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Nonlinear traveling waves in rotating Rayleigh-Bénard convection:
Stability boundaries and phase diffusion

Yuanming Liu and Robert E. Ecke
Condensed Matter and Thermal Physics Group and Center for Nonlinear Studies, Los Alamos National Laboratory,

Los Alamos, New Mexico 87545
~Received 16 September 1998!

We present experimental measurements of a sidewall traveling wave in rotating Rayleigh-Be´nard convec-
tion. The fluid, water with Prandtl number about 6.3, was confined in a 1-cm-high cylindrical cell with
radius-to-height ratioG55. We used simultaneous optical-shadowgraph, heat-transport, and local temperature
measurements to determine the stability and characteristics of the traveling-wave state for dimensionless
rotation rates 60,V,420. The state is well described by the one-dimensional complex Ginzburg-Landau
~CGL! equation for which the linear and nonlinear coefficients were determined forV5274. The Eckhaus-
Benjamin-Feir-stability boundary was established and the phase-diffusion coefficient and nonlinear group
velocity were determined in the stable regime. Higher-order corrections to the CGL equation were also inves-
tigated.@S1063-651X~99!03204-3#

PACS number~s!: 47.20.Bp, 47.32.2y, 47.54.1r
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I. INTRODUCTION

Amplitude equations have formed the basis for much
the study of pattern-forming nonlinear systems@1#. For sta-
tionary bifurcations, the Ginzburg-Landau equation h
proved very successful in quantitatively describing expe
mental data@2#. Its complex generalization, the comple
Ginzburg-Landau~CGL! equation, has been one of the ke
generic equations for the description oftime-dependentstates
in pattern-forming systems@1#. The nonlinear stability of
pattern-forming traveling waves was investigated theor
cally by Benjamin and Feir and by Newell@3,4# and has
many features of the Eckhaus instability in stationary p
terns @5#. Although the theory and numerical simulation
the CGL equation are very well developed@1,6–9#, quanti-
tative analysis of experimental data for a supercritical bif
cation has been sparse@10–12#. Other experimental system
that have exhibited features of the Eckhaus-Benjamin-F
~EBF! instability are binary-mixture convection@13,14# and
traveling finger patterns@15# although neither could be fi
quantitatively into the CGL framework partially because
the subcritical nature of the primary bifurcation. Here, w
present detailed comparison of experimental data from
nonlinear pattern-forming traveling wave observed in rot
ing Rayleigh-Be´nard convection~RBC! with predictions
based on the CGL equation. A brief report of this compa
son was published previously@16#.

The CGL equation in one spatial dimension describes
behavior of slow spatial and temporal modulations of pla
waves with frequencyvc and wave numberkc . The com-
plex amplitudeA in terms of modulation frequencyv and
modulation wave numberq obeys the CGL equation:

t0~] tA1s]xA!5e~11 ic0!A1j0
2~11 ic1!]xxA

2g~11 ic3!uAu2A, ~1!

where all the coefficients are real,t0 is the time scale,j0 is
the spatial scale,e is the linear bifurcation parameter, andg
PRE 591063-651X/99/59~4!/4091~15!/$15.00
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is the nonlinear parameter. The coefficientsci control the
dependence of the frequency onk and e. Viewed from the
perspective of a controlled perturbation expansion of a m
complicated partial differential equation, higher-order ter
can be important for any physical realization of the equati
We describe these below. In certain regions of param
space, the amplitude-equation description can be reduce
an equation for the phase field where the pattern wave n
ber is the gradient of that phase. In that case the amplitud
slaved to the phase because amplitude perturbations r
much more quickly than the phase distortions.

The physical system of interest is Rayleigh-Be´nard con-
vection with rotation about a vertical axis. A series of expe
ments @16–20# using heat-transport measurements and
multaneous shadowgraph visualization and linear-stab
analysis@21–23# have established that there is a sidew
traveling wave that exists as the first state unstable with
spect to the conduction state provided the rotation rate
high enough. This work has also shown that the traveli
wave state has many characteristics of the CGL equa
including a supercritical primary bifurcation. Further, there
a unique direction of the traveling wave, opposite to the
tation direction, with no associated counterpropagat
wave. Thus a single CGL equation is sufficient to descr
the system. It was also found that the variation in parame
values for the effective CGL equation is not adequate
bring the system into the very interesting regime where
otic hole solutions are possible@11,12#. This latter regime
arises when the stable wave number band is close to van
ing, i.e., when the Newell criterion is satisfied@4#.

The parameters controlling rotating convection are
Rayleigh numberR5gad3DT/nk ~acceleration of gravityg;
thermal expansion coefficienta; temperature differenceDT
across the fluid layer of heightd; kinematic viscosityn; ther-
mal diffusivity k) and the dimensionless rotation rateV
52p f d2/n. The bifurcation parameter ise5R/Rc(V)21
whereRc(V) is the critical Rayleigh number for the onset
convection. Properties of thermal convection can also be
4091 ©1999 The American Physical Society
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FIG. 1. Schematic illustration of the
Rayleigh-Bénard convection cell.
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fected by the Prandtl number Pr[n/k which is 6.3 for the
fluid used in this experiment~water! and the cell geometry
characterized by the aspect ratioG[r /d. In these experi-
mentsG55.

The paper starts in Sec. II with a description of the e
perimental apparatus and the procedures for obtaining d
In Sec. III, we present the characterization of the sidew
traveling-wave state and the determination of the coefficie
in an amplitude-equation formalism. The stability of sta
with wave numberk to long-wavelength Eckhaus-Benjamin
Feir instability is described in Sec. IV and results on pha
dynamics are presented in Sec. V. We conclude with so
remarks about future work in Sec. VI.

II. EXPERIMENTAL PROCEDURE

The rotating apparatus was described in detail elsewh
@24#. The cell assembly is schematically shown in Fig. 1. T
top plate of the convection cell was a 1/8-in.-thick, 5-in
diameter, optical-quality sapphire window. The bottom pl
was a 3/8-in.-thick, 5-in.-diameter silicon plate which w
polished with a mirror finish to one or two wavelengths ov
the whole surface. The silicon plate does not corrode in
ter and has good thermal and mechanical properties.
sidewall was 0.72-cm-thick plexiglass which defined a flu
layer with a height of 1.00 cm and a radius of 5.00 cm w
an aspect ratioG5r /d55.0. The top-plate temperature wa
regulated to better than 0.5 mK rms over long periods
time by temperature-regulated water jets. Constant heat
rent was supplied by a 4-in.-diameter film heater attache
the bottom of the silicon plate. The power input to the hea
was obtained by a four-wire measurement. The cell was
sulated, on all surfaces except the top plate, by closed
foam to prevent thermal losses due to radiation and cond
tion or convection by air. All electrical wires were fed int
the rotating frame through a low-noise electrical slip rin
Rotation was provided by a microstepping motor throu
two gears and a timing belt. The rotation rate was fully co
trollable by computer and the maximum rotation rate used
the experiment wasf 50.6 Hz.

To ensure a uniform water layer, several assembly f
tures were built into the convection cell. The sapphire w
dow deforms under stress, so a special design allowed u
adjust the stress on the windowin situ, thereby achieving a
uniformity of about 4mm over the whole window area. Fur
ther, the nonuniformity was almost concentric so that
azimuthal uniformity needed in our experiment on sidew
-
ta.
ll
ts
s

e
e

re
e

e

r
-

he

f
r-

to
r
-

ell
c-

.
h
-
n

a-
-
to

e
ll

convection modes was considerably better than the ove
uniformity. The bottom plate sat on three nylon rods set i
stainless-steel support. The nylon rods had spherical hea
allow point contact with the silicon plate and thus minimi
heat loss. They were also spring loaded with tension in
pendently adjustable by set screws. The parallelism betw
the bottom of the silicon plate and the top of the sapph
plate was fine tuned through the set screws and measure
a dial indicator to within 10mm. The total uniformity of the
water layer height was estimated to be better than 0.3%

The top- and bottom-plate temperatures were measu
by an average of three evenly spaced thermistors. The t
mistors were mounted in the sidewall within the O rings, a
were in poor thermal contact with the wall, but in good co
tact with the bottom surface of the sapphire window and
top surface of the Si plate. A pair of thermistors were ho
zontally mounted in the sidewall at the midheight, about 1
apart, and with their tips flush with the wall’s inner surfac
to provide local temperature information. From the data m
sured by the pair, the amplitude, frequency, and mode n
ber of the mode could be extracted.

In addition to the temperature measurements, we also
ployed simultaneous optical-shadowgraph measuremen
obtain both local and global information about the traveli
waves on both a qualitative and quantitative level. The sh
owgraph optics are described in detail in Ref.@25#, and were
mounted in the rotating frame. Specifically, we used an a
romatic collimating lens with a diameter of 5 in. and a foc
length of 25 in., a 50-mm Nikon lens as the imaging lens
Sharp laser diode operating below lasing as the point li
source, and a Sony black-and-white charge coupled de
~CCD! camera~model SSC-M354! with 5123480 resolu-
tion. The positions of the imaging lens and the camera w
independently adjustable, allowing for control of the ima
magnification and shadowgraph sensitivity. Images w
typically 3503350 pixels, which contained the whole cell o
approximate size 3303330 pixels. The shadowgraph sign
was obtained by pixel-by-pixel division @ I (x,y,t)
2I 0(x,y)#/I 0(x,y) whereI 0(x,y) is the intensity of a back-
ground image taken well below onset andI (x,y,t) is the
intensity of an image taken above onset at timet. The center
of the cell (x0 ,y0) was found in each image, and the sign
for a traveling wall stateI (r ,u,t) was obtained by both azi
muthally and radially averaging in a window ofDr
50.01r 0 and Du51°, where r is the radius relative to
(x0 ,y0),u is the azimuthal angle, andr 0'165 is the radius
of the cell.I (r ,u,t) depends sensitively on both the shape
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the image and (x0 ,y0). The shadowgraph optics were a
justed to obtain as round an image as possible, but the
ages were sometimes out of round by one or two pixels.
averaged the shadowgraph signal over 0.98r 0<r<0.99r 0 to
yield a smoother signal but the slight azimuthal asymme
of the images and uncertainty in (x0 ,y0) could cause a sys
tematic, artificial nonuniformity inI (r ,u,t). This nonunifor-
mity was taken out when necessary by dividingI (r ,u,t) by
its long-time average.

The experimental control parameters for rotati
Rayleigh-Bénard convection areDT which is proportional to
R and the physical angular rotation rateVD represented in
dimensionless form by the dimensionless rotation rateV
[VDd2/n. During the experiments, the top-plate tempe
ture Tt was held constant atTt524.1 °C, and the bottom
plate temperature (Tb) varied with the heat input. The fluid
parameters used to compute dimensionless control pa
eters were evaluated at the mean cell temperature. For
measurements reported below, the rotation rate was fixe
V5274 (VD52.512 rad/s). For this rotation rate, the rat
of the centrifugal-to-gravitational force was about 0.03
centrifugal effects can be ignored.

To prepare states with different wave numbers, we to
advantage of transients which enabled us to generate tra
ing waves with 17<m<32 atV5274. The basic idea is tha
lower ~higher! rotation produces smaller~larger! wave num-
ber in both the bulk and sidewall modes relative to the si
wall wave number that is selected by quasistatically ramp
e at fixed V. The other factor is that at highere the bulk
mode is present, which can affect the mode selected as
sidewall state. A typical scenario for generating differe
modes is as follows: For low modes, a bulk mode was s
bilized at V568 ande'1, thenV was increased to abou
274 ande was decreased to about 0.25, both at a quasis
rate. For high modes, we generated a mode withV5414 at
e'1, then quickly~about 40 s! rampedV down to 274. The
mode was initially suppressed by the rapid deceleration,
reappeared later with a higher mode number. The ability
prepare different mode numbers enabled us to determine
marginal-stability and the Eckhaus-Benjamin-Feir-stabi
boundaries. Once a state at a particulare andV was gener-
ated, we waited at least five or six vertical thermal diffusi
times tk5d2/k5680 s before determining steady-sta
quantities.

III. EXPERIMENTAL RESULTS

A. Primary and secondary bifurcations

The first two bifurcations in this system are from condu
tion to sidewall-traveling-wave convection and then,
higher e to a state with both sidewall and bulk convectio
These bifurcations were previously identified and studied
convection cells withG51 @17,19# and G52.5 @20#. The
best indication of these bifurcations is the heat transp
which we present as the Nusselt numberN which is the ef-
fective fluid conductivity normalized by the thermally diffu
sive fluid conductivity. For our convection cell withG
55.0, we measured the Nusselt number as a function ofDT
for V568,136,205,274,344,414. The results are plotted
Fig. 2 as a function ofe and have several distinct feature
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The change fromN51 at e50 indicates the onset of con
vection. For most of the data sets, there is a linear sectio
N which is indicative of the sidewall mode. The seco
change in slope indicates the onset of bulk convection. AsV
decreases the first linear section also decreases in size s
for the lowest rotation rateV568 the interval has decrease
to zero and the transition is to coexisting sidewall and b
convection. From theN measurements, the critical Rayleig
numbers for the sidewall mode and for the bulk convect
state were determined and the results are shown in Fig
Our results agree well with those measured previously@20#,
indicating that the initial bifurcation to the sidewall sta
depends only weakly onG. For the onset to bulk convectio
state, the criticalRb decreases slightly asG increases.

A further characterization of sidewall and bulk onsets
the critical frequency of the sidewall modevc and critical
wave numberskc and kb for the sidewall and bulk states
Figure 4 shows the measured precession frequencyvc at
onset scaled bytk . In the V range we studied, there is n
noticeable difference between our results in aG55.0 cell
and the results forG52.5 @20#. Calculations by Goldstein
et al. support the experimental results that the frequen
changes little with increasingG when G.1 for moderately

FIG. 2. N vs e for different dimensionless rotation rates:V
568(s), 136 (h), 205 (d), 274 (n), 344 (*), and 414 (,).
The lines show the linear dependence ofN on e for the sidewall
traveling-wave and bulk states.

FIG. 3. Rc(s) and Rb(d) vs V for G55. For comparison,
previous data for other values ofG are shown:G51.0 ~Zhong,
Ecke, and Steinberg! Rc(h) andRb(j); G52.5 ~Ning and Ecke!
Rc(3) and Rb ~1!. Also shown are Chandrasekhar’s linea
stability calculation for a laterally infinite system~solid line! and
calculation of Goldsteinet al. for a G51 cell with insulating side-
walls ~dashed line!.
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high V. In Fig. 5 the critical wave number is shown for th
sidewall state and for the bulk state. Again the data are
good agreement with older data and with theoretical calc
tions. Note thatkb changes markedly withV whereaskc is
very weakly dependent onV.

B. Characterization of the sidewall traveling waves

TheG55 cell and the azimuthally periodic boundary co
ditions allowed us to prepare traveling-wave states w
mode numbers ranging from 17<m<32 at V5274 (VD
52.512 rad/s). We used simultaneous heat transport, l
temperature, and shadowgraph measurements to obtai
wave number, frequency, and amplitude of the sidew
states with these mode numbers. In our analysis we us
ther the azimuthal mode numberm or the dimensionless
wave numberk5m/G to parametrize the state. The fre
quency and, in general, any other quantity with units of ti
is made dimensionless by scaling with the thermal diffus
time tk .

We expect, based on previous experiments@20# and on
general principles@1#, that there is a band of stable wav
numbers for eachDT and corresponding value ofR bounded

FIG. 4. Dimensionless precession frequency at onsetvc as a
function of V in cells with G55.0 (d), 1.0 (*, measured by
Zhong, Ecke, and Steinberg!, 2.5 (h, measured by Ning and Ecke!.
The solid line is the calculation by Kuo and Cross for a planar w
state and the dashed lines are guides to the eye.

FIG. 5. Dimensionless critical wave numberskb andkc vs V for
bulk ~solid symbols! and sidewall~open symbols!: G55 ~circle!,
G52.5 ~squares!, G51 ~triangles!. The solid line is the linear-
stability results of Chandrasekhar for the bulk state and the da
line is the calculation by Kuo and Cross for a planar wall state
in
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by the marginal-stability boundary. This boundary can
determined by measuring either the local mode amplitude
the global heat transportN as a function ofk andR. Figures
6 and 7 show the Nusselt numberNk and the local squared
amplitudeAk

2 versusDT for four selected mode numbersm
518,23,27,31 corresponding tok53.6,4.6,5.4,6.2.Nk21
and Ak

2 vary quite linearly withDT with slopes and zero
intercepts that depend onk. For Nk the scaling is defined a

Nk215ak
21~DT2DTk!, ~2!

whereDTk is the value ofDT for the marginal stability of a
mode with wave numberk andak has units of temperature
The dependence ofAk on k indicates that the local tempera
ture probe has some instrumental response or radial-m
structure dependence as a function ofk so we useNk to
determine the effective ‘‘amplitude’’ scaling. Over the ran
of DT shown, there is no statistically significant improv
ment in the fit by including a quadratic term, implying th
the quadratic correction to the amplitude is small and will
neglected in the CGL-type analysis described below.
construct the marginal-stability curve from values ofDTk
determined from measurements ofNk . The data are plotted
in Fig. 8 and are well fit by a quadratic function

DTk51.137410.0367~k24.65!2. ~3!

ll

ed

FIG. 6. Nusselt numberN vs DT for different mode numbers
m523 (d), 27 (n), 31 (h), and 18 (*). Thelines are least-
squares linear fits to the data. Only data below the onset to b
convection state are shown.

FIG. 7. Sidewall probe amplitudeAk
2 vs DT for m523 (d), 27

(n), 31 (h), and 18 (*). Thelines are least-squares linear fits
the data. Only data below the onset to bulk convection state
shown.
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The minimum occurs at the critical wave numberkc54.65
with a corresponding onset valueDTc51.1374 K which
yields a critical Rayleigh numberRc520 850. Fitting with a
cubic correction in (k2kc) gives a cubic coefficient o
20.0012. For now we ignore the cubic correction. Havi
determined DTc and kc , we obtain scaled variablese
[DT/DTc21 andq5k2kc . In the remainder of this pape
k and q can be used interchangeably although we typica
use q to label quantities such asNq ,Aq ,aq ,vq , etc. We
used the intercepts of the straight line fits toNq to obtain the
marginal-stability boundary but the slope of the linesaq

21 in
Eq. ~3! also yields important information about CGL param
eters.aq is listed in Table I and plotted in Fig. 9. The sma
variation in aq as a function ofq represents a higher-orde
correction to the standard CGL equation as discussed be
We also define a quantityeq[(DT2DTk)/DTc5e11
2DTk /DTc which is zero along the marginal-stabilit
boundary and which facilitates a description of the travelin
wave frequency and its later comparison with CGL-li
equations.

The traveling-wave frequencyvq plotted in Fig. 10 shows

FIG. 8. Marginal-stability boundary (s) and EBF boundary
(d) for V5274. The solid line is a parabolic fit to the margina
stability data. The dashed line is from the classic prediction for E
boundaryeE53eM . The dotted line is the curve obtained usin
c151.1 andc350.6 which yieldseE52.8eM .
y

w.

-

deviations from linear dependence onDT over the same
range whereNq and Aq

2 are very linear. Thus, we use qua
dratic fits to thevq data,

vq5vq
01gqeq1hqeq

2 , ~4!

where vq
0 is the frequency at the marginal instability fo

wave numberq and is plotted in Fig. 11. The data are we
represented by

vq
0521.9622.65q10.136q2, ~5!

where the constant term is the critical frequencyvc
521.96. The frequency coefficientsgq andhq are plotted in
Fig. 12 as functions ofq and tabulated in Table I. Thes
coefficients are reinterpreted below in the context of
CGL equation and its higher-order generalizations.

Before we proceed with further analysis of the data ba
on the CGL equation, we address the spatial structure of
modes in the radial direction. To do that we examine
radial profiles of states with differentm using the optical-
shadowgraph technique. Figure 13 displays four digitally

F

FIG. 9. Dimensionless coefficientaq vs q. The solid line is a
least-squares fit to the data. The dashed line is the best determ
tion of the slope consistent with measurements of the nonlin
group velocityvg .
TABLE I. Marginal-stability boundaryDTk and correspondingeM , EBF boundaryDTk
E(60.007) and

correspondingeE , and coefficientsaq , vq
0 , gq , andhq as functions ofm and equivalentlyk5m/G and

q5k2kc .

m k q DTk (°C) eM DTk
(E) (°C) eE aq vq

0 gq hq

17 3.4 21.25 1.201 0.056 1.329 0.168 2.41 25.70 14~62! 213~63!

18 3.6 21.05 1.176 0.034 1.267 0.114 2.385 24.75 18 222
19 3.8 20.85 1.169 0.028 1.219 0.072 2.39 24.28 17 214
20 4.0 20.65 1.148 0.009 1.185 0.042 2.39 23.60 18 219(65)
22 4.4 20.25 1.139 0.001 2.325 22.51 22 233
23 4.6 20.05 1.134 20.003 2.32 22.10 18 210
25 5.0 0.35 1.146 0.008 2.245 21.08 24 222(65)
27 5.4 0.75 1.164 0.023 1.220 0.073 2.215 20.20 23 217
28 5.6 0.95 1.171 0.030 1.262 0.110 2.30 19.65 24 213
29 5.8 1.15 1.178 0.036 1.290 0.134 2.33 18.97 25 213
30 6.0 1.35 1.201 0.056 1.336 0.175 2.30 18.56 25 215(63)
31 6.2 1.55 1.228 0.080 1.400 0.231 2.195 18.29 26 214
32 6.4 1.75 1.247 0.096 2.315 17.61 27 215
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4096 PRE 59YUANMING LIU AND ROBERT E. ECKE
hanced shadowgraph images with modes 17, 23, 28, an
for eq'0.23. The second and even the third structure aw
from the wall are visible for all of these modes. Quanti
tively, we characterize the radial distribution of the wave
calculating the standard deviation of shadowgraph inten
as a function of radius,s I(r ). The wave is separable int
radial and azimuthal functions so that in the linear shado
graph regime, we have

I ~u,r !51.01A2s I~r !sin~mu!}T01T~r !sin~mu! ~6!

so s I(r ) is directly proportional to temperature amplitud
Figure 14 showss I(r ) for four selected modes (m
517,23,28,31) at constanteq'0.19. The position of the sec
ond peak moves further from the wall for higher mode nu
bers. It also moves further from the wall at highere at a
constant mode number, as illustrated in Fig. 15. The dep
dence of the position on the mode number ande is summa-
rized in Fig. 16. There is no evidence that the radial struct
is a necessary degree of freedom to consider in our anal
which assumes a one-dimensional wave in the azimutha
rection and thus we ignore it in future discussion.

C. Description of the complex Ginzburg-Landau equation

The one-dimensional~1D! CGL equation, Eq.~1!, was
used successfully to describe some of the experimenta

FIG. 10. Dimensionless frequencyvk vs DT for mode number
m523 (d k54.6), 27 (n k55.4), 31 (h k56.2), and 18
(* k53.6). The lines are least-squares quadratic fits to the da

FIG. 11. Dimensionless frequencyvq
0 vs q. The solid line is a

least-squares quadratic fit to the data. The dashed line show
additional cubic correction consistent with measurements of
nonlinear group velocityvg .
31
y

-

ty
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-

n-

e
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i-

e-

sults for aG52.5 convection cell@20# and was proposed
theoretically@22# for the weakly nonlinear traveling waves i
rotating convection. Here we write a more general equat
~denoted HOCGL for higher-order CGL! which includes
some higher-order terms in a perturbation expansion of
rotating convection wall mode. These will be important
accounting for differences between the experimental res
and the pure CGL equation

t0~] tA1s]xA!5e~11 ic0!A1j0
2~11 ic1!]xxA

2g~11 ic3!uAu2A1h~11 id1!]xxxA

1 j ~11 id2!]xAuAu22 iwuAu4A. ~7!

In order to keep track of signs properly we now define t
correspondence between the experiments and the CGL f
the coordinatex is the azimuthal angle taken to be positive
the counterclockwise direction as viewed from above. T
sense of rotation is also counterclockwise so rotation is p

.

an
e

FIG. 12. Dimensionless coefficientsgq andhq vs q. Solid lines
are least-squares fits to the data. Dashed lines are the best de
nation of the slope from comparison with all sets of data.

FIG. 13. Shadowgraph images form517 (q521.25,
eq50.22, e 50.27), m 5 23 (q 5 20.05, eq 50.22, e 5 0.22),
m528 (q50.95, eq50.23, e50.26), and 31 (q51.55, eq

50.27, e50.35).
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PRE 59 4097NONLINEAR TRAVELING WAVES IN ROTATING . . .
tive. The wave propagates opposite the rotation direc
with negative phase velocity but the group velocity is po
tive. Thus a spatially uniform demodulated plane-wave so
tion takes the form

A~x,t !5Aq exp@ i ~qx1ṽt !#, ~8!

whereṽ5vk2vc is the frequency difference from the crit
cal frequencyvc . We now plug this homogeneous solutio
into the CGL equation, Eq.~1!, and also into the HOCGL
equation, Eq.~7!, which yields

i t0~ṽ1sq!5e~11 ic0!1j0
2~11 ic1!~2q2!

2g~11 ic3!uAqu2, ~9!

i t0~ṽ1sq!5e~11 ic0!1j0
2~11 ic1!~2q2!

2g~11 ic3!uAqu22 ih~11 id1!q3

1 i j ~11 id2!quAqu22 iwuAqu4. ~10!

For a homogeneous solution one can separate the rea
imaginary parts to get for CGL

FIG. 14. Radial profile of root-mean-square shadowgraph in
sity at constanteq'0.195 for mode 17 (d q521.25), 23 (h q
520.05), 28 (* q50.95), and 31 (n q51.55). The lines are
guides to the eye.

FIG. 15. Radial profile of root-mean-square shadowgraph in
sity for mode 23 (q520.05) ateq50.405, 0.313, 0.222, 0.150
and 0.0784, from top to bottom. At highe, as many as four peak
are visible. The second peak from the wall extends further into
cell’s interior ase increases. The lines are guides to the eye.
n
-
-

nd

05e2j0
2q22guAqu2, ~11!

t0~ṽ1sq!5c0e2c1j0
2q22gc3uAqu2 ~12!

or for Eq. ~7!

05e2j0
2q21hd1q32~g1 jd2q!uAqu2, ~13!

t0~ṽ1sq!5c0e2c1j0
2q22~gc32 jq !uAqu22hq32wuAqu4.

~14!

Solving for uAqu2 and ṽ for CGL yields

uAqu25
e2j0

2q2

g
5

eq

g
, ~15!

ṽ52sq1t0
21@~c02c3!eq1~c02c1!j0

2q2#, ~16!

whereeq[e2j0
2q2 ~this is equivalent to the previous defi

nition in terms ofDTk) and for higher-order CGL

uAqu25
e2j0

2q21hd1q3

g1 jd2q
5

eq3

g1 jd2q
, ~17!

ṽ52sq1t0
21F S c02

gc32 jq

g1 jd2qD eq3
1~c02c1!j0

2q2

2h~11c0d1!q32
w

~g1 jd2q!2
eq3

2 G
52sq1~c02c1!j0

2q2/t02h~11c0d1!q3/t0

1gqeq3
1hqeq3

2 , ~18!

whereeq3
[e2j0

2q21hd1q3.
To compare with experiment, we evaluate these exp

sions in several limiting cases. For fixedq, the dependence is
just on eq or equivalentlyeq3

whereas along the margina

stability curve,uAqu50 and one has

-

-

e

FIG. 16. The radial position of the second peak of the shad
graph intensity away from the sidewall as a function ofeq for
different mode numbers indicated in the figure. The solid lines
guides to the eye.
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eM5j0
2q2, ṽq52sq1

j0
2

t0
~c02c1!q2, ~19!

eM5j0
2q22hd1q3,

ṽq52sq1
j0

2

t0
~c02c1!q22

h~11c0d1!

t0
q3. ~20!

From our previous determination of the dependence ofNq
and vq on q and eq , we can determine many of the CG
coefficients~or combinations thereof! and the higher-orde
correction terms:

j05S 2
]2eq /]q2uq50

2 D 1/2

5S ]2DTq /]q2uq50

2DTc
D 1/2

50.179,

~21!

s52
]ṽq~eq50!

]q
U

q50

52.65, ~22!

c02c15
t0

2j0
2

]2ṽq~eq50!

]q2 U
q50

50.136t0 /j0
254.2t0 ,

~23!

c02c35t0

]ṽq~q50!

]eq
U

eq50

5g0t0520.4t0 , ~24!

hd15
1

6

]3eq3

]q3 U
q50

50.001, ~25!

j 1 jd2c35
gt0]gq

]q U
q50

53.9gt0 , ~26!

w52
t0g2

2

]2vq

]eq3

2 U
q50

52g2h0t0515g2t0 . ~27!

The nonlinear coefficients require a normalization of h
transport@20# which we take to be

N215uAu2
~2G21!

G2
50.36uAu2 ~28!

for G55 so that

g5
0.36

DTc
a0 , ~29!

jd25
0.36

DTc

daq

dq U
q50

, ~30!

which yieldsg50.74 andjd2520.015. Knowingg, we get
j 1 jd2c352.9t0 andw52g2h0t0520.55(215)t058t0 .
A few terms are difficult or impossible to obtain from
steady-state data at fixedq or eq50. In particular, determi-
nation oft0 requires a transient measurement and the cubq
dependence ofvq

0 is too small to allowh to be resolved
t

directly. Also, some of the coefficients are only determin
in pairs and can only be deconvolved through transient m
surements,c3 being the principal example.

The measurement of transients in this system is com
cated by competing time scales which are not always con
niently separated. The primary example of this is the m
surement of t0 which we obtained from transien
measurements ofAq using the side thermistors. The tim
scales involved are the fluid thermal relaxation timetk and
the convection roll relaxation timetkt0 /e. In order for the
amplitude equation to be valid,e must have reached a sta
tionary value which happens in severaltk . So one has the
condition thatt0 /e>2 or e<t0/2'0.01. Thus, it is difficult
to achieve enough resolution ine to determinet0 accurately
compared with, for example, convection in helium mixtur
wheret0 is ten times larger@26#. Another difficulty is that
using the local probe to measure amplitude, which is nec
sary to achieve sufficient precision, assumes a unifo
amplitude state. As we see below, phase and amplitude
tortions can exist and may be important. Despite th
problems one can get some indication of the relaxation t
through transient measurements.

We first show the relaxation expected for the CGL equ
tion. We takeq50 and assume that there are no spa
modulations of the state. The latter assumption may not
strictly valid but is difficult to test experimentally in th
range ofe of interest. The transient-relaxation solution@27#
for the amplitude and frequency of a spatially uniform sta
is

t0] tA05eA02gA0
3 , ~31!

t0ṽ5ec02gc3A0
2 , ~32!

which can be solved analytically forA0(t),

A0~ t !5F 1

A0
2~`!

1S 1

A0
2~0!

2
1

A0
2~`!

D expS 2
2t

~t0 /e! D G21/2

,

~33!

where A0(`)5(e/g)1/2. An example of the transient mea
surement is plotted in Fig. 17 for mode number 23.e in-
creased in this measurement and approachede50.001 after
about 2tk . Using many such measurements, we obtaint21

as a function ofe which we plot in Fig. 18. If things were

FIG. 17. Inverse squared amplitudeA22 vs time for m523
(q520.05) ande50.001. Solid line is fit to Eq.~33!.
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PRE 59 4099NONLINEAR TRAVELING WAVES IN ROTATING . . .
well behaved,t21 would be linear ine with slopet0 . From
these data, however, it is difficult to determine unambig
ously the value oft0

21 . The data very near onset wou
suggestt0'0.007 whereas the slope at highere implies t0
'0.050. Another piece of evidence is the apparent cross
towardst'1 corresponding to the fluid thermal relaxatio
time tk . Since this crossover should occur fort0<2e, this
would indicate that t0'0.030. This value correspond
closely to the valuet050.027 obtained for aG52.5 convec-
tion cell at V5544. Finally, numerical results@22# for a
plane traveling-wave wall mode suggest thatt0 increases
slightly with decreasingV. On the basis of the evidenc
presented here we take the valuet050.030 but clearly there
is substantial uncertainty in this result. In the results p
sented below this will not be important for analysis of t
EBF boundary or the nonlinear group velocity. It will b
important in comparisons of the phase-diffusion coeffici
between experiment and theory. We will discuss this m
below.

IV. ECKHAUS-BENJAMIN-FEIR INSTABILITY

The marginal-stability boundary determined previou
does not reveal the stability of the nonlinear states with w
number q. The nonlinear-stability boundary for travelin
waves is the analog of the Eckhaus-stability boundary
stationary patterns which we denote here as the Eckh
Benjamin-Feir instability@1,3,4,11#. A coarse determination
of this boundary is obtained from analysis ofNq as a func-
tion of DT. In Fig. 6, the data do not extend toN51 as
would be expected from linear stability. Instead there
gaps inDT where there is no stable state for thatq. These
gaps do not, however, provide an accurate method for de
mining the boundary because the time to nucleate a de
pair can be very long. Therefore, we measure the nuclea
time for defects as a function ofe and extrapolate to infinite
nucleation time or equivalently to zero growth rate. This p
cedure, discussed in detail below, allows us to experim
tally determine the EBF boundary (DTE or eE) as a function
of q, which is plotted in Fig. 8. The dashed line,eE53eM

with eM(q)5j0
2q2, is a very good approximation to the ex

perimental data, and is obtained by settingc350 in the the-
oretical equation for EBF derived from the CGL equation

FIG. 18. Dimensionless inverse lifetimetk /t vs e for determi-
nation of t0 . The solid line is a linear fit to the data at smalle
corresponding tot050.007. The dashed line is a linear fit to data
intermediatee with t050.050.
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eE5
2~11c3

2!111c1c3

11c1c3
eM . ~34!

This does not necessarily implyc350 as other combinations
of c1 and c3 yield similar curves, specifically the casec1
5c3 . The dotted curve in Fig. 8 shows the case forc1
51.1 and c350.6 where c3 was suggested by a pulse
propagation technique@28# in a similar convection cell. The
differences are small.

The detailed procedure we used to obtain the EB
stability boundary is as follows: We prepared a travelin
wave state with a desiredm at a highe i for which the state
was stable. We then waited typically three to four hours
allow the state to equilibrate after which we suddenly d
creasede to slightly below the estimatedeE . The unstable
state had a finite lifetimetE before it generated or annihi
lated rolls through the formation of space-time dislocatio
which is the signature of the EBF instability.tE was mea-
sured for differente f starting with a state at a constant hig
e i which was chosen for two reasons. First, when a state w
mode numberm was prepared, it was typically nonuniform
in space with sizable variation in local wave number. In o
der to prevent these local variations from becoming E
unstable,e i was chosen to be higher thaneE for adjacent
mode numbersm61. Second, at highe i the state equilibrates
faster, allowing more rapid acquisition of data. In Fig. 19, w
plot the normalized inverse lifetimetk /tE versuse for states
with m518,27,31 (q521.05,0.75,1.55).eE is determined
by linearly fitting the data and finding the intercepttk /tE
50. This procedure is significantly better than the simpl
approach of determining the boundary by picking the l
value which shows a nucleation within the waiting time. A
even better method would take into account the slightly d
ferent initial relaxation times until a constante is reached
which depends on the finale f . It would also measure the
exponential growth of the unstable mode rather than the t
to dislocation nucleation which involves nonlinear satu
tion. This is considerably more difficult, is not likely t
change the results much because the maximum variatio
tE caused by variations ine f are ten times less than th
shortesttE , and has not been tried here.

Using optical shadowgraph, we observed the dynamic
the EBF transition. Figure 20 shows a sequence of shad
graph images which correspond to different stages in

t

FIG. 19. Inverse lifetimetk /tE of an EBF-unstable state vse
for mode numbers 18 (d q521.05), 27 (s q50.75), and 31
(h q51.55).
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4100 PRE 59YUANMING LIU AND ROBERT E. ECKE
EBF transition. The state started withm531 (q51.55) and
equilibrated to one withm525 (q50.35) after multiple dis-
location nucleations. The directions of rotation, precession
the waves, and propagation of wave-number and amplit
distortions~labeled defect motion! are shown in the figure
Figure 21~a! shows a space-time plot of all the data rep
sented in Fig. 20 and illustrates the convection roll annih
tion through EBF instability. The data in Fig. 21~a! were
taken from shadowgraph images, e.g., Fig. 20, along a
cumference at 99% of the cell radius with a width of abo
2% where the traveling wave had almost maximum am
tude. The horizontal axis is the azimuthal angle which
creases counterclockwise in the direction of rotation. T
time advances from bottom to top with a total duration
about 6000 s or 9.7tk . The convection rolls traveled clock
wise, counter to the direction of rotation. The EBF transiti
is marked by the development of space-time dislocations,
of which are visible in Fig. 21~a!. To get a better picture o
the nucleation of these defects, we demodulate the imag
obtain the modulus~amplitude! and phase of the state. W
then determine the local wave number as the gradient of
phase field. The gray-scale-coded amplitude and wave n
ber are shown in Figs. 21~b! and 21~c!, respectively, where
dark ~light! corresponds to smaller~larger! amplitude or
wave number. The distortions in amplitude and wave num

FIG. 20. Selected time sequence of shadowgraph images c
sponding to the space-time plot in the next figure. These images
not digitally enhanced, only background division has been p
formed. The time lapse for the image in~a! is about 4.0tk from t
50 in the next figure and is used as the time reference in this fig
~a! shows an almost uniform state withm531 (q51.55). Images
~b!, ~c!, and~d! show a propagating dislocation and transition to t
state ofm530 (q51.35). Image~e! shows two dislocations occur
ring simultaneously. Image~f! shows the final state ofm525
(q50.35) after all the transitions.
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which lead to dislocation nucleation propagate in the dir
tion of rotation and aren-fold periodic in x (n is the azi-
muthal distortion mode number equivalent to the azimut
mode numberm for the undemodulated state!. They are also
characterized by amplitude depression and roll compres
~increased local wave number! leading up to the dislocation
nucleations. Immediately after a dislocation forms, the wa
number decreases dramatically as indicated in Fig. 21~c! by
the sudden change from bright to dark near each disloca
nucleation. For the caseq,0, the amplitude decreases in
similar fashion up to the dislocation nucleation but the ro
dilate ~decreased wave number!. This latter scenario is illus-
trated in Figs. 22~a!–22~c! which show space-time plots o
roll creation through EBF transition starting withm
517 (q521.25) and ending withm521 (q520.45). For
all EBF transitions that we studied with 17<m<32, the am-
plitude was always depressed near the dislocation, whe
the wave was stretched whenq,0 to accommodate an extr
roll pair and compressed whenq.0 which squeezes out a
extra roll pair.

An interesting feature of the EBF transition shown in F
21 is the large number of dislocations that are nucleated
the large change in wave number that results. As noted
lier, the time for nucleation of dislocations is a strong fun
tion of the distance of the final state below the EBF boun
ary. For them531 data shown in the figure,eE'0.231
wherease f was 0.16 which yieldsDe5e2eE'20.07. For
the data in Fig. 22,eE50.168 ande f was 0.11 so thatDe
'20.06. The relatively large difference in both of the
examples resulted in fast dynamics and multiple dislocatio

re-
re

r-

e.

FIG. 21. Angle-time plot of traveling wave with mode numb
m531 (q51.55) for ~a! azimuthal shadowgraph intensity,~b! de-
modulated amplitude,~c! demodulated wave number. Counte
propagating space-time dislocations and the resulting EBF tra
tion can be seen.
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PRE 59 4101NONLINEAR TRAVELING WAVES IN ROTATING . . .
FIG. 22. Angle-time plot of traveling wave with mode numb
m517 (q521.25) for ~a! azimuthal shadowgraph intensity,~b!
demodulated amplitude,~c! demodulated wave number. Counte
propagating amplitude distortions which terminate in space-t
dislocations which are signatures of the EBF transition can be s

FIG. 23. Angle-time plot of amplitude~left! and wave number
~right! for the EBF transition for m531 (q51.55) at DeE

520.030. See text for more detail.
As e approachedeE from below, the dynamics becam
slower and the number of transitions became smaller, fr
multiple transitions to a single transition. Figures 23 and
show space-time plots of the amplitude and wave-num
evolution for a slower dynamics. The initial states ofm
531 andm517 were prepared ate i50.35 and 0.27, respec
tively, and then were quickly lowered toe f50.201 and 0.164
corresponding toDe520.03 and20.004. In Fig. 23, the
space-time plot starts about 2.2tk after the initial decrease in
e, and the first transition tom530 occurred 7.0tk later. In
Fig. 24, the space-time plot started about 26tk after the de-
crease ine, and the first transition tom518 occurred 22tk
later. There are several differences in the dislocation nu
ations in these examples. For the sequence in Fig. 23,
first dislocation nucleation which resulted in a state withm
530 generated another localized perturbation which led
the second transition tom529. In the other example, Fig. 24
the two nucleations arise from a threefold periodic distort
of which only two produce defects while the other deca
Additional perturbations of amplitude and wave number af
the second transitions in both figures decayed and vanis
as the states equilibrated within the stable wave-num
band. This decay is a measure of the diffusion of phase
amplitude governed by a slow phase dynamics. In the n
section, we make quantitative measurements of the de
rate and nonlinear group velocity in the stable wave-num
regime. We will also explain the nucleation of single vers
multiple defects within the context of the phase dynam
description.

V. PHASE DYNAMICS

The modulus of the complex amplitude in Eq.~1! relaxes
on a time scalet0 /e. In some regions of parameter spac

e
n.

FIG. 24. Angle-time plot of demodulated amplitude~left! and
demodulated wave number~right! for the EBF transition withm
517 (q521.25) atDeE520.005. See text for more detail.
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4102 PRE 59YUANMING LIU AND ROBERT E. ECKE
phase~or wave-number! distortions relax much more slowly
In that case, the modulus is slaved to the phase so tha
linear order and for long-wavelength modulations the ph
f obeys a diffusion equation@11# for eachq:

] tf1vg]xf5D2]xxf1V0]xxxf1D4]xxxxf, ~35!

wherep5]xf and the coefficientsD2 , V0 , andD4 depend
on q ande. This equation is technically valid near the EB
boundary whereD2'0 but we will explore its usefulness i
describing properties of phase distortions in the entire b
of stable states. For that analysis we will ignore spatial
rivatives higher than second order in Eq.~35!. Corrections
and limitations will be discussed below. For now let us a
sume that some initial perturbation exists which, for the
riodic boundary conditions applicable here, can be written
terms of modes with periodn corresponding to wave numbe
p5n/G,

f~x,t !5 (
n51

`

anest1 i ~px2 ñt !. ~36!

Plugging this solution into Eq.~35! yields, for eachn, rela-
tionships for the growth rates and the oscillation frequenc
ñ,

s52D2p252D2

n2

G2
, ~37!

ñ52vgp52vg

n

G
. ~38!

The resulting expression fors explains the long-time behav
ior of states in Figs. 21 and 22: A single dislocation nuc
ation produces a localized disturbance in wave number m
up of many modes with a distribution ofn. Modes withn
.1 are, however, damped out much faster~like n2) than the
n51 mode, so that after a short time only then51 mode
survives.

The rapid decay of higher modes gives us a useful te
nique with which to measureD2 andvg . Using our sidewall
probe, we determine the local amplitude and frequency
obtain D2 and vg from their decay rate and oscillation fre

FIG. 25. Demodulated~a! frequency and~b! amplitude of the
phase modulation form527 (q50.85) and e50.26. Solid
~dashed! curves show fits to a decaying periodic function~enve-
lope!.
to
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quency, respectively. In Fig. 25, we show the transient de
of the amplitude and the frequency distortions about the
mogeneous state~we demodulate with the state atq andṽ).
The initial states for differentq are created by sequences
changes in rotation and heating rates to produce a spat
inhomogeneous state. The resulting data, collected a
higher modes have decayed substantially, are fit with ex
nentially decaying sinusoidal functions which are also sho
in the figure. The fits are typically excellent, implying th
only a singlen51 mode is present. Sometimes the fits a
poorer at short times, which indicates that higher modes h
not decayed completely. One could measure the phase re
ation using the shadowgraph technique but the signal
noise ratio is not nearly as good as for the sidewall prob

We measuredD2 andvg for several different values ofe
and for most of the available values ofq as shown in Figs.
26~a! and 26~b!. The values ofD2 can be compared with the
predictions based on pure CGL,

D25
j0

2

t0
S 11c1c32

2j0
2q2~11c3

2!

eq
D , ~39!

which is valid nearqE at whichD250. Expressions for othe
q away fromqE and incorporating higher-order correction
have not been calculated. For smalle<0.12, D2 roughly
obeys the inverse parabolic form suggested above whe
for e50.26, there are clear deviations as the data are hig
asymmetric aboutq50. A calculation forD2 in a Taylor-
Couette system yields very similar deviations@2,29#. In order
to evaluate the theoretical prediction@11# for D2 , the coef-
ficients must be determined completely. In particular, sin

FIG. 26. ~a! D2 vs q for e50.26 (n),e50.12 (h), and e
50.06 (s). Corresponding solid symbols are determination of t
condition D250 from location of the EBF-instability boundary
Solid and long-dashed curves are fits consistent with CGL pre
tions and experimental parameters. Short dashed line is guide to
for data withe50.26.~b! vg vs q for same data as~a! with addition
of e50 linear group velocitys (d). Solid lines are fits to data
discussed in the text.
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TABLE II. Coefficients in CGL equation and its higher-order generalization.

Coefficient Value Value~dimensionless! Source

t0 1t0 0.03 Figs. 17, 18
s 2.65 2.65 Fig. 11
j0 0.179 0.179 Fig. 8
c02c1 4t0 0.12 Fig. 11
c02c3 20.4~60.4!t0 0.61 Fig. 12~a!

g 0.74~60.05! 0.74~60.05! Fig. 9
h 0.04t0 0.001 Fig. 26~b!

d1 0.025t0
21 0.83 Figs. 8, 26~b!

j 3.7t0 0.11 Figs. 12~a!, 26~b!

d2 20.005t0
21 0.17 Fig. 9, 26~b!

w 8t0 0.24 Fig. 12~b!, 26~b!
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we only have combinations ofc0 , c1 , andc3 and because
t0 is poorly determined, it is difficult to do a direct compar
son. Also, as shown below, a good understanding of the
havior ofvg requires the inclusion of significant higher-ord
effects. Those are unknown here so caution needs to be
ercised in making comparisons. For the purposes of comp
son, we takec151.1, c350.6 @30#, and t050.03 which
yields the curves fore50.06 and 0.12. Given the uncertain
ties, the agreement is quite good. A better calculation
clearly called for as is a better determination oft0 andc3 .

The nonlinear group velocityvg offers a better opportu
nity for comparison with higher-order CGL models. We r
write Eqs.~16! and ~18! in terms of fixede and q and dif-
ferentiate with respect toq to obtain, respectively,

vg0
52s12

j0
2

t0
~c32c1!q, ~40!

vg3
'vg0

1
1

t0
F ~ j 1 jd2c3!

g
e1

4wj0
222 jd2~ j 1 jd2c3!

g2
qe

23S ~ j 1 jd2c3!j0
2

g
1~11c3d1!hDq2

2
6w

g3
~2 jd2j0

22ghd1!eq2G
52s1b1e1~b21b3e!q1~b41b5e!q2, ~41!

where the coefficientsbi can be determined from fits to th
vg data at differente. The solid curves in Fig. 26~b! are
obtained using the coefficientsbi55,21,2.1,20.55,20.21
which are slightly different from those reported earlier@16#
and from a direct determination based on the coefficie
obtained above. The present set is, however, within the e
bars for the coefficients and the dashed curves in Figs. 9
12 show slopes implied by the fit. The differences are min
and within experimental uncertainty. The excellent agr
ment between the amplitude-equation description and the
perimental data is startling. The only coefficient not obta
able from previous measurements that is determined by
vg data ish although the final best estimate for the coef
cients shown in Table II combines the direct measureme
e-

x-
ri-

is

ts
or
nd
e
-
x-
-
he

ts

with the fit to thevg data.
When we started our description of phase dynamics,

pointed out that a key assumption of this type of mode
that the modulus of the amplitude is slaved to the slow
phase field. The data in Fig. 25 support this slaving as, o
coarse scale, there is no visible delay between variation
amplitude and frequency~corresponding to wave-numbe
distortions via the relationshipp5 ñ/vg). On closer inspec-
tion, there is a discernible time delay of typically 100 s
about 0.15tk with the amplitude lagging the phase oscill
tions. Thus, our measurements are consistent over a w
range of parameters with the assumptions of the theore
models.

In addition to the dynamics of phase distortions in t
stable band, the phase equation has important qualitative
dictions about the growth of distortions in the EBF-unsta
region. In Figs. 21, 22, and 24, there are multiple nucleati
of dislocations arising from quite visible periodic amplitud
and phase distortions. The explanation for why the sys
chooses to nucleate many dislocations with the resul
large change inq rather than producing a single dislocatio
can be found in an analysis of Eq.~35!. WhenD2 is positive,
the higher-order termD4 plays a secondary role. In the EBF
unstable regime, however,D2 is negative and without a
higher-order term, all phase distortions with anyp become
unstable. The presence ofD4 produces a band of unstablep
with a maximum growth ratesmax(pmax)53D2

2/4D4 with
pmax5A2D2/2D4. As D2 becomes negative upon crossin
into the unstable region,pmax increases. Thus, fore'eE
there should be only a single dislocation whereas fore con-
siderably beloweE , the fastest growing mode corresponds
an n-fold distortion resulting in multiple dislocation nucle
ations. We have not studied this thoroughly but the trend
clearly consistent with this picture. In Fig. 27, we plot th
number of periodsn of the phase distortion versus the di
tance from the EBF boundary for several values ofq. The
increase inn is in qualitative agreement with the model b
not with specific CGL calculations@11#. The independence
of the ratioD2 /D4 on t0 suggests that for this system e
pressions forD2 and D4 may not work very well. Further
work on this aspect of the instability would be interesti
especially if expressions could be derived forD2 and D4
from the higher-order forms of the CGL equation. Final
the bounds onp appear to be such that the final wave numb
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is the critical one; we never observed a transition that
duced~increased! the wave number beyondkc when starting
from higher ~lower! wave number. In principle the boun
might be the opposite EBF wave number but our data are
sufficient to comment further on this point.

VI. CONCLUSION

We have explored in detail the ability of amplitude a
phase equations of the complex Ginzburg-Landau type
describe experimental observations of nonlinear trave
waves in rotating Rayleigh-Be´nard convection. The quanti
tative agreement between the experimental data and
theory is excellent and provides a detailed example of h
the amplitude/phase-equation approach yields a striking
accurate description of a real physical experiment. The a
ity to select a discrete set of wave numbers as a consequ
of the periodic boundary conditions of the physical syst
and thus to probe theq dependence of the amplitude an
frequency is key to this investigation. The measuremen
the phase-diffusion coefficientD2 and the nonlinear group

FIG. 27. Phase distortion periodicityn vs e2eE for m530,
q51.35 ~dashed curve! and m527, q50.75 ~solid curve!. The
horizontal lines indicate the respective bounds on the distor
corresponding to taking the states back to the critical m
m523 (q520.05). The dashed and solid curves are guides to
eye.
in

e,

E

-

ot

to
g

he
w
nd
il-
nce

f

velocity vg for traveling waves is unique to this system b
cause of its azimuthal periodicity. Overall, the data presen
here provide the starting point for a set of future investig
tions of nonlinear traveling waves including interactions w
external periodic and aperiodic spatial forcing, the possi
observation of a geometric phase in dissipative systems@31#,
and the behavior of nonlinear waves without the restrictio
imposed by periodic boundaries~i.e., breaking azimuthal pe
riodicity!. Unfortunately, the dependence of the experime
tally determined coefficients in the CGL equation on rotati
do not appear to encompass the interesting chaotic regim
Benjamin-Feir turbulence.

The only significant uncertainties in our analysis ar
from poor measurements of the time constantt0 and the
inability to independently determine the nonlinear coefficie
c3 . We hope to better resolve these coefficients in fut
experiments using pulse-propagation techniques.

We hope that our measurements will provide motivati
for further theoretical work on higher-order expansions a
on better calculations of the phase-diffusion coefficient. R
cently, calculations of the linear and weakly nonlinear stab
ity of traveling wall modes in rotating convection have be
performed@32# which make earlier calculations@22,23# more
realistic. Also, theoretical work on the properties of the CG
equation in finite domains has shown interesting effects
sulting from the existence of a single traveling-wave dire
tion @6–9#. This latter case is realized experimentally by i
serting a piece of metal foil along the inner wall of th
convection cell, suppressing the wall mode, and breaking
azimuthal symmetry of the system. In that case, a uni
wave number is selected and the convectively unstable
gime does not seem to be accessible owing to the eff
suggested by theoretical investigations@9#. This subject is
planned to be the topic of a sequel to the present work@28#.
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@7# P. Büchel, M. Lücke, D. Roth, and R. Schmitz, Phys. Rev.
53, 4764~1996!.
@8# D. Rothet al., Physica D97, 253 ~1996!.
@9# S. Tobias, M. Proctor, and E. Knobloch, Physica D113, 43

~1998!.
@10# V. Croquette and H. Williams, Phys. Rev. A39, 2765~1989!.
@11# B. Janiaud, A. Pumir, D. Bensimon, V. Croquette, H. Richt

and L. Kramer, Physica D55, 269 ~1992!.
@12# N. Mukolobwiez, A. Chiffaudel, and F. Daviaud, Phys. Re

Lett. 80, 4661~1998!.
@13# P. Kolodner, Phys. Rev. A46, 1739~1992!; 46, 6431~1992!.
@14# G. Baxter, K. Eaton, and C. Surko, Phys. Rev. A46, 1735

~1992!.
@15# L. Pan and J. de Bruyn, Phys. Rev. E49, 2119~1994!.
@16# Y. Liu and R. E. Ecke, Phys. Rev. Lett.78, 4391~1997!.
@17# F. Zhong, R. Ecke, and V. Steinberg, Phys. Rev. Lett.67, 2473

~1991!.
@18# R. E. Ecke, F. Zhong, and E. Knobloch, Europhys. Lett.19,

177 ~1992!.



id

Y.

ev

y,

cell

PRE 59 4105NONLINEAR TRAVELING WAVES IN ROTATING . . .
@19# F. Zhong, R. Ecke, and V. Steinberg, J. Fluid Mech.249, 135
~1993!.

@20# L. Ning and R. E. Ecke, Phys. Rev. E47, 3326~1993!.
@21# H. Goldstein, E. Knobloch, I. Mercader, and M. Net, J. Flu

Mech.248, 583 ~1993!.
@22# E. Kuo and M. C. Cross, Phys. Rev. E47, 2245~1993!.
@23# J. Hermann and F. Busse, J. Fluid Mech.255, 183 ~1993!.
@24# Y. Liu and R. E. Ecke~unpublished!.
@25# J. R. de Bruyn, E. Bodenshatz, S. W. Morris, S. Trainoff,

Hu, D. S. Cannell, and G. Ahlers, Rev. Sci. Instrum.67, 2043
~1996!.

@26# R. E. Ecke, H. Haucke, Y. Maeno, and J. Wheatly, Phys. R
 .

A 33, 1870~1986!.
@27# R. Deissler, R. E. Ecke, and H. Haucke, Phys. Rev. A36, 4390

~1987!.
@28# R. E. Ecke~unpublished!.
@29# H. Riecke, Ph.D. thesis, University of Bayreuth, German

1980.
@30# Recent preliminary pulse-propagation experiments in a

with broken azimuthal symmetry suggest a valuec3'0.5 but
detailed analysis has not been done.

@31# A. Landsberg, Phys. Rev. Lett.69, 865 ~1992!.
@32# W. Choi, D. Prasad, R. Camassa, and R. E. Ecke~unpub-

lished!.


