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Quantitative measure of folding in two-dimensional polymers
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The degree of folding of a single three-dimensio(&D) polymer configuration is a general concept asso-
ciated with the pattern of interpenetrations between chain loops. In the present context, this notion applies to
the state of a rigid chain, regardless of the polymer being permanently or only temporarily entangled. Folding
features represent an important aspect of macromolecular shape, one whose characterization must take into
consideration both the 3D geometry and the bond connectivity of the polymer. In this work, we present a
measure of folding complexity for planar objects. These systems include self-avoiding walks on planar lattices
used for modeling 2Madsorbegpolymers. In 3D chains, folding patterns are usually compared in terms of the
number of bond-bongrojectedcrossings, averaged over all rigid projectigtie so-callednean overcrossing
numbej. The characterization of molecular shape in 2D systems must be based on different notions since
bond-bond crossings may not occur. Here, we generalize the concept of “overcrossings” as a descriptor of
folding complexity in 2D structures. We show that the resulting molecular shape descriptor exhibits a power-
law scaling with the number of monomers, bothregular conformers and in a continuum céndomcon-
figurations. The method can be applied to study the adsorption of polymers with various topologies, as well as
the complexity of random structures, such as those in crack patterns, soap froths, and other cellular decompo-
sitions of the plane[S1063-651X99)11303-5

PACS numbsgps): 87.15.By, 05.50+q, 02.70.Lq

[. INTRODUCTION fied by studying electron density surfadés6] or molecular
space curve$6,7]. In the latter case, one can make use of
Under weak interactions, molecules can conserve certaitopological or geometrical properties of the curves. In order
shape feature@ spite of changes in nuclear positions. Thisto discriminate between polymer configurations and assess
situation is found in the electrostatic recognition between dgheir shape stability, geometrical descriptors are preferable
ligand and its receptor, as well as in the response of polymels]. While molecular siz¢8,9] and anisometry10] descrip-
to flow, grafting, and confinement in nanopores. A guantitators rely on the nuclear positions, folding features take into
tive measure ofmolecular shapéds relevant to computer- account the bonding patterfor “chain connectivity”).
aided design of new materials, including pharmaceuticairhese properties characterize how chain loops distribute in
drugs, plastics, and lubricants. Therefore, a great deal of ekpace and interpenetrate each other. Here, we deal with the
fort has been devoted to building descriptors of polymercharacterization of folding complexity ofsinglemacromol-
shape. . ) o ecule. In the case of a 3D polymer, these features are com-
In this work, we address a particular aspect of this ISsUemonly referred to as elf-entanglements This broad term

thelcharacterizO?tion qf “folding ;eatures’;] for ma(cj:rcl)mol- encompasses the polymer chai@manently(i.e., topologi-
ecules on two-dimension4kD) surfaces. These models are cally) self-entangled, as well as those behaving as self-

commonly used to study adsorbed polymers, as well as pha%‘?]tangled in a kinetic sendee., temporary or “geometri-

transitions in grafted, confined, or compressed polyriks entanglements In 2D polymers, this terminology may

Two-dimensional random walks are also used to model dliE:)t be appropriate since these chains are not entangled in the

ordered systems, including random cellular structures suc sual sense. However, the basic issue remains: 2D poly-
as those found in crack patte.r.ns produceq by thermal s.ho ers exhibit folding features stemming from the distribution
[2] and soap froth§3]. In addition, 2D chains are found in ¢ 15555 on the plane. Below, we present a definition of
phenomena modeled by two-dimensional percolation theorkg, ying complexity” for 2D chains that generalizes that for
[4], including liquid diffusion, crystal growth on a surface, 3D polymers.

formation of gels, distribution of oil and gas inside porous In 3D polymers, chain folding can be described in terms

rocks, spreading of forest fires, and dielectric breakdown. Iny¢ 4o b0 d-bond crossingéor “overcrossings’) in 2D pro-
this work, we restrict ourselves to the analysis of izar '{ections of polymer backbonel1-13. The mean over-
O J—

olymers. Nevertheless, the approach can be extended ) .
gtu)(;y 2D structures with differeﬁftopologies. crossing number, denoted by, is the number of bond-bond
crossings in a 20rigid) projection of the backbone, aver-

Whereas “structure” is expressed in terms of chemical p I ol e in th R ¢
composition and nuclear geometry, “shape” can be quanti—age over all possible projections in three-space. Recen

studies indicate that the value Efaveraged over all acces-
sible configurationgdenoted byN}) is a “weak topological
* Author to whom correspondence should be addressed. Presedlescriptor” of knot complexity, correlating with the gel dif-
address: University of Uppsala, Uppsala, Sweden. Electronic acdusion velocity of knotted DNA[14]. Its main analytical
dress: Gustavo@nickel.laurentian.ca property is the occurrence of scaling with respect to the num-
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ber of monomersn. Numerical work on lattice polymers these directions. The number of intersectidng, between

[15], off-lattice polymers[16], and protein native states p, and the molecular backbone can be used to defife-a
[16,17 shows that mal “two-dimensional” number of overcrossings for a given
<W>%nﬁ’ n>1, 1) projection” line. To produce a de_scnptlon consistent with

the one for 3D polymers, we define that a 1D rod Inas

with an exponenB between 1.1 and 1.4. These estimates ar@Vercrossings. Since a diameter line thatag parallel to the
consistent with results from a path-integral representation ofod must intersect the latter oncéhen we choos®l=M iy

N, which gives aigorous upper bound in knotsg<2) [18] 1 as the formal “overcrossing number” for that diameter
ar,1d aconiecturedunner bound for polvmers with 3exc|uded line. Note that the case where a lipgcoincides with a bond
volume (ﬂj<1 2) [18]p poly has zero measure with respect to thean Nvalue.

Scaling is an important property in a shape descriptor. It szle) atlgonthm _to (cl:?mf)ll;tEN IS S|mpl_e. Let A.
allows one to classify polymers imniversality classes __(XA ’Y_A ) andB—(XB Yg”) be the _coordmates defin-
whereby molecules with different chemical Compositions'_ngl the diameter ling; . _NOW' we establish Whether_ te
share similar shape features. A well-known example is thd"€ INtersects a generic bond between consecutive nodes
scaling in the configurationally averaged mean radius of gyYi—1 @ndw; . An intersection exists if, and only if, the equa-
ration, (RZ)Y2 which follows the law (RZ)¥2~n¥{1  tons

+0(n~%)} [20], wherev is the size exponenand A is the X=t(X] =X/_ )+ X_=t,(XF - XI)+ X, (2a)
first correction-to-scaling exponent. The size exponent de- Lo, , (1) (D) "
pends on the polymer-solvent interaction and diraension- Y=t (Y =Yi_)+Yi 1 =t(Yg' =Y )+Ya', (2D

ality of space,D. In dilute solutions of 3D linear polymers ) )
(D=3), the behavior is as follows:(i) »=% in an ideal have spluuons fot, €[0,1] andtz_e[o,l], _S|mult§1neously.
solvent (or at the @ temperature[8,9], (i) v=1 in a poor The pair(X,Y) co_rresponds to the intersection point. By solv-
solvent(when the polymer collapses to a sphejoihd(iii) N9 Eas.(2) for i=2,3,..., we can compute the number of
»=0.588+0.002 in a good solventwhen the polymer re- ©OVercrossingN(, for the diameter lingp, . Finally, by re-
sembles a self-avoiding wal21]. In 2D polymers D peating this procedure fom different dlameters linesn(
=2), the scaling behavior is still in debate. Whereas we>1), the mean number of overcrossifgsbecomes
have exactlyv= 3 in a poor solvent, the values in ideal con-
ditions and in a good solvent are believed toibe? [22] ==> N, (3)
andv= 2 [23], respectively. mi=1

In summary, while the properties of 3D polymers in terms i i _ )
of molecular size and folding are now known, the analysis ofVhe€reN;) is the number of overcrossings for tiita diam-
2D polymers has been restricted so far to molecular siz&ter line. In addition, we can define an overcrossing probabil-
[21-23 and anisometrj10]. In this work, we complete their 1ty for & 2D chain, as it is done in 3D chaif$2]. If my is
description by introducing a measure of folding complexity the number of diameter I!pes produg:mg,)'v_ercrosangs, the
for 2D polymers. We make two main contributions. First, we Probability of observing\ “overcrossings™ isAy~my/m (a
present how the notion of “overcrossing” can be extendegstrict equality form— co). With this definition, we have for a

to planar structures. The resultirh@function is the natural linear chain
generalization t® =2 of the mean number of overcrossings —
defined in three-space. Second, we establish the scaling be- N:NZO NAN, 4
havior of N in regular and random polymer conformations.
where maxN=n—2 is the maximum possible overcrossing
Il. FOLDING COMPLEXITY IN TWO-DIMENSIONAL number in a 2D linear chain(Since the chain has—1
POLYMER BACKBONES bonds, any diameter line cannot produce more thanl

h . o h ) intersectiong.In random walks, this maximum is usually not
In three-space, “overcrossings” are the bond-bond interyeached, and many of thig, are zero. As commented before,
sections observed in a projection alongome-dimensional —

line of sight. Although 2D self-avoiding walldo notexhibit the value ofN in Eq. (4) is simply a geometrical property of

actual self-intersections, we can still define a similar shap&)lar‘ar curves, and .'t mu_slot be interpreted in terms of thg .
descriptor by computing theumber of bonds intersected notion o_fovercrossmgs in three-space. However, the defini-
when a 2D polymer is observed along a one-dimensional linéion of N given here constitutes the proper extension of the
of sight on the molecular planeThe resulting “line- concept of overcrossings to the case of 2D figures.
intersection descriptor” is the rigorous extension of the no-  The properties of the overcrossing probability distribution
tion of “overcrossings” from three to two dimensions. are simple: (a) An “unfolded 2D chain (e.g., a 1D rod

In two dimensions, am-node chain is represented para- has anfAy; distribution with a dominant peak &=0, and
metrically as a curveW(t), with node coordinategw; @& small mean overcrossing numbes} a “folded’ 2D chain
=(X;,Y;)}. When taking the chain’s centroid as the origin (€-9., @ compact 2D coihas manyN>1 values contributing
O, the node coordinates will be denoted dsv/ to the overcrossing probabilities, and thus a large value for
=(X{,Y])}. Line-of-sight directions can then be taken asN. As a resultN can be used to monitor globutecoil or
the diameter linesof the smallest circle, centered @ that ~ coil=rod shape transitionsn 2D chains, as it is done for 3D
completely encloses the polymer. Lpy be the first of chains[24]. Accordingly, we consideN to be ageometrical

n-2
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0.5 T “open’” configuration. As expected, low overcrossing values
dominate(here,N=0 and 1. The bottom diagram presents
0.4 T the results for a compact conformation. In this case, all “pro-

jections” produce overcrossingé.e., Ag=0). While the

0.3 most frequent number of overcrossingNs-2 (35%), val-
Ay ues up toN=~20 are found.
0.2 We can compute the average folding features in 2D poly-
mers by evaluating the configurationally averaged mean
0.1 overcrossing number, denoted fyi). Accurate estimations
of (N) can be derived by sampling 2D walks with a “naive”
0 ‘ ' i ' Monte Carlo approach20]. In our case, partial chains that
0 5 10 15 20 fail the conditions of self-avoidance or excluding volume are
N rejected and not continued. The resulting set contains uncor-
related conformers. The results fdrin regular and random
walks are discussed in the following sections.
0.5 - We note here another propertyn$1, one can replacH
by an integra[cf. Eq.(4)]. From the mean value theorem for
o b integrals and the normalization Ay}, we have
J— n—-2 n-2
o5 L szo NANstmax{N}f0 AydN=n—-2. (5)
AN B B
0.2 Equation(5) implies a bound orN (and thus(N)). As a
result, if a scaling relation such as E@) exists in 2D linear
0.1 t polymers, we deduce thgt<1. The following sections test
this property in exact results for regular conformers and in
0 + ¥ S numerical simulations for random conformers.
0 5 10 15 20
N I1l. SCALING BEHAVIOR OF SELF-ENTANGLEMENTS

FIG. 1. Distribution of overcrossing probabiliti€sovercross- IN REGULAR 2D POLYMER CONFIGURATIONS

ing S?eCtra’) for two random configurations of a 2D polymer with  \We consider first the behavior of shape descriptors in
Y= 3000 andn=90. [The top diagram corresponds to an “open” regular, as opposed t@andom conformations. In regular
conformer(inse, characterized by highy values for lowN. The  conformations, bond and dihedral angles take periodically
bottom diagram corresponds to a “closed” configuration of the repeated values. In 3D proteins, these conformations include
same polymeKinse). This conformer exhibits larger overcrossing elements of secondary structure, eghelices, 3, helices,
numbers} and 3 strandg25]. The mean shape properties of these con-
formers are known in terms of the number of monomers
measureof “2D folding complexity” (or, loosely speaking, [26]. In « helices and strand¢N) exhibits linear scaling
“2D entanglements). Using an analogy with single 3D f[je. g=1 in Eq.(1)]. It is unclear whether a similar scaling
polymer chains, we could say that a compact 2D selfys found in two dimensions. Here, we address this question
avoiding random walk is more “entangled(in the sense by using a family of simple regular conformations.
above than the linear rod. _ _ _ The alltrans linear chain (a “zigzag-like” polymen
Figure 1 illustrates these ideas with two configurations ofserves as a 2D model of anhelix. This polymer is defined

a model polymer, where the chain is represented as a 2By 5 constant bond length, and a constant bond angt@,
off-lattice self-avoiding walk with excluded volume interac- | the first node is the originW,=(0,0), the coordinates

tion. The polymer is built as a sequence of bonds, linking y,
nodes with constant bond lengthand random bond angles.
These configurations are subject to two constraints:
there are no bond-bond intersections during the construction
of the walk (i.e., self-avoidance (ii) nodes not linked by

i=(X],Y;) of the remaining nodes are

. L
Xj=(J—1)bsm5, i=1,23,...;

bonds cannot be at a distance smaller thgsi.e., a radius b cosg j=2,4
of excluded volumg In this scheme, all random walks ap- Y= 2 n (6)
proach asingle configurationthe 1D rod if r.,—2b. Note 0, j=13,...

also that the folding properties depend on the dimensionless

radius of the excluded volume=r./2b, ye[0,1], and not Figure 2 shows an example, with=10 monomers. Using

on the individual values ob andr.,. Low y values corre- these coordinates, we can compute the mean overcrossing

spond to chains embedded in “poor” solvents, whereas larg&lumber as discussed in Sec. II. In this particular case, the

y values correspond to “good” solvents. chain model is simple enough to allow tegactcomputation
Figure 1 shows two chain configurations witk-90 and  Of overcrossing probabilities and the determination of the

y=335. The top diagram gives the distributi¢A} for an  scaling behavior foN.
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AN:®N/7T' (7)

Itis clear that, in regular alirans chains,N can only be even
whenn is even, whereahl is odd if n is odd. In Fig. 2, only
N=0,2,4,6,8 are possible. Note that thg; values, forN
<n-—2, are unaffected when the chain is lengthened by two
bonds. The last angleP, ,, is given as: O, ,=
—(0g+0,+---+0,_,), evenn.

We analyze now the case 6Xy for evenn chains.(The
analysis of odd is similar, the only difference being a shift
in the originO.) Using center-of-mass coordinates,

P

b @
Xj’=Xj—(n—1)§sm§, Yj’=Yj—§cosf, 8

we can determin@ , from the position of ther{/2) node and
the [(n/2)+2] node (cf., Fig. 2. From the scalar product

FIG. 2. Regularall-trans) conformation of a linear polymeia  cos@,=w',- W/ 1o, o/ ||W/ || [W/2.ll, We obtain
. - - - . O )
model of a 2D helix [The regions indicated a®, define the /2 izt 2T 2l iz 2

areas where the diameter lines intersect the cNairll times. The 00322_3 sinzg
overcrossing probabilities are simphy=0/.] 2 2

®,=arcco [ - 9

P .
The exact evaluation of is as follows. Consider the C°§7+9 st?

chain in Fig. 2 withn=10. Let® be the angldin radians

for the circular sector comprising the diameter lines leadingA similar analysis can be used for all oth@g, (and thusAy)

to N overcrossings. The overcrossing probabilities are thugalues. After some algebra, the general form for the over-
fractional areas of the circle: crossing probabilities is found to be

cos’-§+(N—1)(N+3)sin2§

172

1
Ay=—arcco
v

) 12 ’ (10)

® , L0 ® S
co§7+(N—1) sm27 co§7+(N+3) sm27

where N=0,2,4,..n—4. For the largest number of over- approaches the linear rod, the constant decreases. A similar

crossings N=n-2), we have regression for ®=150° produces N=~(0.17072
+0.000 05)Im for n>4.

n—-4
Ar_,=1-2 Ay. (11)
N=0
12—
Finally, the exact Nvalue is computed with Eqg4), (10), 104 "
and (11). The N values derived with these formulas are in- "
distinguishable, within the error bars, from those obtained 8T .
numerically withm= 10 007 projections. _
Using this formulation, we have computed for n Noeq
<15000, in order to detect scaling behavior. From our .
results, compiled in Fi% 3, it is clear th& follows a 1
logarithmic scaling law NocInn, a result that is consistent ol .
with Eqg. (5). A linear regression usingb=60° and n a
=500,1000,1500,...,15000 gives o : , , : :
0 1 2 3 4 5
N~(1.10310.0003Inn for n>4, (12) log,, 1

. _ . . . FIG. 3. Logarithmic scaling of the mean overcrossing number as
with 95% confidence. The prelogarithmic constant in Eqg.a function of the number of monomers in an t#ns linear chain.
(12) depends on the bond angle. As the alltrans chain  (Results are shown far even,n=4 and®=60°.)
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The analysis presented in this section leads us to two im- 1.5T1
portant conclusions.

(a) The scaling beﬂavior dﬁdepends on the spatial di- 1T gl

mensionD. WhereasN increases as-n? for random and
regular 3D conformers, the same need not be true in 2D 0.5+
space.

(b) The scaling law in Eq(12) is well defined even for
rather short chainsThe correlation observed in Fig. 3 can
be obtained from chains even as shorhas20. This obser-
vation suggests that it might be sufficient to use medium "
sized chains r{<100) to obtain a good representation of n L
scaling behavior for the entanglements in 2D polymers. -1 1 II

The properties oN in regular conformers are contrasted ll.ll ®
in the next section with the scaling behavior of its configu- 1.5l

rational average(N), in random chain polymers.

~
o
~

SR

v
£ -0.51

IV. SCALING BEHAVIOR OF (N) FOR SELF-AVOIDING
WALKS IN THE CONTINUUM In(n-2)

We have computed the configurational average of the FIG. 4. Power-law scaling of the configurationally averaged
mean number of overcrossingd\), using off-lattice 2D  mean overcrossing numbéN) as a function of the number of
self-avoiding walks with variable excluded volume and con-monomers in self-avoiding walks with variable excluded volume.
stant bond length. The chains are specified by two paraniThe letters indicate different values of the excluded volume vari-
eters, the number of monomensand the reduced excluded abley=r/2b, wherey= 13355 (a), 3 (b), 5 (c), 3 (d), 5 (e), £ (f), and
volume y=r.J/2b. For every(n,y) pair, shape descriptors (9]
were evaluated on an ensemble of i@correlated conform-
ers, collected by the Monte Carlo search discussed in Sec. Nyhich indicate thah>20 may be enough to obtain the lead-
This procedure yle'dS reliable independent structures, thougiﬂ,g asymptotic behavior in 2D po]ymers_

it suffers from strong conformational attrition asor y in- Using the above sampling, we have studied the

crease$20]. Thus, evaluating mean properties becomes proésymptotic behavior o(ﬁ). SinceN vanishes fom=2, a
hibitive for chains withn>100, and for short chains with

) reasonable scaling law for 2D chaing[&f. Eqg. (1)]
y>0.5. For example, ay=5 and n=15 there are~7

x 10° rejected conformers for every one acceptedyAt2

and n=30, the yield diminishes te-3x 10° rejected con- (W>~a(y)(n—2)3, (13)
formers for each one accepted. The detailed behavior of the

mean attrition rate as a function yindn is given elsewhere

[27,29. where thea(y) must vanish foy— 1~ (i.e., when the chain
We have computedN) for a wide series of/ values § becgmes a rod _ o _
=i, 5 %3 2% and &). At low excluded volume ¥ Figure 4 tests Eq(13) with a logarithmic plot I§N) ver-

= 25), simulations were carried out for polymer lengths of SUs In0—2). The results in Fig. 4 are consistent with those
n=10,15,20,...,80. At high excluded volumg=£2}), only  for molecular size descriptors. First, the asymptotic regime
results withn="5,6,7,...,15 were possible. In addition to the apPpears to have been reachedyfer 5555, 3, ands, precisely
descriptor of folding,N, we have computed a number of the cases where the mean radius of gyration shows the cor-
descriptors of molecular sizéhe mean radius of gyration, rect scaling behavior. Second, the resultsyier0.5 also ap-

<R2>1’2 the span, and the end-to-end distance in the Cthainpear to be approaching the same asymptotic regime, despite
Th?a V\;ell-known’ scaling behavior of these descri torsthe short chains used.
9 P With the results in Fig. 4, we have estimated the scaling

2\1/2._ v i
((Rg)“~n") can be used as a benchmark to test the re“exponentﬁ (with 95% confidence intervalas follows.

ability of our sampling. With the same configurations used to (@ Linear correlations for chains witn>25 give 3
calculate(N), we obtainedv~0.75+0.02, for all y<0.5. =0.37+0.02, 0.36:0.03, and 0.430.04, for y= s, 2,
This result, obtained consistently for all molecular size de-and ¢ respectively. Note that each of these fittings has a
scriptors, is in good agreement with the accepted exact reifferent number of points.

sult, v=3 [23]. In addition, our results foy>0.5 (where (b) Linear correlations using the eight longest computed

chains are too shdrtcan be well described by a leading chains give exponentg=0.39+0.04, 0.410.03, and 0.46
asymptotic termv=3 and a subdominant correction-to- +0.02, fory= 55, &, and?, respectively.

SCaling term, with eXponem% v. This value is also consis- These results do not rule out a dependence of the expo-
tent with results in the |iterature, which indicate 0648 nentIB with y. However, Considering the trends in F|g 4 for
<1.2[20]. These tests suggest that our simulationsyfor y>0.5, such a dependence appears to be small, as is also the
< 0.5 could be already in the asymptotic regime . As  case for 3D chain§l15,16. From the above values, we can
well, these observations agree with the results in Sec. llimake a conservative estimate:
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B=0.40+0.05 (14) property with molecular size descriptors such as the mean

radius of gyration: the scaling exponent depends on the di-

mensionality of space. Results up to the present indicate that

in 2D self-avoiding Walks with excluded volume, which is in(i) the mean overcrossing number in 1D chains is indepen-
accord with the bound in Ed5). dent of the lengththus suggesting thg&=0), (ii) the “en-

The estimation of the preexponential functiafy) is anglement” scaling exponent for 2D chains @&=0.40
more difficult. Our simulations appear to be representeéio 05, and(iii) the exponent for 3D chains j8=1.2+0.1

semiquantitz;tively by adopting(y)%QX[}{—yZP(y)/(l—y)}, [15,16. Based on these values, we can conjecture that
whereP(y) is a smooth, bound function of the reduced €X-jncreases faster than linearly with the dimensionality of

cluded volume. spaceD. From the results above, a rough fitting would indi-
cate3~0O(D(D—1)).

Regular and random conformations provide a benchmark
for the analysis of realistic 2D polymers with attractive and

In this work, we have introduced the concept of folding rfepulsive monomer-monomer interactions. An interesting re-
complexity for 2D polymers, and provided a quantitative Cent development is the possibility to study the shape of
measure in terms of a geometrical property of planar curvegirotein backbones using 2D projectiof9]. The Sammon
The resulting “line-intersection descriptorN, conveys the Proiection algorithni30] represents an appealing choice, be-

folding features in a 2D polymer. By using an analogy with cause it minimizes the difference between the distance ma-
— . trices in two and three dimensions. Consequently, the result-
3D curves, we could state thit measures the equivalent to

“d ¢ self-entanal g | dsorb ding 2D projection conserves most of the original 3D folding
a degree of seli-entanglement” for a polymer adsorb€dga ayreg of a protein. By performing a systematic survey of
onto a surface. The present approach is general, and it can

. . . L ; ) B protein shape, our method should provide the type of
applied without major modification to different t_o_polog|es, quantitative measures of homology between protein folds
e.g., branched polymers, 2D cellular decompositions of th

. . . Sfieeded in molecular engineering.
plane, or 2D networks. The latter case is particularly inter- In closing, it should be noted that our formulation can

esting, because the size an_d anisometry O.f a net_vyork COliso be adapted to thenalytical computation of mean over-
figuration do not change as its connectivity is modified. Ac-CrOSSing numbers in selected conformers. To this end, one

cordingly, descriptors of folding complexitie.g., the mean . .=
overcrossing numbgrare especially convenient for analyz- can gse.a.path—mtegral represgntanon\lolfor 2D polymgrs
{Bat is similar to the one used in 3D chaiis3,19. Details

ing networks, since they describe shape features related . ) .
both connectivityand geometry. Descriptors relying only on ©f this approach will be discussed elsewhere.
molecular geometry would not provide much useful informa-
tion on these systems.
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