit the InL divergence, which ~ By taking spatial  Fourier —transforms sa(k,t)
in the case of detailed balance models appears only in thg Jdr 6a(r,t)exp(-1k-r) in Egs.(Al), one obtains the me-
transport coefficientf19]. soscopic equatiofil8) with the hydrodynamic matrix

At larger inelasticity @=0.6), molecular chaos is also M (k)
violated due to the presence of short-range velocity-velocity

correlations(see Fig. 13 which are beyond our mode cou- 0 0 ikn 0
pling theory. A detailed investigation of the small scale yowg(MT/n  3y,w+D7k? ik2p/dn 0
structure, which for large inelasticity clearly deviates from =— o . 2

an equilibrium structure, will be reported in a subsequent iko/n ikp/pT vk 0
publication. It is surprising that our description, which is 0 0 0 vk?

based on the Enskog theory and neglects any dependence of

transport coefficients on inelasticity, even @t 0 predicts (A3)
the long-range structure reasonably well, provided that thét contains the coefficients
temperature is not taken as the mean-field Enskog value, but nd
set equal to the value measured in the simulations. g(n)=21+— d_X)
x dn
J
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In the body of the paper we need the eigenvalpg®) of  and the dispersion relation for the kinetic heat mode contains
the asymmetric matrit ,,(k), and its right and left eigen- the positive constant
vectors, which are obtained from

M (K)wy, (k) =z, (K)wy (k), Dy=

2k Zp( ndy 3p
(A5)

“an T 9yepl S xdn TdnT T)' (A10)

MT(K)v, (k) =2, (K)v,(K), ) ]

The ratiosv3/T, v3T, Dg/\T, andDy/\T are indepen-
where M7 is the transpose oM. Here A== labels the dent of temperature.
sound modesh =H labels the heat mode, and=_1 labels
(ql—l) degenerate shear or transverse velocity _mo_des. The APPENDIX B
eigenvectors form a complete biorthonormal basis, i.e.,

In this appendix we calculate the tails of the spatial cor-
_ _ relation functionsG,y(r), which is done by Fourier inver-
2. ra(kWa(k)=(0rlW,) = 03,0, sion of S,(k). Consider first the tensor fields,,4(r) and
(AB)  Sup(K) in Eq. (1) with da,(r,t)=u,(rt) (a,B=X,y,...)
E B being the components of the flow field. Both tensor fields are
= Wy (K) ) (wa ()] =1. isotropic and can be split into longitudinal and transverse
components, i.e.,

Moreover, the eigenvalue equation, [d¢k)l —M(k)]=0, is

anevenfunction ofk. ConsequentlyiM (k) andM (—k) have Gaﬁ(r)=?aFﬁG”(r)+(5a5—FaFﬁ)Gi(r)
the same eigenvalues, which are either real or form a com-

plex conjugate pair. So we choogg(k) =z, (—Kk) =2z, (k). A

The corresponding eigenvectors BF(—k) in case of the :f (zﬂ)dexr(lkw)[kakﬁsn(k)

sound modes are obtained from the transformation
(=K),v_(—K)}—{w_(k),v(k)}. All other eigenvectors +(5aB_RaRB)SL(k)]! (B1)
are invariant under the transformatitr- — k.

By settingz(k)=0 in the eigenva_lue equation,_ ON€ can \here the smalk behavior ofS, (k) and §(k) is given in

eEqs. (27) and (28). By contracting the second line above

number. So, all eigenvalues have a defirfliere negative L A A .
with r ,r 5, we obtain

sign. Consequently, all modes of the heated IHS fluid ar
linearly stable. There igo clustering instability{ 23,28 and

no instability in the flow field[23], as in the freely evolving dk & as
IHS fluid. 6= ek nl(k-P800
In the dissipative regimékly<<y,), the eigenvalue equa- m
tion is solved by an expansion in powerskpfand one finds +[1—(k-N2]S, (K)]. (B2)

to dominant orders the eigenvalues in the fo(®b) and
eigenvectors in the forn26). The eigenmodes to dominant
nonvanishing order ik are listed in Eq(26). There are @
—1) transverse velocity or shear modes<(1 ), which are
purely diffusive with a diffusivity D, = v; there are two
propagating modes\(= +) with a speed of propagatian, ,
and sound damping constabts, and akinetic heat mode

Contraction of the second line of EqB1) with (&,
- Rakﬁ) yields in a similar manner an expression €@y (r).

In three dimensions the integral can be performed ex-
plicitly and yields

(A=H) with a nonvanishing(0). dk expiik-r) 1
For later reference we also express these coefficients in J (2m)3 K2 T 4’
thermodynamic quantities and transport coefficients. The (B3)
speed of soundp, in the dissipativeregime kly<<y) is
f dk exp(lk-r)(R H2=0
UZD:(a_p) _Q Ed_X> (A7) (2m)3 k2 .
apl; 3p x dn

It satisfies the inequalityp,<vs, whereuvg is the adiabatic I3h0§ resulting large- behavior ofG,(r) is given in Egs.

speed of sound in thetandardregime (yo<klo<1), In two dimensions the integral in E4B2) over the azi-

. . (20\( P\ [P muthal angle yields for large
US_UT+ ﬁ _T = (9_ . (AS)
p Pl
f dk exp(lk-r)_ 1 (= ko )
The damping constant of the sound modes is 2m)?2 K 27, K o(kn)
1 P ndx_ 8P I
DS_2V|+9’y0wp 1 an+dnT, (Ag) —21T|n r +O(1),




4340

dk expik-r) Y
f 2mp e ke
_ = dk 1 L
—ﬁ kminFJl(kr)zﬂln ?)4-0(1)
(B4)

In two dimensions thé& integral diverges fok— 0. It should,
in fact, be restricted t&=Kk,,;,=2#/L, which is the smallest
allowed wave number when periodic boundary condition

smallz behavior of the Bessel functiork,(z) =(z/2)"/T (v
+1) [39]. Combining these results with EB2) yields for
larger,

1

14

1 (L

The remaining spatial correlation functio@g(r) involving
a,b={n,T}, are scalar fields. Their largebehavior is given

by
dk
Gab(r):f (zw)dequk-r)sab(k)

_ TBap
B 87TPDS

r
G(f)ZGL(f):%<

In(L/r)
1/2r

(d=2)

(d=3), (B6)

whereB,,(K) is given in Table I. The subleading corrections

of O(r°) depend on the cutok,,;,. To evaluate these terms
requires the subleading sméllbehavior ofS,,(k) in Egs.
(27) to (29).

APPENDIX C

In this appendix we present a mode coupling calculation
to estimate the contributions of the long wavelength fluctua-

tions in the NESS to some quantity Examples are the
particle distribution functions, the energy per partiEleand
the collision frequencyw. The fluctuations are correlated

over large distances, as a consequence of sequences over
dynamically correlated collisions, the so-called ring colli-

sions[40], as shown in Sec. V by explicit calculation of their
spatial tails.
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the fluctuations, we expanid(a) in powers of the fluctua-
tions sa=a—(a) around the NESS, yielding

1 (*
Mness= (@) + 5 | dr(5ar) sb(n) A

=h,(<a})+l *isab(k)Aaby (C2
2) (2m)¢

where summation convention for repeated indices has been

Sused. Here A,, is the matrix of second derivatives
are imposed. To obtain the last equalities one needs th ap

gzh,(a)/aaaa at a=(a). The asterisk indicates th&tinte-
grals are restricted to the long wavelength rarige,yy /1,
the so-called dissipative range, discussed by In this
range the structure factors have the faga(k) =E,,/k? on
account of Eqs(27) to (29).

For dimensionalityd=3 the fluctuation contributiorsh
=hness— h({a@)) is convergent at smak, and gives only
small well-behaved corrections tg({a)). However, ford
=2, thek integral diverges logarithmically at smdi(where
k=27/L), and the excessh is given by

W

Consequently, the fluctuation contributiéh in 2D systems
is a singular function of the system sizehat diverges in the
thermodynamic limit.

We first apply the above results to the energy per patrticle,
E=(1/N)fdre/a(r)), wheree,(a)=3pu®+(d/2)nT is the
energy density in local equilibrium. Fro(a), the expan-
sion coefficients corresponding tg({a)) and A, in Eq.
(C2) can be calculated, to yield id=2:

Yo /IOdk AabEab

AabBap [ 7ok
k 4

Sh= AabEabj I
0

= ) N (ox)]

27/L

1

2n (27,-)2

*

OE= [pS, (k) +pS (k) +2S,1(k)].

(C4
Inserting Eq.(27) to (29) then yields
’)’owETE[l 1 / 2Bt Yol
OE= amn [; 2D3\1+ P In T s (C5)

To calculate their contributions to average quantities likewhere the coefficienB, is listed in Table I.

h, one may solve the ring kinetic equatidr&8], or estimate

For the collision frequency the analog of EHE1) is o

these quantities from a more phenomenological mode cou=(1/N) fdr{n(r)w;(a(r))) with w (a)<ny(n)\T given in

pling approach, as developed in Rgg6]. The basic assump-

Eq. (A2). This gives in two dimensions:

tion made there is that the state of the system rapidly decays

to a state of local equilibrium, described by the fluctuating

hydrodynamic fields(r,t)={n(r,t),u,(r,t),T(r,t)}.

For the quantity under consideration this can be imple-

mented by representing= (1) [dr h(r), and approximat-
ing h(r) by its value in local equilibrium, i.e.,

1
nessy | drinany) c

where the average is taken over the fluctuating hydrodyand A,,=d*(nw)/dn?, A, 1=3d*(Nw)/dndT,

1 (*
ow=—| —— K)Apnt+2 K)A, 1+ K)A
2n) oyl SR+ 28k Anr+ Srr(k)Arr]
Yowele Yol
:WPDS[BnnAnn""ZBnTAnT"'BTTATT]ln(T)!
(Co)
where the coefficientsB,, are given in Table I,
and A

namic fieldsa(r) in the NESS. To carry out the average over = #*(nw)/JT? at a=(a).
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The same method can be used to calculate other averages,
as well as particle distribution functions. For instance, for fNEsév)Z(lN)J dr(f,(v]a(r))), (C7)
the single-particle distribution function, the starting point
would be and the above procedure can be applied at once.
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