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Short grafted chains: Monte Carlo simulations of a model for monolayers of amphiphiles

Christoph Stadler, Harald Lange, and Friederike Schmid
Institut für Physik, Universita¨t Mainz, D-55099 Mainz, Germany

~Received 4 November 1998!

We present Monte Carlo simulations of a coarse-grained model for Langmuir monolayers of amphiphile
molecules on a polar substrate. The molecules are modeled as chains of Lennard-Jones beads, with one slightly
larger end bead confined in a planar surface. They are simulated in continuous space under conditions of
constant pressure, using a simulation box of variable size and shape. The model exhibits a disordered phase
~corresponding to the liquid expanded phase! and various ordered phases~corresponding to the condensed
phases! with different types of tilt. We calculate the phase diagrams and characterize the different phases and
phase transitions. The effect of varying the chain stiffness is also discussed.@S1063-651X~99!00704-7#

PACS number~s!: 68.35.2p
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I. INTRODUCTION

Monolayers of amphiphiles at surfaces~Langmuir mono-
layers! have attracted longstanding scientific interest for va
ous reasons@1–3#: Surface properties of materials can
modified and tailored by coating the surfaces with a
phiphiles. Langmuir monolayers can be exploited to engin
thin-film materials with well-defined structures on a molec
lar level. On the other hand, lipid monolayers on water
experimentally fairly accessible model systems for biologi
membranes. Last but not least, Langmuir monolayers are
perimental realizations of two-dimensional systems, wh
allow us to study ordering phenomena in low dimensions

Experimentally, Langmuir monolayers have been inve
gated for a long time by measurements of pressure-area
therms@1#. More recently, a number of powerful microscop
techniques have been developed, such as fluorescence
croscopy and Brewster angle microscopy, which have p
vided insight into the mesoscopic structures in monolay
The emerging pictures for monolayers on water are qua
tively similar for phospholipids, long chain alcohols, and e
ters: At low surface coverage, the molecules hardly inter
with each other and build the two-dimensional equivalent
a ‘‘gas.’’ Upon compression, a first-order transition to a fl
idlike ‘‘liquid expanded’’ ~LE! phase is encountered, fo
lowed at even higher surface coverage by a second dis
tinuous transition into a ‘‘liquid condensed’’~LC! area. The
transition from liquid expanded to liquid condensed has
important equivalent in bilayers, the ‘‘main transition,
which may be biologically relevant, since it takes place
temperatures close to the body temperature for some of
common phospholipids. The condensed region contains a
riety of different phases, characterized by different types
ordering, i.e., collective tilt order of the hydrocarbon chain
orientational order of the backbones of the chains, and c
talline positional order. A generic phase diagram for fa
acid monolayers is shown in Fig. 1@3#. The lowest density
phases which coexist with the LE phase are typically hex
rotator phases, i.e., the backbones rotate freely around,
positional correlations decay exponentially, but the dir
tions of nearest neighbors are nevertheless well-defined

Theoretical treatments of Langmuir monolayers have
lowed three different lines. On the one hand, phenome
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logical descriptions of the different condensed phases
terms of Landau expansions in the characteristic order
rameters@4–6# have offered valuable insight into the natu
and the interrelations of different phase transitions on a v
general level. On the other hand, molecular-dynamics sim
lations of atomically realistic models have complemented
periments and provided structural information on quantiti
which are hard to access experimentally@7–11#. These two
approaches are in a sense antipodal: Whereas phenom
logical treatments focus on universal properties and m
little or no contact with the microscopic structure of the sy
tems, atomically realistic models seek to imitate nature
faithfully as possible, and to reach quantitative agreem
Hence they account for many more details than are actu
needed to produce a certain phase behavior, rely heavily
the availability of good force fields, and their study is com
putationally costly.

As a third line of approach, idealized microscopic mod
are constructed which incorporate only a few properties o
material, believed to be essential for a given behavior. T
they bridge between phenomenological and realistic mod
and relate microscopic and macroscopic quantities in a qu
tative and semiquantitative way.

The question of which features of amphiphiles are ess
tial in Langmuir monolayers cannot of course be answe

FIG. 1. Generic phase diagram for fatty acid monolayers. T
phasesLS, S, andCS are on average untilted, whereasOv andL28
show tilt towards next nearest neighbors andL2 and L29 show tilt
towards nearest neighbors. InCS, S, L28 , andL29 , the backbones of
the hydrocarbon chains are ordered. InCS andL29 , the molecules
have crystalline order in addition.
4248 ©1999 The American Physical Society
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PRE 59 4249SHORT GRAFTED CHAINS: MONTE CARLO . . .
universally. It depends on the region in phase space
wishes to study. Attractive interactions between the a
phiphiles are important for most phase transitions. As long
one studies condensed phases, it is often sufficient to m
the amphiphiles as anisotropic stiff objects. Grafted rig
rods exhibit tilt transitions@12–14#. Molecules with noncir-
cular cross sections show rotator transitions@15#. For the
transition between the liquid condensed and the liquid
panded phase, however, the conformational degrees of
dom of the chains play a crucial role@10,16,17#. They have
been incorporated in a heuristic way as ‘‘internal degene
cies’’ in Ising-type two-dimensional lattice models fo
monolayers and bilayers, e.g., in the Pink model@18,19#. The
interdependence of chain conformations and effective ch
interactions has to be put in by hand in this approach, an
large number of input parameters is required. Models wh
aim to study more directly the interplay of chain conform
tions and phase behavior have to retain the chain charact
the amphiphiles explicitly.

A suitable idealized model for Langmuir monolayers th
represents the amphiphiles by flexible chains of mutua
attracting monomers, which are grafted to a surface at
end ~‘‘head’’ !. Such models have been formulated on t
lattice @20–24# and in continuous space@25–29#.

Lattice models can be simulated more efficiently than o
lattice models, yet they can produce rather awkward lat
effects especially when orientational order~tilt order! comes
into play @24#. An off-lattice bead-spring model of Lennard
Jones beads has been studied by Haaset al. @25,26# and by
us @27# under constant volume and constant pressure co
tions. It was found to display a tilted and an untilted pha
in which the chains are basically arranged on a~possibly
distorted! hexagonal lattice, and a ‘‘fluidized’’ phase whic
is reminiscent of the liquid expanded phase. Hence it se
a promising candidate for a minimal model, which conta
only the basic elements responsible for the main transitio
Langmuir monolayers. Nevertheless, no systematic stud
the phase behavior has been presented so far.

This is the objective of the present paper. We have p
formed Monte Carlo simulations of a bead-spring mo
very similar to the one used by Haaset al. The models only
differ in the treatment of the heads: Whereas the head b
in Haaset al.’s version are identical with the chain bead
our heads are slightly larger. We chose this variant in or
to ensure that the dominant reason for chain tilting in o
model is similar to the most common one in nature: Tilt
induced by the mismatch of head and tail size. In the mo
of Haaset al., the chains tilt, because they can then ‘‘hook
into each other and thus pack more efficiently. The details
the tilt order~tilt angle, tilt direction, etc.! result from a com-
plicated interplay between monomer packing and ch
stretching@26#, which is highly model dependent and h
probably little to do with the factors which influence the t
in real monolayers. On simple geometrical grounds, two
us have argued earlier that the direction of tilt depends on
size of the head groups@30#. There is also experimental ev
dence for such a connection@31#. With our choice of the
head size, we ensure that the model exhibits two differ
tilted phases at zero temperature, a low-pressure one wit
towards nearest neighbors and a higher-pressure one wit
towards next nearest neighbors.
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Our paper is organized as follows. In the next section,
specify the model and comment on some aspects of
simulation techniques and the data analysis. The results
presented in Sec. III. We characterize the phases and p
transitions, show the phase diagrams, and discuss the e
of the chain stiffness. We summarize and conclude in S
IV.

II. MODEL AND TECHNICAL DETAILS

Following Haaset al. @25,26#, we model the amphiphiles
as chains of beads, which are connected by springs of le
d subject to the spring potential

VS~d!

5H 2
kS

2
dS

2 ln@12~d2d0!2/dS
2# for ud2d0u,dS ,

` for ud2d0u.dS .

~1!

This so-called ‘‘finite extension nonlinear elastic’’ potenti
~FENE! is basically harmonic atd'd0 and has a logarithmic
cutoff atd5d06dS . Furthermore, we impose a stiffness p
tential

VA5kA~12cosu! ~2!

on the angleu between subsequent springs. The stiffne
potential favors anglesu50, i.e., straight chains. Beads a
not allowed to enter the half-spacez,0; moreover, one end
bead of each chain~the ‘‘head’’! is confined to remain within
the planez50. Thus we assume a very strong binding for
between the hydrophilic head group and the water surfa
and the latter is approximated by a perfectly sharp and
interface. Tail beads interactvia a truncated Lennard-Jone
potential

VLJ~r !5H e@~s/r !1222~s/r !61vc# for r<2s,

0 for r .2s,
~3!

where vc5127/4096'0.031 is chosen such thatVLJ(r ) is
continuous atr 52s. The interactions between head bea
are purely repulsive,

VH~r !5H eH@~sH /r !1222~sH /r !611# for r<sH ,

0 for r .sH .
~4!

The attractive part here has been cut off for reasons of c
putational efficiency. Note that the head sizesH differs from
the tail bead sizes. Head and tail beads interact with
repulsive potential of the form~4!, in which sH is replaced
by (sH1s)/2.

The parameterse and s define the units of energy an
length. To complete the definition of the model, we have
specify the remaining parametersd0 , dS , kS , kA , eH , and
sH : Our choice was motivated by the idea that one be
should represent roughly two CH2 groups in an actual alkan
chain. Comparing a straight model chain with an ideal a
transstate hydrocarbon chain, with realistic potential para
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4250 PRE 59STADLER, LANGE, AND SCHMID
eters of united-atom potentials taken from the literature~e.g.,
from Ref. @32#!, one finds that the bond lengthd0 should be
approximately 0.7 times the chain diameter,d050.7s. The
identification also allows for a rough estimate of the absol
values ofs ande: s'3.8 Å ande'240kB K, wherekB is
the Boltzmann constant. These values should of course
be taken too literally, since the model is much too simple
allow for quantitative comparisons with experimental sy
tems.

The spring constantkS was chosen very strong,kS
5100e, such that the lengths of the springs are appro
mately constant at all temperatures of interest. The valu
the cutoffdS then has little influence on the properties of t
system; we usedS50.2s. The stiffness constantkA can be
estimated by adjusting the average^cosu& of a single free
chain in our model at a given temperature to the correspo
ing value in a single free alkane chain. Such an estim
would yieldkA'5e at room temperature. Haaset al. @25,26#
have usedkA510e. Here, we have mostly used the sam
value (kA510e) in order to be consistent with their work
For the reasons mentioned in the Introduction, the size of
head beads was taken to besH51.1s. The influence of the
head size on the phase behavior shall be discussed in d
elsewhere@29,33#. The prefactoreH was choseneH5e.

The simulations were performed at constant spread
pressure in a simulation box of variable size and shape. M
specifically, we studyn chains of lengthN on a parallelo-
gram with side lengthLx and Ly and anglea. Periodic
boundary conditions were applied in these two directio
and free boundary conditions in the third. Our Monte Ca
moves include the following:~i! attempts to displace singl
beads;~ii ! attempts to varyLx , Ly , or a, i.e., to rescale all
coordinates such that the configuration is stretched
squeezed in one direction, or sheared~‘‘volume moves’’!.
The trial moves are accepted or rejected according to a s
dard Metropolis prescription with the effective Hamiltonia
@34#

H5E1PA2nNT ln~A!, ~5!

whereE is the internal energy,P the applied spreading pres
sure, andA5LxLy sina the area of the simulation box. W
have also implemented collective moves, in which cha
were displaced as a whole, and volume moves, in which o
the coordinates of the head beads are rescaled, but
molecular distances and angles are kept constant. The Ha
tonian ~5! then has to be replaced by

H5E1PA2nT ln~A!. ~6!

Unfortunately, these collective moves did not reduce
time needed to generate uncorrelated configurations sig
cantly. Similarly, we have implemented continuous config
rational biased Monte Carlo moves@35#, but found that they
brought no improvement in our particular system.

In order to check that no internal stress is present in
simulations, we have determined the internal pressure te

Pab
int 5

1

AK (
i 51

nN

r iaFibL 1
NkBT

A
dab , ~7!
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where the sumi runs over all monomers,a,b over thex and
y coordinates,FW i denotes the force acting on monomeri, and
dab is the unit matrix. According to the virial theorem,Pab

int

should be diagonal and identical toPdab at mechanical
equilibrium. This was the case in our simulations, if we us
a simulation box of variable shape. In simulation runs with
rectangular box, we sometimes obtained nonzero
diagonal elementsPxy in the tilted phases.

We will present results forn5144 chains of lengthN
57. The average decorrelation time lies between 200
1000 Monte Carlo steps~MCS!, where one MCS consists o
Nn51008 attempts of monomer moves, and one attemp
rescaleLx , Ly , anda. In general, the systems were equi
brated during 70 000 MCS, and data were then collec
from every 500th configuration over a period of at lea
200 000 MCS.

The simulations were supplemented by a low-tempera
analysis. The zero temperature ground state was determ
by minimization of the enthalpy~5!. A harmonic expansion
was then performed in order to determine the free energG
at some given low~nonzero! temperatureT0 . Given this ref-
erence value, one can calculate the free energy at other
peratures and pressures from simulations by means of a
modynamic integration

G~P,T!5G~P0 ,T0!1kBTE
G
H dP8

A

kBT8
2dT8

H

kBT82J ,

~8!

as long as the pathG from (P0 ,T0) to (P,T) does not cross
a first-order phase transition. By comparing the free energ
of different states, we have localized the transition poi
between phases at low temperatures where hysteresis e
were strong.

III. RESULTS

Figure 2 shows temperature-area isobars for a selectio
low pressures~a! and high pressures~b!. One clearly ob-
serves a jump in the area per molecule, which moves
higher temperatures as the pressure increases. At high
sures, one discerns in addition a kink at low temperatu
indicating the presence of a second phase transition.

The phases can be characterized by the typical feature
the pair correlation functions~Figs. 3 and 4! and structure
functions~Figs. 5 and 6!. For example, the two-dimensiona
correlation functions in the intermediate temperature stat
high pressures are precisely those of a hexagonal lattice.
ure 3 shows pair correlation functions for the head grou
the projection of center of gravity of the chains onto thexy
plane, and the points where the chains pass through the p
at z52s above the surface at pressureP5100e/s2 and
temperatureT51e/kB , which is slightly above the first
phase transition. The three curves do not differ from ea
other qualitatively, and the position and relative heights
the peaks are consistent with those of a hexagonal struc
At temperatures below the first phase transition or at low
pressures, each of the peaks splits up in two. This indic
that the hexagonal lattice is distorted in one of the high sy
metry directions, either the nearest-neighbor or the ne
nearest-neighbor direction~for intermediate directions the
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PRE 59 4251SHORT GRAFTED CHAINS: MONTE CARLO . . .
peaks would split up in three!. An example is shown in Fig
4 ~see the curves for the lowest temperatureT50.1e/kB).
From the large height difference of the twin peaks, one
infer that the lattice is stretched in the direction of near
neighbors in this specific case. The direct inspection of c

FIG. 2. Area per moleculeA/n in units of s2 vs temperatureT
in units ofe/kB for a choice of low~a! and high~b! pressuresP ~in
units of e/s2) as indicated.

FIG. 3. Radial pair correlation functionsg(r ) vs r in units ofs
at pressureP5100e/s2 and temperatureT51e/kB . Correlation
functions are shown for the heads~solid line!, for the points where
the molecules cross the plane atz52s above the surface~dotted
line!, and for the projection of the center of gravity onto thexy
plane~dashed line!. The values ofg(r ) for T50.1e/kB are divided
by a factor of 5 for clarity of presentation.
n
t
-

figuration snapshots reveals, not surprisingly, that the lat
distortion goes along with a collective tilt of the chains in t
direction of the distortion. At low pressures (P&10e/s2),
the hexagonal lattice in the tilted phases is stretched
roughly 10%.

With increasing temperature, the structure of the corre
tion functions is gradually lost. Slightly below the pha
transition, the correlation functions of the head lattice a
fluidlike, with peaks of monotonically decreasing height f
the first, second, and third coordination shell. They do
change qualitatively as the phase transition is crossed@Fig.
4~a!#. In contrast, the correlation function for the projectio
of the center of gravity still shows some solidlike structu
right below the phase transition, and loses almost ev
structure right above the phase transition@Fig. 4~b!#. In the
high-temperature state, the head positions are much m
correlated than the chain positions. We conclude that
phase transition associated to the area jump is a melting t
sition, and that it is driven by the chains. The chains maint
the order below the transition, and promote the disor
above the transition. This is consistent with results fro
molecular-dynamics simulation by Karaborni and Toxvae
@11# of a realistic model.

The structure function is defined by

FIG. 4. Radial pair correlation functionsg(r ) vs r in units ofs
at pressureP51e/s2 and various temperatures as indicated. C
relation functions are shown for the heads~a! and for projections
into thexy plane of the centers of gravity~b!. TemperaturesT are
given in units ofe. The correlation functionsg(r ) for the tempera-
ture T50.1e have been divided by a factor of 5.
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4252 PRE 59STADLER, LANGE, AND SCHMID
S~qW !5
1

nNU(j 51

nN

exp~ iqW •rW j !U2

, ~9!

where the sum runs over all monomers in the system. N
that in a finite simulation box with periodic boundary cond
tions, S(qW ) for a specific configuration is only defined fo
vectorsqW whose projections on thexy plane are sums o
integer multiples of the basis vectors

bW x5
2p

Lx
S 1

21/tan~a!
D and bW y5

2p

Ly
S 0

1/sin~a!
D .

However, the dimensions of the box fluctuate in our simu
tions, hence the basis vectors fluctuate as well. In orde
overcome this problem, we have laid a fine-meshed grid
the xy plane and summed up all the contributions toS(qW )
within a mesh. Figures 5~a! and 5~b! show the resulting

FIG. 5. Structure factorS(qW ) in the xy plane (qz50) for a
disordered state~a! and an untilted ordered state~b!. Parameters are
P510e/s2,T52.5e/kB in ~a! andP550e/s2,T52.0e/kB in ~b!.

FIG. 6. Structure factorS(qW ) in the yz plane (qx50) for an
ordered state with tilt towards next nearest neighbors. Param
areP550e/s2 andT50.1e/kB .
te

-
to
n

structure factors in the plane ofqz50 for a disordered state
~a! and an untilted ordered state~b!. The structure factor of
the disordered state is isotropic and shows the usual feat
of a fluid structure factor. In the untilted ordered state, o
finds the Bragg rods of the hexagonal lattice. They
sharply peaked in thexy plane, but have a considerab
width in thez direction, hence the term ‘‘rods.’’ In the tilted
ordered state, the plane of maxima tilts such that it st
perpendicular to the long axis of the chains@3#. Thus the
peaks belonging toqW vectors which are not perpendicular
the tilt direction move out of theqz50 plane. This is illus-
trated in Fig. 6 for a state with tilt towards next neare
neighbors. The internal structure of the rods in thez direction
reflects the structure of the monolayer. For example,
width of the rods is inversely proportional to the width of th
layer, and every rod is surrounded by a multitude of we
‘‘satellite maxima’’ which are caused by the sharp steps
the density profile atz50 and at the outer surface. After si
low satellite maxima, another strong peak is found, reach
a height comparable to that of the main peak. These pe
reflect the ‘‘periodic’’ arrangement of monomerswithin a
chain. They are found at distances of approximatelyDqz
'2p/d0 cosu and integer multiples from the main pea
whered0 is the favored distance between monomers@see Eq.
~1!#. Their appearance is a very specific property of o
simulation model, and not interesting from a general point
view. Hence they shall not be studied any further.

In order to quantify our findings, we have analyzed
number of suitable order parameters. For example, we de
mine the hexagonal order parameter of two-dimensio
melting,

C65K U 1

6n (
j 51

n

(
k51

6

exp~ i6f jk!U2L . ~10!

Here the first sumj runs over all heads of the systems, t
secondk over the six nearest neighbors ofj, andf jk is the
angle between the vector connecting the two heads an
arbitrary reference axis. The quantityC6 thus measures the
orientational long-range order of nearest-neighbor directio
It is nonzero in the hexagonal~quasi!crystalline phase and in
the hexatic phase. As an order parameter which describe
collective tilt of molecules, we have computed

Rxy5A^@x#21@y#2&, ~11!

which corresponds to the length of the average projection
the head-to-end vector of the chains on thexy plane. Here
@x# and@y# denote thex andy component of the head-to-en
vector, averaged over the chains of a configuration, and^ &
denotes the thermal average over all configurations.
quantityRxy is nonzero in phases which break the azimut
symmetry, i.e., phases with collective tilt, and zero oth
wise. Note that the average tilt angleu between the head-to
end vector of the chains and the surface normal is alw
nonzero.

The quantitiesC6 and Rxy are shown as a function o
temperature for various pressures in Figs. 7 and 8. The
jump in the isobars goes along with a drop to almost zero
the melting order parameterC6 . This substantiates our ea
lier speculation that the transition corresponds to a melt
rs
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PRE 59 4253SHORT GRAFTED CHAINS: MONTE CARLO . . .
transition. Furthermore, we infer from the decrease ofRxy
with the temperature that there is also a tilting transit
from a collectively tilted phase at small temperatures to
untilted phase at high temperature. The melting transit
and the tilting transition occur simultaneously at low pre
sures, and decouple from each other at high pressures.
tilting transition then precedes the melting transition a
seems to be continuous.

At our small system size, it is not possible to deci
whether the ordered phase is crystalline or hexatic. Mo
over, we are not able to establish unambiguously the orde
the melting transition. These are two closely related issue

FIG. 7. Order parameterC6 vs temperatureT in units of e/kB

for different pressuresP ~in units of e/s2) as indicated.

FIG. 8. Order parameterRxy in units of s2 vs temperatureT in
units of e/kB for different pressuresP ~in units of e/s2) as indi-
cated.
n
n
-
he

d

-
of
of

high interest. Even in much simpler two-dimensional sy
tems ~hard disks, Lennard-Jones disks!, the question of
whether they melt discontinuously in one stage or conti
ously via a hexatic phase@36# in two stages is still a matte
of debate. The transition from a hexatic to a fluid phase
usually believed to be continuous. In the case of amphip
monolayers, however, we have argued that it can be dri
first order, as an effect of the interplay between chain
tropy and chain packing@17#. We have already noted that th
melting transition in our system is mainly driven by th
chains, which enhances the likelihood of such a scena
The transition may also be discontinuous at low and int
mediate pressures, and continuous at high pressures.
pronounced jumps observed in our simulations seem to i
cate a line of discontinuous transitions; on the other hand,
have not encountered significant hysteresis effects exce
very low pressure,P51. Simulations of much larger sys
tems and a thorough finite-size analysis would presuma
be necessary to distinguish between first-order and cont
ous transitions.

It is instructive to also consider the distribution of ti
anglesu. Let us first look at the average^u& ~Fig. 9!. In the
low-pressure regime, where the melting and the tilting ph
transition coincide, it drops down at the transition and th
rises slowly with temperature. At higher pressures, where
two transitions decouple, it first decreases with tempera
until the tilting transition is passed, then stays low in t
temperature region of the untilted ordered phase, but jum
to a higher value at the melting transition. The jump is

FIG. 9. Average tilt anglê u& in degrees vs temperatureT in
units of e/kB for different pressuresP ~in units of e/s2) as indi-
cated.
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4254 PRE 59STADLER, LANGE, AND SCHMID
lated to the jump in the area per molecule at that transit
the molecules have more space to lie down. The averag
angle is coupled to the molecular areaA/n by the require-
ment that the bead density in the monolayer should not v
much, i.e., the total volume occupied by the monolayer
close to constant. In the condensed region, where the ch
are mostly straight and aligned, this implies that the quan
A cos(u)/n is approximately constant and equal toac , the
area per molecule in the untilted high-pressure phase. Su
dependence has indeed been reported experimentally@37#.
Similarly, we find here that the product ofA and cos(̂u&)
depends much less on the temperature and pressure tha
area per moleculeA/n itself ~Fig. 10!. In particular, its value
right below the melting transition is found to beac
;0.985s2 at all pressures except for the very highest,P
5100e/s2, regardless of whether the condensed phas
tilted or untilted. Hence thevolumedensity in the monolaye
seems to trigger the melting transition rather than the a
density, which corroborates our earlier assertion that
melting transition is driven by the chains.

Figure 11 shows the histogram of the tilt angleP(u)/sinu
at pressureP550 for different temperatures. Below the til
ing transition,P(u)/sinu has a clear maximum. As the tem
perature is increased, the maximum moves down towa
lower values ofu. At the tilting transition, it merges intou
50. From there on, it becomes broader, which explains

FIG. 10. Product of the cosine of the average tilt angle with
area per molecule,A cos(̂u&)/n, in units ofs2, vs temperatureT in
units of e/kB for different pressuresP ~in units of e/s2) as indi-
cated. The horizontal line indicates the position ofac50.985s2.

FIG. 11. HistogramP(u)/sinu of the tilt angleu ~in degrees! at
pressureP550e/s2 for different temperatures~in units of e/kB).
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increase of̂ u& at higher temperatures.
Finally, we turn to the discussion of the direction of th

tilt. It can be determined from a histogram of the angle b
tween the momentary tilt direction and the bonds connec
nearest neighbors. If the tilt angle is well-defined, this his
gram should have six peaks, and their positions indicate
direction of tilt. At low temperaturesT&0.1, we find two
phases with well-defined tilt directions towards near
neighbors and next nearest neighbors. The transition betw
them is strongly first order, and the thermodynamic integ
tion methods described in the preceding section had to
used to locate the transition points. At higher temperatu
the transition washes out, and in some regions of phase s
it is hard to determine whether the tilt direction is at a
locked to the underlying hexagonal head lattice. In order
quantify the ‘‘locking,’’ we define an order parameterF6 ,
which is very similar to the hexagonal order parameterC6
@Eq. ~10!#,

F65U K 1

6n (
j 51

n

(
k51

6

exp~ i6f jk8 !L U2

. ~12!

The notation corresponds to that in Eq.~10!, except thatf jk8
is now the angle to the average tilt direction in the curre
configuration rather than simply that to an arbitrary referen
axis. The crucial difference between the definition ofc6 lies
in the detail that the sequence of^ & and u u has been inter-
changed. The parameterF6 is nonzero if the tilt direction is
locked to the nearest neighbor, next nearest neighbor, o
an intermediate direction. However, it would still be zero
a special case of a locked state, where the tilt jumps betw
nearest and next nearest neighbors. In order to disting
such a state from one in which the tilt direction is rea
oblivious to the hexagonal lattice, we have also evaluated
related parameterF12,

F125U K 1

6n (
j 51

n

(
k51

6

exp~ i12f jk8 !L U2

. ~13!

The parametersF6 and F12 are shown in Fig. 12 for fixed
temperatureT50.5e/kB as a function of pressure. At thi
temperature, the monolayer is tilted at all pressures sho
Figure 7 demonstrates that the tilt direction is locked to
hexagonal lattice at low pressures, but apparently unlock
P540e/s2. That unlocked phases should exist in tilte
hexaticliquid crystal films has been claimed by Selinger a

e

FIG. 12. Order parametersF6 andF12 vs pressureP in units of
e/s2 at temperatureT50.5e/kB .
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Nelson @6#. In crystalline phases, they are supposedly s
pressed by the elastic interactions. Since our systems ar
small to allow for a distinction between hexatic and cryst
line order, they are obviously also too small to allow us
decide whether the unlocked state is real or a finite-size
tifact.

In order to study the role of the chain flexibility, we hav
also performed a few shorter simulation runs~35 000 MCS!
of systems with stiffer chains@28#. To this end, the stiffness
constantkA @cf. Eq. ~2!# was increased by a factor of ten
kA5100e. The area per moleculeA/n, the melting order
parameterC6 , and the order parameter of collective tiltRxy
for these systems are shown as a function of temperatur
three different pressuresP510, 30, and 40e/s2 in Fig. 13.
Up to the highest pressureP540e/s2, the melting transition
and the tilting transition are coupled. Moreover, the melt
transition is shifted to much higher temperatures. This de
onstrates once more that the melting transition in the sys
is basically driven by the chains.

Our results for flexible chains are summarized in t
phase diagrams Fig. 14 and Fig. 15. We find at least f
phases: the disordered fluid, an untilted ordered phase,
tilted ordered phases with tilt towards nearest neighbors
next nearest neighbors, and possibly an unlocked ti
phase. The areas per molecule of the two locked tilted ph
are almost equal at the transition, even at low temperat
where the latter is strongly first order. At higher tempe
tures, the transition is so washed out that it cannot be loc
any more. The transition between the tilted and the until
ordered phase seems continuous. Between the tilted ord
phase and the disordered phase, it is presumably first o
The order of the transition between the untilted orde
phase and the disordered phase could not be determine
discussed above. It should be stressed that none of our a
tions on the order of the transitions has been corroborate
a finite-size analysis, hence they should be regarded
caution.

FIG. 13. Order parametersC6 and Rxy and area per molecule
A/n vs temperatureT in units of e/kB for pressuresP510e/s2

~filled circles!, 30e/s2 ~open squares!, 40e/s2 ~stars! in systems of
stiff chains (kA5100e).
-
too
-

r-

for

-
m

r
o
d
d
es
es
-
ed
d
red
er.
d
, as
er-

by
th

At surface areas per molecules smaller thanA'0.8s2,
i.e., at high pressures and low temperatures, the chains
squeezed together so closely that they form ‘‘rippled’’ stru
tures where the beads of chains in neighbor rows are
placed with respect to each other in thez direction. This
effect is clearly an artifact of our model and has not be
investigated in detail, nor included in the phase diagram F
13. In the limit of vanishing pressure, on the other hand,
system has to assume a gas phase at all temperature
entropic reasons. The transition between the gas phase
the condensed phase is subject to strong hysteresis effec

FIG. 14. Phase diagram in the pressure-temperature plane.
sureP is given in units ofe/s2 and temperatureT is given in units
of e/kB . LE denotes disordered phase, LC-NN denotes orde
phase with tilt towards nearest neighbors, LC-NNN denotes orde
phase with tilt towards next nearest neighbors, and LC-U den
untilted ordered phase. The transition between LC-NN and L
NNN could not be located at pressures aboveP520e/s2. See text
for more explanation.

FIG. 15. Phase diagram in the area-temperature plane. Area
moleculeA/n is given in units ofs2 and temperatureT is given in
units of e/kB . LE denotes disordered phase, LC-NN denotes
dered phase with tilt towards nearest neighbors, LC-NNN deno
ordered phase with tilt towards next nearest neighbors, and L
denotes untilted ordered phase. See text for more explanation.
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low temperatures. Nevertheless, we have been able to d
mine the area per molecule of the coexisting condensed
without too much computational effort on the basis of t
following consideration: An upper limit is given by the are
per molecule of the metastable condensed state at zero
sure, which does not decay within the simulation time
temperatures belowT51.35e/kB . A lower limit is provided
by the area per molecule at the smallest pressure for w
the transition temperature from the ordered to the disorde
state has been determined, in our caseP51e/s2. Since the
areas per molecule do not depend strongly on the pressu
the condensed state, the coexistence line can thus be lo
fairly accurately~see Fig. 14!.

Within the region of the disordered fluid, we have n
found evidence for an additional liquid/gas transition. Suc
transition would be expected at areas per molecule m
larger than;3s2 ~where the critical point is found in two
dimensional Lennard-Jones fluids@38#!, and correspondingly
low surface pressures. We have spent some time searc
for it, varying the temperature at very low pressureP
50.05e/s2, and driving the pressure to zero at the tempe
ture T51.45e/kB @39#. In a region around (P50.05e/s2,T
'1.7e/kB) or (P'0.04e/s2,T51.45e/kB), the area per
molecule varied rapidly, and strong density fluctuations w
encountered. This suggests that the liquid-gas critical p
may be nearby. However, we have not been able to loca
so far. It may be hidden in the coexistence region.

IV. CONCLUSIONS

To summarize, we have studied in detail the phase beh
ior of a model of grafted Lennard-Jones chains, which is
interest as a ‘‘minimal’’ model for amphiphile monolayer
The model was found to show an impressive variety
phases, and its analysis gives useful insight into the me
nisms which drive some of the phase transitions in a
phiphilic layers. In particular, it exhibits a disordered pha
an untilted ordered phase, and a number of tilted orde
phases, which are also found experimentally in Langm
monolayers. The sequence of tilting transitions with incre
ing pressure~tilt towards nearest neighbors, tilt towards ne
nearest neighbors, no tilt! agrees with experiments and wit
earlier theoretical predictions. Furthermore, we have d
cussed the transition to the fluid state and concluded from
form of the pair correlation functions in the different phas
and from the way the transition temperature depends on
chain stiffness, that the transition is mainly driven by t
chains, again in agreement with experimental@16# and theo-
retical @10,11,17# observations.

In other respects, the phase diagram is still quite differ
from the experimental one~Fig. 1!. Some of the discrepan
cies are not surprising; for example, the model with its ro
tionally symmetric chains was never designed to reprod
the herringbone-ordered low-temperature structures. O
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differences are more interesting. The pressure at the tra
tion from the tilted to the untilted phase decreases stron
with temperature, whereas it is almost independent of
temperature in experimental systems. Likewise, the tra
tion pressure of the swiveling transition between neare
neighbor tilt and next-nearest-neighbor tilt increases w
temperature, whereas the line separating theOv and L2
phase in Fig. 1 moves to lower pressures. This is presum
a consequence of the treatment of the head groups—m
specifically, of the rigid constraints which are imposed
them in the model. The hard core interactions are mu
harder than the effective interactions between real h
groups in water. Moreover, the heads in our model are c
fined to lie in a plane, whereas they can move in and ou
the surface in real systems@40#.

Further refinements of the model will thus have to foc
on the representation of the head groups. We have alre
mentioned the interplay between head size, spreading p
sure, and tilting transitions. A more detailed study of t
influence of the head size on the phase behavior shal
presented elsewhere@33#. Future work will be concerned
with the effect of relaxing some of the constraints on t
head groups, i.e., giving them additional degrees of freed
in thez direction, and possibly softening the interactions b
tween them. One could also think of introducing interactio
between the tails and the substrate. However, the tails ha
come into contact with the substrate at most densities
interest, therefore this will probably not change the pha
behavior significantly.

On the other hand, we have seen that already the pre
simple model reproduces many important properties of a
phiphile monolayers. Hence it can be used as a starting p
for further investigations. In particular, simulations of mu
larger systems and a systematic variation of system s
would be desirable to shed light on some of the questi
which have remained open in the present study. These w
help to elucidate the exact nature of the tilting transitions a
the order of the melting transition, to examine the unlock
tilted state, and to clarify whether our model actually do
exhibit hexatic phases.
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