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Phase behavior of a simple fluid confined between chemically corrugated substrates

Henry BocK
Institut fir Theoretische Physik, Sekretariat PN 7-1, Fachbereich Physik, Technische UnivBesiia, Hardenbergstralie 36,
D-10623 Berlin, Germany

Martin Schoeh
Fachbereich Physik, Bergische UniversitWuppertal, GauRRstraRe 20, D-42097 Wuppertal, Germany
(Received 14 July 1998

The phase behavior of a molecularly thin fluid film of Lennard-Jahg$12,6 fluid confined to a chemi-
cally heterogeneous slit-shaped pore was investigated by the grand canonical ensemble Mo(&CEAG)
method. The slit-shaped pore comprises two identical plane-parallel solid substrates, each of which consists of
alternating strips of L(12,6 solid of two types: stronglywidth dg) and weakly adsorbingvidth d,,). With the
substrates aligned so that strips of the same type oppose each other, GCEMC was used to compute the local
and mean densities of the fluid as well as its isothermal compressibility as functions of substrate segaration
and for various degrees of chemical corrugation measured quantitatively in terops=df /(ds+d,,). De-
pending ors, andc, , the confined fluid may consist of inhomogeneous gaslike or liquidlike phases filling the
entire volume between the substrates. In addition, liquid “bridges” may form as a third phase consisting of
stratified liquid stabilized by the “strong” strips and separated from two surrounding gaslike regions by an
interface. The phase diagram involving all three phases was determined for a mean-field lattice-gas model
similar to the one investigated recently by dken and Tarazonf]. Chem. Phys105 2034 (1996]. The
lattice-gas calculations permit a qualitative interpretation of the complex dependence of the GCEMC results on
boths, andc, . [S1063-651X%99)07704-1

PACS numbg(s): 61.20.Ja, 61.20.Ne, 68.45v, 64.70.Fx

[. INTRODUCTION colloidal particle with one hemisphere hydrophilic, the other
one being hydrophobi€12,13. Along the equator the two
In many areas of contemporary science and technologygortions of the substrate have a rather sharp and well-defined
one is confronted with the problem of miniaturizing parts of junction. Janus beads can be considered as amphiphilic sol-
the system of interest in order to control processes on verids with a stabilizing effect on oil-water interfacgk2].
short length and time scal¢4]. For example, to study the Theoretically there has also been considerable interest in
kinetics of certain chemical reactions, reactants have to bfluids near chemically heterogenous substrates in recent
mixed at a sufficiently high speed. By miniaturizing a times. For example, Koch, Dietrich, and Nagkiowski [14]
continuous-flow mixer, Knightet al. recently showed that considered a fluid adsorbed on a single planar substrate con-
nanoliters can be mixed within microseconds, thus permitsisting of two semi-infinite parts, only one of which is wetted
ting one to study fast reaction kinetics on time scales unatby the fluid. They showed that for large distances from the
tainable with conventional mixing technolod2]. The im-  junction between the two portions of the substrate, the den-
portance to design and construct microscopic machines gasity profile of the fluid corresponds to that over a chemically
rise to a new field in applied science and engineering knowmomogeneousubstrate composed of either material. How-
as “microfabrication technology” or “microengineering” ever, the precise range over which the presence of the junc-
[3]. One of the key problems in microengineering consists ofion affects the density profile in the transverse directions
the fabrication of chemical or geometrical structures on &i.e., parallel to the substrate surfaig not yet known guan-
nanometer to micrometer length scale with high precisiontitatively [15]. For substrate materials with various chemical
This can nowadays be accomplished by a variety of techpatterns, Lenz and Lipowskyl6] studied the morphology
niques. For example, by means of various lithographic methand phase behavior of droplets with typical sizes on a mi-
0ds[3,4] or wet chemical etching5], the surfaces of solid crometer length scale where neither gravity nor van der
substrates can be endowed with well-defined nanoscopic laWaals forces are relevant.
eral structures. In yet another method the substrate is chemi- While all these studies are concerned with fluids near
cally patterned by elastomer stamps, and, in certain casesingle chemically heterogeneous substrates, interesting ef-
subsequent chemical etchip§—9]. fects are to be expected if a fluid phase is confined by such
In this paper we focus on substrates with prescribedsubstrates to spaces of microscopic or mesoscopic dimen-
chemical heterogeneitiegl0,11. One realization of such sions. Even if the substrate is composed of just a single
substrates is the so-called “Janus bead,” which is a sphericalhemical species, the phase behavior of a confined fluid dif-
fers markedly from that of a corresponding bulk fl§ittd7].
Perhaps the most prominent aspect in this regard concerns
*Electronic address: henry@ozon.physik.tu-berlin.de the location of the critical point which is shifted to lower
"Electronic address: schoen@wpta9.physik.uni-wuppertal.de  temperature and higher mean density compared with its bulk
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counterpartsee Fig. 7 in Ref[18]). Unlike in the bulk the
critical point of a confined fluid is not unique but depends on
the degree of confinement; that is, the critical-point shift de-
creases with substrate separation. Critical-point shifts in con-
fined fluids have extensively been studied both experimen-
tally [18—24 and theoreticallyf25-32.

If the substrate material is chemically heterogeneous, it is
conceivable that the phase behavior of confined fluids is even
richer because chemical corrugation of the substrate is super-
imposed on confinement effects. For example, for chemically
striped substrate materials—that is, substrates consisting of
strongly adsorbing portions alternating with weakly adsorb-
ing ones in one transverse dimension—the chemical hetero-
geneity can engender phase coexistence. For a fluid confined
between two planar, parallel, and chemically striped sub-
strates, as was shown in R¢83], a gas over the weakly
attractive portions of the opposite substrates can be in ther-
modynamic equilibrium with a liquid over the strongly ad-
sorbing ones. The two are separated by an interface that can
be described by a semiempirical model usually applied to the
density variation across a liquid-gas interface in the bulk
[34]. “Internal” phase coexistence of this sort was also in-
vestigated by Reken and Tarazonig85], who studied capil-
lary condensation in slit-shaped pores with chemically cor-
rugated walls using a mean-field lattice-gas model. In their
model the wall is represented by a potential field that oscil- FIG. 1. Scheme of a simple fluid confined by a chemically het-
lates sinusoidally between attraction and repulsion in on@rogeneous model pore. Fluid moleculgsay sphergsare spheri-
transverse directionx(, and extends about one molecular cally symmetric. Each substrate consists of a sequence of crystal-
diameter from the plane of the wall. For a single substratéograhic planes separated by a distarditealong thez axis. The
separation Reken and Tarazona investigated the effect ofsurface planes of the two opposite substrates are separated by a
substrate corrugatiofi.e., the period of oscillation between distances, . Periodic boundary conditions are imposed in xrend
attraction and repulsioron the phase diagram of the con- Y directions(see text
fined fluid. More recently, Reken et al. employed density o ) i i
functional calculations to investigate the phase behavior offodel, and compare it with the simulation results. Our find-
more realistic model fluids confined between chemically cor/Ngs are summarized in Sec. IV.
rugated substratdS$6].

In this paper we are concerned with variations of the de- Il. GRAND CANONICAL ENSEMBLE
gree of chemical corrugation of the substrate material, that is, MONTE CARLO SIMULATIONS
with variations of the relative widths of strongly and weakly
adsorbing portions of chemically striped substrates in a spirit
similar to Raken and co-workers’ work35,36. However, Our model system, sketched in Fig. 1, consists of a fluid
unlike these authors we also study the phase behavior afomposed of spherically symmetric molecules which is sand-
confined fluids as a function of distansgbetween the sub- wiched between the surfaces of two solid substrates. The
strates. We employ grand canonical ensemble Monte Carlsubstrate surfaces are planar, parallel, and separated by a
(GCEMO) simulations, in which the thermodynamic state of distances, along thez axis of the coordinate system. The
the fluid is characterized by the chemical potenfialand  substrates are semi-infinite in tzedirection, occupying the
temperaturdl (as well as other natural variables of the grandhalf spaces,/2<z<~ and —»<z<-—s,/2, and are infinite
potential(), see Ref[37]). To interpret the GCEMC results, in thex andy directions. Each substrate comprises alternat-
we employ a mean-field lattice-gas model similar to the ondng slabs of two types: strongly adsorbing and weakly ad-
studied by Roken and Tarazong85]. However, our model sorbing. The “strong” and “weak” slabs have widthd
differs from that of Ref[35] by a different fluid-substrate andd,,, respectively, in the direction, and are infinite in
interaction potential which is motivated by the one employedhey direction. The system is thus periodic in tkeirection
in the parallel computer simulations. Varyisg under con-  of period ds+d,, and is translationally invariant in thg
ditions of fixedu and T resembles operating conditions of direction. In practice we take the system to be a finite piece
the surface forces apparat(8FA) [38]. The results of this of the fluid, imposing periodic boundary conditiof&9] on
work should therefore be amenalil least in principleto  the planesx= *s,/2 andy= *s,/2.
direct experimental verification in a qualitative sense. The substrates are in registry in that slabs of the same

The remainder of the paper is organized as follows. Intype are exactly opposite each other. Substrate atoms are
Sec. Il we describe the model system employed in the comassumed to be of the same “diameterd)( and to occupy
puter simulations. Results of these simulations are also prehe sites of the fcc latticithe substrate surfaces are taken to
sented in Sec. Il. In Sec. Il we introduce the mean-fieldbe (100 planeg having lattice constant’, which is taken to

A. Model system
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be the same for both species. Thus substrate species are dis= €;4 [i.€., Uss(r)] for the interaction of a fluid molecule
tinguished only by the strength of their interaction with fluid with a substrate atom in the strorigentra) slab, and bye
molecules. We assume the total potential energy to be a sum €y, [i.€., Us,(r)] for the interaction of a fluid molecule

of pairwise additive Lennard-JonékJ)(12,6 potentials, all
of which have the form

o 12 o 6

7[5

wheree is the well depthg the molecular “diameter,” and
r the distance between the centers of a pair of partigles
fluid molecules or substrate atom$or the interaction be-
tween a pair of fluid molecules= e;; [i.e., us(r)]. The

u(r)y=4e , (1)

with a substrate atom in either of the two we@akiten slabs
(see Fig. 1 We takeess>€;¢ and er,<e€5; (See Sec. |1 B
for specific values

Since we are concerned with the effects of chemical het-
erogeneity at the nanoscale on the behavior of the confined
fluid, we expect details of the atomic structure not to matter
greatly. Therefore, we adopt a mean-field representation of
the interaction of a fluid molecule with the substrate, which
we obtain by averaging the fluid-substrate interaction poten-
tial over positions of substrate atoms in tky plane. The

nanoscale heterogeneity of the substrate is characterized bysulting mean-field potential can be expressef38

K(x,2;5,,5,) = E 2

—dg/2+ms,
ay| [ axude-r)

Sy/2+ms,

dg/2+ms, Sy/2+ms,
+f dx’ufs(|r—r’|)+f dx"us([r=r"])t. i)
dg/2+ms,

—dg/2+ms,

In Eq. (2), 272 is the areal density of thel00) plane of the fcc lattice. The position of a fluid molecule is denoted, and
r'=(x',y’,z’=%xs,/2+m’ §,) represents the position of a substrate atom, wher¢ fefers to the lower k=1) substrate,

direction. As detailed in Ref33], one eventually obtains

o oo

o 2
q)[k]:_377<7) E 2 [(efw_ €rs)A
- m’'=0

+” refers to the upper K=2) substrate, and, is the spacing between successive crystallographic planes it the

2

dS SZ
x+——ms<,5+m'5/tz

d S,
_(6fW_EfS)A(X_?_mS<, +m’ 5/"_2)

— €fw

2

from Eg.(2), where the sign oz is chosen according to the
convention+«—k=1 and—«<k=2 (see Fig. 1 In Eq. (3),
the auxiliary functionA is defined as

A(X// Z") _g 3(XH Z/I) 4(X”,ZH), (4)
where
X" 10 8 48 64 128
" 1" = — P 2 —_ 3 [
I5(x",2") 92"2\/R— 5S+ S+ s+3554
5
and
n " "0-4
[ 4(X",2")= - ”2\/_[14—28]. (6)

In Egs. (5) and (6), we also introducedr:=x"2+2"? and
S:=R/x"?. For symmetry reason®!¥l needs only be repre-
sented in one quadrafgay, 0<x<s,/2, 0<z<s,/2) of the
x-z plane[33]. In this quadrant®X! is computed at the

Sy S, Sy S,
A( +——ms(, +m’ 5/+z) A(x———ms(, +m’ 5/+z)

2

] ()

nodes of a two-dimensional grid prior to the simulation
where we employ a mesh &= 6,=0.025r. In practice, a
sufficiently accurate numerical representationdof! is ob-
tained by replacing the double sum in Ed3) by

Em—%zsz (5)0. .., astests in Ref[33] revealed. During the
simulation the value o corresponding to the actual po-
sition of a fluid molecule is computed by two-dimensional

interpolation between the nodes, as detailed in RRH].

B. Microscopic structure and phase behavior

In the remainder of Sec. Il, numerical values are given in
dimensionless units based on the parameters of t{E2|G)
potential for the fluid-fluid interaction: distance is given in
units of o, energy in units ok, and temperature in units of
effkgl. We fix the substrate parametees,=0.001, €
=1.25, andds=4.0. We also fixT=1.00 andu=—11.50,
for which the Lennard-Jonesium bulk phase is a gas with a
averagg number densityp,=(N)/V=0.036. The effect of
chemical heterogeneity of the substrate is investigated by
varying s, ; that is, the width of the weakly attractive strip
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(a) x andzfor |x|=4.0. The interfacial region between the strati-
fied portion of the fluid and the surrounding gas can be de-
scribed by a semiempirical model usually applied to the
liquid-gas interface in the bulk34]. In the remainder of this
paper, the term “liquid bridgéphasg” always refers to situ-
ations akin to the one depicted in Figag a stratified fluid
stabilized by the strongly attractive part of the substpites

a surrounding gas over the two outer, weakly attractive por-
tions of the substrate material.

For largers,=7.5[see Fig. #b)], the structure of the fluid
changes significantly. Over the strongly attractive portion of
the substrate, the fluid remains stratified. However, the gas-
like phase has given way to an inhomogeneous liquidlike
phase over the weakly attractive portion of the substrate.
Consequently, the liquid-gas interface visible in Figp)has
disappeared, and can no longer be seen in Fig. Bince
the weak portions of the substrate are essentially repulsive,
p(x,z) decreases fofx|=4.0 from the center of the fluid
(z=0) toward the substratdz] —s,/2).

If the distance between the substrates is increased even
further, another significant structural change occurs in the
fluid. It is illustrated by the plot op(x,z) for s,=8.2 in Fig.

2(c) where the fluid bridge disappeared and only two strata
of fluid molecules “cling” to the strongly attractive portion

of the substrate. For example, flgl<3 andx=0 the den-
sity is gaslike, and decreases monotonically toward the cen-
ter of the fluid atz=0. The height of the two maxima of
p(X,z) appears to be substantially reduced compared with
the plots in Figs. @) and 2Zb). Thus by increasing, the
liquidlike phase[see Fig. 2b)] eventually evaporates, leav-
ing behind two inhomogeneous fluid columfisecause of
the translational invariance of the density in thdirection

FIG. 2. Local density(x,z) as a function of position in the-z ~ that are stabilized by the strongly attractive portions of the
plane fors,=12.0.(a) s,=7.2.(b) s,=7.5.(c) 5,=8.2. opposite substrates. These columns are surrounded by a gas-

like phase of low density, as revealed by the plot in Fig).2
(dy,) sinced, remains constant. The distance between thélhe sequence of plots in Figsia?—2(c) illustrates the pecu-
substrates is varied over the range29)<13. liar phase transition from a liquid bridge to a liquidlike phase

and eventually to a gaslike phase with increasnf33,34.

1. Structure of confined fluids

The simplest quantitative measure of fluid structure in an 2. Variation of strip width
inhomogeneous system is the local density defined as Since our focal point is the effect of chemical corrugation
of the substrate on the phase behavior of the confined fluid,
p(x’z):<N(X,Z)>’ 7 integral quantities like the mean pore density and its fluctua-
AxAzs, tions are better suited for a systematic study than the local

S . . density analyzed in Sec. II B 1, because the latter conveys too
which is a function ofx and z because of the chemlgally much information. Fluctuations of the mean pore density are
heterogeneous nature of the substrate. In(8.N(x,2) is  panicylarly sensitive to phase transitiop#0], and can be
the number of fluid molecules in a given configuration thatcag; quantitatively in terms of the isothermal compressibility.

are located in a square prism of dimensiohsx s, XAz 14 gerive a molecular expression for it we start from the
centered on a pointx(z). In Fig. 2 we plotp(x,z) for three  Gipps-Duhem relatiofi37]

selected values of, ands,=12.0. Because of the symmetry

of ®X p(x,z) must be symmetric about the=0 andz

=0 planes(see Fig. 2 Peaks inp(x,z) represent positions 0=—SdT=-Ndu+ (T Tyy)Ads,

of molecular strata. Fog,=7.2 a strat_ified “quuid” bridges +(T= Ty Ads,— Ayd(s,Tyy), ®)
the gap between the strongly attactive portions of the oppo-

site substratefi.e., for |[x|<2.0; see Fig. @)]. Because of ) . .

the decay of the fluid-substrate interaction potential, stratifi¥¥hich follows from the exact differential of the grand poten-
cation diminishes ag increases along lines of constant tial 2,

Stratification is absent over the weakly attractive portion of

the substrate. Here an inhomogeneous gas exists, as indi€)=—SdT—Ndu+ Ty,s;s,ds,+ T,,s,5,ds,+ T, .8,5,ds,,
cated by the low value gf(x,z) and its weak dependence on 9
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by noting that for fixedT, w, s., ands,, Q is a homoge- 0.7
neous function of degree one &), so that Euler’s theorem
applies. Under these conditions the latter yiefds-T,,V,

whereV=s,ss,. In Eq.(8), Sis the entropyN is the num- 0.5
ber of molecules accommodated by the fluiq, is the area
of the a-directed face of the fluid, and,, (a¢=x,y,z) are
diagonal elements of the stress ten3of33]. For fixedT, 0.3}
sy, ands, we have, from Eq(8),

o 0.4f

0.2
Ndu=—A,d(s,Tyy), (10 01 ge Be—g
from which the definition of the isothermal compressibility :
x 0 2 4 6 8 10 12 14
yy? Sz

N ‘9_1“ __ &(SyAyTyy) _. XK—l FIG. 3. Mean densit;as a function of substrate separat®n
oN Te s s oN Ts s s TNYY and various degrees of chemical corrugation of substite
TRy Ty (11) =4/7 (O), ¢c,=4/10 (@), c,=4/12 (¢), andc,=4/14 (A). Solid

lines are intended to guide the eye.

follows after a few straightforward algebraic manipulations

[33]. We deviate from standard notation to emphasize thapne expects the average fluid density to change discontinu-
the isothermal compressibility is related to the stress tensasusly during a first-order phase transition, whereas this quan-
elementT,, on account of the symmetry of the system. Fromtity varies continuously during a continuous phase transition.

Eq. (9), we have In this latter casex,, should diverge to infinitysee Sec. 6.4
in Ref.[43] and Sec. Il D of this work We note in passing

(@) - N (12) that an expression like the one in EQ.7) linking a local
I LV ’ [p(x,2)] property to a global 4) fluid property does not

exist as far asc,, is concerned.

from which Plots of p versuss, are shown in Fig. 3 for various de-
grees of chemical corrugation of the substrate quantitatively

B &N) 13 expressed in terms af.:=d¢/(ds+d,,)=d./s,. Forc,=7,

- @ ; (13 p oscillates fors,<6 with a period of appﬂ)ximately one

0%y % molecular “diameter.” A similar behavior o is found for
¢, =15 and 15, which can be interpreted as a fingerprint of
stratification[see Fig. 23)], that is the change in the number
of molecular strata accommodated between the substrates
with varyings, [44,45.

—_ = However, in the limits,—~ the confined fluid becomes
T p V)= "keTINE(T.1.V), a4 increasingly bulklike on account of the vanishing influence
of fluid-substrate interactions. Because the bulk phase is a
gas under the present conditions, one expects a first-order

F)

z9,u2

T.S¢ .Sy .S,

immediately follows.
The linkage to the molecular scale is provided by the
well-known statistical thermodynamic relatipal]

wherekg is Boltzmann’s constant, and

exql uN/kgT] phase transition from denser confined phases at snsalter
E(T,1,5¢,Sy,S,) = > bl Z\(T,5,,Sy,S,) a gaslike phase at some characteristic substrate separation.
N=0 NIASN This transition, known as capillary condensati@vapora-

(19  tion), is, in fact, observed foc,=% arounds,=11.0. For

. . . . . c, =15, capillary condensation shifts to smalle;=8.3,
is the grand canonical partition function for a classical sySyynich is reasonable in view of the reducedt strength of

tem in which the molecules possess only translational degyractive fluid-substrate interactions compared veithe 4.
grees of freedom. In Eq(15), A denotes the thermal de The ghift of capillary condensation to lower substrate sepa-
Broglie wave lengtf{42] andZy is the configurational inte-  a4ion also persists for, = % and %, but is much less pro-
gral. Combining Eqgs(11) and(13)—(15), we obtain nounced, as Fig. 3 reveals. However, comparing only the

latter two, chemical corrugation of the substrate seems to be

__ Vv Q0 :L<N2>—<N>2 16) of marginal importance for the location of the first-order
“yy (NY2\ gu? kT (N)? transition encountered upon reducisg from large values
T8x:8y 1S, [where the confined fluid is an inhomogeneous gaslike

. . phase; see Fig.(2)].
as the desired molecular expression 4qy. Because of However, under favorable conditions more than just one
(N) 1 (s o first-order pﬁase transition may occur. This is evident from
) :—:—f " dxf ’ dzp(x,2) the plot of p for c,=+5 where a second discontinuity is
I T.5,.8, 5, Vi Aydese Josp observed around,=7.3. As we shall see below in Sec.
a7 I D, the second phase transition is a direct consequence of

\Y

— 1(09
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100 ' - ' ' ' ' to know its phase diagram as a function gfandc,. In

50 f '('_‘_'ﬂﬁ‘a 1 terms of computer time it is rather tedious to compute the
phase diagram by GCEMC for the model introduced in Sec.

Il. Instead we employ a mean-field lattice-gas model with

nearest-neighbor(square-well interactions between mol-

ecules on a simple cubic lattice which reduces the computa-

tional burden substantially, thereby permitting a more de-

10

Kyy

1t | tailed study of the phase behavior of fluids confined between
chemically corrugated substrates. This also enables a quali-
5 = tative understanding of results obtained for the more realistic
model discussed in Sec. II.
0 2 4 6 8 w0 12 14 .
Sz A. Lattice gas

FIG. 4. As in Fig. 3, but for isothermal compressibility ; At the r_nean-field level, the free energy of the lattice gas
¢, =4/7 (J) andc,=4/10 (@). can be written a$35,48

the heterogeneous substrate. Similar multiple transitions _
have recently been reported for fluids confined by chemically Flp(nN]= Er keTLp(N)Inp(r)+[1—p(r)]
homogeneous but nonplanar substrs.

Forc, = 15 this second_discontinuity vanishes in favor of a €61 <
rather steep increase @f over the range 58s,<6.5. A XIn[1=p(N]]- = 2 p(Np(r') ¢, (18
corresponding plot oky(s,) in Fig. 4 has a tall, cusplike, '

peak in the same range of substrate separations. In the ViCilisich is a functional of the local density<Op(r)<1 (in

ity of this peakk,, depends on the size of the simulation cell units of /) at lattice sites. At each lattice sitep(r) may

in the translationally invariant directiory). This indicates vary continuously between the limits stated. In the third term
that the correlation length in this direction exceeds the miy, ihe right side of Eq(18), which accounts for interactions
croscopically small size of the simulation cg#i7]. To obtain  paween lattice-gas molecules, we restrict the summation to
reliable estimates fok,, in the thermodynamic limits,  earest neighbors of site (indicated by the prime on the

—°) (which are plotted in Fig. # we applied a finite-siz€  g;mmation sigh and e;; determines the strength of the in-
scaling analysis detailed in R483]. The observed system- teraction(see Fig. 5 For the mean-field Ising model of a

size dependence suggests that in the vicinity of the peak Qhagnet, which is intimately related to the mean-field lattice
kyy (¢r=15) the thermodynamic state of the confined fluid 'ngas (see, for instance, Sec. 1.9 in REAS]), Baxter [48]
close to a critical point. However, we defer a discussion ofyginted out that the Hamiltonian is unphysical because the
the nature of this critical point to Sec. Ill D, where we ana-jnieraction strength depends on the number of spins. In ad-
lyze the phase behavior of a closely related lattice-gas modeliiion £q,(18) obviously ignores intermolecular correlations
It is furthermore worthwhile to stress that for the systemeq that a correct description of critical phenomena is pre-
sizes employed here none of the properties studied depenggnied. Nevertheless, as pointed out byckm and Tara-
sensibly on the size of the simulation cell in telirection ;55135 4 qualitatively satisfactory picture of first-order
as far as thermodynamic states sufficiently off any crltlcalphaSe transitions away from the critical point is provided by
point are concerned. the present treatment.

On either side of the cusplike peal, decays rapidly to To compute the phase diagram of the lattice gas, we seek
rather small values typical of dense(L2,6 fluids. Fors,  minima of the grand potentig#9,50:

=5.5, kyy oscillates with a period of about one reflecting

stratification(see also Fig. 3 44]. In addition, to its cusplike

maximumx,, also changes discontinuously during the first- Q[p(n]= F[PU)HZ [(r;s¢,S)—plp(r). (19
order phase transition a§=8.3 (c,= 15). For alls,>8.3 the

magnitude ofxy, corresponds to a typical L12,6) gas in  |n Eq. (19),

accord with the plot ofp in Fig. 3. Stratification-induced

oscillations of«,, can also be seen fa; =% and smalls, in w, |2/ <sj2/

Fig. 4. However, in this case,, remains rather small up to — €5, |X|1/<dg2/

the substrate separation at which the transition to a gaslike ®(r;s,,s,)=9 _ 1/>dJ2/ | 2|1/ =s,12/
g 6fw:|x| 2 sles

phase occurss=11.0). The smaller value ot,, (c,=7) ) )

compared withc, =15 indicates the presence of a denser 0, |zi7r>s,l2s

fluid. This seems sensible because the net attraction of fluid (20)

molecules by the substrate is larger fyr=3 than for c,
4

describes thesquare-well interaction between lattice-gas
10- molecules and the substrate similar to the fluid-substrate in-
teraction potential employed in the parallel computer simu-
Ill. MEAN-FIELD THEORY . .
lations[see Eqs(2)—(6) and Figs. 1 and b
To understand the effect of chemical corrugation of the From the functional derivative of Eq19) we obtain the
substrate on the phase behavior of a confined fluid, one neetiler-Lagrange equation
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—5y/2 Bep—kgT In| ——|+u=0, (22)
} dw/2 1-p
where the factor of 6 arises on account of the assumed cubic
symmetry of the lattice. To proceed it is advantageous to
employ the close relationship with the Ising model and in-
ds troduce a “magnetization- 1<p(r)<1 via
p(n)=:3[1+p(r)]. (23
} dw/2 In this “magnetic” language, E¢21) can be recast as
Sx/2

p= (s, 5+ 5 3 [145(r)]

] .

(24)

~ 1
—5,/2 s,/2 p(r)=tanr{2kBT

FIG. 5. Scheme of the lattice-gas model of a fluid confined
between chemically corrugated substrates inxtfzeplane. The co-
ordinate system is centered at the point (0,0) halfway between th
substrates located ats,/2. Each moleculéblack circle interacts

with its nearest neighborgrey circle$. The two remaining nearest o . 3
neighbors on the simple-cubic lattice located at lattice sites in th guantities henceforth, the bulk critical temperatdig=,

translationally invariany direction perpendicular to the paper plane ?h? crltlca_l densitypcy,= % and the chemlcal_potentlal at the
are not shown. Sites at which a lattice-gas molecule is subject to thgftical pointuc,= —3. Furthermore, a$— T, the shape of
substrate interactiod(r;s,,s,)= — &;s are shaded in dark grey the coexistence CUVVQPIC%ex:Plcoex_ P_coed ™ (Tep—T)#
(strongly attractive substrate portions, widly), whereas sites at where Plcoex and pd,. are the densities of coexisting bulk
which ®(r;s,,s,)=—¢€, (weakly attractive substrate portions, liquid and gas phases, respectively, and the critical exponent

width d,,) are shaded in lighter grefsee Eq. 2f). In thex direc- ~ B=3, as it must for a mean-field theof¢8].
tion, periodic boundary conditions are appligge texk

For the bulk lattice gas a similar expression can be obtained
ffom Eq. (22), from which one can verify analyticallj48]
that in units of e;s and /, in which we shall express all

50 B. Numerical solution of the Euler-Lagrange equation

B p(r)
0= 5

1-p(r)

:Efle p(r')—kgTIn +u—®(r) Because of the symmetry ab(r;s,,s,)=P(x,z;S,,S,)
' 21) [see Eq(20)] the local density is a function ofandz. Thus
Eq. (24) needs to be solved for each site on a square lattice of
which we solve numerically for its zerasee Sec. Il B. n, X n, sites, where the integers;:=s,// andn,:=s,// re-
Considering as a special case the bulk lattice gas, the densitigct the geometry of the model. Numerically, this requires a
becomes nonlocal because the symmetry-breaking substratelution of n,Xn, coupled algebraic equations of the form

potential vanishes identically, and E@1) simplifies to [see Eq(24)]

~ 1 ~ €ff ~ ~ ~ ~ ~
fi,j:=Pi,j_tam’*_ZKBT[N_(Di,j+7(2Pi,j+Pi—1,j+pi+l,j+Pi,j—1+Pi,j+1)

Jzo, (25)

where =+ 3es Zi,jzﬁ(xi Z18¢,S;), @i ;=P(X,2;,8,,S,), and the sum over nearest-neighbor interactions in(Z4).

has been written explicitly based upon the cubic symmetry of the lattice and its translational invariance uirtragion.
Equation(25) is similar to Eq.(4) of the work by Bruno, Marini Bettolo Marconi, and Evans, who considered a mean-field
lattice gas interacting with a chemically homogeneous subdtséieIn the x direction we employ periodic boundary condi-

tions, that is,py +1;=p1j, Poj=pn,.;- Because of Eq20), p; o= pi,n +1=0 [for the bulk lattice gasb(r;s,,s,)=0vr and
periodic boundary conditions are invoked in theirection as well. To proceed, it is also convenient to employ a single index
by introducing the transformationj—k=(i—1)n,+j(i=1,...n,; j=1,...1n,), so that the set of function; ;} and
local “magnetizations”{p; ;} can be treated alg,,cdimensional vectoré:=(f,,f,, ... fe..) andp=(p1.p2, ... px )
wherek,a¢=nyN,. In vector notation Eq(25) then becomes

f(p)=0. (26)

Suppose a suitable initial guep¥! for the magnetization vector existsee Sec. Ill . One may then expanfdin a Taylor
series as
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a(fl,f27'° ‘7fkmax)
\a (ﬁl, ﬁ?, o 7ﬁkmax)

—

)

(BN +--- =0,

5) = f (50
F() =1+ " -

where the Jacobian matritof KmpaX Kmax elements A(pl®) is evaluated for the initial solutiopl®!. Its elementsA, ,
=0(m=1,... Knas N=1, ... Knad if m#n and lattice siten is not a nearest neighbor of. If either one of these conditions
does not apply one verifies easily from Eg5) that

) Cmen,

€
1 ff (1—tanf?

p— Pt (&2 Bkr) / 2kgT
k/

 2kgT
Amn= €51 (28)
_4kB_I_(l_ta.nh2 /.L_q)k+(6ff/2)z, pkr)/ZKBT ), m+##n.
k/
|
Neg|ecting in Eq(27) h|gher than linear terms |a_;[0] (3) Solve Eq(29) under these conditions iteratively to
gives a linear equation obtain a solution vector witlk,,,, elements all equal to the
homogeneous ga(ﬁquild) densitypE,<pcb(pL,>pcb).
~ ~ ~ ~ g ;
Lk U =TplK — A= 1(plKly £ plK]y (29) (4) ComputeQ),(Q,,) [see Eqs(18) and (19)] with the

final magnetization vectgp, from Eq. (29).

for the magnetization vector, which we solve iteratively in (5 As long as a solution of Eq29) is obtained numeri-
the following steps(1) Compute matrivA [see Eq(28)] and ~ Cally (see below set wy 1=+ A, o <pep(pi +1
vector f [see Eq.(25)] for the initial magnetization vector =k~ A&, pio> fep), replacew by w1, and retumn to
191 (2) Compute the inverse matrik~* by GauR elimina- step 3; if no solution of Eq(29) is obtained numerically, set
’_’ ' P - oy ~ Ty 1=Tc+AT, replaceT, by T4, and return to step 1
tion. (3) Solve Eq.(29) for p!'l, replacep® by p™), and  yniii T, =T, .
return to step 1. This algorithm, known as the method of  pqr 3 successful implementation of the iterative procedure
Newton-Kantorowitsch[51], is halted when mdp!'"*!  described in Sec. Il B, it is important to realize that for the
—p"1|<1077 which is generally achieved in 4—6 iterations bulk lattice gas the curve.=u(p,) and T<T., has the
(see Sec. llI¢ usual S-shaped forign.e., a van der Waals logpvith a maxi-
mum at SOmew > tep @nd a minimum at some other
Kmin<Mcn, Where the corresponding densitigq wmin)
>p(umay (see Fig. 6. Thus an intermediate range of chemi-
For temperatures below the critical temperature, severatal potentials exists such that §§9) has three solutions for
solutions of Eq.(26) may exist. For the bulk lattice gas, a givenT and . That is, for the sam& and u, p(x) can
which we chose to test our implementation of the Newton-
Kantorowitsch method, only homogeneous gas and liquid
phases coexist. The thermodynamically stable phase isth 2.5}
one minimizing the grand potentidee Eq(19)] (where, of
course, in the bulkb(r;s,,s,)=0V r). To find the thermo-
dynamically stable phase, suitable initial magnetization vec-

tors pl! are required. These can be constructed by realizing
that for T<T., and u sufficiently belowu., a gas phase = -3.0} S
will be thermodynamically stable, whereas, on the other
hand, this phase will be a liquid ifc exceedsu, suffi-

C. Phase diagrams

ciently. Thus, as initial solutions of Eq29), we take T
~10] _ 0, wn<pep 30 3.2 1 b
p (30)
1, p>pcp, : : .
0.25 0.50 0.75
P

where0 and1 are vectors ok, elements all setto 0 or 1,
respectively. Our numerical procedure then involves the fol- k|G 6. van der Waals loop in a plot @i= u(p) for the bulk
lowing steps. mean-field lattice gas fof/T.,=0.8. The Newton-Kantorowitsch
(1) Choose an initial temperatuiig<T,. algorithm yields solutions of Eq22) only in regions represented
(2) Choose a chemical potentigd,, sufficiently below by (—); in regions represented by-(- —), the algorithm is numeri-
(above w¢p. cally unstable(see Sec. Il B.
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have three different valuggoinciding only at the critical

point (T¢p,ucp) ]; outside this rangew= w(p) is a unique L-5r
function of p (see Fig. §. In practice, and depending on the
preparation of the initial solutiofsee Eq(30)] a solution of 14}
Eq. (26) is obtained only up tqu,.x coming from the gas

side or down tow,i, coming from the liquid side, respec- 1.3 |
tively. Over the rangep(uma) <p<p(umn) the iterative
procedure becomes unstable, as reflected by a dramatic ir
crease in the number of iterations required to solve(E@).

The onset of this numerical instability is very sharp: jas

— Mmax (14— prmin) 4—6 iterations suffice to solve E(R6),
whereas a rapid increase in the number of iterations requiret
by one or two orders of magnitude are observed in the im- 28 0 .
mediate vicinity of the threshold valugs,,, and pmin. If P

Mma— #<10"*(u— umin<10"%), convergence of the
Newton-Kantorowitsch method is not achieved according to

=
8]

the criterion given in Sec. llIB. Thus the Newton- e (b)
Kantorowitsch method as implemented here permits acces . o

to only two solutions of Eq.(26). These correspond to AT SN/

minima of the grand potential; the third oheorresponding !,;" i,f"

to a maximum of(2, and hence to a thermodynamically un- L3r ra P ) .

stable solution of Eq(26)] turns out to be numerically inac- + ,.f"
cessible in practice. Fortunately, this solution is irrelevantin 1.2 + 7 i
the present context. i
Since the grand potentia3? and()' are available for all 11|
the solutions9= p(u< pmay) andp'=p(u>pumin) the den- /
sities p,., and p.., can easily be obtained from the inter- , , ,
section of the curve®9=09(u) andQ'=0Q'(u) at a point 0.25 0.5 0.75
(Q9', 19 (fixed T=T,.e,). Densities of the coexisting gas
and liquid phases at this temperature are determined by F|G. 7. Coexistence curves for the lattice-gas mo¢@lBulk
PLe= 919" Teoey and p'coeXZp'(Mg',Tcoe)g. ForT=Tgp, (—); chemically corrugated substraten, =16, c,=0.5, €4
Q9% w) and Q'(u) become indistinguishable. A plot of the =0.8¢;,=0.2)n,=15(———), n,=7(—-—). (b) Chemically cor-
numerically determined coexistence curve for the bulk latticsugated substrate characterized iy=18, n,=9, ¢,=6/18, e
gas in Fig. 7a) shows thafl,= 3 andp.,= . An analysis =1.4, and_efW=0.3(f -—); for comparison, the bulk coexistence
of Ap9' givesB=1 in accord with the analytically computed CUrve(—) is also shown.
values(see Sec. Ill A, which demonstrates the reliability of , ,
our numerical procedure. o_ |1 x|/ <dg2/
Turning now to a mean-field lattice gas confined by Pii~ 1o, |x|//>dg2/
chemically heterogeneous substrates, we realize from the
work of Racken and Tarazongs5] that the phase diagram as the initial solution regardless of ttecoordinate of a
may become much more complex depending on the degrdattice-gas molecule. For each temperaflinee takeu, as
of chemical corrugation of the substratee., c,) and the the initial value of the chemical potential. By decreasing, and
severity of confinemerfi.e.,s,). For example, in addition to increasing the chemical potential from its initial value, re-
(inhomogeneouysgaslike and liquidlike phases occupying spectively, we solve Eq29) until the algorithm becomes
the entire volume between the substrates, liquid bridges mayumerically unstable according to the foregoing discussion.
occur as a third legitimate phase. However, on account of th#/ith these solutions we construft®(u) from Egs. (18)—
mean-field character of the Helmholtz free energy, liquid(20) and(23). For sufficiently low temperatures two intersec-
bridges in the lattice-gas model are not subject to stratifications between the curve®°(x) and Q'(x) at a point
tion (see, for example, Fig. 2 in Ref35)); that is, p(x,2)  (QP, ') and betweem2”(u) andQ9(u) at another point
does not osccillate as function of the distance from the sub(Q9®, 1.9°) are observed:; a third intersection exists at a point
strate as its counterpart computed in the parallel GCEMQQOY', 19" (see Fig. 8 Becausd) is always a monotonically
simulations(see Fig. 2 decreasing function ofu and because the relation
The construction of the phase diagram now becomes mor@Q9%du)  >(9Q°/ou)  >(Q'/ox)  holds for tem-
complicated because three curvé¥®(u), Q'(un), and peratures below the critical temperatigle (see below
QP(w) for the liquid bridges may obtain. To determine the (where *...” is shorthand notation for “all other natural
former two we employed the same procedure as for the bulkariables of() fixed”), three different situations are discern-
lattice gas with initial solutions given by E@30). For the ible.
liquid-bridge phases we udén the original square-lattice (1) For sufficiently low temperatures onl¢inhomoge-
notation, see Sec. Il B, Eq20)] neoug gaslike and liquidlike phases coexist; liquid-bridge

(31
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-3.04 -3.02 -3.00 -2.98 -2.96

o -10

-11

1 =y
-3.02 -3.01 -3.00 -2.99 -2.98

-3.02 -3.01 -3.00 -2.99 -2.98

FIG. 8. Grand potentiaf)[ p(r)] as a function of chemical po-
tential u [see Eq.(19)] for gaslike (———), liquid bridges
(=-—), and liquidlike phase$—). (& T/T.,=0.6 (T<T,), (b)
T/Tep,=0.7 (T=Ty), (c) T/T,,=0.8 (T>T,,). A pair of curves in-
tersects at points 9,19, (Q9%, %), and QP «°", corre-

(2) At T=T,,, a triple point exists at which all three
phases coexist becaugmee Fig. &)]

OP'=09'=9b

b= 9= 00,

(3) Above T,,, a gaslike phase coexists with a lower-
density liquid-bridge phase, and a higher-density liquid-
bridge phase coexists with a liquidlike phase since

Qbl< Q< 9P
,L,Lb|>,ug|>,ugb.

For all T>T,,, gaslike and liquidlike phases no longer co-
exist[see Fig. &)]. Note also that this suggests existence of
two critical points T3,p2p) and (T%,.pl,) at which the
curves of each paifQ9(u),0"(x)] and [Q°(u),Q'(u)]
become indistinguishable. This situation is depicted in Figs.
7(a) and 7b). Because in Fig. (@), d;=d,,=8, and because
€:s= 0.8 ande;,,= 0.2 both critical temperatures are the same
but significantly lower tharl.,. Compared with the bulk
critical densityp.,=3, the gas-bridge critical densities are
shifted to lower pIP~0.395) and higher valuespf},
~0.605), respectively. With respect pg, this shift is sym-
metric because of our present choicedgf d,, €5y, andesg

[see Fig. 7a)] [35]. As expected, a triple point is observed at
py=3 and T, ~1.055 below the critical temperaturagg
=Tg,~1.410. For different substrate parameters less sym-
metric curves obtain, as the plot in Fighy shows. Similar
effects were observed earlier by &en and TarazongB5],

who employed a different model substrate. For a lessened
degree of confinemeni.e., ass, increases the chemical
heterogeneity of the substrate becomes increasingly insig-
nificant. This can be seen in Fig(@J, where the coexistence
curve for a 16&< 15 lattice exhibits no triple point and only a
single critical pointT.,~1.475 andpcp=%, which is, how-
ever, still lower thanT.,=3 on account of the prevailing
confinement effect.

D. Condensation lines

From the phase diagrams discussed in Sec. llIC, it is
possible to obtain a qualitative picture of the phase behavior
of fluids in the more complex model investigated in Sec. Il.
However, it proves convenient to discuss the phase behavior
of the lattice gas in terms of condensation lings
= u(T.oey rather than the analogous phase diagrams plotted
in Fig. 7. For example, the bulk phase diagram displayed in
Fig. 7 reduces to a lingup(Tepe) =—3 ending atT yey
=T.,=3 (see Fig. 9. (In the corresponding Ising model for

sponding to coexistence between thermodynamically stable ofero magnetic field, this line coincides with the temperature

metastable phases. The apparent linear depender@§pgf)] on
w is a result of the expanded scale on both axes.

phases are metastable because of the relatsmesFig. 83)]
QP> 09> 9b

bl | b
p < p < u8

axis [52].) Condensation lines represent lines of first-order
phase transitions in thermodynamic state T) space termi-
nating at the critical poirts).

Condensation lines for the lattice gas confined between
chemically corrugated substrates are more complex, as the
corresponding plots in Fig. 9 illustrate. First, these lines are
no longer parallel to th@ axis. Second, they consist of sev-
eral branches corresponding to coexistence between inhomo-
geneous gaslike and liquidlike phases, gaslike phases and
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<Teh» Mcp<Hcp). IN the limit s,— the condensation line
-3.00 1 for the confined lattice gas becomes indistinguishable from
that of the bulk.

If, on the other handg, is varied at constard,, conden-
sation lines shift with respect to the bulk condensation line,
so that the “distance” from the bulk condensation line in-
creases withe, . That is, for more attractive substrates this
distance is larger. Variations of also affect the location of
the triple point and the slope of the branches corresponding
to coexistence between gaslike phases and liquid bridges and
liquid bridges and liquidlike phases, as the plots in Figp) 9
. . . . show. As a consequence the liquid-bridge one-phase region
1.2 1.3 1.4 1.5 shrinks with increasing, .

T From the plots in Fig. 9, one immediately realizes the
. . . . . complex dependence of the phase behavior of a confined
-3.00 1 lattice gas on the detailed nature of the chemically heteroge-
neous substrate. What conclusions can be drawn from this
analysis concerning the phase behavior of the related but

& =8/14 | more complex GCEMC model reflected by the plots gof
7 versuss, in Fig. 3? Before addressing this question, we need

to remind the reader that in the GCEMC simulations of Sec.
Il the thermodynamic state of the confined fluid was fixed
such that a corresponding bulk phase was a gas. Thus, upon
-3.06 1 varying s, at fixed ¢, one expects shifts of the separate
branches of the condensation line in a fashion qualitatively
(b) similar to the one exhibited in Fig. 9. However, from a
-3.08 . . . . ] physical perspective only the location of the thermodynamic
1.1 1.2 1.3 1.4 1.5 staterelative to the condensation line matters. Let us there-
T fore construct a “trajectory” of the thermodynamic state in
u-T space while holding fixed the location of the condensa-
tion line of the confined fluid by fixing, andc, . According
to the foregoing reasoning, such a trajectory#T space is
completely equivalent to the varying location of the conden-
sation line with respect to fixed thermodynamic state on
which the plots in Fig. 3 are based. However, employing the
demonstrated fon,=14 andn,=8. As for the bulk, condensation tre_ljeCtory is advantageous because it iS.mUCh easier 1o visu-
lines for the confined lattice gases terminate at the critical (®int alize than 'the.complex Chgnges of various features of the
(see text condensation line upon varyirsg (see Fig. §with respect to
a fixed point in thermodynamic state space.

liquid bridges, and liquid bridges and liquidiike phases. All _For sufficiently larges, the confined fluid in GCEMC is
three lines intersect at the triple point and branches correaIWays an inhomogeneous gaslike phase according to the
sponding to coexistence between gaslike phases and liqufd©ice of thermodynamic state variablese Sec. Il B This
bridges or liquid bridges and liquidlike phases end at thehotion is supported by the plots in Fig. 3, showing that
respective critical pointésee Fig. 9. One-phase regions cor- assumes values characteristic of a bulkl2J6 gas for suf-
responding to inhomogeneous gaslikg (liquidlike (1), and  ficiently larges, regardless o€, . One therefore knows that
||qu|d_br|dge phase$b) Separated by branches of the poreStarting out at Iarge substrate separations, the trajectory al-
condensation lines are indicated in Fig. 10 for conveniencevays begins at a point in the one-phase region of gaslike
Third, the location of all three branches with respect to thePhasegsee Fig. 10 Furthermore, from the plots in Fig. 9 it
bulk condensation line depends on the degree of chemicd$ evident that upon lowering, the entire condensation line
corrugation of the substrafée., c,) and as well as on the Moves to lowew andT,, becomes smaller so that the liquid-
severity of confinemerfi.e.,s,). For example, increasing,  bridge one-phase region widens. Consequently, two options
at Constantr causes the tnp]e point to shift to h|gher tem- exist for an intersection between the trajectory and the con-
peratures and larger chemical potentjaiee Fig. 9a)]. The densation line: the characteristic temperature of the intersec-
critical points approach each other, so that the liquid-bridgdion may be either above or beloV, . Both cases are real-
one-phase region shrinks. Eventually both critical points coized in the GCEMC simulations. For example, fpe= 7 the
incide with the triple point at sufficiently largg,. This case plot of p p exhibits a single discontinuity at,=11.0. A single

is represented by the plot in Fig(#9, corresponding ta,  discontinuity is also observed far =75, but at a distinctly
=15 [see also Fig. (&]. The resulting pore condensation smaller substrate separatiorss=8.1. An inspection of
line is still not parallel to theT axis, but has no more p(x,z) in the immediate vicinity of the phase transition re-
branches and terminates at a single critical poifit,( veals that the inhomogeneous gaslike phase condenses to an

FIG. 9. Pore condensation lings= u( Ty for various lattice
gases. The horizontal line(T..e) = — 3 represents the bulk curve
terminating afl ;oe,=Tep= % The confined lattice gas is character-
ized by e;s=1.4 ande;,,=0.3. In(a), results are shown for various
substrate separatioms (n,=14, ¢, = %), whereas inb) the effect
of a varying degree of chemical corrugation of the substcatis
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m
I

T T

FIG. 10. Scheme of the trajectory in thermodynamic state sfseetext for the various scenarious displayed in Fig. 3. Starting out from
a state in the one-phase regime of inhomogeneous gaslike phases, the direction in which the trajectory gravepssse is based upon
variations of condensation lines displayed in Figs. 9 for decreasirige., s,). For increasing, (i.e., s,), the path inu-T space should be
reversed.

inhomogeneous liquidlike phase fgr= 3, whereas the same =4 in Fig. 3. The first of these is similar to the one for
process leads to a liquid bridge fof= 4. Thus the trajec- =2 that is, an inhomogeneous gaslike phase condenses to a
tory must follow different paths schematically depicted inliquidlike one. This transition occurs at a temperatioser

Figs. 1Ga) (c,=7) and 1@b) (c,=1;). From this analysis it thanT,, for this particulars,. However, sinceT,, becomes
follows that the first-order phase transitions occur belOWSma“er with decreasingZ, a second transition may occur
(c;=%) and above ¢ = 1) the respective triple-point tem- guring which the inhomogeneous liquidlike phase is trans-
peratu.res. The absence of an additional phqsejran_sition C8ymed into a liquid bridge. This transition occuabovethe

be rationalized as follows. For large; the liquid-bridge  rgjevant triple-point temperature, and the trajectory follows
one-phase region is narrow@r may be completely absent  the path indicated in Fig. 16). An inspection ofo(x,2) in

and the branch of thg condens.atl_on. line referring to COeXiStg vicinity of both phase transitions confirms this notion.
ence between gaslike and liquidlike phasés<(Ty) is A particularly interesting situation arises far, =15,

shifted to smalleq [see Fig. %)]. Decreasings, enhances . : :
. . . : .~ where the inhomogeneous gaslike phase first condenses to a
this shift[see Fig. @a)]. Both effects favor a single transition liquidlike phase as,~8.3 (see Fig. 3 Over the range 5.5

from a gaslike phase to a liquidlike phase upon lowesng — o N
as observed foc, = % in Fig. 3. For the overall less attractive =S7=6.5 the plot ofp(s,) exhibits a large positive slope,
substratec, = 74, this logic implies that after the transition Which is expected if one assumes that the trajectory in ther-
from a gaslike phase to a liquid bridge one stays in thenodynamic state space follows the path indicated in Fig.
liguid-bridge one-phase region because it widens substari:0(d). This path implies that the strong variation pfs,)
tially with decreasings,, as the plots in Fig. @ show. At  over the range of substrate separations indicated reflects the
the same time one expects this transition to occur at smallgaroximity to the critical point at which liquidlike phases and
s,, because the plots in Fig(l® reveal that condensation liquid bridges become indistinguishablsee Sec. 1B
lines are shifted closer to the bulk condensation line withThis notion is supported by the plot af,, in Fig. 4. Since
decreasing:, . This is confirmed by Fig. 3. the critical point is not a point on the trajectorynT space,
Because the triple point moves to low&rand x ass, the height of the peak ok,, must be finite in accord with
decreases, it is also conceivable that two instead of one firsearlier conjectures for the same situat[@&3]. Since no sec-
order transitions occur. This was, in fact, observed dpr ond phase transition is observed for=7; in Fig. 3, we
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conclude that the confined fluid remains supercritical withqualitative interpretation of the computer simulation results
respect to this critical point for all smaller substrate separaemergegsee Fig. 3.

tions[see Fig. 10d)]. (4) The cusp in the plot of,, versuss, (c,=1;) (see
Fig. 4), and the corresponding large slopepdk,) (see Fig.
IV. CONCLUDING REMARKS 3), which were observed originally in R€f33], can now be

interpreted as signatures of the approach of the critical point

In this paper we investigated the phase behavior obgqgciated with coexisting liquid bridges and liquidiike
LJ(12,6 fluids confined between chemically heterogeneou'\?;)hases of the confined fluid.

substrates forming a slit-shaped nanopore. The substrate is

deled iodi f st v adsorbi | The rather complex phase behavior of a fluid confined
modeled as a perlodic sequence ot strongly adsorbing S al%)Se'[ween chemically corrugated substrates is a direct conse-
(of width dg) alternating with weakly adsorbing onéef

width d,,) (see Fig. 1 The model therefore mimics materials quence of varying, at constant and".b' These are precisely _
that can nowadays be fabricated in the laboraf@y11] operating conditions encountered in parallel SFA experi-

The thermodynamic state of the fluid is characterized by thénents in which a quantity like can be determined directly
(dimension|esbvariab|es"|', M, Sz, dS! de €fs, and T by measuring the refractive index Oft_he confined fI[BB]
We fixed T=1.00, u=—11.50, ds=4.00, €;s=1.25, and Therefore, the complex dependencepobn boths, andc,
€rw=0.001, and examined the dependence of the mean fluishanifest in the plots of Fig. 3 should be accessible in SFA
density and isothermal compressibility @p and d,, (i.e.,  experiments, and may well offer a way of classifying corru-
c;). By varyingc, the fluid is exposed to an overall weaker gated substrates experimentally.
fluid-substrate potential field the smalley is for a given However, in making contact with laboratory experiments,
value ofs,. To analyze the dependence of the mean densityne may have to consider hysteresis. It is frequently encoun-
and, in particular, the striking variation of the isothermaltgred in studies of capillary condensation, where, for ex-
compressibility of the fluid further for a certain substrateamme, a pore phase condenses updsorptionat a tem-
corrugation, we employ a mean-field lattice-gas madek perature T,4 Whereas it evaporates upotesorption at
Fig. 5, which allows us to determine the phase diagram by;nother temperaturByes (see Figs. 1, 3, and 4 in R4fL8)).
solving numerically an Euler-Lagrange equation for the lo-Hysteresis refers to the existence of a temperature range
cation of minima of the grand potential functional in the_rmo-ATH:Tdes_ T.s>0 over which the excess coveradg
dynamic state space. The phase behavior of the lattice g&ghich is the key quantity measured, is a double-valued func-
can be summarized as follows tion of T. From an equilibrium perspective only one of the
(1) For small substrate separations and@<1, the co- e phases, to which the two values Bfrefer, can be
existence curve of the confined lattice gas exhibits a triplefhermodynamically stable, that is, correspond tglabal
point at a temperatur&, , where an inhomogeneous gas- minimum of Q; the other one, conforming to lacal mini-
and liquidlike phase coexist with a liquid bridge. For ,um of Q, is metastable.
=T gaslike and liquidlike phases coexist independently |, 5 seemingly similar fashion hysteresis has also been
with liquid bridges of different mean densitigge., for T gpserved in GCEMC studies of sorption in chemically ho-
>T, a one-phase region exists for liquid bridgeSoexist-  mogeneous pores. However, the relation between this hyster-
ence between gaslike phases and liquid bridges as well &sijs and the experimental one remains obscure because it
between liquid bridges and liquidlike phases terminates ajyas shown in Ref[53] that in GCEMC hysteresis depends
critical points whose location depend @n, s,, and the  on the size of the simulation cell as well as on the starting
strength of the fluid-substrate intergction with both portionsconfiguration in a sensitive and unpredictable way. Thus hys-
of the heterogeneous substrésee Figs. @) and 1b)]. teresis in GCEMC-generated sorption isotherms is caused by
(@ For fixed s, and ¢, =3 the triple-point densityo,  nonergodicity of the Markov chain, and should therefore be
=pcn- Compared withpey, the critical densities of the con- regarded as an artifact and not as a physical phenomenon.
fined lattice gas are shifted symmetrically to higher and From a more general perspective existence and lifetime of
lower values, respectivelsee Fig. 7a)]. metastable states are kinetic phenomena intimately linked to
(b) Away from ¢, =3, the phase diagram is less symmet- the dynamics of the system. In general, Monte Carlo meth-
ric in that p,, # pep and TZ0# Top, both of which are smaller  ods do not permit one to study dynamical aspects because
thanT, [see Fig. T)]. they are not based on an equation of motion like, say, New-
(c) Regardless of, , Ty, increases witls, and eventually ton’s equation. The Metropolis algorithi89] frequently
merges with both critical points for a sufficiently large sub-employed in Monte Carlo simulations is, however, linked to
strate separatiofisee Fig. 8a)], so that the phase diagram the Chapman-Kolmogoroff equation which describes the
exhibits a single critical point at a temperatdig,<T.,[see temporal evolution of stochastic proces§&4]. Thus in spe-
Fig. 7(a)] irrespective ofc, . cialized cases a dynamical interpretation of the Markov chain
(2) Based upon the phase diagrams, pore condensatigrenerated in the Monte Carlo method is feasible. Perhaps the
lines can be constructed. Their form and proximity to themost prominent such case concerns the dynamics of spin
bulk condensation lingu,= up(Teoey = — 3 depends orc, lattices, where even the dynamics in the near-critical regime
ands, (see Figs. 2 has been studied successfully in the Monte Carlo method
(3) The shift of the pore condensation lines with respect tg55]. In Ref.[56] Monte Carlo simulations were employed to
the (fixed) bulk coexistence curve enables us to construcinvestigate intermediate and long-time non-Brownian diffu-
trajectories of the thermodynamic stateunT spacerelative  sion in confined monolayer films. Another example concerns
to the pore condensation linésee Fig. 19 from which a  the dynamics of the contact line in a model fluid wetting a
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