PHYSICAL REVIEW E VOLUME 59, NUMBER 4 APRIL 1999

Theory of nucleation and growth during phase separation
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We present a new model for the entire process of phase-separation that combines steady-state homogeneous
nucleation theory with the classical Lifshitz-Slyozov mechanism of ripening, modified to account for the
substantial correlations among the droplets. A set of self-consistent interface equations describes the decay of
metastable states, incorporating naturally the crossover from early-stage nucleation to the late-stage scaling
regime withoutad hocassumptions. We present simulation results for both two and three dimensions. We also
present a mean-field, Thomas-Fermi approximation that provides an approximate solution to the many-body
problem.[S1063-651%99)05503-9

PACS numbsis): 64.60.My

[. INTRODUCTION With these two regimes of early and late time being rea-
sonably well understood, the question remains: How does the
The theory of homogeneous nucleation has been a subjesystem proceed from nucleation to the late stage of Ostwald
of research for at least 60 yeaf&]. A metastable state ripening? This was first addressed in the seminal work of
evolves towards the stable equilibrium state via localized.anger and SchwartZl5], who used a mean-field approach
droplet fluctuations of a critical size. The critical energy for to study the nonlinear dynamical equations of motion for a
the formation of a droplet is determined by a competitionphase separating system with both nucleation and growth of
between a volume terifwhich favors creation of the drop)et droplets. There are more recent models and experiments con-
and a surface terrfwhich favors its dissolution The critical ~ cerning the description of nucleation and growth within a
radius R, results from this competition: droplets of sile  single framework. For instance, chemical reaction rate theory
>R, grow, while droplets witlR<R, shrink. Early theories has been used, within a mean-field framework, to model the
of homogeneous nucleatidi] have been generalized and kinetics of precipitation reactions in Al alloyls6]. Many
made rigorous, particularly through the work of Lan§)g}. = mean-field theorie§17] are modifications of the formalism
Experimental testg3] and computer simulatiorigl] are well ~ first proposed by Kolmogorov, Johnson and Mehl, and
in accord with predictions. At present, the process of earlyAvrami [1]. They involve isothermal, time transformation
time homogeneous nucleation is quite well understood.  relations that relate the volume fraction of the transformed
This is also the case for late-time phase separation, knowphase at a given time with growth rate, nucleation frequency,
as Ostwald ripening. During this late stage, droplets coarseand shape factors. Such theories consider systems where dif-
while maintaining local equilibrium. To reduce the systemfusive effects within the matrix, from either monomer diffu-
interfacial free energy, material diffuses away from smallsion or the release of latent heat from droplets, can be ne-
high-curvature droplets, which shrink and dissolve. This maglected. That is, unlike the present situation, any Ostwald
terial condenses onto large low-curvature droplets, whichipening regime is of negligibly short duration.
grow. This mechanism was first described by Lifshitz and None of these mean-field theories includes correlations
Slyozov, and Wagn€5], in the limit of volume fraction¢ ~ between droplets. Experimental evideht8], however, em-
—0, where interactions between droplets through their difphasizes the importance of interparticle diffusional interac-
fusion fields can be neglected. Since then, these interactiori®ns and of particle spatial locations on nucleation and
have attracted much research. The main re§6is§] are that  growth, and thus, the need for a theory to include such cor-
the universal scaling form of the droplet distribution function relation effects. Tokuyama and Enomdt9] studied the
predicted by Lifshitz and Slyozov depends énand that the effects of correlations on the kinetics of the crossover regime
predictedn=1/3 power-law growth for the mean radius has for a three-dimensional system. However, their study did not
the following form: R(t) =[K()t]*3, for late times, where include nucleation and was based on a perturbative expan-
the coarsening raté(¢) is a monotonically increasing func- sion in the volume fraction, to order/¢.
tion of ¢. In this paper{20], we introduce a new model that com-
Experimentally, nucleation, growth and coarsening havebines steady-state homogeneous nucleation theory with the
been studied in traditional systems like binary flui@$ va-  classical Lifshitz-Slyozov mechanism, modified to account
por condensation9], melt crystallization[10], as well as for the substantial correlations amongst the droplets. Our
precipitation reactions in supersaturated allpyg]. Nontra-  model is formulated in terms of a set of self-consistent inter-
ditional applications of these ideas have been made in thface equations, which are then solved numerically both in
study of glasses and amorphous matefia, in cavities in  two dimensiong2D) and in three dimension8D). This new
metastable viscous fluids with modulated presgdfd, and formalism naturally incorporates the crossover from the
in three-dimensional clusters on two-dimensional surfacegarly-stage nucleation regime to the late-stage scaling re-
[14]. gime. We also present a mean-field, Thomas-Fermi approxi-
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mation that includes these correlation effects. We note that
we have not incorporated elastic effects, which are important
in some instances. It is straightforward to generalize our ap-

proach to include such effects, if they are important. This,here is the time scale for the macroscopic fluctuatiofis,

J= Eﬂe—(EC/kT)'
.

®)

paper is organized as follows. In Sec. Il, we introduce ou
model, while in Sec. Ill, we describe the simulation method.
Our mean-field theory is presented in Sec. IV, while Sec.
gives our results, and concludes the paper.

Il. MODEL

The energy for the formation of a droplet of radR$as
a surface and a volume term:

vA
E(R)=aocRI"1- RY,

Um

D

in d dimensions. Hereing is the surface tensiony,,
is the molecular volumey = 79T (d/2+1), a=dv, Au
=KT(C(t) — Ce(())/ Ceq(*) is the variation in chemical
potential, k is Boltzmann’s constanf] is the temperature,
C(t) is the time-dependent supersaturation, &hg(«) is

f;

Ve

is the volume of phase space accessible for fluctuations, and
~(Bc/kT) js the Boltzmann probability factor for nucleation

of a droplet. The field-theoretic steady-state nucleation rate
has been studied extensively in the literatizel5,21. Here

we reproduce the results in dimensionless form for space

dimensiond:
d-1
X(t)) } ©

where a3=2/3,a2=4, ﬁ3:(1+){(t)/)(0)3'55, ,82:1, and
Ad=)(8+3/v is a constant. The nucleation ralg(t) can be

written as a radial integration ofdistributednucleation rate
ja(R.1):

X (1)

|

Xo

Jd(t):Ad(

Jaw=ﬁﬁaRndR @

the solute concentration in the matrix at a planar interface in
a phase-separated system. The energy has a maximum apgeasonable assumption fpf(R,t) is a Gaussian form, i.e.,

critical radiusR; given by

(d=Lyvyo
RC_T' 2
such that the critical energg(R.)=E.=voRS 1.

Our study makes use of dimensionless variables. Units
length and time are given in terms of the capillary length
l;=(d—1)ov,/(kT) and the characteristic timet,
=I§/[DCeq(0<>)vm], whereD is the diffusion coefficient. We
also introduce a dimensionless concentration fig{d,t)
=[C(r,1) = C¢((*)1/Ceq(*), whose value far from any
droplet is the time-dependent supersaturafjgt), and the
dimensionless parametgf *=vol97Y/(kT). Expressed in
dimensionless fornti.e., R./lI.—R.), the critical radius be-
comes

_1
~x()’

and the dimensionless energy raig/kT can be expressed
Xo

as
d-1
o

The relation between(t), xo and the corresponding param-
eters used by Langer and SchwanZ,(t),xg [15], is x(t)
=(BI12)x* (t) and xo=(B/2)x5 , Wherep is the critical ex-

Re 3

Ec

T (4)

. B 1 (R—R)?
Ja(R)= mex " 2(6R)Z Ja(1). )]

Considered only as a function of radius, the droplet energy

oft) is @ maximum at the critical radius, and thusR)? can

be written as §R)?=2[E.—E(R)]/|E.|, whereE, and E

are the function&(R) and its second derivative evaluated in
R=R;. Langer[2] showed that when the droplet energy is
not only a function of radiu® but also of capillary wave-
length fluctuationsv, then droplets appear at the saddle point
in the surfacde(R,w). In this case, the surface of the droplet
is described by a functioa[ Ry1+ (W/R)?]9~! so that the
change in the droplet energy due to nonzeras AE(R)
=aoRY"1(d—1)(w/R)?%/2. Both approaches lead to the
same width of the distributiofwith w=6R), that can be
computed as that corresponding to an uncertainty in the ac-
tivation energy of the order d€T/2. In dimensionless form,

it is

3-d
C

= 9
d(d—1)x5? ©

(6R)?

In our study, we consider different forms éR, since dif-
ferent initial distributions of droplets can lead to very differ-
ent intermediate regimes, and it is possible to envision many
different experimental situations in which the width of the
distribution does not necessarily follow E§). For example,

ponent for temperature dependence of the concentration neglis possible to adjust the polydispersivity of the distribution

the critical temperature XC~|T—T¢|#). For 3D, Langer
and Schwartz use@=1/3 andyg ~1 which givesy,~1/6
for our parameter in 3D. Note tha®)~* determines the in-
tensity of noise, since it is proportional toT1/

by quenching in prescribed steps in temperature, and by in-

corporating some degree of heterogeneous nucleation.
Next, we consider the growth and ripening problem. In

order to generalize the Langer-Schwartz theory to nonzero

The nucleation rate gives the number of droplets nuclevolume fraction, one needs to determine the diffusional in-
ated per unit volume per unit time for a given supersaturateraction of a droplet with its surroundings. The time evolu-
tion. It has the general form tion of the system is described by the multi-droplet diffusion
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equation for the concentration fiel{r,t). In the monopole In this equation an approximation has been made: the time-
approximation, the coarsening phase is spherical and fixed idependent Green’s function is used in the integration of all
space. The emission or absorption of solute from growing othe particleg with j#i, while in particlei it is replaced by
dissolving particles is modeled by placing point sources othe corresponding stationary Green’s function. This equa-
sinks of solute at the center of each particldé. The multi-  tion, together with Eq(12), was used in Ref.19] to study

droplet diffusion equation then becomes the evolution of a three-dimensional system wittgisen
initial distribution of particles. It represents the many-body
a0t N effects due to the diffusive long-range interactions among
pn —-Veo(r,t)= —ai_zl Q;io(r—ry), (10 droplets, and therefore a closed-form solution cannot be writ-

ten. The authors employed a systematic expansion in powers

where the coefficient®; describe the strength of the source of \/E and so!ved the eqyayon to f|rsfc order. _Later, we wil
seek a solution of a similar equation by introducing a

or sink of the current for diffusion. We assume SphericalThomas-Fermi apbroximation
droplets in local equilibrium; hence, the concentration near PP : :
Here we propose an ansatz for the solution of &d).

the interface is determined by the local curvature and SurfaCFnstead of using retarded Green’s functions for the solution

tension, consistent with the Gibbs-Thompson boundary con- o , ; o
dition: we use time-independent Green’s functions, specifically

G(r=r")=21r—r’] in 3D and Gy(r—r")=In(jr—r’|/L)
o(R)=1R,, (11) in 2D, whereL is the system size. To take into account the

time evolution of the supersaturatigq(t), we introduce a
in dimensionless form. coefficientQg(t), that will be related to the coefficienty;

The radial growth law is obtained from a local continuity through the conservation law. In 3D, the proposed solution

equation in a volume that encloses only one droplet: reads
N(t)
dR, 1 Qi Qj
d-19% _ o —=Qy(t)— = — (16)
R g = (12 R Qo R; Jz# Iri=rjl
If ¢ is the constant volume fraction of the minority phase,In 2D itis
the conservation of mass requires 1 R N(t) |
B 3 i| T
N(t) R =Qo(H)—Q; In( L) ; Q; In( L ) (17

x()+v 2, Ri=¢. (13
a The introduction of the coefficier®q(t), instead of the re-
arded Green’s function, is based on the assumption that the
ehavior of the supersaturation field outside the droplets can
be described in a mean-field manner. Notice that in the
steady-state Ostwald ripening regi@g(t) = x(t), soQq(t)

The time derivative of the second term on the left-hand sid
gives two contributions: one due to the growth or dissolution

of existing dropletsa=YR¢'R;, and another due to the
time variation of the number of dropleé(t) during nucle- s jike an “effective” supersaturation, whose variation in

a_tion, Which we shall caldQnycl, _and wh_ose_ EXPIession is (ime allows for the diffusive growth of particles. Since at late
given later in Eq(23). Thus, the time derivative of Eq413) times, x(t)— 1KR(t)), where(R(t)) is the mean radius,

is thenCy(1) =Qq(t) — 1XR)—0 at late times. This quantity is
ax(t) N(E) plotted for a particular set of parameters in Fig. 3.
X . We have numerically tested that there is no measurable
—+a +a =0; 14 . .
at ;1 Qi*aQnucl (14 difference between the exact solution of E45) and our

ansatz. Hence we used the approximate solution: It is easier

the supersaturation(t) varies due to either nucleation of to solve numerically. In particular, we note that this ansatz
new droplets viady/dt|,= —aQ,,c, or growth/dissolution does not force long-range interactions to be present. For the
of existing droplets viaiy/dt|,= —a=N?Q; . initial stages of nucleation, th@;(t), through which long-

Equations(6), (10), (11), (12), and (14) contain all the range interactions potentially enter, are practically zero. As
elements necessary to describe the phase separation of tfi@e increases, thesg,(t) increase as well, and the system
system from the initial nucleation regime to the late-timeCrosses over naturally to a regime where long-range interac-
Ostwald ripening regime. First, we need to provide a solutiorfions become important.
for Eq. (10). In the Appendix, we give a formal solution for A mean-field treatment of the variation of the supersatu-
this equation, Eq(A2), that employs a retarded Green’s ration means that the variation gf(t) due to nucleation,
function. When this solution is averaged over the surface ofx/dt|,, is computed using the theoretical nucleation rate in
theith particle, one obtains EgA5), which we rewrite here  EQ.(6) according to a simple scheme that we describe in Sec.

for the three-dimensional case: I, while the variation due to growth or dissolution of exist-
ing droplets is given by
N 2
i 1 t ri—r; i(t—s
%:X(t)_ﬁ_‘“’z dseXp(_l I4S]| )((?i( )3’)2' X N(t) R;H( t ) (18)
i i j#i Jo TS —| =—a -5/
1 I (15) (9t ; = Cd(R|) X( ) Ri
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whereC3(R;)=1 in 3D, andC,(R;) =In(L/R) in 2D. Defin-  an initially supersaturated statg(t=0)= ¢. The equations
ing the average of a functionf(R) as (f(R)) are integrated numerically using an Euler discretization
=(IIN)Z; f(R) and ({(1R))=([RIN(RL)]"Y  scheme with a variable time incremettt That increment is
([IN(RIL)]™Y), the above equation in 3D becomes: the smaller of two time intervals: the time needed to nucleate

dt,, or eliminatedt, , one droplet. Since the nucleation rate
N(t)

1 represents the number of nucleated droplets per unit volume
21 Qi=N(R)| x(t)— _<R>)' (19 per unit time at a given supersaturatigft), we have
1=
1
In 2D, it becomes dt,=——r, 21
" T (0)] @

N(t)
- -1 _ Note that the scaled volume of the system is unity. The in-
Z’l Qi =({[In(L/RITEHNLX (D = (LR 20 tegration of the growth equation for dropletgives Rid(t
+dt)=RY(t) + (Q;d)dt. Hence,
Equations(16) and (19) in 3D, and(17) and (20) in 2D,
represent a set dii+ 1 linear coupled equations for thé . Id
coefficientsQ; and the coefficienQ,. Together with the dt,zmm[ _ﬁ} (22)
growth equation Eq(12) and the nucleation rate equation '
Eq. (6), they constitute a formal solution to the nucleationo, a1 i. This will typically be the smallest droplet, which

and growth problem. ~ will usually have the largest negative current for grow@h
The multiparticle diffusion problem can be solved using ag|ong with the smallesR. Occasionally, however, the prox-

multipole expansion method valid to an arbitrary order of thelmity of nearby droplets may lead to a particularly lar@e

expansion. We shall only consider the lowest-order term iy, 5 larger droplet, implying a different, .

this expansion, the monopole approximation, _whlch Is rea-  The actual time intervalt is the smaller ofit, anddt, .

sonable for volume fraction$=<0.10, as shown in the study g,ppose the minimum time interval favors nucleation of a

of Akaiwa and Voorhee$8]. Higher-order approximations, gropjet. Then the radius of the dropRf;qp is chosen with

useful for the study of larger volume fractions, can behe Box-Muller method for generating random deviates with
handled following their approach. Qualitatively, the multi- a Gaussian distribution consistent with E8). Each coordi-

pole expansion behaves as follows. To the next order, a disate is chosen as a uniform random deviate between 0.0 and
pole term appears which leads to a nonuniform concentratioq o avoiding overlap with existing droplei3]. The nucle-

gr;\_dihent along thte su_rs‘r?ce oflthitilll_sphelricg) droglet? ated droplet represents a small fraction of the supersatura-
which now migrate with a velocity linearly dependent on . \vhose new value is(t+dt*)= () —oR%. . Thus
coefficients from first-order spherical harmonj&s. Higher- we identiny in Eq (ﬂ) as )=x(1) = vRdrop '

nuc .

order multipole terms result in nonspherical droplets.
d
Rdrop

ddt*’

lll. SIMULATIONS Qnuci= (23

In the previous section, we obtained a set of equations for
the description of nucleation, diffusive growth and ripening Radii R; and supersaturatiog(t) are updated following the
in a phase-separating system. The numerical solution dfppropriatedt. The minimumdt must be computed self-
similar sets of self-consistent equations for the Ostwald ripconsistently. For instance, immediately after a nucleation
ening regime has been described in detail in the literatur@rocess, or the integration of the radial growth equation, one
[7,22], so here we shall describe only the main differencesnust compute a new set of coefficied®;} that, naturally,
with the previous simulation procedures. modifies the time intervalt, . One must also compute a new

As in previous work, the simulation results do not dependiime interval dt,, since the supersaturation has changed.
on the system sizk, provided length and time in the system This “time bookkeeping” permits the self-consistent selec-
are rescaled by and L3, respectively, implying that the tion of the intervaldt: the path of minimundt is completely
nucleation rate in Eq(6) is rescaled by 1/*3. When determined by the dynamical equations of the system.
choosing the edge length of the box enclosing the system,
certain care must be taken, however. The dimensions of the
vectors and matrices in the code depend on the maximum
numberN . Of droplets that can be nucleated. Therefore, In this section we extend a mean-field approach used for
one choosedN . according to computational limitations, the late time Ostwald ripening regimé] to include the
and chooses the edge lendththat can accommodate that nucleation and crossover regimes. For nonzero volume frac-
number for a given volume fractiogp. Hence,L must be tion ¢, droplet-screening and many-droplet correlation ef-
optimized with trial runs indicating the number of droplets fects are approximated in the same manner as the Thomas-
N(t) nucleated, and their maximum number. With a conve-Fermi mechanism for Coulomb systems. Within a mean-field
nient L, relevant quantities are properly rescaled as, for exapproximation, the change in volume of a droplet depends on
ample,J4(t) —J4(t)L9"3, R,(t=0)—1/(¢L), and produc- the concentration gradients set up by all the droplets, that can
tion runs can be done. be written as> ;1 (R ,R;))[ x(t) — 1/R;], wherel;,«(R;,R;)

For homogeneous nucleation, the time evolution starts ins the interaction matrix. In the mean-field approximation, all

IV. MEAN-FIELD APPROXIMATION
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droplets are equivalent, sd;(R,R")*I(R)drr . The [
growth law then becomes &= jo I(R)f(R,1)dR, (32
d(wR) 1 .
at (RO g ) 24 sbzf I(RIR"L(R AR, (33
0
In this approximation, the flux determining the growth rate d
for each droplet is only proportional to the difference be-2nd
tween the boundary concentration and the supersaturation. o
The rate coefficientl(R) must be determined self- Sn=J vRYj4(R)AR. (34
0

consistently in terms of the screening length defined below.
To complete the mean-field description, we introduce twoB

continuity equations. One is the continuity equation for the y substitutingS, S, in Eq. (30) and defining the field

droplet distribution functiorf (R,t):

af(R,1) .\ IRF(R,D)]

ot JR :Jd(th)v

(29

wherej4(R,t) is given by Eq.(8), and the total number of
droplets per scaled volume is relatedf{d,t) through:

N(t)=fomf(R,t)dR. (26)

The time derivative of the mass conservation equation,

X(t)+f:uRdf(R,t)dR= o, (27)

gives rise to the other continuity equation;

ax(t)
—=—a

* d—1f _
p LR Rf(R,1)dR

f vRY4(R)AR.
0

(28)
By substituting Eq(24) above, we get

ax(t)

at X(t)J:I(R)f(R,t)dR

+F|(R)R*1f(R,t)dR— fvadjd(R,t)dR.
0 0

(29

In the same manner as in RET)], an equation of motion for
the local concentration field(r,t) in the vicinity of theith
droplet is postulated:

a0(r,t)

at =V20(r,t)—£20(r,t) + Sy,— S, —aQ;a(r—ry),

(30

where the contribution from the other droplets is introduced

by a screening lengtl, a background fieldS,£?, and a
source fieldS,&2. If we consider the limit of this equation far
from any droplet, we obtain

dyx(t
YO zeiyis,-s,, (31)

ot

which, by comparison with Eq29), immediately gives

Y(r,t)=0(r,t)— x(t), we can rewrite Eq(30) as

a(r,t)
ot

=V2(r,t)— & 2y(r,t)—aQ;o(r—r;). (35

The solution of this equation can be expressed in terms of a
time-dependent, screened Green'’s function:

w(r,t)=—(2i)dﬂdsf ddk e (K*+e s
X ek rrQ(t—s), (36)
and, makingQ;(t—s)=Q;(t),
Pp(r)=—QiV(r—r;, &), (37)
where
a 1—e (et
v(r—ri,g,w:—(zw)df =
(38)

For t>1,V(r—r;,&,t) can be identified with the steady-
state, screened Green’s functioh/(r—r;,&)=exp(|r
—ri|/&)/|r—r;] in 3D; and V(r—r;,&=Ky(|r—r;|/€) in
2D, whereKj is the zeroth-order modified Bessel function.
Evaluating Eq.(37) at the boundary of the dropletr(r;
|=R;) gives

1
2 =x(-QV(R £, (39)

We convert the discrete definition of average of a function
h(R),(h(R))=[1/N(t)]Z;h(R;), into a continuum defini-
tion, h(R)= [ h(R)f(R,t)dR/ [, f(R,t)dR. Using Eqs(14)
and (31), we can write

Z Qi=NM{IV(REDT () —[RV(R,&D] Y

1oy 1 11
=~ 37t Q=78 XU~ 2S5+ 7S~ Quuc-
(40)
Thus, we can identify (R)=a/V(R,&,t) and
= f(R,t)
-2_
3 —afo V(R,f,t)dR’ (41
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= jw fRY dR 42
>=2), Ruren™® 2
and, S,=aQ,,¢ according to Eq.(34). Noting that Q;
=RY"!R;, and dropping thé subindex, the continuous ver-
sion of the growth law is, from E¢37),

1
=) (43

RTIR= V(R,g,n("“)_ R

and x(t) is obtained as the time integral of E(1), with
Egs.(34), (41), and(42).

This mean-field approach suffers from the same draw-
backs as the original mean-field theory for the Ostwald rip-
ening regimg7]: it is inapplicable to large volume fractions
where the screening lengthis comparable to the average
radius of the droplet, since under the Thomas-Fermi approxi-
mation, the droplets are treated as point sources and sinks.
For example, there is no solution for this set of equations for

>0. i >0.061i .
¢>0.085 in 2D and forp>0.06 in 3D FIG. 1. Time evolution describing nucleation, growth and coars-

ening for a two-dimensioinal system with volume fractiah
=0.05 andy,=1/2. Lengths have been scaled by the didef the

Time evolution is determined by three parameters: thd©% SO that the picture has side equal to 1. Top left: nucleation
nucleation parameteg,, the width dR, of the nucleation regime ¢=9500). Top right: configuration for_ the_maxmum num-
rate distribution function, and the total volume fractign €' Of droplets (= 1.15x 10°). Bottom left: diffusive growth re-

The first two determine the initial radius distribution function g'me7 (t=4.79x10). Bottom. right: ripening regime t.(=5'7
and the subsequent crossover behavior, while the effects >?10 ). The gray scale used in the bf"mkg.round Is relative to the
' %upersaturatlow(t) for the corresponding time. The darkest gray

¢ persist to late times. The time evolution can be d'V'dedcorresponds 6 6(r.1)— x()]/x(t)=0.12; the lightest gray corre-
!nto three stgges: nucleation, diffusive grc_)vyt_h, and COArSens, 4 to—0.04<[ 6(r,t) — x(t)]/ x(t)<0.04 and the white color
ing. Nucleation (_)f droplgts produces the initial deplet_lon ofio [6(r,t) = x(1)]/x(t)<—0.08. Large droplets generally are in the
the supersaturation, which decays faster for jayand high  yhite region, where there is depletion of the supersaturation, while
¢. While nucleation is taking place, the first nuclei start to gisintegrating droplets are in the dark gray regions of high diffusion
grow, seizing material from the background supersaturatiofieids. To facilitate visualization, droplets are drawn about three
x(t). The diffusive growth stage is marked by the high in-times larger their size. Generally, even the nearest droplets are at
crease in slope of the mean radiR&) and the correspond- least two or more radii away.
ing decrease in the slope of the supersaturatigi. During
this period, the droplets scarcely interact, and their numbegompares different values @(0.04, 0.065, and 0.083or
stays nearly constant. Finally, when the supersaturation io=1/6 and a nucleation rate density widthiR;
sufficiently reduced, its role is confined to mediating the ex-=(1/6xo) . As expected, the nucleation parametegsand
change of material between individual droplets. The criticaldR; are irrelevant for the late stages, and the functions
radius for nucleation becomes slaved to the mean radius d®(t), n(t), and x(t) collapse onto correspondingly
droplets, i.e.R.=1/x(t)=R(t) [i.e., Co(t)—0]. Growth is  ¢-dependent universal functions. This is clearly shown in the
a global, interactive phenomenon, and time evolution protop row of Fig. 2, where the three functioRgt), n(t), and
ceeds through Ostwald ripening. x(t), evaluated at different values of,, collapse onto
Figure 1 shows the droplets and background diffusionyg-independent functions at late stages. The apparent over-
field for the time evolution of a 2D system with volume lapping at late times of the functiongt) corresponding to
fraction ¢=0.05. In the initial nucleation regime, the back- different ¢ is due to the relative displacement of the maxi-
ground is homogeneous. When the number of dropt3 mum of n(t). We discuss the late-stagé;dependent uni-
reaches its maximum, the structure in the background signalgersal function forR(t) below.
the imminent decay oN(t). In the diffusive regime, most The crossover to the)-dependent scaling form can be
droplets are growing at the expense of the background superelatively fast, or take several decades in time, depending on
saturation. Note that they are located in the depleted white dhe nucleation history of the system. In the mean-field ap-
light gray regions. Finally, the ripening regime shows aproach[15,3,4, it has been customary to rescale lengths by
clearly correlated structure in the background. Xo and time byy3. The nucleation rate is then expressed in
Figure 2 shows the dependence of the mean ra{ts,  terms of the variabley=y(t)/x, [with y,=y(t=0)
the droplet number per unit volunrgt), and the supersatu- = ¢/x,]. We will discuss this rescaling later. For now we
ration x(t) on x, and ¢ for 3D systems. The top row com- concentrate on the activation energy, whictdidimensions
pares different values of,, (1/7, 1/6, 1/5, and 1/4.5) for a is given byE./(kT)=1/y%"1. Thus, the nucleation rate in-
volume fraction¢y=0.05; and a nucleation rate width pro- creases and the maximum of(t) is higher and occurs
portional to the interfacedR,=0.03R.). The bottom row sooner with largey, i.e., with decreasing, and increasing

V. RESULTS AND DISCUSSION
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I 2 3 4 s
log, () log1 0(t) log, (t)

FIG. 2. Left, middle, and right panels show log-log plots for the mean reRits (divided by the critical radiu&.), the droplet number
per unit volumen(t), and the supersaturatigr(t) [divided by the initial supersaturatigp(t=0)= ¢] for a three-dimensional system. Top
row: ¢=0.05 andy,= 1/7 (thick solid ling), 1/6 (long-dash ling, 1/5 (short-dash ling and 1/4.5(thin solid ling. The nucleation rate density
width is chosen agdR,=0.05R. . Bottom row: y,= 1/6 and¢=0.083(thick solid line, 0.065(long-dash ling and 0.04(short-dash ling

dR.=(6x0) ™.

¢. For smally, and not too large volume fraction, the initial the value ofy(t) is still large. The few droplets which have
depletion ofy(t) is rapid and diffusive growth is not impor- nucleated have nearly equal radii. The excess of supersatu-
tant, favoring a relatively early onset of Ostwald ripening, ration is eliminated by the positive diffusive growth of all
with its characteristic power-law behavior. In agreement withdroplets, which hardly interact. Thus their number stays con-
previous result§l5], this behavior takes place fgp=0.3. It  stant, signaled by a plateau in the functig(t) and a narrow
is depicted in Fig. 2 for volume fractiong=0.05-0.065 droplet distribution function, whil&k(t) markedly increases
and yo,=1/6 and 1/7. producing an abrupt decreaset). The diffusive growth

For yo=<0.25, however, diffusive growth plays an impor- regime lasts about a decade. Forl(P, x(t) has decreased
tant role. In Fig. 2 this is seen fop=0.05x,=1/5(yy  substantially, and is well below what would be its corre-
=0.25); $=0.04x0=1/6(yy=0.24); and ¢=0.05x, sponding asymptotic value at the same time. Hence, droplets
=1/4.5(,=0.22). Consider this last case, represented byan no longer grow at its expense. Ostwald ripening then
the thin solid line in the top panel of Fig. 2. At-5x10% takes over as the dominant mechanism of phase separation.

T T T T T T LTI T T T 17T T T 0.2
0.8 - 0.08 —
0.6 -1 0.06

CO 0.4 — 0.04 | CO
0.2 — 0.02
0.0 ¢ Ll el rrren 0.00 =4l o nul N A T IR ITIT
100 100 100 10° 100 100 100 100 100 100 10" 10
time time

FIG. 3. Logarithmic-linear plot showing the supersaturatidm) (inner axe$ and the quantityCy(t) = Q(t) — 1/R(t) (outer axesfor
¢$=0.05. The left panel corresponds ¥g=1/4.5 and the right panel tgy=1/6.
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FIG. 4. Plots ofR3(t) vst (gray solid line and corresponding
linear fitting (long-dashed ling The left column corresponds i
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produce a consistent coarsening coeffici€ty=0.05). The right
column corresponds ty,=1/6 and different values of. The
coarsening coefficienk(¢) increases monotonically with volume
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sive growth regime, when the supersaturation falls abruptly.

It again becomes zero as the system reaches the steady-state
Ostwald ripening regime, where the supersaturation becomes
slaved to the mean radiu@q(t)= x(t)=1/R(t)=t" 3,

Figure 4 shows linear fittings fdR>(t), for different pa-
rameters. The left column correspondsde- 0.05, and dif-
ferent values of,. These plots confirm that different values
of xo give, for late stages, a consistent coarsening K{i#)
independent ofyy. The right column corresponds tgg
=1/6, and different values o$. These plots also confirm
that the coarsening rat€(¢) is a monotonically increasing
function of the volume fractiorb. The value forgp=0.083 is
only indicative, since this run has not completely reached the
scaling regime and there is considerable diffusive behavior
still present. For late stages, the dependence of the droplet
number density on the coarsening ra¢¢) is given by
n(t)=n(t;)RY(ty)/[R3(ty) + K()t]% [7], wheret, desig-
nates the time at which the linear fitting starts in each plot,
andR(t,) is the corresponding value of the mean radius. The
linear fittings of n(t;)R3(t;)/n(t) vs. t produce the same
coarsening raté&(¢) as the one obtained witR3(t) and
shown in Fig. 4.

Figure 5 shows the dependence of the mean ra{tis,
the droplet number per unit volum&t), and the supersatu-
ration x(t) on xo and ¢ for two-dimensional systems. Three
values of xq (1/4, 1/3, and 1/2), are shown for a volume
fraction ¢=0.05. The thin solid line, on the other hand,
shows the corresponding quantities fgr=0.10 and yq
=1/3. For these plots, the nucleation rate width is taken as
proportional to the interfacedR.=0.05R;). The depen-
dence of these functions upap and y, agrees with the
three-dimensional case. The nucleation paramejgrand

However, because the droplet distribution function is stilldR; are irrelevant for the late stages, and the functions
narrow, it takes some time for the system to develop a propeR(t), n(t), and x(t) collapse onto correspondingly
dispersion of radii, large enough for the ripening mechanismp-dependent universal functions. Fér=0.05, the coarsen-
to become dominant. This “time lag” can be seen in theing coefficient isK(0.05)~0.43 for xo=1/4 and 1/3;x,

range t~10°—10/, where there are plateaus R(t) and

x (1), while n(t) decreases, as droplets slowly disappear.
Figure 3 illustrates the behavior of the coeffici€y(t)

=Qu(t)—1/R(t), where Qq(t) was introduced in Eq(16)

=1/2 still has not reached this value, givikg0.05)~0.39

for the last stage reached by the simulation. The run with
¢=0.10 has not completely reached the scaling regime. For
the last stages shown in the figure, there is a measured coars-

above, for the system just described. This coefficient is imening coefficientK(0.10)~0.94, although we expect this
portant during the diffusive regime. It is near zero duringvalue to change for later times. The late-stagiedependent
nucleation, but then exhibits large variation during the diffu-results obtained both in 2D and 3D are consistent with pre-

log, (D) log1 0(t)

FIG. 5. Left, middle, and right panels show log-log plots for the mean ra®iftigf R;, the droplet number per unit volunmgt), and the
supersaturatiorny(t)/¢ for a two-dimensional system. The thin solid line correspondgt00.10 andy,=1/3. The other three lines
correspond top=0.05 and different values of:xo=1/4 (thick solid ling, 1/3 (long-dashed ling and 1/2(short-dashed line The

nucleation rate density width is chosendR.=0.09R,, for all cases.
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vious results for late stagg6—8] and are a consequence of 10°

having incorporated the correlations among droplets in the

dynamical equations. o _ 0 L e ot
Figure 6 shows the completion time defined byx(t o

=7)=x(t=0)/2= ¢/2 for both 2D and 3D. As has been " S

pointed out[24], the completion time is an experimentally 10" ¢ .\\g\

convenient quantity for studying nucleation. To estimate a ° R

completion time, one must consider both droplet formation 100 - ¢ f\\

and growth. The third panels in Figs. 2 and 5 clearly show -

thatt= 7 occurs during the growth stage. Figure 7 shows two 10° | ‘\

schematic diagrams of the different regimes, nucleation, dif-

fusive growth and ripening, and their corresponding cross- 10° ‘ ‘ ‘

over regions, as function of the nucleated volumpg=1 0.02 004 006 008 0.10

—x(t)/ ¢ and ¢ (left pane) or Xgl (right pane). o

Some initial and intermediate times for the radius distri-
.bult:K.)n gm_l(_:tt_:or:Sf(R't) flor dr’ig-fﬁ ,?hnd)éoz ::'/? are Ehown for two-dimensional systems(empty squares and three-
in Fig. 8. The top panels shoRR(t), the droplet number per dimensional system¢filled circles. The nucleation rate density

unit volumen(t) and the critical radiuRR (t)=1/x(t). The width is dR.= (0.5R../ v~} 2 for 2D anddR.= (V6x.) " for 3D
vertical bars indicate the time at which the droplet distribu- Re=(0-Re/xo) Re=(oxo) '

tion functions are depicted in the lower panels. The threef this peak, the distribution falls very rapidly to zero, and at
columns differ in the widthdR.. The left column corre- the left of the peak, the distribution has a long tail. This
sponds todR;=0, the middle column t@R.=0.08R;, and  excessive population of small droplets cauégét)) to de-
the right column todR.=(\/6xo) ~*. The solid line repre- crease towards the kink ap. Immediately aftert,, these
sents the results of the mean-field theory that includes themall droplets dissolvey(t) decreases an@R(t)) increases
droplet correlation effects. The left column corresponds tasharply while f(R,t) becomes almost symmetric with a
dR.=0, i.e., when all the droplets are nucleated with thesmall tail for R<{R(t)). The dissolution of the small drop-
critical radius. This extreme situation depicts clearly the dif-lets allows ay(t) high enough to nucleate new droplets.
ferent mechanisms of nucleation, growth, and ripening. Intensive nucleation and dissolution of small droplets occurs
With the nucleation of critical droplet$(R,t) develops a betweent, andt, and the new droplets produce the second
high peak centered &.. As supersaturation diminisheR,  kink of n(t) att,. The coarsening of droplets produces a
increases and the newly nucleated droplets have larger radiump inf(R,t=t,) for R>(R(t)), which becomes a second
than the older ones, so th&fR,t) is asymmetric, as shown peak betweent, and ts, creating a bimodal distribution
in the light-gray shaded distributioh(R,t=t;). The “low  f(R,t) and a second kink i§R(t)). At exactly this point,
shoulder” of the distribution aR=18 corresponds to the R_(t) crossegR(t)), ending a subcritical stage, with many
first nucleated droplets, while the high peakRat 22 corre-  droplets smaller than the critical size. Aftey the peak for
sponds to the newer droplets. The maximum number oR<(R(t)) rapidly decreases, while the coarsening peak in-
droplets is reached at=t,. Before this time none of the creases and moves towards lar§es.
originally nucleated droplets have disappeared. The abrupt The middle column in Fig. 8 shows the case when the
dissolution of many subcritical droplets aftgr leads to a width dR; is comparable to the interface thickness. The
sharp decay im(t), for t>t,. The distribution function mechanisms are similar but “washed out” due to the disper-
f(R,t=t,) has a high peak foR=22>(R(t)). At the right  sion in radii, and the subcritical stage ends sooner. These

FIG. 6. Completion time- as function of the volume fractiog,

0.085 |
1 8.2
0.065
=
< < N
1 6.2
0.045
0.025 . - 4.2
0.1 0.3 0.5 0.7 0.9
Xy

FIG. 7. Schematic diagram of the different regimes, nucleatigndiffusion (D), and ripeningR) as function of¢ (left) or Xgl (right)
and the nucleated volume,=1— x(t)/¢. The narrow regions between N abdand betweerD andR indicate a crossover between the
corresponding regimes. The left panék- x,, is obtained fory,=1/6 and the right paneb(gl—xy, is obtained for¢p=0.05.
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FIG. 8. These plots correspond to a three-dimensional systemp#th.05 andy,=1/6. The top panels show the mean radi{s), the
droplet number per unit voluma(t), and the critical radius (t)=1/x(t). The vertical bars indicate the time at which the droplet
distribution functions are depicted in the lower panels. The three columns differ in the aRithThe left column corresponds R,
=0, the middle column tdlR,=0.05R,, and the right column tdR,= (\/6x,) ~*. Each of these functions is obtained by averaging 25 runs
with a maximum number of nucleated dropletd000. The solid line represents the results of the mean-field theory that includes the droplet
correlation effects.

80"

250

f(R)

21314 15 6 17 80'“2 1314 ‘5‘ t'é ‘17 80‘1 2 t tz‘t ‘«? i 17
— R — R@® — R(@®
e 10 1(t) e 107 10(t) e 107 1(t) '
——— R (1) ———R@® / R J
1 60 [N 1 60 | /
| a\ v |
————— -1 40 ] 40 \>< Iy
——————————————— | P B |
L] "——\ A1 ™~
~——_ ] % iad 1 20 T
— ]
. . o L . . 0 . .
0 200000 400000 600000 O 200000 400000 600000 O 200000 400000 600000
150 80
t
60 | _é 1
100 1 Y
ty
40 F N\ —_— tS i
i \ ‘6
50 1 /
20 | / 1
r/ X
v, - ﬂ'\ 3>
_____ e N -
0 0 Lom=m==r" - - =
80 0 20 40 60 80
R

FIG. 9. These plots correspond to a two-dimensional system @vtl).05 andy,= 1/3. The top panels show the mean radi{s), the
droplet number per unit voluma(t), and the critical radiug (t)=1/x(t). The vertical bars indicate the time at which the droplet
distribution functions are depicted in the lower panels. The three columns differ in the RithThe left column corresponds R,
=0, the middle column t@R,=0.05R,, and the right column taR.= (0.5R./x,)*2
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FIG. 11. For a three-dimensional system with=0.05,x,

FIG. 10. Scaled droplet distribution functions for three- . .
=1/6, anddR.=0.05R., we compare the results of our simulation

dimensioinal and two-dimensional systems. The thin solid line cor-_ - c . -
responds to the infinite dilution limit§=0). The finite volume (thick black ling, the Thomas-Fermi approximatidkong-dashed

fraction functions shown with the triangles and circles correspond!ne) and the integration of the continuity equati¢short-dashed
to the late stage coarsening regime. lin).

“smoothening” effects are even greater for the standarddashed ling has been performed straightforwardly, without
width dR.= (/6 x0) ~%, shown in the third column. The solid the various assumptions used by Langer-Schwartz. We have
line distribution functions in the second and third panels rep-also eliminated the restriction of nucleating only supercritical
resent our mean-field solution to the equations, based on thdroplets. Naturally, the agreement with the simulation results
Thomas-Fermi approximation. These are the best results; thdeteriorates for later times.

predictions of the mean-field solution tend to worsen with Concerning scaling, we note that the original mean-field
larger xo and/or with largerg. theory[15] contains one independent variabyes x(t)/ xo.

The same qualitative trends for the distribution functionTherefore, all the results can be expressed in terms of this
are observed in two-dimensional systems, as shown in Fig. %ariable and the nucleation rate width, if one defines new
These plots correspond to two-dimensional systems with radii p and time 7 as p= xoR and T=X8t. However, this
=0.05 andy,= 1/3. As before, the top panels show the meanrequires the coarsening ra&é(t)/t=p3(7)/ 7 to be indepen-
radiusR(t), the droplet number per unit volumet), and  dent of ¢, which it is not. Figure 12 compares the results for
the critical radiusR.(t) = 1/x(t), while the vertical bars in- y,=0.32, considering ¢, xo)=(0.08,1/4) and (0.04,1/8);
dicate the time at which the droplet distribution functions areand the mean-field integration fgg=0.32. Notice that it is
depicted in the lower panels. The three columns differ in theonly possible to collapse the curves for different volume
width dR;. The left column corresponds to critical droplets fractions during the initial and early times.

(dR.=0), the middle column to droplets nucleated with a In conclusion, we have introduced a new model for nucle-
width proportional to the interfacedR.=0.09R;), and the ation and growth that combines steady-state homogeneous
right column to the standard widthR,= (0.5R./xo)“/> nucleation theory with the Ostwald ripening mechanism and

Figure 10 shows the scaled droplet distribution functionancludes the correlations among droplets. These correlations
for three-dimensional and two-dimensional systems. The thioriginate in the interaction of the diffusional fields corre-
solid line corresponds to the infinite dilution limith& 0),
and is obtained through an exact analytical expression given 13
by Lifshitz and Slyozoy5]. The finite volume fraction func-
tions shown with the triangles and circles correspond to the
late stage coarsening regimei=0.04 (triangle and ¢
=0.083 (circle) for the three-dimensional system, awfil
=0.05 (triangle and ¢=0.10 (circle) for the two-
dimensional system. The effects of nonzero volume fraction
is to lower the peak and widen the width of the distribution
function, which becomes more symmetric for higher volume
fraction. The dependence on the volume fraction of both the
distribution function and the coarsening rate are features that

%, R(t)

arise naturally in our formalism, and that are absent in the 50 -
/
Langer-Schwartz model. Wi |
Figure 11 shows a comparison between the simulation / | | |
- 1 i i H B 3 | |
results, our Thomas-Fermi analytical solution and the inte 0 500 1000 1500 2000

gration of the isolated-droplet, mean-field continuity equa- )%3,[
tion. The figure shows the mean droplet radR(¢) and the

droplet densityn(t) for a three-dimensional system with FIG. 12. Comparison of the results obtained foy=0.32 as
=0.05, xo=1/6, anddR =0.05R.. The Thomas-Fermi ap- optained foré=0.08y,=1/4 (dark dotted ling ¢=0.04y,=1/8
proximation (long-dashed ling agrees very well with the (gray dashed line and the =0 mean-field integration fo,
simulation resultgthick black ling. The agreement is good =0.32(thin solid line. The scaled mean radR(t) x,, as function

for small o, and conversely, deteriorates for larggy (or  of the scaled timetx3, agree during the initial and early times, but
larger ¢). The integration of the continuity equatidshort-  as soon as the droplets start to interact, the curves start to depart.
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sponding to each precipitate, and thus depend on the relativiehe steady-state solution of the previous equation is obtained
position of the droplets. The set of self-consistent equationby taking the limitt—cc in the second term. This is more
naturally incorporates the crossover from the early-stageasily done by using the Fourier transform @&f(r—r’,t
nucleation to the late-stage scaling regime. We have pre—t’):

sented simulations on both two and three dimensions. We

have also presented a mean-field, Thomas-Fermi approxima- [r— rj|2
tion that includes the effect of these correlations. A good ¢ XA~ s
experimental candidate to test our results would be a lattice- lim az ds QJ(t_S)—dIZ
matched binary alloy during solid-state precipitation. —e j=1J0 (4ms)
" di - )
ACKNOWLEDGMENTS :az QJJ o) e'k'(r_rj)f ds e X’s. (A3)
=1 0
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q%n the second term, we recognize the stationary Green’'s
nction:

ddk eik<(r7r’)

ry —
cur=r0=af g
The multidroplet diffusion equation has a retarded
Green’s function associated with it, which can be writted in Which can be written asGa(r—r')=|r—r’|"* or Gy(r
dimensions as —r")=In(r—r’|/L), whereL is the system size. One can
solve for the source coefficie®; by averaging the concen-
a p( |r—r’|2) tration field over the surface of theh particle and setting
Gy(r,r' tt')=—————exp —— that equal to the local concentrati®fR;) = 1/R; :
[4m(t—1')]%2 4(t—t’)
1
_ j dikeK-gik-(-1) (A7) R ~X(D-QGy(R) - aE
(27T)d j#I
where, as beforeg= 2 in 2D anda=41 in 3D. A formal f q F{ ri—r;l? )Qj(t_s)
) . S S sex . (AB)
solution of Eq.(10) in terms of the Green’s function is 4s | (4ss)92
2
e(r,t):X(t)— dsexp( [r—r;l )Q i(t=s) In this equation, one app_roxi_mation has been used:_ the time-
47s)¥2’ dependent Green’s function in the integral over dropleds
(A2) been replaced by the stationary Green’s function.
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