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Phase behavior of a simple fluid confined between chemically corrugated substrates
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The phase behavior of a molecularly thin fluid film of Lennard-Jones~LJ!~12,6! fluid confined to a chemi-
cally heterogeneous slit-shaped pore was investigated by the grand canonical ensemble Monte Carlo~GCEMC!
method. The slit-shaped pore comprises two identical plane-parallel solid substrates, each of which consists of
alternating strips of LJ~12,6! solid of two types: strongly~width ds) and weakly adsorbing~width dw). With the
substrates aligned so that strips of the same type oppose each other, GCEMC was used to compute the local
and mean densities of the fluid as well as its isothermal compressibility as functions of substrate separationsz

and for various degrees of chemical corrugation measured quantitatively in terms ofcrªds /(ds1dw). De-
pending onsz andcr , the confined fluid may consist of inhomogeneous gaslike or liquidlike phases filling the
entire volume between the substrates. In addition, liquid ‘‘bridges’’ may form as a third phase consisting of
stratified liquid stabilized by the ‘‘strong’’ strips and separated from two surrounding gaslike regions by an
interface. The phase diagram involving all three phases was determined for a mean-field lattice-gas model
similar to the one investigated recently by Ro¨cken and Tarazona@J. Chem. Phys.105, 2034 ~1996!#. The
lattice-gas calculations permit a qualitative interpretation of the complex dependence of the GCEMC results on
both sz andcr . @S1063-651X~99!07704-1#

PACS number~s!: 61.20.Ja, 61.20.Ne, 68.45.2v, 64.70.Fx
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I. INTRODUCTION

In many areas of contemporary science and technolo
one is confronted with the problem of miniaturizing parts
the system of interest in order to control processes on v
short length and time scales@1#. For example, to study the
kinetics of certain chemical reactions, reactants have to
mixed at a sufficiently high speed. By miniaturizing
continuous-flow mixer, Knightet al. recently showed tha
nanoliters can be mixed within microseconds, thus perm
ting one to study fast reaction kinetics on time scales un
tainable with conventional mixing technology@2#. The im-
portance to design and construct microscopic machines g
rise to a new field in applied science and engineering kno
as ‘‘microfabrication technology’’ or ‘‘microengineering’
@3#. One of the key problems in microengineering consists
the fabrication of chemical or geometrical structures on
nanometer to micrometer length scale with high precisi
This can nowadays be accomplished by a variety of te
niques. For example, by means of various lithographic me
ods @3,4# or wet chemical etching@5#, the surfaces of solid
substrates can be endowed with well-defined nanoscopic
eral structures. In yet another method the substrate is ch
cally patterned by elastomer stamps, and, in certain ca
subsequent chemical etching@6–9#.

In this paper we focus on substrates with prescrib
chemical heterogeneities@10,11#. One realization of such
substrates is the so-called ‘‘Janus bead,’’ which is a spher
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colloidal particle with one hemisphere hydrophilic, the oth
one being hydrophobic@12,13#. Along the equator the two
portions of the substrate have a rather sharp and well-defi
junction. Janus beads can be considered as amphiphilic
ids with a stabilizing effect on oil-water interfaces@12#.

Theoretically there has also been considerable interes
fluids near chemically heterogenous substrates in re
times. For example, Koch, Dietrich, and Napio´rkowski @14#
considered a fluid adsorbed on a single planar substrate
sisting of two semi-infinite parts, only one of which is wette
by the fluid. They showed that for large distances from
junction between the two portions of the substrate, the d
sity profile of the fluid corresponds to that over a chemica
homogeneoussubstrate composed of either material. Ho
ever, the precise range over which the presence of the ju
tion affects the density profile in the transverse directio
~i.e., parallel to the substrate surface! is not yet known quan-
titatively @15#. For substrate materials with various chemic
patterns, Lenz and Lipowsky@16# studied the morphology
and phase behavior of droplets with typical sizes on a
crometer length scale where neither gravity nor van
Waals forces are relevant.

While all these studies are concerned with fluids n
single chemically heterogeneous substrates, interesting
fects are to be expected if a fluid phase is confined by s
substrates to spaces of microscopic or mesoscopic dim
sions. Even if the substrate is composed of just a sin
chemical species, the phase behavior of a confined fluid
fers markedly from that of a corresponding bulk fluid@17#.
Perhaps the most prominent aspect in this regard conc
the location of the critical point which is shifted to lowe
temperature and higher mean density compared with its b
4122 ©1999 The American Physical Society
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PRE 59 4123PHASE BEHAVIOR OF A SIMPLE FLUID CONFINED . . .
counterpart~see Fig. 7 in Ref.@18#!. Unlike in the bulk the
critical point of a confined fluid is not unique but depends
the degree of confinement; that is, the critical-point shift d
creases with substrate separation. Critical-point shifts in c
fined fluids have extensively been studied both experim
tally @18–24# and theoretically@25–32#.

If the substrate material is chemically heterogeneous,
conceivable that the phase behavior of confined fluids is e
richer because chemical corrugation of the substrate is su
imposed on confinement effects. For example, for chemic
striped substrate materials—that is, substrates consistin
strongly adsorbing portions alternating with weakly adso
ing ones in one transverse dimension—the chemical het
geneity can engender phase coexistence. For a fluid con
between two planar, parallel, and chemically striped s
strates, as was shown in Ref.@33#, a gas over the weakly
attractive portions of the opposite substrates can be in t
modynamic equilibrium with a liquid over the strongly a
sorbing ones. The two are separated by an interface tha
be described by a semiempirical model usually applied to
density variation across a liquid-gas interface in the b
@34#. ‘‘Internal’’ phase coexistence of this sort was also i
vestigated by Ro¨cken and Tarazona@35#, who studied capil-
lary condensation in slit-shaped pores with chemically c
rugated walls using a mean-field lattice-gas model. In th
model the wall is represented by a potential field that os
lates sinusoidally between attraction and repulsion in
transverse direction (x), and extends about one molecul
diameter from the plane of the wall. For a single substr
separation Ro¨cken and Tarazona investigated the effect
substrate corrugation~i.e., the period of oscillation betwee
attraction and repulsion! on the phase diagram of the co
fined fluid. More recently, Ro¨cken et al. employed density
functional calculations to investigate the phase behavio
more realistic model fluids confined between chemically c
rugated substrates@36#.

In this paper we are concerned with variations of the
gree of chemical corrugation of the substrate material, tha
with variations of the relative widths of strongly and weak
adsorbing portions of chemically striped substrates in a s
similar to Röcken and co-workers’ work@35,36#. However,
unlike these authors we also study the phase behavio
confined fluids as a function of distancesz between the sub
strates. We employ grand canonical ensemble Monte C
~GCEMC! simulations, in which the thermodynamic state
the fluid is characterized by the chemical potentialm and
temperatureT ~as well as other natural variables of the gra
potentialV, see Ref.@37#!. To interpret the GCEMC results
we employ a mean-field lattice-gas model similar to the o
studied by Ro¨cken and Tarazona@35#. However, our model
differs from that of Ref.@35# by a different fluid-substrate
interaction potential which is motivated by the one employ
in the parallel computer simulations. Varyingsz under con-
ditions of fixedm and T resembles operating conditions
the surface forces apparatus~SFA! @38#. The results of this
work should therefore be amenable~at least in principle! to
direct experimental verification in a qualitative sense.

The remainder of the paper is organized as follows.
Sec. II we describe the model system employed in the c
puter simulations. Results of these simulations are also
sented in Sec. II. In Sec. III we introduce the mean-fie
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model, and compare it with the simulation results. Our fin
ings are summarized in Sec. IV.

II. GRAND CANONICAL ENSEMBLE
MONTE CARLO SIMULATIONS

A. Model system

Our model system, sketched in Fig. 1, consists of a fl
composed of spherically symmetric molecules which is sa
wiched between the surfaces of two solid substrates.
substrate surfaces are planar, parallel, and separated
distancesz along thez axis of the coordinate system. Th
substrates are semi-infinite in thez direction, occupying the
half spacessz/2<z<` and2`<z<2sz/2, and are infinite
in the x andy directions. Each substrate comprises altern
ing slabs of two types: strongly adsorbing and weakly a
sorbing. The ‘‘strong’’ and ‘‘weak’’ slabs have widthsds
and dw , respectively, in thex direction, and are infinite in
they direction. The system is thus periodic in thex direction
of period ds1dw and is translationally invariant in they
direction. In practice we take the system to be a finite pie
of the fluid, imposing periodic boundary conditions@39# on
the planesx56sx/2 andy56sy/2.

The substrates are in registry in that slabs of the sa
type are exactly opposite each other. Substrate atoms
assumed to be of the same ‘‘diameter’’ (s) and to occupy
the sites of the fcc lattice@the substrate surfaces are taken
be ~100! planes# having lattice constantl , which is taken to

FIG. 1. Scheme of a simple fluid confined by a chemically h
erogeneous model pore. Fluid molecules~gray spheres! are spheri-
cally symmetric. Each substrate consists of a sequence of cry
lograhic planes separated by a distanced l along thez axis. The
surface planes of the two opposite substrates are separated
distancesz . Periodic boundary conditions are imposed in thex and
y directions~see text!.
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4124 PRE 59HENRY BOCK AND MARTIN SCHOEN
be the same for both species. Thus substrate species ar
tinguished only by the strength of their interaction with flu
molecules. We assume the total potential energy to be a
of pairwise additive Lennard-Jones~LJ!~12,6! potentials, all
of which have the form

u~r !54eF S s

r D 12

2S s

r D 6G , ~1!

wheree is the well depth,s the molecular ‘‘diameter,’’ and
r the distance between the centers of a pair of particles~i.e.,
fluid molecules or substrate atoms!. For the interaction be-
tween a pair of fluid molecules,e5e f f @i.e., uf f(r )#. The
nanoscale heterogeneity of the substrate is characterize
e

-

dis-

m

by

e5e f s @i.e., uf s(r )# for the interaction of a fluid molecule
with a substrate atom in the strong~central! slab, and bye
5e f w @i.e., uf w(r )# for the interaction of a fluid molecule
with a substrate atom in either of the two weak~outer! slabs
~see Fig. 1!. We takee f s.e f f and e f w!e f f ~see Sec. II B!
for specific values!.

Since we are concerned with the effects of chemical h
erogeneity at the nanoscale on the behavior of the confi
fluid, we expect details of the atomic structure not to mat
greatly. Therefore, we adopt a mean-field representation
the interaction of a fluid molecule with the substrate, whi
we obtain by averaging the fluid-substrate interaction pot
tial over positions of substrate atoms in thex-y plane. The
resulting mean-field potential can be expressed as@33#
F [k]~x,z;sx ,sz!5
2

l 2 (
m52`

`

(
m850

` E
2`

`

dy8H E
2sx/21msx

2ds/21msx
dx8uf w~ ur2r8u!

1E
2ds/21msx

ds/21msx
dx8uf s~ ur2r8u!1E

ds/21msx

sx/21msx
dx8uf w~ ur2r8u!J . ~2!

In Eq. ~2!, 2/l 2 is the areal density of the~100! plane of the fcc lattice. The position of a fluid molecule is denoted byr, and
r85(x8,y8,z856sz/26m8d l ) represents the position of a substrate atom, where ‘‘2 ’’ refers to the lower (k51) substrate,
‘‘ 1 ’’ refers to the upper (k52) substrate, andd l is the spacing between successive crystallographic planes in the6z
direction. As detailed in Ref.@33#, one eventually obtains

F [k]523pS s

l
D 2

(
m52`

`

(
m850

` H ~e f w2e f s!DS x1
ds

2
2msx ,

sz

2
1m8d l 6zD

2~e f w2e f s!DS x2
ds

2
2msx ,

sz

2
1m8d l 6zD

2e f wFDS x1
sx

2
2msx ,

sz

2
1m8d l 6zD2DS x2

sx

2
2msx ,

sz

2
1m8d l 6zD G J ~3!
n

-
al

in

in
f

a

by
p

from Eq. ~2!, where the sign onz is chosen according to th
convention1↔k51 and2↔k52 ~see Fig. 1!. In Eq. ~3!,
the auxiliary functionD is defined as

D~x9,z9!ª 21
32 I 3~x9,z9!2I 4~x9,z9!, ~4!

where

I 3~x9,z9!5
x9s10

9z92AR9F11
8

7
S1

48

35
S21

64

35
S31

128

35
S4G

~5!

and

I 4~x9,z9!5
x9s4

3z92AR3
@112S#. ~6!

In Eqs. ~5! and ~6!, we also introducedRªx921z92 and
SªR/x92. For symmetry reasonsF [k] needs only be repre
sented in one quadrant~say, 0<x<sx/2, 0<z<sz/2) of the
x-z plane @33#. In this quadrantF [k] is computed at the
nodes of a two-dimensional grid prior to the simulatio
where we employ a mesh ofdx5dz50.025s. In practice, a
sufficiently accurate numerical representation ofF [k] is ob-
tained by replacing the double sum in Eq.~3! by

(m522
m52 (m850

m8550 . . . , astests in Ref.@33# revealed. During the
simulation the value ofF [k] corresponding to the actual po
sition of a fluid molecule is computed by two-dimension
interpolation between the nodes, as detailed in Ref.@33#.

B. Microscopic structure and phase behavior

In the remainder of Sec. II, numerical values are given
dimensionless units based on the parameters of the LJ~12,6!
potential for the fluid-fluid interaction: distance is given
units ofs, energy in units ofe f f , and temperature in units o
e f fkB

21 . We fix the substrate parameterse f w50.001, e f s

51.25, andds54.0. We also fixT51.00 andm5211.50,
for which the Lennard-Jonesium bulk phase is a gas with~n
average! number densityrb5^N&/V50.036. The effect of
chemical heterogeneity of the substrate is investigated
varying sx ; that is, the width of the weakly attractive stri
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PRE 59 4125PHASE BEHAVIOR OF A SIMPLE FLUID CONFINED . . .
(dw) since ds remains constant. The distance between
substrates is varied over the range 2.0<sz<13.

1. Structure of confined fluids

The simplest quantitative measure of fluid structure in
inhomogeneous system is the local density defined as

r~x,z!5
^N~x,z!&
DxDzsy

, ~7!

which is a function ofx and z because of the chemicall
heterogeneous nature of the substrate. In Eq.~7!, N(x,z) is
the number of fluid molecules in a given configuration th
are located in a square prism of dimensionsDx3sy3Dz
centered on a point (x,z). In Fig. 2 we plotr(x,z) for three
selected values ofsz andsx512.0. Because of the symmetr
of F [k] , r(x,z) must be symmetric about thex50 and z
50 planes~see Fig. 2!. Peaks inr(x,z) represent positions
of molecular strata. Forsz57.2 a stratified ‘‘liquid’’ bridges
the gap between the strongly attactive portions of the op
site substrates@i.e., for uxu<2.0; see Fig. 2~a!#. Because of
the decay of the fluid-substrate interaction potential, stra
cation diminishes asz increases along lines of constantx.
Stratification is absent over the weakly attractive portion
the substrate. Here an inhomogeneous gas exists, as
cated by the low value ofr(x,z) and its weak dependence o

FIG. 2. Local densityr(x,z) as a function of position in thex-z
plane forsx512.0. ~a! sz57.2. ~b! sz57.5. ~c! sz58.2.
e

n

t

o-

-

f
di-

x andz for uxu*4.0. The interfacial region between the stra
fied portion of the fluid and the surrounding gas can be
scribed by a semiempirical model usually applied to t
liquid-gas interface in the bulk@34#. In the remainder of this
paper, the term ‘‘liquid bridge~phase!’’ always refers to situ-
ations akin to the one depicted in Fig. 2~a!: a stratified fluid
stabilized by the strongly attractive part of the substrateplus
a surrounding gas over the two outer, weakly attractive p
tions of the substrate material.

For largersz57.5 @see Fig. 2~b!#, the structure of the fluid
changes significantly. Over the strongly attractive portion
the substrate, the fluid remains stratified. However, the g
like phase has given way to an inhomogeneous liquidl
phase over the weakly attractive portion of the substra
Consequently, the liquid-gas interface visible in Fig. 2~a! has
disappeared, and can no longer be seen in Fig. 2~b!. Since
the weak portions of the substrate are essentially repuls
r(x,z) decreases foruxu*4.0 from the center of the fluid
(z50) toward the substrate (uzu→sz/2).

If the distance between the substrates is increased e
further, another significant structural change occurs in
fluid. It is illustrated by the plot ofr(x,z) for sz58.2 in Fig.
2~c! where the fluid bridge disappeared and only two str
of fluid molecules ‘‘cling’’ to the strongly attractive portion
of the substrate. For example, foruzu&3 andx50 the den-
sity is gaslike, and decreases monotonically toward the c
ter of the fluid atz50. The height of the two maxima o
r(x,z) appears to be substantially reduced compared w
the plots in Figs. 2~a! and 2~b!. Thus by increasingsz the
liquidlike phase@see Fig. 2~b!# eventually evaporates, leav
ing behind two inhomogeneous fluid columns~because of
the translational invariance of the density in they direction!
that are stabilized by the strongly attractive portions of
opposite substrates. These columns are surrounded by a
like phase of low density, as revealed by the plot in Fig. 2~c!.
The sequence of plots in Figs. 2~a!–2~c! illustrates the pecu-
liar phase transition from a liquid bridge to a liquidlike pha
and eventually to a gaslike phase with increasingsz @33,34#.

2. Variation of strip width

Since our focal point is the effect of chemical corrugati
of the substrate on the phase behavior of the confined fl
integral quantities like the mean pore density and its fluct
tions are better suited for a systematic study than the lo
density analyzed in Sec. II B 1, because the latter conveys
much information. Fluctuations of the mean pore density
particularly sensitive to phase transitions@40#, and can be
cast quantitatively in terms of the isothermal compressibil
To derive a molecular expression for it we start from t
Gibbs-Duhem relation@37#

052SdT2Ndm1~Txx2Tyy!Axdsx

1~Tzz2Tyy!Azdsz2Ayd~syTyy!, ~8!

which follows from the exact differential of the grand pote
tial V,

dV52SdT2Ndm1Txxsyszdsx1Tyysxszdsy1Tzzsxsydsz ,
~9!
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4126 PRE 59HENRY BOCK AND MARTIN SCHOEN
by noting that for fixedT, m, sx , andsz , V is a homoge-
neous function of degree one insy , so that Euler’s theorem
applies. Under these conditions the latter yieldsV5TyyV,
whereV5sxsysz . In Eq. ~8!, S is the entropy,N is the num-
ber of molecules accommodated by the fluid,Aa is the area
of the a-directed face of the fluid, andTaa(a5x,y,z) are
diagonal elements of the stress tensorT @33#. For fixed T,
sx , andsz we have, from Eq.~8!,

Ndm52Ayd~syTyy!, ~10!

from which the definition of the isothermal compressibili
kyy ,

NS ]m

]ND
T,sx ,sy ,sz

52S ]~syAyTyy!

]N D
T,sx ,sy ,sz

5:
V

N
kyy

21 ,

~11!

follows after a few straightforward algebraic manipulatio
@33#. We deviate from standard notation to emphasize t
the isothermal compressibility is related to the stress ten
elementTyy on account of the symmetry of the system. Fro
Eq. ~9!, we have

S ]V

]m D
T,sx ,sy ,sz

52N, ~12!

from which

S ]2V

]m2 D
T,sx ,sy ,sz

52S ]N

]m D
T,sx ,sy ,sz

~13!

immediately follows.
The linkage to the molecular scale is provided by t

well-known statistical thermodynamic relation@41#

V~T,m,V!52kBT ln J~T,m,V!, ~14!

wherekB is Boltzmann’s constant, and

J~T,m,sx ,sy ,sz!5 (
N50

`
exp@mN/kBT#

N!L3N
ZN~T,sx ,sy ,sz!

~15!

is the grand canonical partition function for a classical s
tem in which the molecules possess only translational
grees of freedom. In Eq.~15!, L denotes the thermal d
Broglie wave length@42# andZN is the configurational inte-
gral. Combining Eqs.~11! and ~13!–~15!, we obtain

kyy52
V

^N&2S ]2V

]m2 D
T,sx ,sy ,sz

5
V

kBT

^N2&2^N&2

^N&2
~16!

as the desired molecular expression forkyy . Because of

r̄ª2
1

VS ]V

]m D
T,sx ,sy ,sz

5
^N&
V

5
1

Ay
E

2sx/2

sx/2

dxE
2sz/2

sz/2

dzr~x,z!

~17!
at
or

-
e-

one expects the average fluid density to change discont
ously during a first-order phase transition, whereas this qu
tity varies continuously during a continuous phase transiti
In this latter casekyy should diverge to infinity~see Sec. 6.4
in Ref. @43# and Sec. III D of this work!. We note in passing
that an expression like the one in Eq.~17! linking a local

@r(x,z)# property to a global (r̄) fluid property does not
exist as far askyy is concerned.

Plots of r̄ versussz are shown in Fig. 3 for various de
grees of chemical corrugation of the substrate quantitativ
expressed in terms ofcrªds /(ds1dw)5ds /sx . For cr5

4
7 ,

r oscillates forsz&6 with a period of approximately one
molecular ‘‘diameter.’’ A similar behavior ofr̄ is found for
cr5

4
10 and 4

12 , which can be interpreted as a fingerprint
stratification@see Fig. 2~a!#, that is the change in the numbe
of molecular strata accommodated between the substr
with varying sz @44,45#.

However, in the limitsz→` the confined fluid become
increasingly bulklike on account of the vanishing influen
of fluid-substrate interactions. Because the bulk phase
gas under the present conditions, one expects a first-o
phase transition from denser confined phases at smallersz to
a gaslike phase at some characteristic substrate separa
This transition, known as capillary condensation~evapora-
tion!, is, in fact, observed forcr5

4
7 aroundsz.11.0. For

cr5
4

10 , capillary condensation shifts to smallersz.8.3,
which is reasonable in view of the reducednet strength of
attractive fluid-substrate interactions compared withcr5

4
7 .

The shift of capillary condensation to lower substrate se
ration also persists forcr5

4
12 and 4

14 , but is much less pro-
nounced, as Fig. 3 reveals. However, comparing only
latter two, chemical corrugation of the substrate seems to
of marginal importance for the location of the first-ord
transition encountered upon reducingsz from large values
@where the confined fluid is an inhomogeneous gas
phase; see Fig. 2~c!#.

However, under favorable conditions more than just o
first-order phase transition may occur. This is evident fro
the plot of r̄ for cr5

4
12 where a second discontinuity i

observed aroundsz.7.3. As we shall see below in Sec
III D, the second phase transition is a direct consequenc

FIG. 3. Mean densityr̄ as a function of substrate separationsz

and various degrees of chemical corrugation of substratecr

54/7 (h), cr54/10 (d), cr54/12 (L), andcr54/14 (m). Solid
lines are intended to guide the eye.
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the heterogeneous substrate. Similar multiple transiti
have recently been reported for fluids confined by chemic
homogeneous but nonplanar substrates@46#.

For cr5
4

10 this second discontinuity vanishes in favor of
rather steep increase ofr̄ over the range 5.5,sz,6.5. A
corresponding plot ofkyy(sz) in Fig. 4 has a tall, cusplike
peak in the same range of substrate separations. In the v
ity of this peakkyy depends on the size of the simulation c
in the translationally invariant direction (y). This indicates
that the correlation length in this direction exceeds the
croscopically small size of the simulation cell@47#. To obtain
reliable estimates forkyy in the thermodynamic limit (sy
→`) ~which are plotted in Fig. 4!, we applied a finite-size
scaling analysis detailed in Ref.@33#. The observed system
size dependence suggests that in the vicinity of the pea
kyy (cr5

4
10 ) the thermodynamic state of the confined fluid

close to a critical point. However, we defer a discussion
the nature of this critical point to Sec. III D, where we an
lyze the phase behavior of a closely related lattice-gas mo
It is furthermore worthwhile to stress that for the syste
sizes employed here none of the properties studied dep
sensibly on the size of the simulation cell in they direction
as far as thermodynamic states sufficiently off any criti
point are concerned.

On either side of the cusplike peakkyy decays rapidly to
rather small values typical of dense LJ~12,6! fluids. For sz
&5.5, kyy oscillates with a period of about one reflectin
stratification~see also Fig. 3! @44#. In addition, to its cusplike
maximumkyy also changes discontinuously during the fir
order phase transition atsz.8.3 (cr5

4
10 ). For allsz.8.3 the

magnitude ofkyy corresponds to a typical LJ~12,6! gas in
accord with the plot ofr̄ in Fig. 3. Stratification-induced
oscillations ofkyy can also be seen forcr5

4
7 and smallsz in

Fig. 4. However, in this casekyy remains rather small up to
the substrate separation at which the transition to a gas
phase occurs (sz.11.0). The smaller value ofkyy (cr5

4
7 )

compared withcr5
4

10 indicates the presence of a dens
fluid. This seems sensible because the net attraction of
molecules by the substrate is larger forcr5

4
7 than for cr

5 4
10 .

III. MEAN-FIELD THEORY

To understand the effect of chemical corrugation of
substrate on the phase behavior of a confined fluid, one n

FIG. 4. As in Fig. 3, but for isothermal compressibilitykyy ;
cr54/7 (h) andcr54/10 (d).
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to know its phase diagram as a function ofsz and cr . In
terms of computer time it is rather tedious to compute
phase diagram by GCEMC for the model introduced in S
II. Instead we employ a mean-field lattice-gas model w
nearest-neighbor~square-well! interactions between mol
ecules on a simple cubic lattice which reduces the comp
tional burden substantially, thereby permitting a more d
tailed study of the phase behavior of fluids confined betw
chemically corrugated substrates. This also enables a q
tative understanding of results obtained for the more reali
model discussed in Sec. II.

A. Lattice gas

At the mean-field level, the free energy of the lattice g
can be written as@35,48#

F@r~r!#5(
r H kBT@r~r!ln r~r!1@12r~r!#

3 ln@12r~r!##2
e f f

2 (
r8

8 r~r!r~r8!J , ~18!

which is a functional of the local density 0<r(r)<1 ~in
units of l ) at lattice site,r. At each lattice site,r(r) may
vary continuously between the limits stated. In the third te
on the right side of Eq.~18!, which accounts for interaction
between lattice-gas molecules, we restrict the summatio
nearest neighbors of siter ~indicated by the prime on the
summation sign!, ande f f determines the strength of the in
teraction~see Fig. 5!. For the mean-field Ising model of
magnet, which is intimately related to the mean-field latt
gas ~see, for instance, Sec. 1.9 in Ref.@48#!, Baxter @48#
pointed out that the Hamiltonian is unphysical because
interaction strength depends on the number of spins. In
dition, Eq.~18! obviously ignores intermolecular correlation
so that a correct description of critical phenomena is p
vented. Nevertheless, as pointed out by Ro¨cken and Tara-
zona @35#, a qualitatively satisfactory picture of first-orde
phase transitions away from the critical point is provided
the present treatment.

To compute the phase diagram of the lattice gas, we s
minima of the grand potential@49,50#:

V@r~r!#5F@r~r!#1(
r

@F~r;sx ,sz!2m#r~r!. ~19!

In Eq. ~19!,

F~r;sx ,sz!5H `, uzu/l ,sz/2l

2e f s ,uxu/l ,ds/2l

2e f w ,uxu/l .ds/2l J , uzu/l 5sz/2l

0, uzu/l .sz/2l
~20!

describes the~square-well! interaction between lattice-ga
molecules and the substrate similar to the fluid-substrate
teraction potential employed in the parallel computer sim
lations @see Eqs.~2!–~6! and Figs. 1 and 5#.

From the functional derivative of Eq.~19! we obtain the
Euler-Lagrange equation
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05
dV

dr~r!
5e f f(

r8

8 r~r8!2kBT lnF r~r!

12r~r!G1m2F~r!

~21!

which we solve numerically for its zeros~see Sec. III B!.
Considering as a special case the bulk lattice gas, the de
becomes nonlocal because the symmetry-breaking subs
potential vanishes identically, and Eq.~21! simplifies to

FIG. 5. Scheme of the lattice-gas model of a fluid confin
between chemically corrugated substrates in thex-z plane. The co-
ordinate system is centered at the point (0,0) halfway between
substrates located at6sz/2. Each molecule~black circle! interacts
with its nearest neighbors~grey circles!. The two remaining neares
neighbors on the simple-cubic lattice located at lattice sites in
translationally invarianty direction perpendicular to the paper plan
are not shown. Sites at which a lattice-gas molecule is subject to
substrate interactionF(r;sx ,sz)52e f s are shaded in dark gre
~strongly attractive substrate portions, widthds), whereas sites a
which F(r;sx ,sz)52e f w ~weakly attractive substrate portion
width dw) are shaded in lighter grey@see Eq. 20!#. In the x direc-
tion, periodic boundary conditions are applied~see text!.
ity
ate

6e f fr2kBT lnF r

12rG1m50, ~22!

where the factor of 6 arises on account of the assumed c
symmetry of the lattice. To proceed it is advantageous
employ the close relationship with the Ising model and
troduce a ‘‘magnetization’’21<r̃(r)<1 via

r~r!5: 1
2 @11 r̃~r!#. ~23!

In this ‘‘magnetic’’ language, Eq.~21! can be recast as

r̃~r!5tanhH 1

2kBTFm2F~r;sx ,sz!1
e f f

2 (
r8

8 @11 r̃~r8!#G J .

~24!

For the bulk lattice gas a similar expression can be obtai
from Eq. ~22!, from which one can verify analytically@48#
that in units of e f f and l , in which we shall express al
quantities henceforth, the bulk critical temperatureTcb5 3

2 ,
the critical densityrcb5 1

2 , and the chemical potential at th
critical pointmcb523. Furthermore, asT→Tcb

2 the shape of
the coexistence curveDrcoex

lg
ªrcoex

l 2r_coex
g}(Tcb2T)b

where rcoex
l and rcoex

g are the densities of coexisting bul
liquid and gas phases, respectively, and the critical expon
b5 1

2 , as it must for a mean-field theory@48#.

B. Numerical solution of the Euler-Lagrange equation

Because of the symmetry ofF(r;sx ,sz)[F(x,z;sx ,sz)
@see Eq.~20!# the local density is a function ofx andz. Thus
Eq. ~24! needs to be solved for each site on a square lattic
nx3nz sites, where the integersnxªsx /l andnzªsz /l re-
flect the geometry of the model. Numerically, this require
solution of nx3nz coupled algebraic equations of the for
@see Eq.~24!#

he

e

he
field
i-

ex
f i , jª r̃ i , j2tanhH 1

2kBTF m̂2F i , j1
e f f

2
~2r̃ i , j1 r̃ i 21,j1 r̃ i 11,j1 r̃ i , j 211 r̃ i , j 11!G J 50, ~25!

wherem̂ªm13e f f , r̃ i , j[r̃(xi ,zj ;sx ,sz), F i , j[F(xi ,zj ;sx ,sz), and the sum over nearest-neighbor interactions in Eq.~24!
has been written explicitly based upon the cubic symmetry of the lattice and its translational invariance in they direction.
Equation~25! is similar to Eq.~4! of the work by Bruno, Marini Bettolo Marconi, and Evans, who considered a mean-
lattice gas interacting with a chemically homogeneous substrate@50#. In thex direction we employ periodic boundary cond
tions, that is,r̃nx11,j5 r̃1,j , r̃0,j5 r̃nx , j . Because of Eq.~20!, r̃ i ,05 r̃ i ,nz1150 @for the bulk lattice gasF(r;sx ,sz)50;r and
periodic boundary conditions are invoked in thez direction as well#. To proceed, it is also convenient to employ a single ind
by introducing the transformationi , j→k5( i 21)nz1 j ( i 51, . . . ,nx ; j 51, . . . ,nz), so that the set of functions$ f i , j% and
local ‘‘magnetizations’’$r̃ i , j% can be treated askmax-dimensional vectorsfª( f 1 , f 2 , . . . ,f kmax

) and r̃ª( r̃1 ,r̃2 , . . . ,r̃kmax
)

wherekmaxªnxnz . In vector notation Eq.~25! then becomes

f~ r̃!50. ~26!

Suppose a suitable initial guessr̃[0] for the magnetization vector exists~see Sec. III C!. One may then expandf in a Taylor
series as
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~27!

where the Jacobian matrix~of kmax3kmax elements! A(r̃[0] ) is evaluated for the initial solutionr̃[0] . Its elementsAm,n
50(m51, . . . ,kmax; n51, . . . ,kmax) if mÞn and lattice siten is not a nearest neighbor ofm. If either one of these condition
does not apply one verifies easily from Eq.~25! that

Am,n55 12
e f f

2kBTS 12tanh2F S m̂2Fk1~e f f /2!(
k8

8 r̃k8D Y2kBTG D , m5n,

2
e f f

4kBTS 12tanh2F S m̂2Fk1~e f f /2!(
k8

8 r̃k8D Y2kBTG D , mÞn.

~28!
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Neglecting in Eq.~27! higher than linear terms inr̃2r̃[0]

gives a linear equation

r̃[k11]5r̃[k]2A21~ r̃[k] !•f~ r̃[k] ! ~29!

for the magnetization vector, which we solve iteratively
the following steps:~1! Compute matrixA @see Eq.~28!# and
vector f @see Eq.~25!# for the initial magnetization vecto
r̃[0] . ~2! Compute the inverse matrixA21 by Gauß elimina-
tion. ~3! Solve Eq.~29! for r̃[1] , replacer̃[0] by r̃[1] , and
return to step 1. This algorithm, known as the method
Newton-Kantorowitsch @51#, is halted when maxur̃[ l 11]

2r̃[ l ] u<1027 which is generally achieved in 4–6 iteration
~see Sec. III C!.

C. Phase diagrams

For temperatures below the critical temperature, sev
solutions of Eq.~26! may exist. For the bulk lattice gas
which we chose to test our implementation of the Newto
Kantorowitsch method, only homogeneous gas and liq
phases coexist. The thermodynamically stable phase is
one minimizing the grand potential@see Eq.~19!# ~where, of
course, in the bulkF(r;sx ,sz)[0; r). To find the thermo-
dynamically stable phase, suitable initial magnetization v
tors r̃[0] are required. These can be constructed by realiz
that for T<Tcb and m sufficiently belowmcb a gas phase
will be thermodynamically stable, whereas, on the ot
hand, this phase will be a liquid ifm exceedsmcb suffi-
ciently. Thus, as initial solutions of Eq.~29!, we take

r̃[0]5H 0, m,mcb

1, m.mcb ,
~30!

where0 and1 are vectors ofkmax elements all set to 0 or 1
respectively. Our numerical procedure then involves the
lowing steps.

~1! Choose an initial temperatureTk,Tcb .
~2! Choose a chemical potentialmk8 sufficiently below

~above! mcb .
f

al

-
id
he

-
g

r

l-

~3! Solve Eq.~29! under these conditions iteratively t
obtain a solution vector withkmax elements all equal to the
homogeneous gas~liquid! densityrk8

g
,rcb(rk8

l
.rcb).

~4! ComputeVk8
g (Vk8

l ) @see Eqs.~18! and ~19!# with the

final magnetization vectorr̃k8 from Eq. ~29!.
~5! As long as a solution of Eq.~29! is obtained numeri-

cally ~see below!, set mk8115mk81Dm, mk8,mcb(mk811
5mk82Dm, mk8.mcb), replacemk8 by mk811, and return to
step 3; if no solution of Eq.~29! is obtained numerically, se
Tk115Tk1DT, replaceTk by Tk11, and return to step 1
until Tk115Tcb .

For a successful implementation of the iterative proced
described in Sec. III B, it is important to realize that for th
bulk lattice gas the curvem5m(rb) and T,Tcb has the
usual S-shaped form~i.e., a van der Waals loop! with a maxi-
mum at somemmax.mcb and a minimum at some othe
mmin,mcb , where the corresponding densitiesr(mmin)
.r(mmax) ~see Fig. 6!. Thus an intermediate range of chem
cal potentials exists such that Eq.~29! has three solutions fo
a givenT and m. That is, for the sameT and m, r(m) can

FIG. 6. van der Waals loop in a plot ofm5m(r) for the bulk
mean-field lattice gas forT/Tcb50.8. The Newton-Kantorowitsch
algorithm yields solutions of Eq.~22! only in regions represented
by ~—!; in regions represented by (2•2), the algorithm is numeri-
cally unstable~see Sec. III B!.
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have three different values@coinciding only at the critical
point (Tcb ,mcb)#; outside this rangem5m(r) is a unique
function of r ~see Fig. 6!. In practice, and depending on th
preparation of the initial solution@see Eq.~30!# a solution of
Eq. ~26! is obtained only up tommax coming from the gas
side or down tommin coming from the liquid side, respec
tively. Over the ranger(mmax),r,r(mmin) the iterative
procedure becomes unstable, as reflected by a dramati
crease in the number of iterations required to solve Eq.~26!.
The onset of this numerical instability is very sharp: asm
→mmax

2 (m→mmin
1 ) 4–6 iterations suffice to solve Eq.~26!,

whereas a rapid increase in the number of iterations requ
by one or two orders of magnitude are observed in the
mediate vicinity of the threshold valuesmmax and mmin . If
mmax2m,1024(m2mmin,1024), convergence of the
Newton-Kantorowitsch method is not achieved according
the criterion given in Sec. III B. Thus the Newton
Kantorowitsch method as implemented here permits ac
to only two solutions of Eq.~26!. These correspond to
minima of the grand potential; the third one@corresponding
to a maximum ofV, and hence to a thermodynamically u
stable solution of Eq.~26!# turns out to be numerically inac
cessible in practice. Fortunately, this solution is irrelevan
the present context.

Since the grand potentialsVg andV l are available for all
the solutionsrg[r(m,mmax) andr l[r(m.mmin) the den-
sities rcoex

g and rcoex
l can easily be obtained from the inte

section of the curvesVg5Vg(m) andV l5V l(m) at a point
(Vgl,mgl) ~fixed T[Tcoex). Densities of the coexisting ga
and liquid phases at this temperature are determined
rcoex

g 5rg(mgl,Tcoex) and rcoex
l 5r l(mgl,Tcoex). For T>Tcb ,

Vg(m) and V l(m) become indistinguishable. A plot of th
numerically determined coexistence curve for the bulk latt
gas in Fig. 7~a! shows thatTcb5 3

2 andrcb5 1
2 . An analysis

of Drgl givesb5 1
2 in accord with the analytically compute

values~see Sec. III A!, which demonstrates the reliability o
our numerical procedure.

Turning now to a mean-field lattice gas confined
chemically heterogeneous substrates, we realize from
work of Röcken and Tarazona@35# that the phase diagram
may become much more complex depending on the de
of chemical corrugation of the substrate~i.e., cr) and the
severity of confinement~i.e., sz). For example, in addition to
~inhomogeneous! gaslike and liquidlike phases occupyin
the entire volume between the substrates, liquid bridges
occur as a third legitimate phase. However, on account of
mean-field character of the Helmholtz free energy, liqu
bridges in the lattice-gas model are not subject to stratifi
tion ~see, for example, Fig. 2 in Ref.@35#!; that is, r(x,z)
does not osccillate as function of the distance from the s
strate as its counterpart computed in the parallel GCE
simulations~see Fig. 2!.

The construction of the phase diagram now becomes m
complicated because three curvesVg(m), V l(m), and
Vb(m) for the liquid bridges may obtain. To determine th
former two we employed the same procedure as for the b
lattice gas with initial solutions given by Eq.~30!. For the
liquid-bridge phases we use@in the original square-lattice
notation, see Sec. III B, Eq.~20!#
in-
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[0]5H 1, uxu/l ,ds/2l

0, uxu/l .ds/2l
~31!

as the initial solution regardless of thez coordinate of a
lattice-gas molecule. For each temperatureT we takemcb as
the initial value of the chemical potential. By decreasing, a
increasing the chemical potential from its initial value, r
spectively, we solve Eq.~29! until the algorithm becomes
numerically unstable according to the foregoing discussi
With these solutions we constructVb(m) from Eqs. ~18!–
~20! and~23!. For sufficiently low temperatures two interse
tions between the curvesVb(m) and V l(m) at a point
(Vbl,mbl) and betweenVb(m) andVg(m) at another point
(Vgb,mgb) are observed; a third intersection exists at a po
(Vgl,mgl) ~see Fig. 8!. BecauseV is always a monotonically
decreasing function of m and because the relatio
(]Vg/]m) . . . .(]Vb/]m) . . . .(]V l /]m) . . . holds for tem-
peratures below the critical temperature~s! ~see below!
~where ‘‘ . . . ’’ is shorthand notation for ‘‘all other natura
variables ofV fixed’’ !, three different situations are discern
ible.

~1! For sufficiently low temperatures only~inhomoge-
neous! gaslike and liquidlike phases coexist; liquid-bridg

FIG. 7. Coexistence curves for the lattice-gas model.~a! Bulk
~—!; chemically corrugated substrate (nx516, cr50.5, e f s

50.8e f w50.2)nz515(222), nz57(2•2). ~b! Chemically cor-
rugated substrate characterized bynx518, nz59, cr56/18, e f s

51.4, ande f w50.3(2•2); for comparison, the bulk coexistenc
curve ~—! is also shown.
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phases are metastable because of the relations@see Fig. 8~a!#

Vbl.Vgl.Vgb,

mbl,mgl,mgb.

FIG. 8. Grand potentialV@r(r)# as a function of chemical po
tential m @see Eq. ~19!# for gaslike (222), liquid bridges
(2•2), and liquidlike phases~—!. ~a! T/Tcb50.6 (T,Ttr), ~b!
T/Tcb50.7 (T.Ttr), ~c! T/Tcb50.8 (T.Ttr). A pair of curves in-
tersects at points (Vgl,mgl), (Vgb,mgb), and (Vbl,mbl), corre-
sponding to coexistence between thermodynamically stable
metastable phases. The apparent linear dependence ofV@r(r)# on
m is a result of the expanded scale on both axes.
~2! At T5Ttr , a triple point exists at which all three
phases coexist because@see Fig. 8~b!#

Vbl5Vgl5Vgb,

mbl5mgl5mgb.

~3! Above Ttr , a gaslike phase coexists with a lowe
density liquid-bridge phase, and a higher-density liqu
bridge phase coexists with a liquidlike phase since

Vbl,Vgl,Vgb,

mbl.mgl.mgb.

For all T.Ttr , gaslike and liquidlike phases no longer c
exist @see Fig. 8~c!#. Note also that this suggests existence
two critical points (Tcp

gb ,rcp
gb) and (Tcp

bl ,rcp
bl ) at which the

curves of each pair@Vg(m),Vb(m)# and @Vb(m),V l(m)#
become indistinguishable. This situation is depicted in Fi
7~a! and 7~b!. Because in Fig. 7~a!, ds5dw58, and because
e f s50.8 ande f w50.2 both critical temperatures are the sam
but significantly lower thanTcb . Compared with the bulk
critical densityrcb5 1

2 , the gas-bridge critical densities ar
shifted to lower (rcp

gb'0.395) and higher values (rcp
bl

'0.605), respectively. With respect torcb this shift is sym-
metric because of our present choice ofds , dw , e f w , ande f s
@see Fig. 7~a!# @35#. As expected, a triple point is observed
r tr5

1
2 and Ttr'1.055 below the critical temperaturesTcp

gb

5Tcp
bl '1.410. For different substrate parameters less s

metric curves obtain, as the plot in Fig. 7~b! shows. Similar
effects were observed earlier by Ro¨cken and Tarazona@35#,
who employed a different model substrate. For a lesse
degree of confinement~i.e., assz increases! the chemical
heterogeneity of the substrate becomes increasingly in
nificant. This can be seen in Fig. 7~a!, where the coexistence
curve for a 16315 lattice exhibits no triple point and only
single critical pointTcp'1.475 andrcp5 1

2 , which is, how-
ever, still lower thanTcb5 3

2 on account of the prevailing
confinement effect.

D. Condensation lines

From the phase diagrams discussed in Sec. III C, i
possible to obtain a qualitative picture of the phase beha
of fluids in the more complex model investigated in Sec.
However, it proves convenient to discuss the phase beha
of the lattice gas in terms of condensation linesm
5m(Tcoex) rather than the analogous phase diagrams plo
in Fig. 7. For example, the bulk phase diagram displayed
Fig. 7 reduces to a linemb(Tcoex)523 ending atTcoex
[Tcb5 3

2 ~see Fig. 9!. ~In the corresponding Ising model fo
zero magnetic field, this line coincides with the temperat
axis @52#.! Condensation lines represent lines of first-ord
phase transitions in thermodynamic state (m-T) space termi-
nating at the critical point~s!.

Condensation lines for the lattice gas confined betw
chemically corrugated substrates are more complex, as
corresponding plots in Fig. 9 illustrate. First, these lines
no longer parallel to theT axis. Second, they consist of se
eral branches corresponding to coexistence between inho
geneous gaslike and liquidlike phases, gaslike phases

or
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liquid bridges, and liquid bridges and liquidlike phases. A
three lines intersect at the triple point and branches co
sponding to coexistence between gaslike phases and li
bridges or liquid bridges and liquidlike phases end at
respective critical points~see Fig. 9!. One-phase regions cor
responding to inhomogeneous gaslike (g), liquidlike (l ), and
liquid-bridge phases~b! separated by branches of the po
condensation lines are indicated in Fig. 10 for convenien
Third, the location of all three branches with respect to
bulk condensation line depends on the degree of chem
corrugation of the substrate~i.e., cr) and as well as on the
severity of confinement~i.e., sz). For example, increasingsz
at constantcr causes the triple point to shift to higher tem
peratures and larger chemical potentials@see Fig. 9~a!#. The
critical points approach each other, so that the liquid-brid
one-phase region shrinks. Eventually both critical points
incide with the triple point at sufficiently largesz . This case
is represented by the plot in Fig. 9~a!, corresponding tonz
515 @see also Fig. 7~a!#. The resulting pore condensatio
line is still not parallel to theT axis, but has no more
branches and terminates at a single critical point (Tcp

FIG. 9. Pore condensation linesm5m(Tcoex) for various lattice
gases. The horizontal linem(Tcoex)523 represents the bulk curv
terminating atTcoex[Tcb5

3
2 . The confined lattice gas is characte

ized bye f s51.4 ande f w50.3. In ~a!, results are shown for variou
substrate separationsnz (nx514, cr5

8
14), whereas in~b! the effect

of a varying degree of chemical corrugation of the substratecr is
demonstrated fornx514 andnz58. As for the bulk, condensation
lines for the confined lattice gases terminate at the critical poin~s!
~see text!.
l
e-
id

e

e.
e
al

e
-

,Tcb, mcp,mcb). In the limit sz→` the condensation line
for the confined lattice gas becomes indistinguishable fr
that of the bulk.

If, on the other hand,cr is varied at constantsz , conden-
sation lines shift with respect to the bulk condensation li
so that the ‘‘distance’’ from the bulk condensation line i
creases withcr . That is, for more attractive substrates th
distance is larger. Variations ofcr also affect the location of
the triple point and the slope of the branches correspond
to coexistence between gaslike phases and liquid bridges
liquid bridges and liquidlike phases, as the plots in Fig. 9~b!
show. As a consequence the liquid-bridge one-phase re
shrinks with increasingcr .

From the plots in Fig. 9, one immediately realizes t
complex dependence of the phase behavior of a confi
lattice gas on the detailed nature of the chemically hetero
neous substrate. What conclusions can be drawn from
analysis concerning the phase behavior of the related
more complex GCEMC model reflected by the plots ofr̄
versussz in Fig. 3? Before addressing this question, we ne
to remind the reader that in the GCEMC simulations of S
II the thermodynamic state of the confined fluid was fix
such that a corresponding bulk phase was a gas. Thus,
varying sz at fixed cr one expects shifts of the separa
branches of the condensation line in a fashion qualitativ
similar to the one exhibited in Fig. 9. However, from
physical perspective only the location of the thermodynam
staterelative to the condensation line matters. Let us the
fore construct a ‘‘trajectory’’ of the thermodynamic state
m-T space while holding fixed the location of the conden
tion line of the confined fluid by fixingsz andcr . According
to the foregoing reasoning, such a trajectory inm-T space is
completely equivalent to the varying location of the conde
sation line with respect to afixed thermodynamic state on
which the plots in Fig. 3 are based. However, employing
trajectory is advantageous because it is much easier to v
alize than the complex changes of various features of
condensation line upon varyingsz ~see Fig. 9! with respect to
a fixed point in thermodynamic state space.

For sufficiently largesz the confined fluid in GCEMC is
always an inhomogeneous gaslike phase according to
choice of thermodynamic state variables~see Sec. II B!. This
notion is supported by the plots in Fig. 3, showing thatr̄
assumes values characteristic of a bulk LJ~12,6! gas for suf-
ficiently largesz regardless ofcr . One therefore knows tha
starting out at large substrate separations, the trajectory
ways begins at a point in the one-phase region of gas
phases~see Fig. 10!. Furthermore, from the plots in Fig. 9 i
is evident that upon loweringsz the entire condensation lin
moves to lowerm andTtr becomes smaller so that the liquid
bridge one-phase region widens. Consequently, two opt
exist for an intersection between the trajectory and the c
densation line: the characteristic temperature of the inter
tion may be either above or belowTtr . Both cases are real
ized in the GCEMC simulations. For example, forcr5

4
7 the

plot of r̄ exhibits a single discontinuity atsz.11.0. A single
discontinuity is also observed forcr5

4
14 , but at a distinctly

smaller substrate separationssz.8.1. An inspection of
r(x,z) in the immediate vicinity of the phase transition r
veals that the inhomogeneous gaslike phase condenses
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FIG. 10. Scheme of the trajectory in thermodynamic state space~see text! for the various scenarious displayed in Fig. 3. Starting out fr
a state in the one-phase regime of inhomogeneous gaslike phases, the direction in which the trajectory traversesm-T space is based upo
variations of condensation lines displayed in Figs. 9 for decreasingnz ~i.e., sz). For increasingnz ~i.e., sz), the path inm-T space should be
reversed.
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inhomogeneous liquidlike phase forcr5
4
7 , whereas the sam

process leads to a liquid bridge forcr5
4

14 . Thus the trajec-
tory must follow different paths schematically depicted
Figs. 10~a! (cr5

4
7 ) and 10~b! (cr5

4
14 ). From this analysis it

follows that the first-order phase transitions occur bel
(cr5

4
7 ) and above (cr5

4
14 ) the respective triple-point tem

peratures. The absence of an additional phase transition
be rationalized as follows. For largercr the liquid-bridge
one-phase region is narrower~or may be completely absent!,
and the branch of the condensation line referring to coex
ence between gaslike and liquidlike phases (T,Ttr) is
shifted to smallerm @see Fig. 9~b!#. Decreasingsz enhances
this shift@see Fig. 9~a!#. Both effects favor a single transitio
from a gaslike phase to a liquidlike phase upon loweringsz
as observed forcr5

4
7 in Fig. 3. For the overall less attractiv

substratecr5
4

14 , this logic implies that after the transitio
from a gaslike phase to a liquid bridge one stays in
liquid-bridge one-phase region because it widens subs
tially with decreasingsz , as the plots in Fig. 9~a! show. At
the same time one expects this transition to occur at sm
sz , because the plots in Fig. 9~b! reveal that condensatio
lines are shifted closer to the bulk condensation line w
decreasingcr . This is confirmed by Fig. 3.

Because the triple point moves to lowerT and m as sz
decreases, it is also conceivable that two instead of one fi
order transitions occur. This was, in fact, observed forcr
an

t-

e
n-

er

h

st-

5 4
12 in Fig. 3. The first of these is similar to the one forcr

5 4
7 ; that is, an inhomogeneous gaslike phase condenses

liquidlike one. This transition occurs at a temperaturelower
thanTtr for this particularsz . However, sinceTtr becomes
smaller with decreasingsz , a second transition may occu
during which the inhomogeneous liquidlike phase is tra
formed into a liquid bridge. This transition occursabovethe
relevant triple-point temperature, and the trajectory follo
the path indicated in Fig. 10~c!. An inspection ofr(x,z) in
the vicinity of both phase transitions confirms this notion

A particularly interesting situation arises forcr5
4

10 ,
where the inhomogeneous gaslike phase first condenses
liquidlike phase atsz.8.3 ~see Fig. 3!. Over the range 5.5

&sz&6.5 the plot ofr̄(sz) exhibits a large positive slope
which is expected if one assumes that the trajectory in th
modynamic state space follows the path indicated in F
10~d!. This path implies that the strong variation ofr̄(sz)
over the range of substrate separations indicated reflects
proximity to the critical point at which liquidlike phases an
liquid bridges become indistinguishable~see Sec. II B 2!.
This notion is supported by the plot ofkyy in Fig. 4. Since
the critical point is not a point on the trajectory inm-T space,
the height of the peak ofkyy must be finite in accord with
earlier conjectures for the same situation@33#. Since no sec-
ond phase transition is observed forcr5

4
10 in Fig. 3, we
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conclude that the confined fluid remains supercritical w
respect to this critical point for all smaller substrate sepa
tions @see Fig. 10~d!#.

IV. CONCLUDING REMARKS

In this paper we investigated the phase behavior
LJ~12,6! fluids confined between chemically heterogeneo
substrates forming a slit-shaped nanopore. The substra
modeled as a periodic sequence of strongly adsorbing s
~of width ds) alternating with weakly adsorbing ones~of
width dw) ~see Fig. 1!. The model therefore mimics materia
that can nowadays be fabricated in the laboratory@6–11#.
The thermodynamic state of the fluid is characterized by
~dimensionless! variablesT, m, sz , ds , dw , e f s , ande f w .
We fixed T51.00, m5211.50, ds54.00, e f s51.25, and
e f w50.001, and examined the dependence of the mean
density and isothermal compressibility onsz and dw ~i.e.,
cr). By varyingcr the fluid is exposed to an overall weak
fluid-substrate potential field the smallercr is for a given
value ofsz . To analyze the dependence of the mean den
and, in particular, the striking variation of the isotherm
compressibility of the fluid further for a certain substra
corrugation, we employ a mean-field lattice-gas model~see
Fig. 5!, which allows us to determine the phase diagram
solving numerically an Euler-Lagrange equation for the
cation of minima of the grand potential functional in therm
dynamic state space. The phase behavior of the lattice
can be summarized as follows

~1! For small substrate separations and 0,cr,1, the co-
existence curve of the confined lattice gas exhibits a tr
point at a temperatureTtr , where an inhomogeneous ga
and liquidlike phase coexist with a liquid bridge. ForT
.Ttr gaslike and liquidlike phases coexist independen
with liquid bridges of different mean densities~i.e., for T
.Ttr a one-phase region exists for liquid bridges!. Coexist-
ence between gaslike phases and liquid bridges as we
between liquid bridges and liquidlike phases terminates
critical points whose location depend oncr , sz , and the
strength of the fluid-substrate interaction with both portio
of the heterogeneous substrate@see Figs. 7~a! and 7~b!#.

~a! For fixed sz and cr5
1
2 the triple-point densityr tr

5rcb . Compared withrcb the critical densities of the con
fined lattice gas are shifted symmetrically to higher a
lower values, respectively@see Fig. 7~a!#.

~b! Away from cr5
1
2 , the phase diagram is less symme

ric in thatr trÞrcb andTcp
gbÞTcp

bl , both of which are smaller
thanTcb @see Fig. 7~b!#.

~c! Regardless ofcr , Ttr increases withsz and eventually
merges with both critical points for a sufficiently large su
strate separation@see Fig. 8~a!#, so that the phase diagram
exhibits a single critical point at a temperatureTcp,Tcb @see
Fig. 7~a!# irrespective ofcr .

~2! Based upon the phase diagrams, pore condensa
lines can be constructed. Their form and proximity to t
bulk condensation linemb5mb(Tcoex)523 depends oncr
andsz ~see Figs. 9!.

~3! The shift of the pore condensation lines with respec
the ~fixed! bulk coexistence curve enables us to constr
trajectories of the thermodynamic state inm-T spacerelative
to the pore condensation lines~see Fig. 10!, from which a
-
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qualitative interpretation of the computer simulation resu
emerges~see Fig. 3!.

~4! The cusp in the plot ofkyy versussz (cr5
4

10 ) ~see
Fig. 4!, and the corresponding large slope ofr(sz) ~see Fig.
3!, which were observed originally in Ref.@33#, can now be
interpreted as signatures of the approach of the critical p
associated with coexisting liquid bridges and liquidlik
phases of the confined fluid.

The rather complex phase behavior of a fluid confin
between chemically corrugated substrates is a direct co
quence of varyingsz at constantT andm. These are precisely
operating conditions encountered in parallel SFA expe

ments in which a quantity liker̄ can be determined directly
by measuring the refractive index of the confined fluid@38#.

Therefore, the complex dependence ofr̄ on bothsz and cr

manifest in the plots of Fig. 3 should be accessible in S
experiments, and may well offer a way of classifying corr
gated substrates experimentally.

However, in making contact with laboratory experimen
one may have to consider hysteresis. It is frequently enco
tered in studies of capillary condensation, where, for
ample, a pore phase condenses uponadsorptionat a tem-
perature Tads whereas it evaporates upondesorption at
another temperatureTdes ~see Figs. 1, 3, and 4 in Ref.@18#!.
Hysteresis refers to the existence of a temperature ra
DTHªTdes2Tads.0 over which the excess coverageG,
which is the key quantity measured, is a double-valued fu
tion of T. From an equilibrium perspective only one of th
pore phases, to which the two values ofG refer, can be
thermodynamically stable, that is, correspond to aglobal
minimum of V; the other one, conforming to alocal mini-
mum of V, is metastable.

In a seemingly similar fashion hysteresis has also b
observed in GCEMC studies of sorption in chemically h
mogeneous pores. However, the relation between this hy
esis and the experimental one remains obscure becau
was shown in Ref.@53# that in GCEMC hysteresis depend
on the size of the simulation cell as well as on the start
configuration in a sensitive and unpredictable way. Thus h
teresis in GCEMC-generated sorption isotherms is cause
nonergodicity of the Markov chain, and should therefore
regarded as an artifact and not as a physical phenomen

From a more general perspective existence and lifetim
metastable states are kinetic phenomena intimately linke
the dynamics of the system. In general, Monte Carlo me
ods do not permit one to study dynamical aspects beca
they are not based on an equation of motion like, say, N
ton’s equation. The Metropolis algorithm@39# frequently
employed in Monte Carlo simulations is, however, linked
the Chapman-Kolmogoroff equation which describes
temporal evolution of stochastic processes@54#. Thus in spe-
cialized cases a dynamical interpretation of the Markov ch
generated in the Monte Carlo method is feasible. Perhaps
most prominent such case concerns the dynamics of
lattices, where even the dynamics in the near-critical reg
has been studied successfully in the Monte Carlo met
@55#. In Ref.@56# Monte Carlo simulations were employed
investigate intermediate and long-time non-Brownian dif
sion in confined monolayer films. Another example conce
the dynamics of the contact line in a model fluid wetting
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disordered substrate@57#. In this latter case, a careful analy
sis of the simulation data permitted to elucidate aspect
contact-angle hysteresis. However, it must be borne in m
that in every single case the correctness of the dynam
interpretation of Monte Carlo simulations must be est
lished by additional independent~experimental or theoreti
cal! means. A dynamical interpretation of our simulations
beyond the scope of this paper, which is exclusively c
cerned with phenomena in thermodynamic equilibrium.
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@36# P. Röcken, A. Somoza, P. Tarazona, and G. H. Findenegg

Chem. Phys.108, 8689~1998!.
@37# D. J. Diestler, M. Schoen, J. E. Curry, and J. H. Cushman

Chem. Phys.100, 9140~1994!.
@38# J. Israelachvili, Intermolecular & Surface Forces, 2nd ed.

~Academic, London, 1992!.
@39# M. P. Allen and D. J. Tildesley,Computer Simulation of Liq-

uids ~Clarendon, Oxford, 1987!.
@40# M. Plischke and B. Bergersen,Equilibrium Statistical Physics,

2nd ed.~World Scientific, Singapore, 1994!.
@41# D. A. McQuarrie, Statistical Mechanics~Harper and Row,

New York, 1976!.
@42# J. P. Hansen and I. R. McDonald,Theory of Simple Liquids,

2nd ed.~Academic, London, 1986!.
@43# R. Balian,From Microphysics to Macrophysics. Methods an

Applications of Statistical Physics~Springer-Verlag, Heidel-
berg, 1991!, Vol. I.

@44# M. Schoen, Ber. Bunsenges. Phys. Chem.100, 1355~1996!.
@45# M. Schoen, D. J. Diestler, and J. H. Cushman, J. Chem. P

100, 7707~1994!.
@46# E. Kierlik, M. L. Rosinberg, G. Tarjus, and P. A. Monson,

Fundamentals of Adsorption 6. edited by F. Meunier~Elsevier,
New York, 1998!, p. 867.

@47# P. G. Watson, inPhase Transitions and Critical Phenomen,
edited by C. Domb and M. S. Green~Academic, London,
1972!, Vol. 2, pp. 150–159.

@48# R. J. Baxter,Exactly Solved Models in Statistical Physic
~Academic, London, 1991!.

@49# M. J. de Oliveira and R. B. Griffiths, Surf. Sci.71, 687~1978!.



A

D

D

-

ys.

4136 PRE 59HENRY BOCK AND MARTIN SCHOEN
@50# E. Bruno, U. Marini Bettolo Marconi, and R. Evans, Physica
141, 187 ~1987!.

@51# I. N. Bronstein and K. A. Semendjajew,Taschenbuch der
Mathematik, 21st ed. edited by G. Grosche, V. Ziegler, and
Ziegler ~Deutsch, Frankfurt, 1981!, Chap. 7.1.2.4.

@52# L. E. Reichl,A Modern Course in Statistical Physics~Univer-
sity of Texas Press, Austin, 1980!.

@53# M. Schoen, C. L. Rhykerd, Jr., J. H. Cushman, and D. J.
estler, Mol. Phys.66, 1171~1989!.
.

i-

@54# M. Schoen, inComputational Methods in Colloid and Inter
face Science, edited by M. Borowko~Dekker, New York,
1999!.

@55# M. Krech and D. P. Landau, J. Phys.: Condens. Matter~to be
published!.

@56# M. Schoen, J. H. Cushman, and D. J. Diestler, Mol. Phys.81,
475 ~1994!.

@57# P. Collet, J. De Coninck, F. Dunlop, and A. Regnard, Ph
Rev. Lett.79, 3704~1997!.


