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Percolation and conductivity of self-affine fractures
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The percolation and conductivity of self-affine fractures are investigated over the whole range of their mean
aperture and roughness exponkitoy direct three-dimensional numerical simulations. A scaling behavior is
exhibited for the conductivity of tight fractures in the self-affine scale range, with expéhéiit the data can
be summarized by two simple models, valid for small to moderate and for large apertures, respectively.
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I. INTRODUCTION tures (see, e.g., Adlef8]), but not for the conductivity of
fractures.

The thermal properties of rocks, which are very important This problem is closely related to studies performed on
in various problems such as nuclear waste repository or gedhe scaling properties of percolation in random surfaces with
thermal energy recovery, are greatly influenced by conduclong-range correlations. Percolation properties were studied
tion along fractures. Electrical conductivity measurementdy Schmittbuhl, Sornette, and Ro{&], Sahimi and Mukho-
are also useful for detecting the presence of fractures. Fpadhyay[10], and Marrink, Paterson, and Knackstédf];
nally, electrical data are often used as indirect measuremeniis addition, permeability was analyzed by Sahimi and
of geometrical or other transport properties. Mukhopadhyay[10]. These studies appear to be very sensi-

Despite this interest, few systematic studies of the thermajve to the definition of percolation and to the procedure
or electrical conduction in fractures can be found in the lit-yhich is used to analyze the results.
erature, which was surveyed by Volét al. [1]. This paper is organized as follows. Section Il provides a

For instance, rough fractures were represented by Steskyaneral overview of the geometry of self-affine fractures and
[2] by conductor sheets with circular insulating inclusions;jnoqyces a few statistical notations. Then, the conduction
Brown [3] generated realistic three-dimensional self-affineproblem is described, and the numerical procedures for the

fracture surfaces from their power density spectra, but used Seneration of the fractures, the solution of the transport prob-

MO—dlmenS|onaI form of the Laplace equation which implic- lem, and the statistical treatments are presented. We tried to
itly assumes that the fracture surfaces are locally smooth. TQ

the best of our knowledge, the only fully three-dimensionalc"°°S€ the most realistic conditions and procedures, i.e., the

numerical simulations of conduction in fractures are those of"¢> which would be the most easﬂy used if a real exper-
Volik et al. [1], who showed that the predictions of a two- ment was pgrformed. Finally, the various parameterg which
dimensional formulation of the local transport equation areP!y @ role in the problem are reviewed, together with the
grossly inaccurate in the realistic situation of rough and tighf™ain expected regimes. _ _
fractures. A similar conclusion was reached by Mourzenko, Section lil'is devoted to the geometrical properties of the
Thovert, and Adlef4] for the related problem of fluid flow self-affine fractures. The variances of the surface heights and
through fractures, which was also studied by a lattice-ga®f the fracture apertures in finite samples are quantified. Ana-
method by Zhang, Knackstedt, and Sah[sii. lytical expressions are obtained, which account for the influ-

Effective medium theories and resistor network modelsences of all the parameters, and especially for the scaling
are alternatives to direct simulations, which rely on mearwith the sample size. It is then shown that several sets of
field arguments or on renormalization techniques and makstatistical parameters are equivalent for describing the local
use only of the probability distribution of the apertures. Asgeometry of a fracture. Finally, the percolation of self-affine
shown by the review of Walsh, Brown, and Durhd#, fractures is investigated. It is shown that the percolation
these techniques yield essentially the same results as the twprobability does not depend upon the sample size. It varies
dimensional simulations, even with the introduction of short-smoothly from 0 to 1 as the apertui@ fractional open arga
range order. increases, and there is no percolation threshold.

The present work is an extension of the previous study of The numerical results for conductivity are given in Sec.
Volik et al.[1], and it is focused on the specific properties of lll. A few illustrative examples and accuracy tests are pre-
self-affine fractures. It is now well known that the surfaces ofsented first. Then the conductivity of fractures with vanish-
most natural fractures are self-affine over some range ahg to moderate apertures is investigated. It is related to the
length scales. Such fractures may appear macroscopicalsample size and to the fractional open area by power laws,
homogeneous, but scale dependence of the transport propéut no critical transition is observed. Finally, fractures with
ties is expected for scales in the self-affine range. Evidenckarge apertures are considered. A lubrication approximation
of such a scaling was observed for the mechanical propertiggelds a prediction in qualitative agreement with the numeri-
of joints [7] and in many two- or three-dimensional struc- cal data.
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FIG. 1. Notations for the fracture geometry.

Il. GENERAL

A. Description of fractures
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Chx(r,9)=([h=(N—(hS)I[h=(s)=(h")]). ()

These two functions are assumed here to be identical, sta-
tionary, and isotropic. Hence, they reduce to the function
Cp(u) of the normu of the lagr—s,

Cp(w)=([h*(r)—(hH)I[h=(r+u)—(h")]). (4

The self-affine character of many rock surfaces was dem-
onstrated by experimental observatigsse, e.g., Brown and
Scholz[13]). Self-affine surfaces have features over a broad
range of characteristic length scales, and remain the same in
a statistical sense under affine transformations with scale fac-
tors« anda™ (0<H<1) for the in-plane and normal direc-
tions, respectively. Their covarian€x, can be characterized
by their Fourier spectrum

Ch(r)=f|(k)efzi”k'rd2k, I(k)~k™2"72 (5)

Of course, real fractures are self-affine over a range of length
scales which is necessarily limited by a lower and an upper
cutoff length. The size of the whole fracture is an obvious

The two surfaces of a fracture can be described by theifipper bound, while the self-affinity may break down below

heights z=h*(x,y) above an arbitrary reference plaze

=0 (Fig. 1). Usually,h™ are assumed to be normally distrib-

uted random variables with a variano@ (see Mourzenko,
Thovert, and Adlef12] for detailg. The apertureb of the
fracture is the difference/=h*—h~ when it is nonnegative,

w, w(r)=0

b=10, w(r)<o.

)

b may be described by its megh) and its variancesZ,
which are generally not equal to the mean separakign
=(w) and too}, respectively. Whenv is negative, the sur-
faces are conS|dered to be in contact, with=h". It is

some microscopic characteristic length, such as the typical
size of the constitutive grains of the rock. This finite range in
the real space corresponds to a finite range for the wave
vectork in the spectrum5). For various materials, the ex-
ponentH was found to be 0.870.07 by Mady et al.[14].
For intermetallic compounds, Bouchaatal. [15] obtained
H=0.79+0.07. Odling[16] obtained more scattered data for
natural rock joints, in the range 0.464<0.85. Finally, Cox
and Wand 17] report values o covering almost the whole
range from O to 1 in their review article. For the sake of
completeness, three valubls=0.25, 0.50, and 0.87 are con-
sidered in this paper.

Examples of fractures reconstructed with various expo-

assumed here that the two surfaces are uncorrelated, whictentsH andb,,/o,=1 are displayed in Fig. 3. The sample

implies thato2=20?2.

size isA =25.60,. The three fractures were generated from

As a consequence of the Gaussian character of the heighiize same sequence of random numbers. Thus, they differ

h* andh™,
(b), and its variancerﬁ are related to the mean separatipp
and rugosityoy, by [12]

1 m
So—zerf - g , (28)
b b 1
<0_h> _ 0_:‘ = —by /Aoy (Zb)
2 2 2
o2 S| 2t +2 — e Pnl4oh— 2c
SO( \/— ‘Th Oh (20

(b) oy, oploy,, andS, are plotted in Fig. 2 as functions
of the ratiob,,/o,. S is also plotted as a function of the

ratio (b)/ oy, for later use.

The statistical properties of the fracture in the plane
can be characterized by the spatial covariance functiyns
andC;- of the fieldsh® andh™,

the open fractional are®,, the average aperture only by the surface texture, which is related to the exponent

H.

B. Notation

Recall that the geometry of a fractueis defined by the
random functions of positiorh=(x,y), or w(x,y) and
b(x,y). If the fracture extension is large enough, the statis-
tical expectation®,, and(b) and the variances?, o2, and
aﬁ can be evaluated by integration over by using an er-
godicity hypothesis.

In the following, we will consider subdomair@ of F,
with size N\. The spatial averages and variances over such
domains are denoted by an overbar.

_=if X(r)d?r Ezzij [X(r)—X]2d?r. (6)
Q Jo U g
For instance, the average and variance of the aperture(bver

areFandFﬁ, respectively. By analogy, the conductivity of
Q will be denotedC, since it is also a local average property.
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FIG. 2. Mean aperturéb)/oy, (a), aperture
b./o, standard deviatiomr,, /o, (b), and open fractional
areaS; (c) versus the mean separatiop,/oy,,
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The averages over the whole fractlfeof the local sta-

tistical parameters are denoted by brackets with a subscript

F, { )r. Suppose thaF is partitioned intoN, disjoint do-
mainsQ;, F=U;Q;. Then,

_ 1 No
Mmﬁm;x. (7

The subscript is a reminder tha(f)F may depend on the
size of the subdomains. This is not trueXfis the spatial
average of any quantity, but it is X is a local variance. For
conciseness, spatial averages okeof local variances are
also denote® 2,

(0%)F=3% 8

Finally, conditional averages ok over domains which
share a common valug of some parameteY are denoted

(X)y. If Y=y in N, domainsQ;,

_ 1y
v = 2 Xi- 9

yi=1

25 3
<b>/ o,

For instance{E}g,;b is the mean conductivity of all fracture

samples which have the same raiar, . Note that this av-
erage may involve samples with different sizes or cut from
different fractures, provided that they all verif=y.

C. Laplace equation

The conduction problem in the fracture is cast here in
terms of heat transport, but the same formalism applies to
electric current or stationary solute diffusion. In all cases, the
solid matrix is considered to be impervious.

The local temperaturd@ in the fracture void spaces is
governed by the usual Laplace equati@ee[1]) together
with the no flux boundary condition

V2T=0, n-VT=0 or S, (10)

where S is the fluid-solid interfacesee Fig. 1, with unit
normal vectom.

The conductivityEx along thex axis of a squarex X\
fracture sample is determined by solving Ef0) under the
mixed boundary conditions
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FIG. 3. Examples of self-affine fractures. The domain size is@bib all cases. The fractures were constructed With 0.87, 0.50, and
0.25 (top to bottom, andb,,/o,=1. The discretization is=0.40, for the three-dimensional visualizatiodeft), anda=0.20, for the
contour plots(right). Black areas are contact zones, and the contour lines correspond to increrpeftshe aperturéd. The axes are
graduated ino, units.

T=AT at x=0, (11a The last boundary conditions are chosen since they are the
ones which would be the most easily imposed in a real ex-
T=0 atx=\, (11b periment; a piece of fracture can be cut and wrapped to pre-

vent any leakage. The average heat @)per unit fracture
n-VT=0 aty=0 and\. (110 width may be defined as
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— 1 3
:_Fj VT dr. (12
T

The conductivityC, is deduced from the componen®Q, of
Q by

13

C, has the dimension of a length. It may be viewed as th
same fluxQ under the same conditiori&2).

D. Numerical procedure

Since it is impossible to generate numerically fractures of
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ratio A/a. Recall that the correlation coefficieftbetween
the fracture surfaces is kept fixed and equal to 0.

The first two parameters are the basic geometrical charac-
teristics of the fracture. Its conductivity must obviously de-
pend upon these two parameters, whatever the skale
though it might be more convenient to cast the results in
terms of the mean apertu¢b) or of the fractional open area
S, [see Eq(2)], instead ofb,,. Different behaviors may be
expected for narrow l,,/o,<1) and wide b,/op>1)
fractures. In the first case, the fraction of contact areas is

: . : ‘?arge, and the void space is near its percolation threshold. In
aperture of an equivalent plane channel, which yields th(?

he second case, the contact zones almost vanish, and any
subdomain does percolate; the fracture becomes a rough
walled channel, where surface roughness only yields a cor-

rective term in the conductivity.

In a continuous description, wheads equal to zero, only

arbitrarily large size, the range of characteristic length scalef€e ratio MA plays a role. Forn/A>1, the domain size

cannot be infinite, and the power spectr(@his necessarily
truncated. Square fracture samples of size L are recon-
structed, by generating the height$ andh™~ at the nodes
(iAx,jAy) of a regular square grid withx=Ay=a, L
=Maandi,j=1,2,... N..

The random fieldh™ andh™ are generated by the stan-
dard method of Fourier transfornisee[8,12] for detaily, by
imposing their variancer? and the power spectrum of the
covarianceCy,,

1K) _[[kA~22,

10) (1,

[kAl>1
IkA|<1. (14)
The normalization constam{0) is set so that the integral of
the power spectrum equals the variamﬁe The length scale
A=N,a is the upper cutoff for the self-affinity of the sur-
face profiles.

Once the profileh® and h™ are obtained, the fracture
geometry is constructed for a given separatign h* and

widely exceeds the scale of the largest heterogeneities; it
appears as macroscopically homogeneous, with a self-affine
microstructure, and its transport properties should not de-
pend upom\ anymore. Voliket al. [1] worked in this limit.

For N/A<1, i.e, in the self-affine range, scaling laws are
expected for conductivity. Of course, a transition regime
should take place fox/A~1.

This continuous situation is somewhat disturbed in the
discrete description with a nonzero valueafwhich intro-
duces the two last parameters. The finite resoluadory,
determines the size of the smallest features which can be
represented, while the ratid/a sets the range of length
scales in the fracture. A self-affine behavior is expected only
for a range of domain sizes large enough to encompass sev-
eral characteristic scales, but still much smaller than the cut-
off length A,
or aA<A.

l<n,<ny (15

h™ are discretized with the same resolution as the grid spac- ]
ing, so that eventually the fracture geometry is described by or very small values of, , the self-affine character of the
a three-dimensional array of elementary cubes of size domains is lost; in the extreme casg=1, each domain is

filled either with fluid or solid. Unless otherwise statéd, is
set to 1024 or 2048, with = £/2, and the grid resolution is
set toa=g,/5.

equivalent to a plane channel, an@,)-=(b). With A/a
=512, Eq.(15) is satisfied for a fairly wide range of sizas
The four regimes are sketched in Fig. 4. In this paper,

This master sample is then split into a collection of squareattention is focused on the self-affine regime.

domains of varying siza =n,a. The mean aperturds and
the local variances_rﬁ [see Eq(6)] of all these domains are
measured. Then, the conductivity of each domain alongthe
direction is computed by solving the probld0), (11). This
is done by using a conjugate gradient algorithm, in a secon
order finite-difference formulation(Thovert, Wary, and
Adler [18], Volik et al.[1]).

In most cased), was varied from 8 to 256. Therefore, the
statistics are evaluated over at least(f A;=1024) or 64
(for N.=2048) domains.

E. Overview of the parameters

A possible additional effect should be mentioned here. In
the homogeneous regime, a critical separatipp exists,
below which the fracture stops percolating. This percolation
threshold depends o@;, and was found ab,,.~0.100, for

d4=0.5 andb,,;~0.0 forH=1 by Mourzenko, Thovert, and

Adler [12]. The caseH=1 corresponds to regular fracture
surfaces, without any self-affine character. Near percolation,
the transport properties are expected to be size dependent
even forA> A, regardless of the covariance exponéht
Indeed, Mourzenko, Thovert, and AdI¢t2] have shown

that the critical exponents, B, and y for the connectivity
length, the strength of the percolating cluster, and the aver-
age size of the open areas, respectively, are quasi-identical

Five dimensionless parameters play a role in the problenfor H=0.5,H=1, and for uncorrelated two-dimensional per-

at hand, namely, the expondtf the ratio of the mean sepa-
ration to the surface roughnebs,/o},, the relative size of
the domains\/A, the discretization parametefo,, and the

colation.
This scaling maya priori interfere with the scaling due to
the self-affinity of the fracture geometry for very small sepa-
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_ A. Overall results
<C>

The statistical expectatioB? of the variancerg [cf. Eq.
(8)] of the surface elevations over a doméinn a self-affine
fracture is given by

Resolution

<b>

O'ﬁ 2 2 h(r S)

Self-affine =02 02[l—Rh(r,s)]d rdss, Ru(r,9)= —Z—
(16)
Transition The covariance functiol€y, is given by Egs.(4), (5), and

(14). It may be seen from Eq16) thatEﬁ vanishes for small
domains (0<A?), whereas it tends toward? if Q> A2

For small separation=|r —s|<A, 1— R, can be written
for the band-limited spectral density functiéiv) as

Macroscopically
homogeneous|

ny~1 0y <<n, n o~ N, m>> n, u 2H 2 u 4
A~a A << A A~ A AS> A 1_Rh(U)~Q K —Q' K O K , U<A
s|ngG 4. The four expected regimes as functions of the domaln WhereQ andQ’ depend only upom,
2H _
rations. It will be shown, however, that no critical behavior is _m I'A-H) = 72 _ (18)
observed for percolation or conductivity in the self-affine r(2+H) 1-H?

regime.
Substituting Eq(17) into Eq. (16) yields

Ill. GEOMETRICAL PROPERTIES

Since we are interested in this paper in the conduction 2h=? ) WHr—rH A2||r—54| d?r d°s
properties of finite regions of a self-affine fracture, in the Q
self-affinity rangea<\<<A, this section is devoted to the ()\>4

+0
A

geometrical properties of such subdomains. The main param- (19

eters are the local mean and variance of the apeEumd

—9 . — —2 —2 . . .
oy, or of the separatiow and oy, =20y, As it will turn out  The integral in Eq(19) can be evaluated for squai@rcular
later, the local conductivities are directly related to any ofdomains with sizédiametey A, which yields

these two pairs of parameters, W|th the scale dependence

embodied in the scaling aF or o2, with the sample size. \ | 2H N2 A4
This scaling is made epr|C|t in the following paragraph. Sh=0f|O(H)Q(H) ) _6(1)QI(H)(K +0 X) :
Then it will be shown that descriptions in terms danr_b) or (20)
(w,02) are equivalent, and that a relation similar to E).
holds locally in the average. with
|
1-2"*"142(H+2)F(-H,3,3;,-1)
. (H+1)(H+2)(2H+3) (squares (213
4\H*12 2T (H+3/2) disk
7 AmTDrH+3) (disks. (21b

Note that the divergence @ asH tends toward 1 is canceled kY in the quadratic term, so that E@0) remains always
finite. Equation(20) can be recast into

A\ 2H O(1)Q’(H) [\ 22H) A4
sizatoonam| - 5 (3] -ol 3 229

Y 2H 2—2H
~aﬁ(H)Q(H)(X) , (K) <1. (22b



PRE 59 PERCOLATION AND CONDUCTIVITY OF SELF-AFFINE . . . 4271

© (HQHY® (H)QH)

10" -

0.8}
0.6f
0.4}

0.2r

FIG. 5. Ratio®(1)Q’(H)/®(H)Q(H) as a function oH.

The ratio®(1)Q’(H)/®(H)Q(H) is about 1 wherH
=3, and vanishes wheH tends toward zer¢Fig. 5).
The leading order expansidi22b) dissociates the influ- : - :

ences of the overall rugosity, of the Hurst exponent, and of 10° 107 10° 3
the shape and size of the domé&lron the mean varian@ﬁ. _
For IargeH (eg 087 the condition (\/A)272H<1 is full- FIG. 6. Ratlozh/()’h versush/A for H=0.25(x), 0.50(X), and
' ' ' : 0.87 (O). The dotted lineg- - - -) join the numerical data. The
fill nly for very small ratios\/A.
ed only for very small ratios solid (—) and dashed- . —. —. —) lines are Eqs(22a and(22b),

Figure 6 showsX, as a function of the ratio/A for
numerically generated self-affine fractures, in compariso
with the first- and second-order analytical expressi@2a)
and(22b). ForH=0.87, Eq.(229 is in excellent agreement
with the numerical data. However, the contribution of the
second-order term decreases very slowly withand Eq.
(22b) still overestimates,,, by about 45%(20%) for A/A
=1/16 (1/128). FoH=0.5 and 0.25, Eq922a and (22b)
are very close together wher A <1/8, and they both agree
very well with the numerical data whehl=0.5. For H
=0.25, they slightly overpredicE,, for small N/A. This is
because the analytical derivation leading to E2Rg does

respectively. The broken lings- — —) are linear fits of the four
rfeftmost points.

[19]) that the determination of the roughness exponent of a
self-affine surface with a band-limited spectral density func-
tion by means of the scaling la¢€7) systematically overes-
timates (underestimatgsH when H<0.5 (H>0.5). The
same deviation is observed here for the estimatiod &bm
the scale dependence Bf,.

The mean varianc&? is given by an expression similar

not take into account the lower cutoff of the power densityt0 Eq. (16),

spectrum ofCy,. Since the high-frequency components in 2 Cor9
this spectrum contribute very little to the overall roughness 2:ﬂj f 1=Ru(r.9)1d2r d2s.  Ru(r.s)= —> r.s
oy, for large H, this discrepancy is observed only fét b 0?2 92[ (15 - Re(r9) oy
=0.25. (23

The curves for, in Fig. 6 can be approximated by
power laws whem\/A <1, with an exponenH,,. The scal- However,C, is not readily available and must be evaluated
ing exponentsH,, estimated from fits of the four leftmost by using the joint distribution of two Gaussian variables,
points of these plots are given in Table I. It is kno@ant  «(r) and o(9),

Cy(r,9)= fowdwljomdwz(wl—<b>)(w2—<b>)<p(wl,w2),

: ex’{_ (@1 bm)*— 2Ry( @3~ D) (3= bin) + (05— )| (24)

p(w1,03)= —F7—=
P a2 1-R2 205(1-Rp)
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TABLE I. Scaling exponenH,, of 3,;, andH,, of X, for various 2 2 y
exponentH and mean separatioths, /oy, . 1-R,~ 7"" So(1—Rp)— 3—9— bof2ow(1— Ry) ¥t
O-b o

by /o, H=0.25 H=0.50 H=0.87 (26)
Hp, any 0.301 0.503 0.793 where S, is given by Eq.(2). Substituting Eq(26) into Eq.
Hy, -05 0.244 0.489 0.790 (23) yields to leading order
Hp 0 0.258 0.492 0.792 ) ) o
H, 2 0.287 0.503 0.796 2p~2S%;,  (MA)T<L (27)
Hy 6 0.292 0.505 0.797

This expression shows thﬁﬁ depends on the mean sepa-
ration, throughS;y, and on the overall rugosityy exponent,
shape and size @2, throughZ.,, [see Eq(223 or Eq.(22b)].

In view of Eq. (27), 2, and 3y, are expected to obey
similar behaviors. Numerical data for the rafq /o, are
plotted in Fig. 7 againsk/A for various exponent$l and
mean separations,,/ o, ; power laws are indeed observed
for A/A<1. The scaling exponentd,, slightly vary with
b, /o, (see Table), with the same trend as f&j,.

(259 The ratio%,/3},, which according to Eg27) should not
depend upon the sample size, is plotted in Fig. 8 as a func-
tion of \2S,, for various ratios\/A. 3, /3, varies indeed

The substitution ofp into the integrals yields the covariance
of the aperturé as a function of the covariance of the sur-
face height, for anyp,,,

V202 (= .,
1-Ry(r,9)= ?(r_ﬁjo e Y[F(t,1)—F(t,Ry)]dt,

12 o
F(t,Rh):(—) f [u?—t*(1-Ry)] very little with /A when it is much smaller than one. The
1+Ry tV1-Ry agreement with the theoretical predicti@Y) is excellent for
H=0.87. It is still very good forH=0.5; larger deviations

du. (25h  (about 10% are observed foH=0.25 with small mean
separationsh,,,/o,. This is consistent with the condition
(MA)2H<1 for the validity of Eq.(27).

(u—bm/aW)2
OB T TR,

The asymptotic expansion of E5) for 1-R,<1 [i.e., To summarize, the expectations of the local variances of
(MA)2H<1] yields the separation and of the aperture have been shown to scale
Z /oh

FIG. 7. Ratio X,/oy, versus MA for H
=0.25(a), 0.50(b), and 0.87(c), andb,/o,=
—0.5 (lower curve, 0, 0.5, 1, 2, 3, 4, 5, and 6
(upper curve

107 107" 10° WA
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FIG. 8.2, /3 vs y2S, for H=0.25(a), 0.50(b), and 0.87(c), h
and\/A=1/64(0), 1/8(X), and 1(+). The solid line is Eq(27).

FIG. 9. Conditional averageh/oy)urz, (8 and (ap/ap)ufs
with the sample size with the exponetg andH,, given in  (b) as functions of the ratia/ oy, for H=0.5 and\/A =1/128(X),
Table 1, respectively, which are close té and slightly  1/64 (x), 1/32 (+), and 1/16(O). Solid lines are the theoretical
shifted toward 0.5. This is the basic result for upscaling locapredictions(28).
observations. In addition, the theoretical predictig@gb),

(27) or (22a, (27) are good approximations fd1=<0.7 and the data are in excellent agreement with the predictions of
H=0.7, respectively. Eq. (2) if b, /oy, is replaced by the prescribed local value

w/a}, for the conditional averages

B. Local results _ 1 w
The geometry of a fracture sampfe with \/A<1 de- (So)wier, = Eerfc( B Tih) (289
pends primarily on the rugosity of the surfaces, characterized
by o, with typical amplitl_JdeEh, which scales according to b . w1 w2
Eq. (22b). Therefore, various local geometrical properties as = =<So>v7/?h:+ —exp —-—=|, (28b
well as the local conductivity are also expected to vary with Th/ Wia, Th 4o,

the scale\. A proper normalization by local variances such
aso? or o2 may possibly account for this scale dependence. <E§>

Furthermore, the transport properties of homogeneous frac-
tures depend on the relative apertuoged o, or (b)/ o, (see,
e.g., Volik et al. [1]), which are related by Eq2), and a —\ 2
similar dependence on corresponding local geometrical pa- _ B
rameters can be expected for the local conductivities.

The various domain&; with size\ in the partition of the
generated fractur& can be sorted according to the local
parameterw/ay,. In practice, o2 is evaluated as &’§+

+Ezh,)/2. Then the local paramete&?&é?h andoy, /o, can be
conditionally averaged over all domains with identizélo, Therefore, the statistical geometry of any subdomain of a

andMA. _ fracture is fully characterized by the two parametefsand
Numerical data foKb/on)wiz, |, and<7§/7ﬁ>\%’,2;h ., are Wiy, with all the scale effects embodied in the scaling law

plotted in Fig. 9 as functions ofi/oy,. These plots mix data (22b) for op. Alternatively, in view of Fig. 9,0, andb/ay,

from two fractures wittH=0.5,b,,/o,=0.5 and 1, and cell can be used instead of, andw/a, to describe the fracture

sizes ranging from\/A=1/128 to 1/16. It appears that all geometry, since the two sets of parameters are related by Eq.

W w2
+ exp — —
o 40%

(280

Thl Wi,

Furthermore, the domain si2e has absolutely no influ-

ence; whateveh/A, (b/ay)yr | and (op/op)iE M are

identical for identical W/ay,).
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(28). In the following, the fracture local conductivities will
be systematically analyzed in termstmfo,, andS,.

C. Percolation properties

Stationary random lattices of interconnected bonds or
sites with an occupancy probabilip/are known to present a
critical probability p., called the percolation threshold
(Stauffer and Aharony20]). For p<p., the connected oc-
cupied sites or bonds form clusters of various finite sizes,
whereas folp>p. a spanning connected cluster exists. Near
the percolation threshold, various quantities such as the cor-
relation lenthé which can be roughly defined as the average
distance of two sites belonging to the same cluster or the

conductivityC obey critical behavior characterized by power
laws

(299
(29b

Ex|p—pe ", p~por

Cox(p—po)', P—Ppc=<1.

The critical concentratiorp, depends on the particular

type of microstructure, but the critical exponents are believed

to be universal for uncorrelated lattices. The generally agree
values for site percolation af€Q]

v=3, t=1.3, in two dimensions,

v=0.88, t=~2.0, in three dimensions. (30)

Several works, reviewed by Mourzenko, Thovert, and Adler.

[12] and Sahimi and Mukhopadhyd$0], have shown that
long-range correlations may induce different values.of

The sudden transition from nonpercolationg to percolatio
states and the power lawg9) hold for unbounded media.
For finite samples with size\, a percolation probability
P(p,\) can be introduced, which can be tentatively fitted by,
a two-parameter error function

1

J27A

whereP,(\) is the average concentration aag\) is the
width of the transition region. As the sample sixein-
creasesP, (M) tends to the percolation threshgdd and the
transition becomes steep@fisher[21]),

(31

P(pN)= _fp o Pa 2% iy,

Pa\)()\)_ pcoc)\illyv (32@

A(N)oe N7, (32b)
These scalings can be used to determirandp,.. Simi-
larly, the conductivity near the critical point is also size de-

pendent,
Con """ FL(p—p)A"]. (33
Alternatively, P,(\) can be defined as the concentration
above which the percolation probability is larger tharbut
this determination is more sensitive to statistical noise.
The functional form of Eq(31) has been criticizedZiff
[22]; Haas[23]), but nevertheless, such a fit is convenient to
guantify the position and width of the transition. In the fol-

n

d

FIG. 10. Percolation probabilitP(go,A) as a function of the

fractional open are§, for H=0.25(a), 0.50(b), and 0.87(c). Data
are forn,=8 (A), 16 (+), 32 (0), 64 (X), and 128(x).

lowing, the form ofP(p,\) will be found independent af
(see Fig. 19 and any reasonable choice of functional fit is
equivalent in order to show that(\) is constant.

In the present situation, the fractional open asgaglays
the role of the concentratiop and the finite-size scaling
technique was applied by Mourzenko, Thovert, and Adler
[12] to determineS,. and v for fractures with spatial corre-
lations similar to Eq(14), in the homogeneous regime, i.e.,
N> A. They obtaineds,.~0.5 forH=1, which is valid for
many two-dimensional continuum systems with statistically
equivalent conducting and insulating phases, Sgpd=0.53
for H=0.5. The exponen¥ was found very close to the
standard valuég.

The percolation probability was determined here for do-
mains of varying size& as a function of the fractional open

areaS;. The percolation criterion was the existence of a
connected path joining the two opposite sides of the sample
along thex direction, which is equivalent to finding a non-
zero conductivityC, when solving the problen(10)—(13).
Hence, this condition corresponds to the rile as defined
by Reynolds, Stanley, and Kle[24]. For each value of the
exponentH, all the domains of siza& in fractures with vari-
ous mean separations,/ o, were sorted according 18,
and P(Sy,\) is defined as the fraction of percolating
samples in each clasB(Sy,\) is plotted as a function d§,

in Fig. 10, forn,=8 to 128.

The data fom, =128 are somewhat scattered because the
initial £X £ fractures contain a small number of domains of
this size, but smoother data are obtained rige<64. The
most striking observation is that all domain sizes yield quasi-
identical curves, in contradiction to E¢32). The position
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TABLE II. Position of Sy,, and width Ag  of the transition  whereP(¢) is the probability that the surface cut at height

evaluated by Eq(31) from the data of Fig. 10. percolates. The width of the transition region is measured by
the variancarfﬁ of the distribution of thresholds.
H N Soav As, The numerical results of Schmittbuhl, Sornette, and Roux

0.25 8 0.586 0.219 [9] cannot be directly compared with ours, singeand S,
0.25 16 0.579 0.220 are not equal except fab=S,=3. However,¢. behaves as
0.25 32 0.569 0.204 Spav In Table 1. For positiveH, it first decreases aks in-
0.25 64 0.565 0.207 creases; then, it remains constant wimgnexceeds 64. It is
0.50 8 0.567 0.256 also a decreasing function &f, and is slightly larger than
0.50 16 0.551 0.251 1 for H=0.8. The variancei is also fairly constant as soon
0.50 32 0.531 0.268 asn,=32, asAS0 in Table Il. These numerical observations
0.50 64 0.534 0.234 agree with the analytical derivations for the hierarchical sur-
0.50 128 0.523 0.278 faces, which also predict an infiniteexponent for positive
0.87 8 0.523 0.350 H.
0.87 16 0.538 0.342 A similar behavior was also mentioned by Bour and Davy
0.87 32 0.534 0.343 [25] in a different context. They considered two-dimensional
0.87 64 0.534 0.320 fracture networks modeled as randomly oriented segments
0.87 128 0.535 0.327 with lengths distributed according to a power law. When the

exponent is small enough so that the probability of occur-
rence of a large sample-spanning fracture dominates the per-
Soavand widthA g, of the transition were evaluated by use of colation properties, the transition width(\) is indeed
Eqg. (31), although the form of this fitting function may not found constant.
be highly appropriate foH=0.87. The results are given in ~ On the other hand, Sahimi and Mukhopadhya@] con-
Table Il. In view of the scatter of the data in Fig. 10, the ducted very similar simulations, although they considered
measured variations d,,, are not meaningful, except for bond lattice percolation. They introduced long-range corre-
the smallest sizek. In this latter case, however, they result lation by assigning to the bonds spatially correlated conduc-
from discretization effects; the actual scale range in thes#vities, and removing the bonds with conductivity below a
samples is very limited, and their statistical self-affine char{rescribed threshold. The spatial correlation was described
acter is lost. The width\ is a much better measure of the by a spectral density function very similar to Ed4), which
scale effects, and the values given in Table Il increasélso involved a cutoff lengti\. In our terms, it reads
slightly with H but depend very little oi. A least squares fit
of the form(32b) yields very large values af, which essen-
tially reflects the scale invariance af
This absence of scale dependence implies that no perco-
lation threshold exists in these continuous media, in the selwhered is the dimension of space. We discuss here their
affine regime, which in principle can be extended over arfwo-dimensional results, but they reached similar conclu-
arbitrarily large scale ranga. sions in three dimensions. As done in the present work, finite
Our observations are in agreement with Schmittbuhl, Sorsamples with sizes, <256 were cut from larger lattices,
nette, and RouX9], who systematically investigated perco- With A<A </L. They performed a finite-size scaling analysis
lation properties of thresholded self-affine surfaces. Theyo determine the percolation threshold and the expoment
used two different iterative procedures to generate these subased on Eq(32) with p,(\) replaced by an effective per-
faces, referred to as “Euclidean” and “hierarchical.” The colation thresholdo.(\) below which the backbone of the
second one is tailored for an easy implementation of renorpercolation cluster vanishes.
malization techniques, and thus its percolation properties Eventually,p.(\) is found to first decrease sharply ks
could be derived analytically. The first model, which is increases, but beyond a sixg,~ 150 lattice units, the de-
equivalent to the one used in this paper, was addressed npendence op. on\ is very weak if any. Again, the general
merically. evolution p.(\) is reminiscent of that 05, in Table I,
Samples of varying sizes were constructed for various except that the variations &,,, for small X are much less
H exponents, positive or negative; we only discuss here thdramatic, and thaS,,, becomes independent of much
caseH>0. Percolation was checked as a function of thesooner.
threshold level. The level elevatiof is normalized by the However, Sahimi and Mukhopadhydi0] evaluate si-
lower and upper excursions of the surface for each particulamultaneously the exponemtand find it to decrease slightly
finite sample, that is, if the surface elevation is regarded agom 3 for H=—0.5 to about 1.2 foH~1, in contradiction
the separationv between two fracture surfaceg,is a map- to our observation thazﬁso (or ai, for Schmittbuhl, Sor-
ping of the fractional open are8,; =0, 3, and 1 corre- nette, and RouX9]) is scale independent. Accordingly, Sa-
spond t0S,=0, 1, and 1, respectively. Schmittbuhl, Sornette, himi and Mukhopadhyay10] interpret the constant value of
and Roux9] define the average percolation threshgldas  Pc beyond\ ., as a critical percolation threshold, whereas our
re dP(g) data in Fig. 10 suggest that the probability that a sample is

b——"d (34  Percolating (nonpercolating when So< Spav (So™>Soay)
o do ’ never vanishes, as long as its sizés smaller thanA. It is

|(k)“mm7z, (39

¢C(N,H)=f
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FIG. 11. Maps of the local mean apertutegleft) and conduc- 008 0108
tivities C, (right) in a fracture withb,,/o,=0.5,H=0.5 and for
two values of the domains sizg = 16 (top) and 128(bottom). 0.06 0.06
.. .. . 0.04 X 0.04
only when\> A that a real critical transition occurs, as in W,
the situation considered by Mourzenko, Thovert, and Adler 0.02 S 002
[12]. _ o _ " 5
This apparent difficulty is due to the fact that the averag- i e @ g 9 4 g )
O, O,

ing procedure of Sahimi and Mukhopadhyfl0] is very
different from the one used heng, andv are determined on
a given configuration by varying; then these values are
averaged over many different configurations.

x

x h

FIG. 12. Histograms of the conductivitiéx/ah in a fracture
with H=0.87,b,,,/01,= 0.5 (left) and 1.0(right), and domain sizes

n, =32, 64, and 128top to botton). The vertical line is the average

The influence of the statistical procedure can be be’[te(r)velr all the domains
appreciated with the help of Marrink, Paterson, and Knack- '

stedt[11], who studied the percolation transition on a two-  The statistical distribution of the conductivities is better

dimensional substrate with long-range self-affine correlacharacterized by the histograms of Fig. 12. The largest val-
tions. They determined the mean minimum fraction of sitesyes of the conductivity seem to become less and less fre-
needed to be occupied to span the network and found this byuent as the size of the domain increases, but this is mostly

iterating while testing for spanning. They studied the influ-due to the smaller number of domains of large 824 for
ence of the percolation rules of Reynolds, Stanley, and Kleith, =32, 64 for n,=128). The variations of the average

[24]. They indeed found such an influence, in contrast wit
percolation in uncorrelated mediar short-range correlated

Their results are in agreement with those of Sahimi an

Mukhopadhyay 10]. Some of them are displayed in Fig. 25.

In order to eliminate any doubt about possible effects o

the statistical generation and conditional averaging proc
dures, various procedures have been te&ed the Appen-

dix). The conditionally averaged percolation probability

P(§0,)\) was replaced by the fraction of percolating domain
in a fracture with overall open areégy, or cut from indepen-

long asA<<A.

IV. CONDUCTIVITY

A. Examples of results and accuracy tests

displayed for a fracture witl,,/o,=0.5, H=0.5, and for

lating domains(white blocks in the conductivity majpss
only slightly larger for largen, .

i

(Cy)e with n, are seen to be small when compared to the
catter of the individual conductivities. All the histograms
uggest a truncated Gaussian distribution of the conductivi-
ies, which is confirmed by the cumulative distribution func-

ions plotted in Fig. 13. The only differences between the
Sarious size, are very slight horizontal shifts. Hence, the

local conductivity distribution seems to be independent of
the observation scale, as was the percolation probability in

Sthe preceding section.

In the rest of this subsection, the influence of the discreti-
dently generated fractures. The three statistical proceduregtion parametea/sy, on the numerical results is analyzed.
ConSiStentIy show that the width of the transition to perCO'a'Three effects can be foreseen. First, for a gi\/en geometry,
tion does not depend upon scale for self-affine fractures, age resolution has a direct influence on the accuracy of the
solution of the Laplace equatiofsystems(10) and (11)].
Since the numerical solution scheme is second-order accu-
rate anda is much smaller than the typical apertures, this
effect is probably fairly small. Second/o, filters out the
finer structures of the solid surfaces; this effect precisely cor-
An illustrative set of data is presented in Fig. 11. Theresponds to the resolution-limited regime in Fig. 4, and van-
maps of the local average apertures and conductivities alighes in the self-affine regim@5). The strongest influence
probably results from the discretization of the fracture geom-
two domain sizesh, =16 and 128. Local conductivities are etry in the direction normal to its plane. If the apertuve
correlated with the mean apertures; the fraction of nonperco=h*—h~ at some positiorix,y) falls in the interval ]0a/2],
the two solid surfaces are viewed as if they were in contact in
the discrete representation of the fracture, even though a
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FIG. 13. Cumulative distribution function of the conductivities
in a fracture withH=0.87,b,,/0,=1.0, and domain sizes, =32
(-.—.—.—0),64(— ——),and 128(- - - -). The solid line(—)

is a fitted Gaussian distribution for, = 32. " |

clear gap still exists in the continuous space. This may have 0 01 02 03 04 05 06 07 %8,0
a significant impact on the percolation status of the fracture. oo
Of course, apertures in the ranige2,a are rounded up te, FIG. 14. Log-log plot of the reduced conductivit,)r /o,

but this does not compensate the possibly dramatic effect Gfersus the relative size/A (a) and arithmetic plot of the difference

closing a critical site. ) . ((bY—(C,)¢)/ o, versus the mean reduced standard deviation of the
Such effects were investigated by Mourzenko, Thovertapertureszb/Uh (b) for a self-affine fracture withH=0.87,

and Adler[12]. For self-affine fractures, withi=0.5and in /4 =05 n,=1024, anda/a,=0.1(—), 0.2(— — =), or 0.4
the homogeneous regima ¥ A), the percolation threshold, (. _._ _).
in terms of open fractional area, was shown to vary from

Soc=0.569 to 0.547 and 0.538 fa/oy=1, 0.5, and 0.25, Fig. 15 as a function of the relative sia¢A. The fractures
respectively. These open areas correspond to mean sepaygsre built with ny,=512 (H=0.25) or 1024 H=0.50,
tionsby, /o, =0.25, 0.17, and 0.14, respectively. An extrapo-g 87), andn, ranges from 1 to 256. The leftmost point on
lation to the limit a/o,—0 yielded Soc=0.527 bm/0n  each curve corresponds by =1, the second one to, =8,
=0.10). These data suggest that the errors associated With the rightmost one tn)\:256-<6x>F is equal to(b) for

the Is;andard resdoltutlon usedtlrj tthe fo':low't'ﬁy"rh; Oi.bz’ n,=1, and decreases whanincreases. The initial slope of
would correspond to an uncertainty smaller than &fbr the curves is close to zero fét=0.87, and gets steeper as

theAmseea':no?%ir:#;?i.cal checks is presented in Fig. 14 Thethe fractal dimension of the fracture surfaces increddes
A . e creasingH). However, this part of the curves obviously be-
conductivities in a fracture witiH=0.87 andb,,/o,=0.5 ingH) wev 'S P urv VIously

ted T ; q o q Ui longs to the resolution-limited regime in Fig. 4. Curves for
were computed for various domain sizes and resolutiongye ey exponentsl but different apertureb,,, appear sim-

a/oy=0.1, 0.2, and 0.4. The average conductiiG4)r in-  ply shifted vertically, as do the two curves for two different
creases slightly as resolution is refined, but the results fofeglizations of H=0.5,b,,/o,=1). Recall that the genera-
a/oy=0.1 and 0.2 differ by less than 2% throughout thetjon of the fracture geometry is stochastic, and the relative
range ofA/A [Fig. 14@)]. The differenceb)—(C,)¢ is plot-  size of the reconstructed sample is smdll £ =2). There-

ted against the mean reduced standard deviation of the apdore, the actual average apertufled in the reconstructed
turess, /o in Fig. 14b). This type of representation will be sample may differ from the value expected from Ez).

used in the discussion of the results for large apertures in |nstead of considering the overall averaq&JF, the
Sec. IVC. The curves for all resolutions are very similar.|ocal conductivities can be analyzed in relation to the local
The difference betweea/o,=0.1 and 0.2 is roughly con- geometrical characteristics. The conductivities from the same
stant and equal to 0.0%. data set were conditionally averaged over domains with

identical ratiosb/o,. Data for(ax/a)g,;b from fractures

with various mean separatiohs,/ o, are plotted in Fig. 16
The conductivity of self-affine fractures withl=0.25,  againstb/o,—b*. The offsetb* is discussed later.

0.50, and 0.87 anty,,/o,=0.5 or 1.0 was computed over |t gppears that the data for various domain sizes are well

domains of varying siza, with A<A. The average over all gathered by this representation, which means that the scale

the domains in a fractureC, ) is given in the log-log plot of  effects are fully accounted for by the normalization of the

B. Narrow fractures in the self-affine regime
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FIG. 15. Log-log plot of the reduced average conductivity FIG. 16. Log-log plot of the reduced average conductivity

(C )¢ I oy, for self-affine fractures withd=0.87 (—.—.—.—), 0.50 (Exo—b)g,;b for self-affine fractures wittH=0.87(— — —), 0.50(),
(—), and 0.25(— — —), andb,=0.5 (X) or 1 (O), versus the  and 0.25(—.—.—.—), andn, =32 (O), 64 (X), or 128(), versus
relative domain size/A. bio,—b*. The offsetb* is 0.29 (H=0.87), 0.22 H=0.5), or
0.23 H=0.25).
conductivity by the local aperture standard deviatign
For large relative aperturedfo,= 1), all the data col- 0.88543°, H=0.25 (363
lapse together singeC,) is very close td. This region will C.Jop=14 1.043%°, H=0.50 (36b)

be examined in the next subsection. However,dor,<1,
different behaviors are observed for the various expondnts
The data for each exponent gather fairly well around straight
lines, which correspond to power laws with exponents 1.6
2.7, and 3.5 foH=0.87, 0.50, and 0.25, respectively. The
offsetb* was introduced and set in order to obtain the best
alignment for each exponent, and is equal to 0.29, 0.22, and C.lo 2550_3.4 37)
0.23 forH=0.87, 0.50, and 0.25, respectively. In all cases, xI7h '

. .
b* corresponds to a fractional open afa-=0.1+0.02. This model is also plotted in Fig. 17 and is seen there to be

This situation is very reminiscent of the classical critical very successful, although so far it has no theoretical substan-
behavior of the conductivity in site percolation, which is de-ition.

scribed by Eq(29b). This suggests recasting the numerical  The power laws36) and (37) differ from the critical be-
data in terms of the fractional open arB@. This was done  havior for stationary random med{@9b) by three important

by conditionally averaging the local conductivities over do-features. First, the exponents depend upband they are
mains with identical open are&s,. <CX/Eb>gO is plotted  very di_fferent from _the unive_rsal value of for_ two-
versus§0 in Fig. 17. For clarity, the data fdd = 0.5 and 0.87 dimensional percolation, which is supposed to be insensitive

to the details of the microstructure of the medium. Second,
were shifted by one and two decades vertically, respectlvely,[.ne percolation threshol8y, and the transitiorSy,, do not

It was not necessary here to introduce any offseSgrand appear in Eq(36) and even the offseb* used in Fig. 16

the data are distributed around straight lines $3<0.8, corresponds t&,~0.1, which is much smaller than the per-
which corresponds roughly llm/absl 1. The scatter for the colation thresholds So.~0.53 and 0.50 obtained by
smallestS, results from the smaller numbers of occurrencesMourzenko, Thovert, and Adldd2] for H=0.5 and 1 when
of such open areas. A>A (see Sec. IV Aor than the values d&;,, in Fig. 10 or

A least squares fit over all the data in the raig3e<0.8  in Table Il. Conversely, nothing remarkable occurs &
yields ~ Sy IN Fig. 17. Finally, the conductivity of a percolation

0.8, H=0.87. (360

The typical uncertainties for the prefactors and exponents
are 0.15 and 0.2, respectively. It is very tempting to gather
the three fits of Eq(36) into the single model
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FIG. 17. Log-log plot of the reduced average conductivity 2] e e Zoni ol (75 g
<6x0'b>§o for self-affine fractures wittH=0.87 (— — =), 0.50 (), 3 1 2 3 P —-
and 0.25(—.—.—.—), andn, =32 (O), 64 (X), or 128(x), versus b
go. For clarity, the data foH=0.5 and 0.87 were shifted by one . _
and two decades vertically, respectively. The dotted lines are the FIG. 18. Ratio((b—C,)/oy)p5, versusb/oy, for H=0.25(a),
model(37). The vertical broken line corresponds to the percolation0.50(b), and 0.87(c). Data are fom, =32 (O), 64 (X), or 128(x).
transition forH=0.5 from Mourzenko, Thovert, and AdI¢t2]. The broken line inc) is the analytical predictio45).

. o . The fractional open are§, does not depend on the sample
network near the critical concentration is known to be sizegjze in the average. It is related to the mean relative aperture
dependenf21], according to Eq(33). Therefore,C, would  5/5, by Eq.(28). The constan€ can be deduced from mea-
scale with an exponent-t/v~—1 independent ofH,  surements of the conductivity on a finite domain. The expo-
whereas in the present situati@) varies like o,, which  nentH of A can be replaced bl from Table I.
according to Eqs(22b) and(27) scales as.".

In their numerical study already discussed in Sec. IlIC, C. Large apertures
Sahimi and Mukhopadhydy 0] also determined the conduc-  As seen in Fig. 16, the conductivity of widely opened
tivity of correlated bond networks. The bond conductivitiesractures approaches their mean apertﬁrewhich is obvi-
play a role equivalent to the fracture apertiravhen the  gysly the leading term of any development in this limit. It is

fracture conductivity is calculated by solving the two- therefore natural to analyze our data for wide fractures in
dimensional Reynolds equatidsee Volik et al. [1]). Near ~ P

the percolation thresholg,, they observed a critical behav terms of the deviation oL from b.
- " : .

ior of the conductivity obeying Eq29b), with an exponent The conditionally averaged rati¢(b— CX)/Ub>b’_"b_IS
which decreases from 1.3 fddi=—0.5 to about 1 forH plotted in Fig. 18 as a function of the relative apertbfe, .
~1. As already mentioned in Sec. lll, it should be empha-All the curves decrease with/o,, when it exceeds 1.5, and
sized that these results are obtained in very different condiseem to tend toward a nonzero limit. The curves for different
tions than the ones here, since a single network is used f@izes\ are very close to one another, which means that most
which the bond occupation is varied. of the size dependence is accounted for by the normalization

In summary, the combination of Eq&2b), (27), and(37) by oy,; only a slight decrease d{b—C,)/o},) whenX in-
fully describes the conductivity of finite samples of fracturescreases is observed fE’Eb; 1.

in the self-affine regime, from vanishing to moderate relative e pehavior OfE__)/Eb is easier to grasp when the
X.

apertures same data are recast in terms of the fractional contact area
Sc=1-S, as done in Fig. 19. Note that the range of 0.9
C. =[ 2Q(H)O_hAfH])\H§50.573H:C)\H§50.573H <S5,=<0.995 corresponds to 1.4%/0,<2.6. Thus, Fig. 19
X ]

covers a shorter range than Fig. 18. It is, however, the most
interesting range for real situations, since fractional contact
- . areas less than 0.5% are uncommon. The histograms in Fig.
S$p=<0.8 or b/op,=<1.2. (389) 20 indicate the number of domains taken into account for the
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FIG. 19. Ratio((b—C,)/0y,)s, versusS;=1—S, for H=0.25
(a), 0.50(b), and 0.87(c). Data are fom, =32 (O), 64 (X), or 128
(*). The dotted lines are overall linear fits {8¢<0.06. The broken
line in (c) is the analytical predictio45).

averages of Fig. 19. A few erratic points fof =128 result
from very poor statistics.

T
e Al
A0 A0l

FIG. 20. Histograms 08,=1— S, for H=0.25, 0.50, and 0.87
andn, =32, 64, and 128.
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It is now apparent that(b—C,)/a,)s_ converges toward
a finite limit as§0 vanishes. If the slight residual dependence
on \ is neglected, a linear least squares fit in the ra§ge
<0.06(i.e., b/o,=1.7) yields

1.585,+0.76, H=0.25 (393
(b—C,)/o,=1 2.845,+0.50, H=0.50  (39b)
3.705,+0.40, H=0.87. (399

This result may be discussed as follows. The constant
term in the right-hand side of E¢39) corresponds to a re-
duction of the effective aperture of the fracture, due to the
surface rugosity. It is a fraction of the surface rugosity, since
op,=~V20y in this range of aperture. It increases lsde-
creases, because the surfaces become more irregular. The
other term corresponds to the influence of the contact areas,
with at least two distinct effects. First, it reduces the area
available for the flow; second, it induces a tortuosity, since
these contacts have to be circumvented by the flow.

For wide fractures, the lubrication approximation may be
used to get at least an insight into the functional dependence
of the conductivity upon the geometrical parameters. The
basic requirement to apply the lubrication theory is that the
surface height or aperture variation amplitudes should be
much smaller than the longitudinal scale over which they
take place. For instance, for a sinusoidal surface profile with
amplitudeo, and wavelength\, this requiresr,,/A<1. For
surfaces with features over a continuous spectrum of length
scales, this condition should hold for all scales, which im-
plies

kl(k)Y?<1. (40)

In view of Eq. (5), this condition can be fulfilled only iH
=1
=z.

The following derivation parallels closely that of Volik
et al. [1], except that it is three dimensional instead of two
dimensional. Consider a fracture whose limiting surfaces are
described by

h™(x)=0, h*(X)=w+o,l(X). (41
We suppose thaf has zero mean and unit variance, and that
it is periodic with period\ in the x andy directions. The
problems(10) and(11) can be solved by expanding the tem-
perature field in terms of the small parameter o, /w,

T=To+eT+€* T+ . (42)

The zeroth-, first-, and second-order problems are solved
successively, by using Fourier transfor(see the Appendix
of Volik et al.[1]). One obtains finally

_ 27 k21 (k)
W-C=37 2 2 anhzakw) 43

where the summations run over positive and negative coor-
dinates of the wave vectde=(p/\.g/\). For small wave
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numbers, tanh(@kw) can be approximated byzkw. The Pe
contribution of high-order terms to the summation is negli-
gible sincel (k) decreases a4 ~2"~2 with H> 3. Therefore,

0.8 T T

K2I(k) 102
w

_ 1 1
ORI 2 T w9
Sinceo,= oy, andb~w for large apertures, we get finally 07 )
w—C, 10y
o Ta2w (45) 0.65; 1

This result is compared with the numerical data for
=0.87 in Figs. 18 and 19. The results of E(45) and(43), 0.6- 1
with or without linearization of tanh(@kw), were checked to
be undiscernible. The general shape of the analytical curve is
very satisfying, though the coefficiegtin Eq. (45) is an 0.55 -
underestimation. ,

V. CONCLUDING REMARKS 05l- K i
Full computations of the dependence of the macroscopic ST
properties on the size of self-affine structures are now pos-
sible, thanks to the tremendous increase in computer power. 0455 - ' ye
s L ; 10 10 o 10
The determination of the conductivity by solving the three- A

dimensional Laplace equation in self-affine fractures offers

an example of such a possibility. A formula summarizes the FIG. 21. Percolation probabilite(Sy,\) versus sample size

results for small and moderate apertures. ny for H=0.25(— — —), 0.50(—), and 0.87(———-— ) and two
This direct approach can be extended in many ways; pefmean fractional open are& (intercept with they axis).

meability will probably be the most straightforward process i o ]

to analyze. However, dispersion of a passive solute througﬁoss'ble; In variantiiia), the fracture aperture is set so that

self-affine fractures will offer a time-dependent exampleth® fractional open area in the tested domain is equal to a

which will be of the highest interest. prescribedSy, and the percolation of percolating domains is
The interesting problem of the influence of the definitiondenotedP,(Sy,\). In variant(iiib), the fracture aperture is

of percolation and of the precise procedure applied to thg,reased progressively until percolation occtBsj(\) is

results has also to be directly addressed. the statistical expectation of the fractional open areas where
this transition takes place.
ACKNOWLEDGMENT The last procedure apparently corresponds to that used by

Sahimi and Mukhopadhyayi 0] and Marrink, Paterson, and
Knackstedt[11] when rule R, of Reynolds, Stanley, and
Klein [24] is used. Note, however, that an experimental ap-

Most computations were performed at CNUSSlibsi-
dized by the MENESR whose support is gratefully ac-

knowledged. proach would probably use methdd, if samples from a
single large fracture are available, @n, if several fractures
APPENDIX: TRANSITION TO PERCOLATION with different apertures but similar structures can be

The procedure used in Sec. Il C, where subdomains argargpled.b ined with dufis disolaved in Figs. 21
cut from a large fracture and sorted according to their frac- ata obtaine .W't procedu) are dispayed In gs.
i — N . and 22.P(Sp,\) is plotted as a function af, in Fig. 21 for
tional open are&, is denoted(i); £y|elds a conditionally =0.25, 0.50, and 0.87. Two mean open ar8as/ere con-
averaged percolation probabili(Sy,\). sidered for each exponent, which correspond to the intercepts
In procedure(ii), the conditional averaging is removed; of the curves with they axis. For these two values &,
Pe(Sy,\) is defined as the proportion of percolating do- there is no apparent dependencePe{Sy,\) uponX\. Quite
mains, in a fracture with overall open ar&. It is then remarkably,P(Sy,\) is close toS; for all sample sizes.
necessary to consider a larger set of fractures to investigateTahe deviations are of the order of 0.02, which is within the
range of mean apertures. It may be argued that the domairsgatistical error bars. This is confirmed by Fig. 22 where
involved in the averages for obtaining(Sy,\) and  Pr(So.A) is plotted againsS, for two particular sample
P:(Sp.\) are not statistically independent, since they are cufizesn,=16 and 128. Again, no scale dependence can be
from fractures where long-range correlations exist. observed. In addition, the average percolation probability
For this reason, in procedui@i), many large fractures Pr(So.\) is close toS, throughout the range of fractional
are generated independently; a single domain is cut frorRP€N area. o
each of them and tested for percolation. Two variants are Hence, it appears thd-(Sy,\), like P(Sy,\), is actu-



4282 V. V. MOURZENKO, J.-F. THOVERT, AND P. M. ADLER PRE 59

1
0.8}
0.6}
0.4
0.2f
% 02
1
0.8 /
0.6} e % 02 0.4 06 08 — 1
SO
0.4
0.2r 1 P
. ) . . (b) 1 —F
% 0.2 0.4 06 08 1
0.8f
1
’_‘_,.
o8 0.6/ -
0.6 o
0.4} 1 0.4r
0.2+ kS 1
© 0.2r
ol ) , , ,
0 0.2 0.4 0.6 0.8 So 1 . ‘ , ' , ®)
0 0.2 0.4 0.6 0.8 1
SO
FIG. 22. Percolation probability?=(Sy,\) versus mean frac- _ - _
tional open are&, for H=0.25 (a), 0.50 (b), and 0.87(c), and FIG. 23. Percolation probabilitP(Sy,\) versusS, (a) and
n,=16 (— — —) or 128(—). Pe(So,\) versusS, (b) for fractures withH=1 andn,=1024.

Data are fom, =16 (O), 32 (x), 64 (X), and 128(+).
ally independent of the sample size. This can be explained as

follows. Pe(So,\) is related to the conditional average totally open or totally closed, with probabilitied, and (1
P(So,\) by —S,), respectively. Accordingly, we expe€t-(Sy A <A)
. =S, which is well verified in Fig. 2&). Furthermore, do-
S 3 — = = = i hich contain both open and closed areas percolate
Pe( m)—f P(SolSo MP(So M dS. (AL TS W =
"5 0 %ol > = with a probability P(Sy,\) which is again found roughly

) ) o o equal to§o for A<A, as shown in Fig. 2&). Note that the
Since the fracture open area is statistically self-similar, the

T — — Shape of the curves fd?(go,)\) for H<1 in Fig. 10 seems
probability distribution Pr&|Sp,\) of the local averag&, g evolve aH increases toward the straight line observed for
given Sy, is not expected to depend upon the sample 5jze —1 in Fig. 23a).
as long as it is in the self-affine range<A<A, and Eg.

(A1) red . The results obtained by applying procedgig) are sum-
reduces to

marized in Figs. 24 and 25. The domain sizewas varied
L from 16 to 256 with constam, =256 (512 for n, =256).
PF(SOv)\):f PI(So|So) P(Sp M)A S, . (A2)  The percolation probabilitf,(Sy,\) was evaluated by con-
0 sidering 200 6, =16,32) or 100 0, =64) independent ran-
— dom realizations, foi5;=0.4, 0.5, and 0.7. The results are
Thus, if P(Sp,\) is actually independent of, as suggested piotted in Fig. 24 foiH =0.25, 0.50, and 0.87. The curves for
by Fig. 10, so isPe(Sp,\). _ the various sizes appear slightly shifted horizontally, espe-
However, the reason whPr(Sy,M)~S, is less clear. cjally for n, =16, which corresponds to the influence of the
This equality results directly from EqA2) if \ is set equal  sample size on the position of the percolation transition, due
to a, but Eq.(A2) is not supposed to apply in this range. A g interactions with the discretization. However, the slopes of
rigorous substantiation of this surprising property would rethe curves are similar, which confirms that the width of the
quire an exact derivation of P3¢|S,). transition does not depend upon scale. The curves of Fig. 10
For comparison, procedurés and(ii) were also applied for n,=32 are recalled for comparison in Fig. 24. It appears
to non-self-affine fractures, withl=1. In this situation, the that even though the width does not depend on the scale
surfaces are characterized by a single length state, was  for both procedures$i) and (iiia), it slightly depends on the
set to 1024 and the results f&(Sy,\) and P(Sy,\) are  Statistical averaging technique.
given in Fig. 23 forn, =16 to 128, i.e., for domains much The transition fractional are&,,(\) is plotted in Fig. 25
smaller thanA. Since there is no small-scale rugosity, veryversus 1, . The corresponding,,, from Table Il are re-
small domains are expected to be for their most part eithecalled for comparison. Method$) and (iiib) give identical
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1 FIG. 25. Transition fractional areaSy (\) (—) and Sy,
(— — —) versus I, for fractures withH=0.25(%), 0.50(O) and
0.87 (x). The error bar fon, =32 andH =0.87 corresponds to the
FIG. 24. Percolation probabimpl(go,)\) versus§0 for frac- determinations ofSy,, from four subsamples. The dotted lines
tures withH=0.25(a), 0.50 (b), and 0.87(c) andn,=256. Data (- - - -) are the data of Marrink, Paterson, and Knacksff for
are forn, =16 (O), 32 (), 64 (X), and 128(+). rule Ry with H=0.2(X), 0.5(O), and 0.8(*).

results, within the numerical uncertainties,_im,r? 64. For l;rgtrr}rﬁrlr? rt%(ca);;ag;u&gr;v zlatirr]1 ; v%%ssglt)ne: amﬁﬂ 2(2%22%-n
smaller domains, procedur) yields Spay>Soi(N), €SPe- s agjysted in order to obtain a prescribed open &gaThe

cially for H=0.5 and 0.87. This may be partly due t0 the t5mer sampling can actually be performed on a real fracture
finite class width6S=0.05 used when sorting the d(lnalns iN and corresponds to procedufi¢; the latter is restricted to
procedure(i) according to their fractional open are8g. If numerically generated samples and corresponds to procedure

possible spatial correlation effects are disregard,,\)  (iii). It was checked by running proceduii¢ on large frac-

should be equal to tures with different overall mean separations that this effect
cannot account for the difference betwegyy, and Sy, (\).
S 4592 These comparisons and an accurate determination of the
f—p Pr(S|Sp,M)P(S,\)dS position of the transition zone to percolation are seriously
p(go A= 507632 . (A3) impaired by the numerical uncertainties, illustrated by the
' S"+5S/2Pr(S|SO \)dS range ofSy,, obtained _fornx=32 andH=0.87 from four
Sy 652 ' smaller data settsee Fig. 2h

_The dgta of Marrink, Paterson, anql__Knackst[étiI], ob_-
Since neither P&|S,,\) nor P,(S,\) are uniform over the tained with a procedure equivalent {oib), are also dis-

. = — . . played in Fig. 25; note that the comparison is only approxi-
interval [ So— 65/2,S+ S/2], wide classes may introduce |10 torH=0.25 and 0.87. In spite of a slight shift, their

biases inP(Sy,\), from which So, is deduced by Eq(31).  results are consistent with our data and follow the same
However, a few tests witbS=0.02 only yielded very small  trends. Marrink, Paterson, and Knackstgdt] also observed
differences, at the cost of a larger statistical noise. that the standard deviation of the transition concentration

On the other hand, it is possible that the average percolasjightly increases witi, but remains finite when tends to
tion properties of selected domains with a givBftaken infinity, as doesAS0 in Table 1.
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