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Percolation and conductivity of self-affine fractures

V. V. Mourzenko,1,2 J.-F. Thovert,1 and P. M. Adler2
1LCD-PTM, SP2MI, Boıˆte Postale 179, 86960 Futuroscope Cedex, France

2IPGP, Tour 24, 4 Place Jussieu, 75252 Paris Cedex 05, France
~Received 29 May 1998!

The percolation and conductivity of self-affine fractures are investigated over the whole range of their mean
aperture and roughness exponentH, by direct three-dimensional numerical simulations. A scaling behavior is
exhibited for the conductivity of tight fractures in the self-affine scale range, with exponentH. All the data can
be summarized by two simple models, valid for small to moderate and for large apertures, respectively.
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PACS number~s!: 47.55.Mh, 05.40.2a, 47.11.1j
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I. INTRODUCTION

The thermal properties of rocks, which are very importa
in various problems such as nuclear waste repository or g
thermal energy recovery, are greatly influenced by cond
tion along fractures. Electrical conductivity measureme
are also useful for detecting the presence of fractures.
nally, electrical data are often used as indirect measurem
of geometrical or other transport properties.

Despite this interest, few systematic studies of the ther
or electrical conduction in fractures can be found in the
erature, which was surveyed by Voliket al. @1#.

For instance, rough fractures were represented by Ste
@2# by conductor sheets with circular insulating inclusion
Brown @3# generated realistic three-dimensional self-affi
fracture surfaces from their power density spectra, but us
two-dimensional form of the Laplace equation which impl
itly assumes that the fracture surfaces are locally smooth
the best of our knowledge, the only fully three-dimension
numerical simulations of conduction in fractures are those
Volik et al. @1#, who showed that the predictions of a tw
dimensional formulation of the local transport equation
grossly inaccurate in the realistic situation of rough and ti
fractures. A similar conclusion was reached by Mourzen
Thovert, and Adler@4# for the related problem of fluid flow
through fractures, which was also studied by a lattice-
method by Zhang, Knackstedt, and Sahimi@5#.

Effective medium theories and resistor network mod
are alternatives to direct simulations, which rely on me
field arguments or on renormalization techniques and m
use only of the probability distribution of the apertures.
shown by the review of Walsh, Brown, and Durham@6#,
these techniques yield essentially the same results as the
dimensional simulations, even with the introduction of sho
range order.

The present work is an extension of the previous study
Volik et al. @1#, and it is focused on the specific properties
self-affine fractures. It is now well known that the surfaces
most natural fractures are self-affine over some range
length scales. Such fractures may appear macroscopi
homogeneous, but scale dependence of the transport pr
ties is expected for scales in the self-affine range. Evide
of such a scaling was observed for the mechanical prope
of joints @7# and in many two- or three-dimensional stru
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tures ~see, e.g., Adler@8#!, but not for the conductivity of
fractures.

This problem is closely related to studies performed
the scaling properties of percolation in random surfaces w
long-range correlations. Percolation properties were stud
by Schmittbuhl, Sornette, and Roux@9#, Sahimi and Mukho-
padhyay@10#, and Marrink, Paterson, and Knackstedt@11#;
in addition, permeability was analyzed by Sahimi a
Mukhopadhyay@10#. These studies appear to be very sen
tive to the definition of percolation and to the procedu
which is used to analyze the results.

This paper is organized as follows. Section II provides
general overview of the geometry of self-affine fractures a
introduces a few statistical notations. Then, the conduc
problem is described, and the numerical procedures for
generation of the fractures, the solution of the transport pr
lem, and the statistical treatments are presented. We trie
choose the most realistic conditions and procedures, i.e.
ones which would be the most easily used if a real exp
ment was performed. Finally, the various parameters wh
play a role in the problem are reviewed, together with t
main expected regimes.

Section III is devoted to the geometrical properties of t
self-affine fractures. The variances of the surface heights
of the fracture apertures in finite samples are quantified. A
lytical expressions are obtained, which account for the in
ences of all the parameters, and especially for the sca
with the sample size. It is then shown that several sets
statistical parameters are equivalent for describing the lo
geometry of a fracture. Finally, the percolation of self-affi
fractures is investigated. It is shown that the percolat
probability does not depend upon the sample size. It va
smoothly from 0 to 1 as the aperture~or fractional open area!
increases, and there is no percolation threshold.

The numerical results for conductivity are given in Se
III. A few illustrative examples and accuracy tests are p
sented first. Then the conductivity of fractures with vanis
ing to moderate apertures is investigated. It is related to
sample size and to the fractional open area by power la
but no critical transition is observed. Finally, fractures w
large apertures are considered. A lubrication approxima
yields a prediction in qualitative agreement with the nume
cal data.
4265 ©1999 The American Physical Society
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II. GENERAL

A. Description of fractures

The two surfaces of a fracture can be described by t
heights z5h6(x,y) above an arbitrary reference planez
50 ~Fig. 1!. Usually,h6 are assumed to be normally distrib
uted random variables with a variancesh

2 ~see Mourzenko,
Thovert, and Adler@12# for details!. The apertureb of the
fracture is the differencew5h12h2 when it is nonnegative

b5 Hw,
0,

w~r !>0
w~r !,0. ~1!

b may be described by its mean^b& and its variancesb
2,

which are generally not equal to the mean separationbm

5^w& and tosw
2 , respectively. Whenw is negative, the sur-

faces are considered to be in contact, withh15h2. It is
assumed here that the two surfaces are uncorrelated, w
implies thatsw

2 52sh
2.

As a consequence of the Gaussian character of the he
h1 andh2, the open fractional areaS0 , the average apertur
^b&, and its variancesb

2 are related to the mean separationbm

and rugositysh by @12#

S05
1

2
erfcS 2

bm

2sh
D , ~2a!

^b&
sh

5S0

bm

sh
1

1

Ap
e2bm

2 /4sh
2
, ~2b!

sb
2

sh
2 5S0S bm

2

sh
2 12D 1

1

Ap

bm

sh
e2bm

2 /4sh
2
2

^b&2

sh
2 . ~2c!

^b&/sh , sb /sh , andS0 are plotted in Fig. 2 as function
of the ratiobm /sh . S0 is also plotted as a function of th
ratio ^b&/sb for later use.

The statistical properties of the fracture in thexy plane
can be characterized by the spatial covariance functionsCh1

andCh2 of the fieldsh1 andh2,

FIG. 1. Notations for the fracture geometry.
ir

ich

hts

Ch6~r ,s!5^@h6~r !2^h6&#@h6~s!2^h6&#&. ~3!

These two functions are assumed here to be identical,
tionary, and isotropic. Hence, they reduce to the funct
Ch(u) of the normu of the lagr2s,

Ch~u!5^@h6~r !2^h6&#@h6~r1u!2^h6&#&. ~4!

The self-affine character of many rock surfaces was de
onstrated by experimental observations~see, e.g., Brown and
Scholz@13#!. Self-affine surfaces have features over a bro
range of characteristic length scales, and remain the sam
a statistical sense under affine transformations with scale
torsa andaH (0,H,1) for the in-plane and normal direc
tions, respectively. Their covarianceCh can be characterized
by their Fourier spectrum

Ch~r !5E I ~k!e22ipk–r d2k, I ~k!;k22H22. ~5!

Of course, real fractures are self-affine over a range of len
scales which is necessarily limited by a lower and an up
cutoff length. The size of the whole fracture is an obvio
upper bound, while the self-affinity may break down belo
some microscopic characteristic length, such as the typ
size of the constitutive grains of the rock. This finite range
the real space corresponds to a finite range for the w
vector k in the spectrum~5!. For various materials, the ex
ponentH was found to be 0.8760.07 by Målo”y et al. @14#.
For intermetallic compounds, Bouchaudet al. @15# obtained
H50.7960.07. Odling@16# obtained more scattered data f
natural rock joints, in the range 0.46<H<0.85. Finally, Cox
and Wang@17# report values ofH covering almost the whole
range from 0 to 1 in their review article. For the sake
completeness, three valuesH50.25, 0.50, and 0.87 are con
sidered in this paper.

Examples of fractures reconstructed with various ex
nentsH andbm /sh51 are displayed in Fig. 3. The samp
size isl525.6sh . The three fractures were generated fro
the same sequence of random numbers. Thus, they d
only by the surface texture, which is related to the expon
H.

B. Notation

Recall that the geometry of a fractureF is defined by the
random functions of positionh6(x,y), or w(x,y) and
b(x,y). If the fracture extension is large enough, the sta
tical expectationsbm and ^b& and the variancessh

2, sw
2 , and

sb
2 can be evaluated by integration overF, by using an er-

godicity hypothesis.
In the following, we will consider subdomainsV of F,

with size l. The spatial averages and variances over s
domains are denoted by an overbar.

X̄5
1

V E
V

X~r !d2r , s̄X
25

1

V E
V

@X~r !2X̄#2 d2r . ~6!

For instance, the average and variance of the aperture ovV

are b̄ and s̄b
2, respectively. By analogy, the conductivity o

V will be denotedC̄, since it is also a local average propert



PRE 59 4267PERCOLATION AND CONDUCTIVITY OF SELF-AFFINE . . .
FIG. 2. Mean aperturêb&/sh ~a!, aperture
standard deviationsb /sh ~b!, and open fractional
areaS0 ~c! versus the mean separationbm /sh ,
and open fractional areaS0 versus the ratio
^b&/sb ~d!.
cr

m

in
to

the
The averages over the whole fractureF of the local sta-
tistical parameters are denoted by brackets with a subs
F, ^ &F . Suppose thatF is partitioned intoNV disjoint do-
mainsV i , F5ø iV i . Then,

^X̄&F,l5
1

NV
(
i 51

NV

X̄i . ~7!

The subscriptl is a reminder that̂X̄&F may depend on the
size of the subdomains. This is not true ifX̄ is the spatial
average of any quantity, but it is ifX̄ is a local variance. For
conciseness, spatial averages overF of local variances are
also denotedSX

2,

^s̄X
2&F5SX

2. ~8!

Finally, conditional averages ofX̄ over domains which
share a common valuey of some parameterY are denoted

^X̄&Y . If Y5y in Ny domainsV i ,

^X̄&Y~y!5
1

Ny
(
i 51

Ny

X̄i . ~9!
ipt
For instance,̂ C̄& b̄/s̄b

is the mean conductivity of all fracture

samples which have the same ratiob̄/s̄b . Note that this av-
erage may involve samples with different sizes or cut fro
different fractures, provided that they all verifyY5y.

C. Laplace equation

The conduction problem in the fracture is cast here
terms of heat transport, but the same formalism applies
electric current or stationary solute diffusion. In all cases,
solid matrix is considered to be impervious.

The local temperatureT in the fracture void spacet f is
governed by the usual Laplace equation~see @1#! together
with the no flux boundary condition

¹2T50, n•“T50 or S, ~10!

where S is the fluid-solid interface~see Fig. 1!, with unit
normal vectorn.

The conductivityC̄x along thex axis of a squarel3l
fracture sample is determined by solving Eq.~10! under the
mixed boundary conditions
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FIG. 3. Examples of self-affine fractures. The domain size is 25.6sh in all cases. The fractures were constructed withH50.87, 0.50, and
0.25 ~top to bottom!, andbm /sh51. The discretization isa50.4sh for the three-dimensional visualizations~left!, anda50.2sh for the
contour plots~right!. Black areas are contact zones, and the contour lines correspond to incrementssh of the apertureb. The axes are
graduated insh units.
the
ex-
pre-
T5DT at x50, ~11a!

T50 at x5l, ~11b!

n•“T50 at y50 and l. ~11c!
The last boundary conditions are chosen since they are
ones which would be the most easily imposed in a real
periment; a piece of fracture can be cut and wrapped to
vent any leakage. The average heat fluxQ̄ per unit fracture
width may be defined as
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Q̄52
1

l2 E
t f

“T d3r . ~12!

The conductivityC̄x is deduced from thex componentQ̄x of
Q̄ by

Q̄x5C̄x

DT

l
. ~13!

Cx has the dimension of a length. It may be viewed as
aperture of an equivalent plane channel, which yields
same fluxQ̄ under the same conditions~11!.

D. Numerical procedure

Since it is impossible to generate numerically fractures
arbitrarily large size, the range of characteristic length sca
cannot be infinite, and the power spectrum~5! is necessarily
truncated. Square fracture samples of sizeL3L are recon-
structed, by generating the heightsh1 and h2 at the nodes
( iDx, j Dy) of a regular square grid withDx5Dy5a, L
5Nca and i , j 51,2, . . . ,Nc .

The random fieldsh1 andh2 are generated by the stan
dard method of Fourier transforms~see@8,12# for details!, by
imposing their variancesh

2 and the power spectrum of th
covarianceCh ,

I ~k!

I ~0!
5 H ikLi22H22,

1,
ikLi.1
ikLi<1. ~14!

The normalization constantI (0) is set so that the integral o
the power spectrum equals the variancesh

2. The length scale
L5NLa is the upper cutoff for the self-affinity of the su
face profiles.

Once the profilesh1 and h2 are obtained, the fractur
geometry is constructed for a given separationbm . h1 and
h2 are discretized with the same resolution as the grid sp
ing, so that eventually the fracture geometry is described
a three-dimensional array of elementary cubes of sizea,
filled either with fluid or solid. Unless otherwise stated,Nc is
set to 1024 or 2048, withL5L/2, and the grid resolution is
set toa5sh/5.

This master sample is then split into a collection of squ
domains of varying sizel5nla. The mean aperturesb̄ and
the local variancess̄b

2 @see Eq.~6!# of all these domains are
measured. Then, the conductivity of each domain along thx
direction is computed by solving the problem~10!, ~11!. This
is done by using a conjugate gradient algorithm, in a seco
order finite-difference formulation~Thovert, Wary, and
Adler @18#, Volik et al. @1#!.

In most cases,nl was varied from 8 to 256. Therefore, th
statistics are evaluated over at least 16~for Nc51024) or 64
~for Nc52048) domains.

E. Overview of the parameters

Five dimensionless parameters play a role in the prob
at hand, namely, the exponentH, the ratio of the mean sepa
ration to the surface roughnessbm /sh , the relative size of
the domainsl/L, the discretization parametera/sh , and the
e
e

f
s

c-
y

e

d-

m

ratio L/a. Recall that the correlation coefficientu between
the fracture surfaces is kept fixed and equal to 0.

The first two parameters are the basic geometrical cha
teristics of the fracture. Its conductivity must obviously d
pend upon these two parameters, whatever the scall,
though it might be more convenient to cast the results
terms of the mean aperture^b& or of the fractional open area
S0 @see Eq.~2!#, instead ofbm . Different behaviors may be
expected for narrow (bm /sh<1) and wide (bm /sh@1)
fractures. In the first case, the fraction of contact area
large, and the void space is near its percolation threshold
the second case, the contact zones almost vanish, and
subdomain does percolate; the fracture becomes a ro
walled channel, where surface roughness only yields a
rective term in the conductivity.

In a continuous description, wherea is equal to zero, only
the ratio l/L plays a role. Forl/L@1, the domain size
widely exceeds the scale of the largest heterogeneitie
appears as macroscopically homogeneous, with a self-a
microstructure, and its transport properties should not
pend uponl anymore. Voliket al. @1# worked in this limit.
For l/L!1, i.e., in the self-affine range, scaling laws a
expected for conductivity. Of course, a transition regim
should take place forl/L;1.

This continuous situation is somewhat disturbed in
discrete description with a nonzero value ofa, which intro-
duces the two last parameters. The finite resolutiona/sh
determines the size of the smallest features which can
represented, while the ratioL/a sets the range of length
scales in the fracture. A self-affine behavior is expected o
for a range of domain sizes large enough to encompass
eral characteristic scales, but still much smaller than the
off length L,

1!nl!nL or a!l!L. ~15!

For very small values ofnl , the self-affine character of th
domains is lost; in the extreme casenl51, each domain is
equivalent to a plane channel, and^C̄x&F5^b&. With L/a
>512, Eq.~15! is satisfied for a fairly wide range of sizesl.

The four regimes are sketched in Fig. 4. In this pap
attention is focused on the self-affine regime.

A possible additional effect should be mentioned here
the homogeneous regime, a critical separationbmc exists,
below which the fracture stops percolating. This percolat
threshold depends onCh and was found asbmc'0.10sh for
H50.5 andbmc'0.0 for H51 by Mourzenko, Thovert, and
Adler @12#. The caseH51 corresponds to regular fractur
surfaces, without any self-affine character. Near percolat
the transport properties are expected to be size depen
even for l@L, regardless of the covariance exponentH.
Indeed, Mourzenko, Thovert, and Adler@12# have shown
that the critical exponentsn, b, and g for the connectivity
length, the strength of the percolating cluster, and the a
age size of the open areas, respectively, are quasi-iden
for H50.5,H51, and for uncorrelated two-dimensional pe
colation.

This scaling maya priori interfere with the scaling due to
the self-affinity of the fracture geometry for very small sep
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rations. It will be shown, however, that no critical behavior
observed for percolation or conductivity in the self-affi
regime.

III. GEOMETRICAL PROPERTIES

Since we are interested in this paper in the conduc
properties of finite regions of a self-affine fracture, in t
self-affinity rangea!l!L, this section is devoted to th
geometrical properties of such subdomains. The main par
eters are the local mean and variance of the apertureb̄ and
s̄b

2, or of the separationw̄ ands̄w
2 52s̄h

2. As it will turn out
later, the local conductivities are directly related to any
these two pairs of parameters, with the scale depende
embodied in the scaling ofs̄b

2 or s̄w
2 with the sample size

This scaling is made explicit in the following paragrap
Then it will be shown that descriptions in terms of (b̄,s̄b

2) or
(w̄,s̄w

2 ) are equivalent, and that a relation similar to Eq.~2!
holds locally in the average.

FIG. 4. The four expected regimes as functions of the dom
size.
n

m-

f
ce

.

A. Overall results

The statistical expectationSh
2 of the variances̄h

2 @cf. Eq.
~8!# of the surface elevations over a domainV in a self-affine
fracture is given by

Sh
25

sh
2

V2 E E
V2

@12Rh~r ,s!#d2r d2s, Rh~r ,s!5
Ch~r ,s!

sh
2 .

~16!

The covariance functionCh is given by Eqs.~4!, ~5!, and
~14!. It may be seen from Eq.~16! thatSh

2 vanishes for small
domains (V!L2), whereas it tends towardsh

2 if V@L2.
For small separationu5ir2si!L, 12Rh can be written

for the band-limited spectral density function~14! as

12Rh~u!'QS u

L D 2H

2Q8S u

L D 2

1OS u

L D 4

, u!L

~17!

whereQ andQ8 depend only uponH,

Q5
p2HG~12H !

G~21H !
, Q85p2

H

12H2 . ~18!

Substituting Eq.~17! into Eq. ~16! yields

Sh
25

sh
2

V2 E E
V2

S Q

L2H ir2r i2H2
Q8

L2 ir2si2Dd2r d2s

1OS l

L D 4

. ~19!

The integral in Eq.~19! can be evaluated for square~circular!
domains with size~diameter! l, which yields

Sh
25sh

2XQ~H !Q~H !S l

L D 2H

2Q~1!Q8~H !S l

L D 2C1OS l

L D 4

,

~20!

with

in
Q5H 2
122H1112~H12!F~2H, 1

2 , 3
2 ;21!

~H11!~H12!~2H13!
~squares!

S 4

p D H11/2 2G~H13/2!

H~H11!G~H13!
~disks!.

~21a!

~21b!

Note that the divergence ofQ asH tends toward 1 is canceled byQ8 in the quadratic term, so that Eq.~20! remains always
finite. Equation~20! can be recast into

Sh
25sh

2Q~H !Q~H !S l

L D 2HX12
Q~1!Q8~H !

Q~H !Q~H ! S l

L D 222HC1OS l

L D 4

~22a!

'sh
2Q~H !Q~H !S l

L D 2H

, S l

L D 222H

!1. ~22b!
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The ratio Q(1)Q8(H)/Q(H)Q(H) is about 1 whenH
> 1

2 , and vanishes whenH tends toward zero~Fig. 5!.
The leading order expansion~22b! dissociates the influ-

ences of the overall rugosity, of the Hurst exponent, and
the shape and size of the domainV on the mean variance(h

2.
For largeH ~e.g., 0.87!, the condition (l/L)222H!1 is full-
filled only for very small ratiosl/L.

Figure 6 shows(h as a function of the ratiol/L for
numerically generated self-affine fractures, in comparis
with the first- and second-order analytical expressions~22a!
and ~22b!. For H50.87, Eq.~22a! is in excellent agreemen
with the numerical data. However, the contribution of t
second-order term decreases very slowly withl, and Eq.
~22b! still overestimatesSh by about 45%~20%! for l/L
51/16 (1/128). ForH50.5 and 0.25, Eqs.~22a! and ~22b!
are very close together whenl/L<1/8, and they both agre
very well with the numerical data whenH50.5. For H
50.25, they slightly overpredict(h for small l/L. This is
because the analytical derivation leading to Eq.~22a! does
not take into account the lower cutoff of the power dens
spectrum ofCh . Since the high-frequency components
this spectrum contribute very little to the overall roughne
sh for large H, this discrepancy is observed only forH
50.25.

The curves forSh in Fig. 6 can be approximated b
power laws whenl/L!1, with an exponentHh . The scal-
ing exponentsHh estimated from fits of the four leftmos
points of these plots are given in Table I. It is known~Kant

FIG. 5. RatioQ(1)Q8(H)/Q(H)Q(H) as a function ofH.
f

n

s

@19#! that the determination of the roughness exponent o
self-affine surface with a band-limited spectral density fun
tion by means of the scaling law~17! systematically overes
timates ~underestimates! H when H,0.5 (H.0.5). The
same deviation is observed here for the estimation ofH from
the scale dependence ofSh .

The mean varianceSb
2 is given by an expression simila

to Eq. ~16!,

Sb
25

sb
2

V2 E E
V2

@12Rb~r ,s!#d2r d2s, Rb~r ,s!5
Cb~r ,s!

sb
2 .

~23!

However,Cb is not readily available and must be evaluat
by using the joint distribution of two Gaussian variable
v(r ) andv(s),

FIG. 6. RatioSh /sh versusl/L for H50.25~!!, 0.50~3!, and
0.87 ~s!. The dotted lines~• • • •! join the numerical data. The
solid ~ ! and dashed~

• • •
! lines are Eqs.~22a! and~22b!,

respectively. The broken lines~ ! are linear fits of the four
leftmost points.
Cb~r ,s!5E
0

`

dv1E
0

`

dv2~v12^b&!~v22^b&!w~v1 ,v2!,

w~v1 ,v2!5
1

2psw
2A12Rh

2
expF2

~v12bm!222Rh~v12bm!~v22bm!1~v22bm!2

2sw
2 ~12Rh

2! G . ~24!
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To summarize, the expectations of the local variances of
the separation and of the aperture have been shown to scale
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The substitution ofw into the integrals yields the covarianc
of the apertureb as a function of the covariance of the su
face height, for anybm ,

12Rb~r ,s!5
&

p

sw
2

sb
2 E

0

`

e2t2@F~ t,1!2F~ t,Rh!#dt,

~25a!

F~ t,Rh!5S 2

11Rh
D 1/2E

tA12Rh

`

@u22t2~12Rh!#

3expF2
~u2bm /sw!2

11Rh
Gdu. ~25b!

The asymptotic expansion of Eq.~25! for 12Rh!1 @i.e.,
(l/L)2H!1# yields

TABLE I. Scaling exponentHh of Sh andHb of Sb for various
exponentsH and mean separationsbm /sh .

bm /sh H50.25 H50.50 H50.87

Hh any 0.301 0.503 0.793
Hb 20.5 0.244 0.489 0.790
Hb 0 0.258 0.492 0.792
Hb 2 0.287 0.503 0.796
Hb 6 0.292 0.505 0.797
12Rb'
sw

2

sb
2 H S0~12Rh!2

2&

3p
e2bm

2 /2sw
2
~12Rh!3/2J ,

~26!

whereS0 is given by Eq.~2!. Substituting Eq.~26! into Eq.
~23! yields to leading order

Sb
2'2S0Sh

2, ~l/L!2H!1. ~27!

This expression shows thatSb
2 depends on the mean sep

ration, throughS0 , and on the overall rugosity,H exponent,
shape and size ofV, throughSh @see Eq.~22a! or Eq.~22b!#.

In view of Eq. ~27!, Sb and Sh are expected to obey
similar behaviors. Numerical data for the ratioSb /sh are
plotted in Fig. 7 againstl/L for various exponentsH and
mean separationsbm /sh ; power laws are indeed observe
for l/L!1. The scaling exponentsHb slightly vary with
bm /sh ~see Table I!, with the same trend as forSh .

The ratioSb /Sh , which according to Eq.~27! should not
depend upon the sample size, is plotted in Fig. 8 as a fu
tion of A2S0, for various ratiosl/L. Sb /Sh varies indeed
very little with l/L when it is much smaller than one. Th
agreement with the theoretical prediction~27! is excellent for
H50.87. It is still very good forH50.5; larger deviations
~about 10%! are observed forH50.25 with small mean
separationsbm /sh . This is consistent with the condition
(l/L)2H!1 for the validity of Eq.~27!.
FIG. 7. Ratio Sb /sh versus l/L for H
50.25 ~a!, 0.50 ~b!, and 0.87~c!, and bm /sh5
20.5 ~lower curve!, 0, 0.5, 1, 2, 3, 4, 5, and 6
~upper curve!.
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with the sample size with the exponentsHb andHh given in
Table I, respectively, which are close toH and slightly
shifted toward 0.5. This is the basic result for upscaling lo
observations. In addition, the theoretical predictions~22b!,
~27! or ~22a!, ~27! are good approximations forH<0.7 and
H>0.7, respectively.

B. Local results

The geometry of a fracture sampleV with l/L!1 de-
pends primarily on the rugosity of the surfaces, characteri
by s̄h with typical amplitudeSh , which scales according to
Eq. ~22b!. Therefore, various local geometrical properties
well as the local conductivity are also expected to vary w
the scalel. A proper normalization by local variances su
ass̄h

2 or s̄b
2 may possibly account for this scale dependen

Furthermore, the transport properties of homogeneous f
tures depend on the relative aperturesbm /sh or ^b&/sh ~see,
e.g., Volik et al. @1#!, which are related by Eq.~2!, and a
similar dependence on corresponding local geometrical
rameters can be expected for the local conductivities.

The various domainsV i with sizel in the partition of the
generated fractureF can be sorted according to the loc
parameterw̄/s̄h . In practice, s̄h

2 is evaluated as (s̄h1
2

1s̄h2
2 )/2. Then the local parametersb̄/s̄h ands̄b /s̄h can be

conditionally averaged over all domains with identicalw̄/s̄h
andl/L.

Numerical data for̂ b̄/s̄h&w̄/s̄h,l/L
and ^s̄b

2/s̄h
2&w̄/s̄h,l/L

1/2 are

plotted in Fig. 9 as functions ofw̄/s̄h . These plots mix data
from two fractures withH50.5,bm /sh50.5 and 1, and cel
sizes ranging froml/L51/128 to 1/16. It appears that a

FIG. 8. Sb /Sh vs A2S0 for H50.25 ~a!, 0.50~b!, and 0.87~c!,
andl/L51/64 ~s!, 1/8 ~3!, and 1~1!. The solid line is Eq.~27!.
l

d

s

.
c-

a-

the data are in excellent agreement with the predictions
Eq. ~2! if bm /sh is replaced by the prescribed local valu
w̄/s̄h for the conditional averages

^S̄0&w̄/s̄h
5

1

2
erfcS 2

w̄

2s̄h
D , ~28a!

K b̄

s̄h
L

w̄/s̄h

5^S̄0&w̄/s̄h

w̄

s̄h
1

1

Ap
expF2

w̄2

4s̄h
2G , ~28b!

K s̄b
2

s̄h
2L

w̄/s̄h

5^S̄0&w̄/s̄hS 21
w̄2

s̄h
2D 1

w̄

Aps̄h

expF2
w̄2

4s̄h
2G

2K b̄

s̄h
L

w̄/s̄h

2

. ~28c!

Furthermore, the domain sizel has absolutely no influ-
ence; whateverl/L, ^b̄/s̄h&w̄/s̄h,l/L

and ^s̄b
2/s̄h

2&w̄/s̄h

1/2 ,l/L are

identical for identical (w̄/s̄h).
Therefore, the statistical geometry of any subdomain o

fracture is fully characterized by the two parameterss̄h and
w̄/s̄h , with all the scale effects embodied in the scaling la
~22b! for s̄h . Alternatively, in view of Fig. 9,s̄b and b̄/s̄b
can be used instead ofs̄h andw̄/s̄h to describe the fracture
geometry, since the two sets of parameters are related by

FIG. 9. Conditional averageŝb̄/s̄h&w̄/s̄h
~a! and ^s̄b

2/s̄h
2&w̄/s̄h

1/2

~b! as functions of the ratiow̄/s̄h for H50.5 andl/L51/128~3!,
1/64 ~.!, 1/32 ~1!, and 1/16~s!. Solid lines are the theoretica
predictions~28!.
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~28!. In the following, the fracture local conductivities wi
be systematically analyzed in terms ofb̄, s̄b , andS̄0 .

C. Percolation properties

Stationary random lattices of interconnected bonds
sites with an occupancy probabilityp are known to present a
critical probability pc , called the percolation threshol
~Stauffer and Aharony@20#!. For p,pc , the connected oc
cupied sites or bonds form clusters of various finite siz
whereas forp.pc a spanning connected cluster exists. Ne
the percolation threshold, various quantities such as the
relation lenthj which can be roughly defined as the avera
distance of two sites belonging to the same cluster or
conductivityC obey critical behavior characterized by pow
laws

j}up2pcu2n, p;pcr ~29a!

C}~p2pc!
t, p2pc!1. ~29b!

The critical concentrationpc depends on the particula
type of microstructure, but the critical exponents are belie
to be universal for uncorrelated lattices. The generally agr
values for site percolation are@20#

n5 4
3 , t'1.3, in two dimensions,

n50.88, t'2.0, in three dimensions. ~30!

Several works, reviewed by Mourzenko, Thovert, and Ad
@12# and Sahimi and Mukhopadhyay@10#, have shown that
long-range correlations may induce different values ofn.

The sudden transition from nonpercolationg to percolat
states and the power laws~29! hold for unbounded media
For finite samples with sizel, a percolation probability
P(p,l) can be introduced, which can be tentatively fitted
a two-parameter error function

P~p,l!5
1

A2pD
E

2`

p

e2~x2Pav!
2/2D2

dx, ~31!

wherePav(l) is the average concentration andD(l) is the
width of the transition region. As the sample sizel in-
creases,Pav(l) tends to the percolation thresholdpc and the
transition becomes steeper~Fisher@21#!,

Pav~l!2pc}l21/n, ~32a!

D~l!}l21/n. ~32b!

These scalings can be used to determinen andpc . Simi-
larly, the conductivity near the critical point is also size d
pendent,

C}l2t/nF@~p2pc!l
1/n#. ~33!

Alternatively, Pav(l) can be defined as the concentrati
above which the percolation probability is larger than1

2, but
this determination is more sensitive to statistical noise.

The functional form of Eq.~31! has been criticized~Ziff
@22#; Haas@23#!, but nevertheless, such a fit is convenient
quantify the position and width of the transition. In the fo
r

s,
r
r-

e
e

d
d

r

n

-

lowing, the form ofP(p,l) will be found independent ofl
~see Fig. 10!, and any reasonable choice of functional fit
equivalent in order to show thatD(l) is constant.

In the present situation, the fractional open areaS0 plays
the role of the concentrationp and the finite-size scaling
technique was applied by Mourzenko, Thovert, and Ad
@12# to determineS0c andn for fractures with spatial corre
lations similar to Eq.~14!, in the homogeneous regime, i.e
l@L. They obtainedS0c'0.5 for H51, which is valid for
many two-dimensional continuum systems with statistica
equivalent conducting and insulating phases, andS0c'0.53
for H50.5. The exponentn was found very close to the
standard value43.

The percolation probability was determined here for d
mains of varying sizesl as a function of the fractional ope
area S̄0 . The percolation criterion was the existence of
connected path joining the two opposite sides of the sam
along thex direction, which is equivalent to finding a non
zero conductivityCx when solving the problem~10!–~13!.
Hence, this condition corresponds to the ruleR1 as defined
by Reynolds, Stanley, and Klein@24#. For each value of the
exponentH, all the domains of sizel in fractures with vari-
ous mean separationsbm /sh were sorted according toS̄0 ,
and P(S̄0 ,l) is defined as the fraction of percolatin
samples in each class.P(S̄0 ,l) is plotted as a function ofS̄0
in Fig. 10, fornl58 to 128.

The data fornl5128 are somewhat scattered because
initial L3L fractures contain a small number of domains
this size, but smoother data are obtained fornl<64. The
most striking observation is that all domain sizes yield qua
identical curves, in contradiction to Eq.~32!. The position

FIG. 10. Percolation probabilityP(S̄0 ,l) as a function of the

fractional open areaS̄0 for H50.25~a!, 0.50~b!, and 0.87~c!. Data
are fornl58 ~n!, 16 ~1!, 32 ~s!, 64 ~3!, and 128~!!.
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S0av and widthDS0
of the transition were evaluated by use

Eq. ~31!, although the form of this fitting function may no
be highly appropriate forH50.87. The results are given i
Table II. In view of the scatter of the data in Fig. 10, th
measured variations ofS0av are not meaningful, except fo
the smallest sizesl. In this latter case, however, they resu
from discretization effects; the actual scale range in th
samples is very limited, and their statistical self-affine ch
acter is lost. The widthD is a much better measure of th
scale effects, and the values given in Table II incre
slightly with H but depend very little onl. A least squares fit
of the form~32b! yields very large values ofn, which essen-
tially reflects the scale invariance ofD.

This absence of scale dependence implies that no pe
lation threshold exists in these continuous media, in the s
affine regime, which in principle can be extended over
arbitrarily large scale rangeL.

Our observations are in agreement with Schmittbuhl, S
nette, and Roux@9#, who systematically investigated perc
lation properties of thresholded self-affine surfaces. Th
used two different iterative procedures to generate these
faces, referred to as ‘‘Euclidean’’ and ‘‘hierarchical.’’ Th
second one is tailored for an easy implementation of ren
malization techniques, and thus its percolation proper
could be derived analytically. The first model, which
equivalent to the one used in this paper, was addressed
merically.

Samples of varying sizesl were constructed for variou
H exponents, positive or negative; we only discuss here
caseH.0. Percolation was checked as a function of t
threshold level. The level elevationf is normalized by the
lower and upper excursions of the surface for each partic
finite sample, that is, if the surface elevation is regarded
the separationw between two fracture surfaces,f is a map-
ping of the fractional open areaS̄0 ; f50, 1

2, and 1 corre-
spond toS̄050, 1

2, and 1, respectively. Schmittbuhl, Sornet
and Roux@9# define the average percolation thresholdfc as

fc~l,H !5E
2`

1`

f
dP~f!

df
df, ~34!

TABLE II. Position of S0av and width DS0
of the transition

evaluated by Eq.~31! from the data of Fig. 10.

H nl S0av DS0

0.25 8 0.586 0.219
0.25 16 0.579 0.220
0.25 32 0.569 0.204
0.25 64 0.565 0.207
0.50 8 0.567 0.256
0.50 16 0.551 0.251
0.50 32 0.531 0.268
0.50 64 0.534 0.234
0.50 128 0.523 0.278
0.87 8 0.523 0.350
0.87 16 0.538 0.342
0.87 32 0.534 0.343
0.87 64 0.534 0.320
0.87 128 0.535 0.327
e
-

e

o-
lf-
n

r-

y
ur-

r-
s

u-

e
e

ar
s

,

whereP(f) is the probability that the surface cut at heightf
percolates. The width of the transition region is measured
the variancesf

2 of the distribution of thresholds.
The numerical results of Schmittbuhl, Sornette, and Ro

@9# cannot be directly compared with ours, sincef and S̄0

are not equal except forf5S̄05 1
2 . However,fc behaves as

S0av in Table II. For positiveH, it first decreases asl in-
creases; then, it remains constant whennl exceeds 64. It is
also a decreasing function ofH, and is slightly larger than
1
2 for H50.8. The variancesf

2 is also fairly constant as soo
asnl>32, asDS0

in Table II. These numerical observation
agree with the analytical derivations for the hierarchical s
faces, which also predict an infiniten exponent for positive
H.

A similar behavior was also mentioned by Bour and Da
@25# in a different context. They considered two-dimension
fracture networks modeled as randomly oriented segm
with lengths distributed according to a power law. When t
exponent is small enough so that the probability of occ
rence of a large sample-spanning fracture dominates the
colation properties, the transition widthD(l) is indeed
found constant.

On the other hand, Sahimi and Mukhopadhyay@10# con-
ducted very similar simulations, although they conside
bond lattice percolation. They introduced long-range cor
lation by assigning to the bonds spatially correlated cond
tivities, and removing the bonds with conductivity below
prescribed threshold. The spatial correlation was descri
by a spectral density function very similar to Eq.~14!, which
also involved a cutoff lengthL. In our terms, it reads

I ~k!}
1

~11k2L2!H1d/2 , ~35!

where d is the dimension of space. We discuss here th
two-dimensional results, but they reached similar conc
sions in three dimensions. As done in the present work, fi
samples with sizesnl<256 were cut from larger lattices
with l!L,L. They performed a finite-size scaling analys
to determine the percolation threshold and the exponenn,
based on Eq.~32! with pav(l) replaced by an effective per
colation thresholdpc(l) below which the backbone of th
percolation cluster vanishes.

Eventually,pc(l) is found to first decrease sharply asl
increases, but beyond a sizelm;150 lattice units, the de-
pendence ofpc on l is very weak if any. Again, the genera
evolution pc(l) is reminiscent of that ofS0av in Table II,
except that the variations ofS0av for small l are much less
dramatic, and thatS0av becomes independent ofl much
sooner.

However, Sahimi and Mukhopadhyay@10# evaluate si-
multaneously the exponentn and find it to decrease slightly
from 4

3 for H520.5 to about 1.2 forH;1, in contradiction
to our observation thatDS0

~or sf
2 , for Schmittbuhl, Sor-

nette, and Roux@9#! is scale independent. Accordingly, S
himi and Mukhopadhyay@10# interpret the constant value o
pc beyondlm as a critical percolation threshold, whereas o
data in Fig. 10 suggest that the probability that a sampl
percolating ~nonpercolating! when S̄0,S0av (S̄0.S0av)
never vanishes, as long as its sizel is smaller thanL. It is
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only whenl@L that a real critical transition occurs, as
the situation considered by Mourzenko, Thovert, and Ad
@12#.

This apparent difficulty is due to the fact that the avera
ing procedure of Sahimi and Mukhopadhyay@10# is very
different from the one used here.pc andn are determined on
a given configuration by varyingp; then these values ar
averaged over many different configurations.

The influence of the statistical procedure can be be
appreciated with the help of Marrink, Paterson, and Kna
stedt @11#, who studied the percolation transition on a tw
dimensional substrate with long-range self-affine corre
tions. They determined the mean minimum fraction of si
needed to be occupied to span the network and found thi
iterating while testing for spanning. They studied the infl
ence of the percolation rules of Reynolds, Stanley, and K
@24#. They indeed found such an influence, in contrast w
percolation in uncorrelated media~or short-range correlated!.
Their results are in agreement with those of Sahimi a
Mukhopadhyay@10#. Some of them are displayed in Fig. 2

In order to eliminate any doubt about possible effects
the statistical generation and conditional averaging pro
dures, various procedures have been tested~see the Appen-
dix!. The conditionally averaged percolation probabil
P(S̄0 ,l) was replaced by the fraction of percolating doma
in a fracture with overall open areaS0 , or cut from indepen-
dently generated fractures. The three statistical proced
consistently show that the width of the transition to perco
tion does not depend upon scale for self-affine fractures
long asl!L.

IV. CONDUCTIVITY

A. Examples of results and accuracy tests

An illustrative set of data is presented in Fig. 11. T
maps of the local average apertures and conductivities
displayed for a fracture withbm /sh50.5, H50.5, and for
two domain sizes,nl516 and 128. Local conductivities ar
correlated with the mean apertures; the fraction of nonpe
lating domains~white blocks in the conductivity maps! is
only slightly larger for largenl .

FIG. 11. Maps of the local mean aperturesb̄ ~left! and conduc-
tivities C̄x ~right! in a fracture withbm /sh50.5, H50.5 and for
two values of the domains sizenl516 ~top! and 128~bottom!.
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The statistical distribution of the conductivities is bett
characterized by the histograms of Fig. 12. The largest
ues of the conductivity seem to become less and less
quent as the size of the domain increases, but this is mo
due to the smaller number of domains of large size~1024 for
nl532, 64 for nl5128). The variations of the averag

^C̄x&F with nl are seen to be small when compared to
scatter of the individual conductivities. All the histogram
suggest a truncated Gaussian distribution of the conduc
ties, which is confirmed by the cumulative distribution fun
tions plotted in Fig. 13. The only differences between t
various sizesnl are very slight horizontal shifts. Hence, th
local conductivity distribution seems to be independent
the observation scale, as was the percolation probability
the preceding section.

In the rest of this subsection, the influence of the discr
zation parametera/sh on the numerical results is analyze
Three effects can be foreseen. First, for a given geome
the resolution has a direct influence on the accuracy of
solution of the Laplace equation@systems~10! and ~11!#.
Since the numerical solution scheme is second-order a
rate anda is much smaller than the typical apertures, th
effect is probably fairly small. Second,a/sh filters out the
finer structures of the solid surfaces; this effect precisely c
responds to the resolution-limited regime in Fig. 4, and v
ishes in the self-affine regime~15!. The strongest influence
probably results from the discretization of the fracture geo
etry in the direction normal to its plane. If the aperturew
5h12h2 at some position~x,y! falls in the interval ]0,a/2],
the two solid surfaces are viewed as if they were in contac
the discrete representation of the fracture, even thoug

FIG. 12. Histograms of the conductivitiesC̄x /sh in a fracture
with H50.87,bm /sh50.5 ~left! and 1.0~right!, and domain sizes
nl532, 64, and 128~top to bottom!. The vertical line is the average
over all the domains.
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clear gap still exists in the continuous space. This may h
a significant impact on the percolation status of the fractu
Of course, apertures in the range@a/2,a@ are rounded up toa,
but this does not compensate the possibly dramatic effec
closing a critical site.

Such effects were investigated by Mourzenko, Thov
and Adler@12#. For self-affine fractures, withH50.5 and in
the homogeneous regime (l@L), the percolation threshold
in terms of open fractional area, was shown to vary fro
S0c50.569 to 0.547 and 0.538 fora/sh51, 0.5, and 0.25,
respectively. These open areas correspond to mean se
tionsbm /sh50.25, 0.17, and 0.14, respectively. An extrap
lation to the limit a/sh→0 yielded S0c50.527 (bm /sh
50.10). These data suggest that the errors associated
the standard resolution used in the following,a/sh50.2,
would correspond to an uncertainty smaller than 0.04sh for
the mean aperture.

A set of numerical checks is presented in Fig. 14. T
conductivities in a fracture withH50.87 andbm /sh50.5
were computed for various domain sizes and resoluti
a/sh50.1, 0.2, and 0.4. The average conductivity^C̄x&F in-
creases slightly as resolution is refined, but the results
a/sh50.1 and 0.2 differ by less than 2% throughout t
range ofl/L @Fig. 14~a!#. The differencê b&2^C̄x&F is plot-
ted against the mean reduced standard deviation of the a
turesSb /sh in Fig. 14~b!. This type of representation will be
used in the discussion of the results for large aperture
Sec. IV C. The curves for all resolutions are very simil
The difference betweena/sh50.1 and 0.2 is roughly con
stant and equal to 0.01sh .

B. Narrow fractures in the self-affine regime

The conductivity of self-affine fractures withH50.25,
0.50, and 0.87 andbm /sh50.5 or 1.0 was computed ove
domains of varying sizel, with l,L. The average over al
the domains in a fracturêC̄x&F is given in the log-log plot of

FIG. 13. Cumulative distribution function of the conductivitie
in a fracture withH50.87,bm /sh51.0, and domain sizesnl532
~

• • •
!, 64 ~ !, and 128~• • • •!. The solid line~ !

is a fitted Gaussian distribution fornl532.
e
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Fig. 15 as a function of the relative sizel/L. The fractures
were built with nL5512 (H50.25) or 1024 (H50.50,
0.87), andnl ranges from 1 to 256. The leftmost point o
each curve corresponds tonl51, the second one tonl58,
and the rightmost one tonl5256. ^C̄x&F is equal to^b& for
nl51, and decreases whenl increases. The initial slope o
the curves is close to zero forH50.87, and gets steeper a
the fractal dimension of the fracture surfaces increases~de-
creasingH!. However, this part of the curves obviously b
longs to the resolution-limited regime in Fig. 4. Curves f
identical exponentsH but different aperturesbm appear sim-
ply shifted vertically, as do the two curves for two differe
realizations of (H50.5, bm /sh51). Recall that the genera
tion of the fracture geometry is stochastic, and the relat
size of the reconstructed sample is small (L/L52). There-
fore, the actual average aperture^b& in the reconstructed
sample may differ from the value expected from Eq.~2!.

Instead of considering the overall averages^C̄x&F , the
local conductivities can be analyzed in relation to the lo
geometrical characteristics. The conductivities from the sa
data set were conditionally averaged over domains w
identical ratiosb̄/s̄b . Data for ^C̄x /s̄b& b̄/s̄b

from fractures

with various mean separationsbm /sh are plotted in Fig. 16
againstb̄/s̄b2b* . The offsetb* is discussed later.

It appears that the data for various domain sizes are w
gathered by this representation, which means that the s
effects are fully accounted for by the normalization of t

FIG. 14. Log-log plot of the reduced conductivity^C̄x&F /sh

versus the relative sizel/L ~a! and arithmetic plot of the difference

(^b&2^C̄x&F)/sh versus the mean reduced standard deviation of
aperturesSb /sh ~b! for a self-affine fracture withH50.87,
bm /sh50.5,nL51024, anda/sh50.1 ~ !, 0.2 ~ !, or 0.4
~

• • •
!.
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conductivity by the local aperture standard deviations̄b .

For large relative apertures (b̄/s̄b>1), all the data col-

lapse together sincêC̄x& is very close tob̄. This region will

be examined in the next subsection. However, forb̄/s̄b<1,
different behaviors are observed for the various exponentH.
The data for each exponent gather fairly well around stra
lines, which correspond to power laws with exponents 1
2.7, and 3.5 forH50.87, 0.50, and 0.25, respectively. Th
offset b* was introduced and set in order to obtain the b
alignment for each exponent, and is equal to 0.29, 0.22,
0.23 for H50.87, 0.50, and 0.25, respectively. In all cas
b* corresponds to a fractional open areaS050.160.02.

This situation is very reminiscent of the classical critic
behavior of the conductivity in site percolation, which is d
scribed by Eq.~29b!. This suggests recasting the numeric
data in terms of the fractional open areaS0 . This was done
by conditionally averaging the local conductivities over d

mains with identical open areasS̄0 . ^C̄x /s̄b& S̄0
is plotted

versusS̄0 in Fig. 17. For clarity, the data forH50.5 and 0.87
were shifted by one and two decades vertically, respectiv
It was not necessary here to introduce any offset forS0 , and
the data are distributed around straight lines forS0<0.8,

which corresponds roughly tob̄/s̄b<1.1. The scatter for the
smallestS0 results from the smaller numbers of occurrenc
of such open areas.

A least squares fit over all the data in the rangeS0<0.8
yields

FIG. 15. Log-log plot of the reduced average conductiv

^C̄x&F /sh for self-affine fractures withH50.87 ~
• • •

!, 0.50
~ !, and 0.25~ !, and bm50.5 ~3! or 1 ~s!, versus the
relative domain sizel/L.
ht
,

t
nd
,

l
-
l

-

y.

s

C̄x /s̄b5H 0.88S̄0
4.30, H50.25 ~36a!

1.04S̄0
3.30, H50.50 ~36b!

0.89S̄0
2.16, H50.87. ~36c!

The typical uncertainties for the prefactors and expone
are 0.15 and 0.2, respectively. It is very tempting to gat
the three fits of Eq.~36! into the single model

C̄x /s̄b5S̄0
523H . ~37!

This model is also plotted in Fig. 17 and is seen there to
very successful, although so far it has no theoretical subs
tiation.

The power laws~36! and ~37! differ from the critical be-
havior for stationary random media~29b! by three important
features. First, the exponents depend uponH and they are
very different from the universal value oft for two-
dimensional percolation, which is supposed to be insensi
to the details of the microstructure of the medium. Seco
the percolation thresholdS0c and the transitionS0av do not
appear in Eq.~36! and even the offsetb* used in Fig. 16
corresponds toS0'0.1, which is much smaller than the pe
colation thresholds S0c'0.53 and 0.50 obtained b
Mourzenko, Thovert, and Adler@12# for H50.5 and 1 when
l@L ~see Sec. IV A! or than the values ofS0av in Fig. 10 or
in Table II. Conversely, nothing remarkable occurs forS0
'S0av in Fig. 17. Finally, the conductivity of a percolatio

FIG. 16. Log-log plot of the reduced average conductiv

^C̄xsb& b̄/s̄b
for self-affine fractures withH50.87 ~ !, 0.50~!,

and 0.25~
• • •

!, andnl532 ~s!, 64 ~3!, or 128~!!, versus

b̄/s̄b2b* . The offsetb* is 0.29 (H50.87), 0.22 (H50.5), or
0.23 (H50.25).
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network near the critical concentration is known to be s
dependent@21#, according to Eq.~33!. Therefore,C̄x would
scale with an exponent2t/v'21 independent ofH,
whereas in the present situationC̄x varies like s̄b , which
according to Eqs.~22b! and ~27! scales aslH.

In their numerical study already discussed in Sec. III
Sahimi and Mukhopadhyay@10# also determined the conduc
tivity of correlated bond networks. The bond conductiviti
play a role equivalent to the fracture apertureb when the
fracture conductivity is calculated by solving the tw
dimensional Reynolds equation~see Volik et al. @1#!. Near
the percolation thresholdpc , they observed a critical behav
ior of the conductivity obeying Eq.~29b!, with an exponentt
which decreases from 1.3 forH520.5 to about 1 forH
;1. As already mentioned in Sec. III, it should be emph
sized that these results are obtained in very different co
tions than the ones here, since a single network is used
which the bond occupation is varied.

In summary, the combination of Eqs.~22b!, ~27!, and~37!
fully describes the conductivity of finite samples of fractur
in the self-affine regime, from vanishing to moderate relat
apertures

C̄x5@A2QQ~H !shL2H#lHS̄0
5.523H5ClHS̄0

5.523H ,

S̄0<0.8 or b̄/s̄b<1.2. ~38!

FIG. 17. Log-log plot of the reduced average conductiv

^C̄xsb& S̄0
for self-affine fractures withH50.87 ~ !, 0.50 ~!,

and 0.25~
• • •

!, andnl532 ~s!, 64 ~3!, or 128~!!, versus

S̄0 . For clarity, the data forH50.5 and 0.87 were shifted by on
and two decades vertically, respectively. The dotted lines are
model~37!. The vertical broken line corresponds to the percolat
transition forH50.5 from Mourzenko, Thovert, and Adler@12#.
e

,

-
i-
or

e

The fractional open areaS̄0 does not depend on the samp
size, in the average. It is related to the mean relative aper
b̄/s̄b by Eq.~28!. The constantC can be deduced from mea
surements of the conductivity on a finite domain. The exp
nentH of l can be replaced byHb from Table I.

C. Large apertures

As seen in Fig. 16, the conductivity of widely opene
fractures approaches their mean apertureb̄, which is obvi-
ously the leading term of any development in this limit. It
therefore natural to analyze our data for wide fractures
terms of the deviation ofC̄x from b̄.

The conditionally averaged ratiô(b̄2C̄x)/s̄b& b̄/s̄b
is

plotted in Fig. 18 as a function of the relative apertureb̄/s̄b .
All the curves decrease withb̄/s̄b , when it exceeds 1.5, an
seem to tend toward a nonzero limit. The curves for differ
sizesl are very close to one another, which means that m
of the size dependence is accounted for by the normaliza
by s̄b ; only a slight decrease of^(b̄2C̄x)/s̄b& when l in-
creases is observed forb̄/s̄b>1.

The behavior of (b̄2C̄x)/s̄b is easier to grasp when th
same data are recast in terms of the fractional contact
S̄c512S̄0 , as done in Fig. 19. Note that the range of 0
<S0<0.995 corresponds to 1.45<b̄/s̄b<2.6. Thus, Fig. 19
covers a shorter range than Fig. 18. It is, however, the m
interesting range for real situations, since fractional cont
areas less than 0.5% are uncommon. The histograms in
20 indicate the number of domains taken into account for

e FIG. 18. Ratio^(b̄2C̄x)/s̄b& b̄/s̄b
versusb̄/s̄b for H50.25 ~a!,

0.50~b!, and 0.87~c!. Data are fornl532 ~s!, 64 ~3!, or 128~!!.
The broken line in~c! is the analytical prediction~45!.
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averages of Fig. 19. A few erratic points fornl5128 result
from very poor statistics.

FIG. 19. Ratio^(b̄2C̄x)/s̄b& S̄c
versusS̄c512S̄0 for H50.25

~a!, 0.50~b!, and 0.87~c!. Data are fornl532 ~s!, 64 ~3!, or 128
~!!. The dotted lines are overall linear fits forSc<0.06. The broken
line in ~c! is the analytical prediction~45!.

FIG. 20. Histograms ofS̄c512S̄0 for H50.25, 0.50, and 0.87
andnl532, 64, and 128.
It is now apparent that̂(b̄2C̄x)/s̄b& S̄c
converges toward

a finite limit asS̄0 vanishes. If the slight residual dependen
on l is neglected, a linear least squares fit in the rangeS̄c

<0.06 ~i.e., b̄/s̄b>1.7) yields

~ b̄2C̄x!/s̄b5H 1.58S̄c10.76, H50.25 ~39a!

2.84S̄c10.50, H50.50 ~39b!

3.70S̄c10.40, H50.87. ~39c!

This result may be discussed as follows. The const
term in the right-hand side of Eq.~39! corresponds to a re
duction of the effective aperture of the fracture, due to
surface rugosity. It is a fraction of the surface rugosity, sin
s̄b'&s̄h in this range of aperture. It increases asH de-
creases, because the surfaces become more irregular.
other term corresponds to the influence of the contact ar
with at least two distinct effects. First, it reduces the a
available for the flow; second, it induces a tortuosity, sin
these contacts have to be circumvented by the flow.

For wide fractures, the lubrication approximation may
used to get at least an insight into the functional depende
of the conductivity upon the geometrical parameters. T
basic requirement to apply the lubrication theory is that
surface height or aperture variation amplitudes should
much smaller than the longitudinal scale over which th
take place. For instance, for a sinusoidal surface profile w
amplitudesh and wavelengthL, this requiressh /L!1. For
surfaces with features over a continuous spectrum of len
scales, this condition should hold for all scales, which i
plies

kI~k!1/2<1. ~40!

In view of Eq. ~5!, this condition can be fulfilled only ifH
> 1

2 .
The following derivation parallels closely that of Voli

et al. @1#, except that it is three dimensional instead of tw
dimensional. Consider a fracture whose limiting surfaces
described by

h2~x!50, h1~x!5w̄1s̄hz~x!. ~41!

We suppose thatz has zero mean and unit variance, and th
it is periodic with periodl in the x and y directions. The
problems~10! and~11! can be solved by expanding the tem
perature field in terms of the small parametere5s̄h /w̄,

T5T01eT11e2T21¯ . ~42!

The zeroth-, first-, and second-order problems are sol
successively, by using Fourier transforms~see the Appendix
of Volik et al. @1#!. One obtains finally

w̄2Cx5
2p

l2 (
p

(
q

kx
2I ~k!

k tanh~2pkw̄!
, ~43!

where the summations run over positive and negative co
dinates of the wave vectork5(p/l.q/l). For small wave
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numbers, tanh(2pkw̄) can be approximated by 2pkw̄. The
contribution of high-order terms to the summation is neg
gible sinceI (k) decreases asH22H22 with H. 1

2 . Therefore,

w̄2Cx'
1

w̄l2 (
p

(
q

kx
2I ~k!

k2 5
1

2

s̄h
2

w̄
. ~44!

Sinces̄b5s̄h and b̄'w̄ for large apertures, we get finally

w̄2Cx

s̄b
5

1

2

s̄b

w̄
. ~45!

This result is compared with the numerical data forH
50.87 in Figs. 18 and 19. The results of Eqs.~45! and~43!,
with or without linearization of tanh(2pkw̄), were checked to
be undiscernible. The general shape of the analytical curv
very satisfying, though the coefficient1

2 in Eq. ~45! is an
underestimation.

V. CONCLUDING REMARKS

Full computations of the dependence of the macrosco
properties on the size of self-affine structures are now p
sible, thanks to the tremendous increase in computer po
The determination of the conductivity by solving the thre
dimensional Laplace equation in self-affine fractures off
an example of such a possibility. A formula summarizes
results for small and moderate apertures.

This direct approach can be extended in many ways;
meability will probably be the most straightforward proce
to analyze. However, dispersion of a passive solute thro
self-affine fractures will offer a time-dependent examp
which will be of the highest interest.

The interesting problem of the influence of the definiti
of percolation and of the precise procedure applied to
results has also to be directly addressed.
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APPENDIX: TRANSITION TO PERCOLATION

The procedure used in Sec. III C, where subdomains
cut from a large fracture and sorted according to their fr
tional open areaS̄0 is denoted~i!; it yields a conditionally
averaged percolation probabilityP(S̄0 ,l).

In procedure~ii !, the conditional averaging is remove
PF(S̄0 ,l) is defined as the proportion of percolating d
mains, in a fracture with overall open areaS0 . It is then
necessary to consider a larger set of fractures to investiga
range of mean apertures. It may be argued that the dom
involved in the averages for obtainingP(S̄0 ,l) and
PF(S0 ,l) are not statistically independent, since they are
from fractures where long-range correlations exist.

For this reason, in procedure~iii !, many large fractures
are generated independently; a single domain is cut f
each of them and tested for percolation. Two variants
-
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possible. In variant~iii a!, the fracture aperture is set so th
the fractional open area in the tested domain is equal t
prescribedS̄0 , and the percolation of percolating domains
denotedPI(S̄0 ,l). In variant ~iii b !, the fracture aperture is
increased progressively until percolation occurs;S̄0,I(l) is
the statistical expectation of the fractional open areas wh
this transition takes place.

The last procedure apparently corresponds to that use
Sahimi and Mukhopadhyay@10# and Marrink, Paterson, an
Knackstedt@11# when ruleR1 of Reynolds, Stanley, and
Klein @24# is used. Note, however, that an experimental a
proach would probably use method~i!, if samples from a
single large fracture are available, or~ii !, if several fractures
with different apertures but similar structures can
sampled.

Data obtained with procedure~ii ! are displayed in Figs. 21
and 22.PF(S0 ,l) is plotted as a function ofnl in Fig. 21 for
H50.25, 0.50, and 0.87. Two mean open areasS0 were con-
sidered for each exponent, which correspond to the interc
of the curves with they axis. For these two values ofS0 ,
there is no apparent dependence ofPF(S0 ,l) uponl. Quite
remarkably,PF(S0 ,l) is close toS0 for all sample sizes.
The deviations are of the order of 0.02, which is within t
statistical error bars. This is confirmed by Fig. 22 whe
PF(S0 ,l) is plotted againstS0 for two particular sample
sizesnl516 and 128. Again, no scale dependence can
observed. In addition, the average percolation probab
PF(S0 ,l) is close toS0 throughout the range of fractiona
open area.

Hence, it appears thatPF(S0 ,l), like P(S̄0 ,l), is actu-

FIG. 21. Percolation probabilityPF(S0 ,l) versus sample size
nl for H50.25~ !, 0.50~ !, and 0.87~–•–•–•–! and two
mean fractional open areasS0 ~intercept with they axis!.
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ally independent of the sample size. This can be explaine
follows. PF(S0 ,l) is related to the conditional averag
P(S̄0 ,l) by

PF~S̄0 ,l!5E
0

1

Pr~S̄0uS0 ,l!P~S̄0 ,l!dS̄0 . ~A1!

Since the fracture open area is statistically self-similar,
probability distribution Pr(S̄0uS0 ,l) of the local averageS̄0 ,
givenS0 , is not expected to depend upon the sample sizl,
as long as it is in the self-affine rangea!l!L, and Eq.
~A1! reduces to

PF~S0 ,l!5E
0

1

Pr~S̄0uS0!P~S̄0 ,l!dS̄0 . ~A2!

Thus, if P(S̄0 ,l) is actually independent ofl, as suggested
by Fig. 10, so isPF(S0 ,l).

However, the reason whyPF(S0 ,l)'S0 is less clear.
This equality results directly from Eq.~A2! if l is set equal
to a, but Eq.~A2! is not supposed to apply in this range.
rigorous substantiation of this surprising property would
quire an exact derivation of Pr(S̄0uS0).

For comparison, procedures~i! and ~ii ! were also applied
to non-self-affine fractures, withH51. In this situation, the
surfaces are characterized by a single length scaleL. nL was
set to 1024 and the results forP(S̄0 ,l) and PF(S0 ,l) are
given in Fig. 23 fornl516 to 128, i.e., for domains muc
smaller thanL. Since there is no small-scale rugosity, ve
small domains are expected to be for their most part ei

FIG. 22. Percolation probabilityPF(S0 ,l) versus mean frac-
tional open areaS0 for H50.25 ~a!, 0.50 ~b!, and 0.87~c!, and
nl516 ~ ! or 128 ~ !.
as

e

-

er

totally open or totally closed, with probabilitiesS0 and (1
2S0), respectively. Accordingly, we expectPF(S0 ,l!L)
5S0 , which is well verified in Fig. 23~b!. Furthermore, do-
mains which contain both open and closed areas perco
with a probability P(S̄0 ,l) which is again found roughly
equal toS̄0 for l!L, as shown in Fig. 23~a!. Note that the
shape of the curves forP(S̄0 ,l) for H,1 in Fig. 10 seems
to evolve asH increases toward the straight line observed
H51 in Fig. 23~a!.

The results obtained by applying procedure~iii ! are sum-
marized in Figs. 24 and 25. The domain sizenl was varied
from 16 to 256 with constantnL5256 ~512 for nL5256).
The percolation probabilityPI(S̄0 ,l) was evaluated by con
sidering 200 (nl516,32) or 100 (nl>64) independent ran
dom realizations, forS̄050.4, 0.5, and 0.7. The results a
plotted in Fig. 24 forH50.25, 0.50, and 0.87. The curves fo
the various sizes appear slightly shifted horizontally, es
cially for nl516, which corresponds to the influence of th
sample size on the position of the percolation transition, d
to interactions with the discretization. However, the slopes
the curves are similar, which confirms that the width of t
transition does not depend upon scale. The curves of Fig
for nl532 are recalled for comparison in Fig. 24. It appea
that even though the widthD does not depend on the scalel
for both procedures~i! and ~iii a!, it slightly depends on the
statistical averaging technique.

The transition fractional areaS̄0,I(l) is plotted in Fig. 25
versus 1/nl . The correspondingS0av from Table II are re-
called for comparison. Methods~i! and ~iii b ! give identical

FIG. 23. Percolation probabilityP(S̄0 ,l) versus S̄0 ~a! and
PF(S0 ,l) versusS0 ~b! for fractures withH51 and nL51024.
Data are fornl516 ~s!, 32 ~!!, 64 ~3!, and 128~1!.
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results, within the numerical uncertainties, fornl>64. For
smaller domains, procedure~i! yields S0av.S̄0,I(l), espe-
cially for H50.5 and 0.87. This may be partly due to th
finite class widthdS50.05 used when sorting the domains
procedure~i! according to their fractional open areasS̄0 . If
possible spatial correlation effects are disregarded,P(S̄0 ,l)
should be equal to

P~S̄0 ,l!5

E
S̄02dS/2

S̄p1dS/2
Pr~SuS0 ,l!PI~S,l!dS

E
S̄02dS/2

S̄p1dS/2
Pr~SuS0 ,l!dS

. ~A3!

Since neither Pr(SuS0 ,l) nor PI(S,l) are uniform over the
interval @S̄02dS/2,S̄01dS/2#, wide classes may introduc
biases inP(S̄0 ,l), from whichS0av is deduced by Eq.~31!.
However, a few tests withdS50.02 only yielded very smal
differences, at the cost of a larger statistical noise.

On the other hand, it is possible that the average perc
tion properties of selected domains with a givenS̄0 taken

FIG. 24. Percolation probabilityPI(S̄0 ,l) versusS̄0 for frac-
tures withH50.25 ~a!, 0.50 ~b!, and 0.87~c! and nL5256. Data
are fornl516 ~s!, 32 ~!!, 64 ~3!, and 128~1!.
r,
a-

from a large fracture with a prescribed overallbm are differ-
ent from those of domains whose mean local separation^w&

is adjusted in order to obtain a prescribed open areaS̄0 . The
former sampling can actually be performed on a real fract
and corresponds to procedure~i!; the latter is restricted to
numerically generated samples and corresponds to proce
~iii !. It was checked by running procedure~i! on large frac-
tures with different overall mean separations that this eff
cannot account for the difference betweenS0av and S̄0,I(l).

These comparisons and an accurate determination of
position of the transition zone to percolation are seriou
impaired by the numerical uncertainties, illustrated by t
range ofS0av obtained fornl532 andH50.87 from four
smaller data sets~see Fig. 25!.

The data of Marrink, Paterson, and Knackstedt@11#, ob-
tained with a procedure equivalent to~iii b !, are also dis-
played in Fig. 25; note that the comparison is only appro
mate forH50.25 and 0.87. In spite of a slight shift, the
results are consistent with our data and follow the sa
trends. Marrink, Paterson, and Knackstedt@11# also observed
that the standard deviation of the transition concentrat
slightly increases withH, but remains finite whenl tends to
infinity, as doesDS0

in Table II.

FIG. 25. Transition fractional areasS̄0,I(l) ~ ! and S0av

~ ! versus 1/nl for fractures withH50.25 ~3!, 0.50~s! and
0.87 ~!!. The error bar fornl532 andH50.87 corresponds to the
determinations ofS0av from four subsamples. The dotted line
~• • • •! are the data of Marrink, Paterson, and Knackstedt@11# for
ruleR1 with H50.2 ~3!, 0.5 ~s!, and 0.8~!!.
es.
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