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Nonlinear traveling waves in rotating Rayleigh-Benard convection:
Stability boundaries and phase diffusion

Yuanming Liu and Robert E. Ecke
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We present experimental measurements of a sidewall traveling wave in rotating RayieigttBenvec-
tion. The fluid, water with Prandtl number about 6.3, was confined in a 1-cm-high cylindrical cell with
radius-to-height ratid’=5. We used simultaneous optical-shadowgraph, heat-transport, and local temperature
measurements to determine the stability and characteristics of the traveling-wave state for dimensionless
rotation rates 6€()<420. The state is well described by the one-dimensional complex Ginzburg-Landau
(CGL) equation for which the linear and nonlinear coefficients were determinef fo274. The Eckhaus-
Benjamin-Feir-stability boundary was established and the phase-diffusion coefficient and nonlinear group
velocity were determined in the stable regime. Higher-order corrections to the CGL equation were also inves-
tigated.[S1063-651X99)03204-3

PACS numbds): 47.20.Bp, 47.32y, 47.54+r

I. INTRODUCTION is the nonlinear parameter. The coefficiecfscontrol the
dependence of the frequency krand e. Viewed from the
Amplitude equations have formed the basis for much ofperspective of a controlled perturbation expansion of a more
the study of pattern-forming nonlinear systefi$ For sta-  complicated partial differential equation, higher-order terms
tionary bifurcations, the Ginzburg-Landau equation hasan be important for any physical realization of the equation.
proved very successful in quantitatively describing experiyye describe these below. In certain regions of parameter
mental data[2]. Its complex generalization, the complex gpace, the amplitude-equation description can be reduced to
Ginzburg-LandauCGL) equation, has been one of the key g equation for the phase field where the pattern wave num-
generic equations for the descriptiontohe-dependerstates e s the gradient of that phase. In that case the amplitude is

n t[?attefrn-fo_rmlrlg sylstemél]. The ”OU"”E? S:ag'"t%/ of t_slaved to the phase because amplitude perturbations relax
patiern-forming traveling waves was investigate €0relmuch more quickly than the phase distortions.

cally by Benjamin and Feir and by NewdlB,4] and has . . . . i
many features of the Eckhaus instability in stationary pat- T_he phyhsmal §yste[)n of mtere_st IIS Rayle|gh!¢ﬁed fcon .
terns[5]. Although the theory and numerical simulation of vection wit rotatu_)n abouta vertical axis. A series o exper-
the CGL equation are very well developEt6—9, quanti- ments[16—20 using heat-transport measurements and si-

tative analysis of experimental data for a supercritical pifur-Multaneous shadowgraph visualization and linear-stability
cation has been spark80—14. Other experimental systems analy§|3[21—23 have _estabhshed_ that there is a S|dgwall
that have exhibited features of the Eckhaus-Benjamin-Feiff@veling wave that exists as the first state unstable with re-
(EBF) instability are binary-mixture convectidi.3,14] and spect to the con'ductlon state provided the rotation rat.e is
traveling finger pattern§l5] although neither could be fit high enough. This work has also shown that the traveling-
quantitatively into the CGL framework partially because of wave state has many characteristics of the CGL equation
the subcritical nature of the primary bifurcation. Here, weincluding a supercritical primary bifurcation. Further, there is
present detailed comparison of experimental data from & unique direction of the traveling wave, opposite to the ro-
nonlinear pattern-forming traveling wave observed in rotatiation direction, with no associated counterpropagating
ing Rayleigh-Baeard convection(RBC) with predictions Wave. Thus a single CGL equation is sufficient to describe
based on the CGL equation. A brief report of this compari-the system. It was also found that the variation in parameter
son was published previous|y6]. values for the effective CGL equation is not adequate to

The CGL equation in one spatial dimension describes th&ring the system into the very interesting regime where ex-
behavior of slow spatial and temporal modulations of planedtic hole solutions are possib[d1,12. This latter regime
waves with frequencys, and wave numbek,. The com-  arises when the stable wave number band is close to vanish-
plex amplitudeA in terms of modulation frequency and  ing, i.e., when the Newell criterion is satisfigd].

modulation wave numbeg obeys the CGL equation: The parameters controlling rotating convection are the
Rayleigh numbeR=gad®A T/ vk (acceleration of gravitg;
To( A+ SIA) = e(1+iCo) A+ £3(1+icy) A thermal expansion coefficient; temperature differencaT
across the fluid layer of heighit kinematic viscosityv; ther-
—g(1+icgy)|A|%A, ()  mal diffusivity ) and the dimensionless rotation rage

=2mfd? v. The bifurcation parameter is=R/R,(Q)—1
where all the coefficients are reay, is the time scale{y is  whereR.(}) is the critical Rayleigh number for the onset of
the spatial scalee is the linear bifurcation parameter, agd convection. Properties of thermal convection can also be af-
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fected by the Prandtl number £w/« which is 6.3 for the convection modes was considerably better than the overall
fluid used in this experimentvaten and the cell geometry uniformity. The bottom plate sat on three nylon rods set in a
characterized by the aspect rafic=r/d. In these experi- stainless-steel support. The nylon rods had spherical heads to
mentsl'=5. allow point contact with the silicon plate and thus minimize

The paper starts in Sec. Il with a description of the ex-heat loss. They were also spring loaded with tension inde-
perimental apparatus and the procedures for obtaining datpendently adjustable by set screws. The parallelism between
In Sec. lll, we present the characterization of the sidewalthe bottom of the silicon plate and the top of the sapphire
traveling-wave state and the determination of the coefficientplate was fine tuned through the set screws and measured by
in an amplitude-equation formalism. The stability of statesa dial indicator to within 10m. The total uniformity of the
with wave numbek to long-wavelength Eckhaus-Benjamin- water layer height was estimated to be better than 0.3%.
Feir instability is described in Sec. IV and results on phase The top- and bottom-plate temperatures were measured
dynamics are presented in Sec. V. We conclude with sompy an average of three evenly spaced thermistors. The ther-
remarks about future work in Sec. VI. mistors were mounted in the sidewall within the O rings, and
were in poor thermal contact with the wall, but in good con-
tact with the bottom surface of the sapphire window and the
top surface of the Si plate. A pair of thermistors were hori-

The rotating apparatus was described in detail elsewhergontally mounted in the sidewall at the midheight, about 10°
[24]. The cell assembly is schematically shown in Fig. 1. Theapart, and with their tips flush with the wall's inner surface,
top plate of the convection cell was a 1/8-in.-thick, 5-in.- to provide local temperature information. From the data mea-
diameter, optical-quality sapphire window. The bottom platesured by the pair, the amplitude, frequency, and mode num-
was a 3/8-in.-thick, 5-in.-diameter silicon plate which wasber of the mode could be extracted.
polished with a mirror finish to one or two wavelengths over In addition to the temperature measurements, we also em-
the whole surface. The silicon plate does not corrode in waployed simultaneous optical-shadowgraph measurements to
ter and has good thermal and mechanical properties. Thebtain both local and global information about the traveling
sidewall was 0.72-cm-thick plexiglass which defined a fluidwaves on both a qualitative and quantitative level. The shad-
layer with a height of 1.00 cm and a radius of 5.00 cm withowgraph optics are described in detail in R@b], and were
an aspect ratid =r/d=5.0. The top-plate temperature was mounted in the rotating frame. Specifically, we used an ach-
regulated to better than 0.5 mK rms over long periods offomatic collimating lens with a diameter of 5 in. and a focal
time by temperature-regulated water jets. Constant heat cutength of 25 in., a 50-mm Nikon lens as the imaging lens, a
rent was supplied by a 4-in.-diameter film heater attached t&harp laser diode operating below lasing as the point light
the bottom of the silicon plate. The power input to the heatesource, and a Sony black-and-white charge coupled device
was obtained by a four-wire measurement. The cell was intCCD) camera(model SSC-M35% with 512x480 resolu-
sulated, on all surfaces except the top plate, by closed-celion. The positions of the imaging lens and the camera were
foam to prevent thermal losses due to radiation and condudndependently adjustable, allowing for control of the image
tion or convection by air. All electrical wires were fed into magnification and shadowgraph sensitivity. Images were
the rotating frame through a low-noise electrical slip ring.typically 350x 350 pixels, which contained the whole cell of
Rotation was provided by a microstepping motor throughapproximate size 330330 pixels. The shadowgraph signal
two gears and a timing belt. The rotation rate was fully conwas obtained by pixel-by-pixel division [I(x,y,t)
trollable by computer and the maximum rotation rate used in—lo(X,y)1/19(X,y) wherely(x,y) is the intensity of a back-
the experiment wa$=0.6 Hz. ground image taken well below onset ahi,y,t) is the

To ensure a uniform water layer, several assembly feaintensity of an image taken above onset at timehe center
tures were built into the convection cell. The sapphire win-of the cell (kq,yo) was found in each image, and the signal
dow deforms under stress, so a special design allowed us for a traveling wall state(r, §,t) was obtained by both azi-
adjust the stress on the winddw situ, thereby achieving a muthally and radially averaging in a window oAr
uniformity of about 4um over the whole window area. Fur- =0.0Tr, and Ad=1°, wherer is the radius relative to
ther, the nonuniformity was almost concentric so that the(Xq,Yo), 6 is the azimuthal angle, ang~ 165 is the radius
azimuthal uniformity needed in our experiment on sidewallof the cell.I(r, 6,t) depends sensitively on both the shape of

II. EXPERIMENTAL PROCEDURE
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the image and X,,Y,). The shadowgraph optics were ad-
justed to obtain as round an image as possible, but the im-
ages were sometimes out of round by one or two pixels. We
averaged the shadowgraph signal over 0,88 <0.99 to
yield a smoother signal but the slight azimuthal asymmetry
of the images and uncertainty ixg,y,) could cause a sys-
tematic, artificial nonuniformity i (r, 6,t). This nonunifor-
mity was taken out when necessary by dividi{g, 6,t) by

its long-time average. 1.0

The experimental control parameters for rotating . . ) )
Rayleigh-Baard convection arA T which is proportional to 0'9.0_2 0.0 0.2 05 0.8 1.0
R and the physical angular rotation rafh, represented in S

dimensionless form by the dimensionless rotation 1@te

=()d?/v. During the experiments, the top-plate tempera- N

ture T, was held constant al;=24.1°C, and the bottom- _68(.0)’ 136 ), 205 ®), 274 (£), 344 (%), and 414 v).
late temperatureT,,) varied with the heat input. The fluid The I|_nes show the linear dependenceNobn e for the sidewall

P . . ’ traveling-wave and bulk states.

parameters used to compute dimensionless control param-

eters were evaluated at the mean cell temperature. For mos, change fronN=1 at e=0 indicates the onset of con-

measurements reported below, the rotation rate was fixed %ction. For most of the data sets, there is a linear section in

(1=274 (Qp=2.512 rad/s). For this rotation rate, the ratio \ \hich is indicative of the sidewall mode. The second
of the centrifugal-to-gravitational force was about 0.03 so

FIG. 2. N vs € for different dimensionless rotation rateQ:

. : change in slope indicates the onset of bulk convectionQAs
centrifugal effects can be ignored.

ing waves with 1&=m=232 at() =274. The basic idea is that
lower (highep rotation produces smallélargep wave num-

ber in both the bulk and sidewall modes relative to the side-

wall wave number that is selected by quasistatically rampin
e at fixed Q). The other factor is that at higher the bulk
mode is present, which can affect the mode selected as t
sidewall state. A typical scenario for generating different
modes is as follows: For low modes, a bulk mode was sta
bilized at()=68 ande~1, then() was increased to about
274 ande was decreased to about 0.25, both at a quasistat
rate. For high modes, we generated a mode With414 at
e~1, then quickly(about 40 $ramped() down to 274. The
mode was initially suppressed by the rapid deceleration, an

reappeared later with a higher mode number. The ability to(51
prepare different mode numbers enabled us to determine tP]3

marginal-stability and the Eckhaus-Benjamin-Feir-stability
boundaries. Once a state at a particelaand Q) was gener-
ated, we waited at least five or six vertical thermal diffusion
times 7,=d% k=680 s before determining steady-state
guantities.

Ill. EXPERIMENTAL RESULTS
A. Primary and secondary bifurcations

The first two bifurcations in this system are from conduc-
tion to sidewall-traveling-wave convection and then, at
higher € to a state with both sidewall and bulk convection.

fave numbersk, and k,, for the sidewall and bulk states.

X . decreases the first linear section also decreases in size so that
To prepare states with different wave numbers, we tool?

advantage of transients which enabled us to generate trave[E

r the lowest rotation rat€) = 68 the interval has decreased
zero and the transition is to coexisting sidewall and bulk
convection. From thé& measurements, the critical Rayleigh
numbers for the sidewall mode and for the bulk convection
state were determined and the results are shown in Fig. 3.

Bur results agree well with those measured previo{&0),

indicating that the initial bifurcation to the sidewall state

t?J%pends only weakly oR. For the onset to bulk convection

state, the criticaR,, decreases slightly ds increases.
A further characterization of sidewall and bulk onsets is
the critical frequency of the sidewall mode. and critical

Figure 4 shows the measured precession frequescyt
nset scaled by, . In the Q) range we studied, there is no
oticeable difference between our results if"&5.0 cell

nd the results fol'=2.5[20]. Calculations by Goldstein

& al. support the experimental results that the frequency
changes little with increasin whenI">1 for moderately

10° }

10* |

100

1000

These bifurcations were previously identified and studied for
convection cells withl'=1 [17,19 and I'=2.5 [20]. The
best indication of these bifurcations is the heat transport -5 3 g (O) andR,(®) vs Q for ['=5. For comparison
. . . . . C . 3
which we present as the Nusselt numbewhich is the ef-  ,.0\i5,s data for other values df are shown:I'=1.0 (Zhong,
fective fluid conductivity normalized by the thermally diffu- Ecke, and SteinbeyR, (1) and R,(M); T'=2.5 (Ning and Ecke

S|Ve ﬂUId COHdUCtIVIty FOI’ our COﬂVGCtIOﬂ Ce” W|tIF RC(X) and Rb (+) Also shown are Chandrasekhar’'s linear-
=5.0, we measured the Nusselt number as a functiohTof  stability calculation for a laterally infinite systersolid line) and

for 1=68,136,205,274,344,414. The results are plotted irtalculation of Goldsteiret al. for aT'=1 cell with insulating side-
Fig. 2 as a function ot and have several distinct features. walls (dashed ling



4094 YUANMING LIU AND ROBERT E. ECKE PRE 59

40 v 1.20
30t 1.15 }

g0 Z 110}
10 p 1.05 }
0 r 1.00 oA Le ry r 2 " Y

10 100 1000 1.0 11 12 13 14 15 16 1.7
Q AT (K)
FIG. 4. Dimensionless precession frequency at omgegs a FIG. 6. Nusselt numbeN vs AT for different mode numbers:

function of Q in cells with I'=5.0 (@), 1.0 (*, measured by m=23 (@), 27 (A), 31 (d), and 18 (*). Thelines are least-
Zhong, Ecke, and Steinber@.5 (O, measured by Ning and Ecke  squares linear fits to the data. Only data below the onset to bulk
The solid line is the calculation by Kuo and Cross for a planar wallconvection state are shown.
state and the dashed lines are guides to the eye.

by the marginal-stability boundary. This boundary can be
high Q. In Fig. 5 the critical wave number is shown for the determined by measuring either the local mode amplitude or
sidewall state and for the bulk state. Again the data are ithe global heat transpoN as a function ok andR. Figures
good agreement with older data and with theoretical calculab and 7 show the Nusselt numbigi and the local squared
tions. Note thak, changes markedly witf) whereask, is amplitudeAZ versusAT for four selected mode numbens

very weakly dependent of). =18,23,27,31 corresponding tk=3.6,4.6,5.4,6.2N,—1
and Aﬁ vary quite linearly withAT with slopes and zero
B. Characterization of the sidewall traveling waves intercepts that depend da For Ny the scaling is defined as
Thel'=5 cell and the azimuthally periodic boundary con- N—1=a, {(AT—ATY), 2

ditions allowed us to prepare traveling-wave states with
mode numbers ranging from £m=32 at1=274 (Qp  whereAT, is the value ofAT for the marginal stability of a
=2.512 rad/s). We used simultaneous heat transport, locahode with wave numbek and «, has units of temperature.
temperature, and shadowgraph measurements to obtain tfi@e dependence &, on k indicates that the local tempera-
wave number, frequency, and amplitude of the sidewalture probe has some instrumental response or radial-mode
states with these mode numbers. In our analysis we use edtructure dependence as a functionkogo we useN, to
ther the azimuthal mode numben or the dimensionless determine the effective “amplitude” scaling. Over the range
wave numberk=m/I" to parametrize the state. The fre- of AT shown, there is no statistically significant improve-
quency and, in general, any other quantity with units of timement in the fit by including a quadratic term, implying that
is made dimensionless by scaling with the thermal diffusionthe quadratic correction to the amplitude is small and will be
time 7. neglected in the CGL-type analysis described below. We
We expect, based on previous experimdi28] and on  construct the marginal-stability curve from values &T
general principleg1], that there is a band of stable wave determined from measurementsdf. The data are plotted
numbers for eacAT and corresponding value &bounded in Fig. 8 and are well fit by a quadratic function

12 - AT, =1.1374+0.0367k—4.65°. ©)
10 0.04
8 0.03 }

X 0.02
4 o <

<

0.01
2
0 100 200 300 400 500 600 0.00 A . . . . .
Q 710 11 12 13 14 15 168 17

AT (K)
FIG. 5. Dimensionless critical wave numbégsandk, vs () for
bulk (solid symbol$ and sidewall(open symbols I"'=5 (circle), FIG. 7. Sidewall probe amplitud@ﬁ vsAT form=23 (@), 27
I'=2.5 (squares I'=1 (triangles. The solid line is the linear- (A), 31 (d), and 18 (*). Thelines are least-squares linear fits to
stability results of Chandrasekhar for the bulk state and the dashetie data. Only data below the onset to bulk convection state are
line is the calculation by Kuo and Cross for a planar wall state. shown.
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FIG. 8. Marglnal-stab_lllty bo_undaryGé) ?‘“d. EBF bounda_lry FIG. 9. Dimensionless coefficieni, vs g. The solid line is a
(®) .flor 1=274. The SOl'd, "n? Is a parapolic T't to the .marglnal- least-squares fit to the data. The dashed line is the best determina-
stability data. The dashed line is f_rom_the classic predlc.uon for _EBFtion of the slope consistent with measurements of the nonlinear
boundaryec= 3¢y, . The dotted line is the curve obtained using group velocityv, .
¢;=1.1 andc;=0.6 which yieldsez=2.8¢,, . K
deviations from linear dependence @il over the same
range whereN, and Ag are very linear. Thus, we use qua-
dratic fits to thew, data,

The minimum occurs at the critical wave number=4.65
with a corresponding onset valukT.=1.1374 K which
yields a critical Rayleigh numbd®.= 20 850. Fitting with a
cubic correction in K—Kk.) gives a cubic coefficient of
—0.0012. For now we ignore the cubic correction. Having

0

determined AT, and k., we obtain scaled variablee  where wj is the frequency at the marginal instability for

=AT/AT.—1 andg=k—k.. In the remainder of this paper, wave numbei and is plotted in Fig. 11. The data are well
k andq can be used interchangeably although we typicallyrepresented by

useq to label quantities such aNy,Aq, 4,04, etc. We
used the intercepts of the straight line fitsNg to obtain the
marginal-stability boundary but the slope of the Iimgs1 in
Eg. (3) also yields important information about CGL param- where the constant term is the critical frequenay,
eters.ay is listed in Table | and plotted in Fig. 9. The small =21.96. The frequency coefficienjg and », are plotted in
variation in o as a function ofg represents a higher-order Fig. 12 as functions ofj and tabulated in Table I. These
correction to the standard CGL equation as discussed belowoefficients are reinterpreted below in the context of the
We also define a quantitye,=(AT—AT,)/AT.=€+1 CGL equation and its higher-order generalizations.
—AT /AT, which is zero along the marginal-stability Before we proceed with further analysis of the data based
boundary and which facilitates a description of the traveling-on the CGL equation, we address the spatial structure of the
wave frequency and its later comparison with CGL-like modes in the radial direction. To do that we examine the
equations. radial profiles of states with differemh using the optical-
The traveling-wave frequenay, plotted in Fig. 10 shows shadowgraph technique. Figure 13 displays four digitally en-

wq=w8+ Yq€qt nqeg, (4)

wq=21.96-2.65)+0.136)%, (5)

TABLE I. Marginal-stability boundaryAT, and corresponding,,, EBF boundaryATE(i0.00?) and
correspondingsg , and coefficientsy,, wg, Yq. and nq as functions ofm and equivalentlk=m/I" and

q=k—k..

m k g AT (°C) e ATE (°C) e aq g q 7
17 34 -125 1.201 0.056 1.329 0.168 241 2570(#8  —13(+3)
18 36 —1.05 1.176 0.034 1.267 0.114 2.385 2475 18  -22

19 38 -0.85  1.169 0.028 1.219 0.072 2.39 2428 17 —-14

20 40 -065 1148 0.009 1.185 0.042 239 2360 18 —19(+5)
22 44 -025 1139 0.001 2.325 2251 22 -33

23 46 —-005 1134 —0.003 232 2210 18 -10

25 50 035  1.146 0.008 2.245 21.08 24 —22(+5)
27 54 075 1.164 0.023 1.220 0.073 2215 2020 23 -17

28 56 095 1171 0.030 1.262 0.110 2.30 1965 24  -13

29 58 115 1178 0.036 1.290 0.134 233 1897 25 -—13

30 6.0 135 1.201 0.056 1.336 0.175 2.30 1856 25  —15(+3)
31 62 155 1.228 0.080 1.400 0.231 2195 1829 26 —14

32 64 175  1.247 0.096 2315 17.61 27 -15
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FIG. 10. Dimensionless frequenay, vs AT for mode number FIG. 12. Dimensionless coefficientg and 4 vs g. Solid lines

m=23 (@ k=4.6), 27 (A k=5.4), 31 (O k=6.2), and 18 are least-squares fits to the data. Dashed lines are the best determi-
(* k=3.6). The lines are least-squares quadratic fits to the data.nation of the slope from comparison with all sets of data.

hanced shadowgraph images with modes 17, 23, 28, and
for €4~0.23. The second and even the third structure awa
from the wall are visible for all of these modes. Quantita-
tively, we characterize the radial distribution of the wave by

calculating the standard deviation of shadowgraph intensit ; : . . .
otating convection wall mode. These will be important in

as a function of radiusg(r). The wave is separable into . ) .
radial and azimuthal functions so that in the linear shadow@ccounting for differences between the experimental results

graph regime, we have and the pure CGL equation

eoretically{22] for the weakly nonlinear traveling waves in
otating convection. Here we write a more general equation
(denoted HOCGL for higher-order CGLwhich includes
ome higher-order terms in a perturbation expansion of the

?Its for alI'=2.5 convection cel[20] and was proposed

_ H 2 :
1(6,1)=1.0+ 20 (r)Sin(m@) < To+T(r)sin(ma) (6) To(FATSOA) = e(1HiCo) AT EH(1+iC1) T

o _ _ —g(1+icy)|AIPA+h(1+idy)dyeA
so o(r) is directly proportional to temperature amplitude.
Figure 14 showso,(r) for four selected modes n{ +j(1+id,)d,AlAP—iw|A]*A.  (7)
=17,23,28,31) at constamrt~0.19. The position of the sec-
ond peak moves further from the wall for higher mode num-
bers. It also moves further from the wall at higherat a
constant mode number, as illustrated in Fig. 15. The depe
dence of the position on the mode number and summa-
rized in Fig. 16. There is no evidence that the radial structur
is a necessary degree of freedom to consider in our analysis
which assumes a one-dimensional wave in the azimuthal di-™!”
rection and thus we ignore it in future discussion.

In order to keep track of signs properly we now define the
correspondence between the experiments and the CGL form:
(the coordinatex is the azimuthal angle taken to be positive in
the counterclockwise direction as viewed from above. The
Sense of rotation is also counterclockwise so rotation is posi-

C. Description of the complex Ginzburg-Landau equation

The one-dimensionallD) CGL equation, Eq(1), was
used successfully to describe some of the experimental re

26

24 |

22 |

=2

820-

18 |

16

-2 -1 0 1 2
q

FIG. 11. Dimensionless frequene@{]’ vs . The solid line is a FIG. 13. Shadowgraph images fom=17 (q=-1.25,

least-squares quadratic fit to the data. The dashed line shows ag=0.22, €=0.27), m= 23 (q= —0.05, ¢, =0.22, € = 0.22),

additional cubic correction consistent with measurements of then=28 (=0.95, ¢;=0.23, €¢=0.26), and 31 ¢{=1.55, ¢,
nonlinear group velocity . =0.27, €=0.35).




PRE 59 NONLINEAR TRAVELING WAVES IN ROTATING ... 4097
0.12 r v o~ 93
®--@m=17,£,0.197 A
0.10 b G—am=23, eq=0A1 86
— -t m=28, £,20.193 / o1 }
(] A --Am=31, £q=0.200 f
£ 008 | .
(o]
= *
g oo =897
S
L 04 } =
=} 87 }
0.02 }
naasaid 85 . .
0.00 0.00 0.20 0.40 0.60

FIG. 14. Radial profile of root-mean-square shadowgraph inten-
sity at constank,~0.195 for mode 17@® q=-1.25),23 (1 q
=-0.05), 28 (* q=0.95), and 31 A g=1.55). The lines are

guides to the eye.

guides to the eye.

FIG. 16. The radial position of the second peak of the shadow-
graph intensity away from the sidewall as a function egf for
different mode numbers indicated in the figure. The solid lines are

tive. The wave propagates opposite the rotation direction 0=e—§§q2—g|Aq|2, (11
with negative phase velocity but the group velocity is posi-
tive. Thus a spatially uniform demodulated plane-wave solu- T s)=Cne— Cr E202— A2 12
tion takes the form To(@+50) = Coe~ C1£00"~ gy q| (12
_ or for Eq.(7)
A(x,t)=Aqexdi(gx+ wt)], (8)
O=e—&a’+hdia®—(g+]d0)|All°, (13

wherew= w,— w, is the frequency difference from the criti-
cal frequencyw.. We now plug this homogeneous solution To(z)+8q)=coe—Cléng—(gcg—jq)|Aq|2—hq3—W|Aq|4-
into the CGL equation, Eql), and also into the HOCGL
equation, Eq(7), which yields

(14
iTo(w+sg)=e(1+icy)+&3(1+icy)(—q?) Solving for |A|? andw for CGL yields
—g(1+ics)|Aql?, 9 c— £202
|Ag>= soq =§, (15)
iTo(w+sg)=e(1l+icy)+&3(1+icy)(—g?)
—g(1+icy)|Aq—ih(1+idy)q® w=—s0+ 7, [(Co—C3)€q+(Co—C1)E0%],  (16)

+ij (1+idy)qlAgl 2 —iw|Agl%. (10)

where que—gng (this is equivalent to the previous defi-

i ngion in terms ofAT,) and for higher-order CGL
For a homogeneous solution one can separate the real an

[ [ ts t t for CGL
imaginary parts to get for e— 202+ hdy g e

A %= . = 1
0.15 Al g+jdyq g+jdpq an
— ~ _ gcs—jq
(/2] — 1 e 17 _ 2.2
= 0 sg+ 7 (co g+jd2CI)6q3+(C0 c1)éxq
o |
g oW
8 —h(1+ced))q°——F—€
e (g+jdq)?
= —sq+(Co—C1) €504 To—h(1+cody) g% 7o

+ Yq€q, T nqeés, (18
_ _ _wheree, =e—£59°+hd,q°.
FIG. 15. Radial profile of root-mean-square shadowgraph inten- 3 . .
To compare with experiment, we evaluate these expres-

sity for mode 23 ¢=—0.05) ate,=0.405, 0.313, 0.222, 0.150, . . . . .
and 0.0784, from top to bottom. At high as many as four peaks SIONS i several limiting cases. For fixgdthe dependence is

are visible. The second peak from the wall extends further into thdUSt On €q Or equivalentlye,, whereas along the marginal-
cell’'s interior ase increases. The lines are guides to the eye. stability Curve,|Aq| =0 and one has
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2
en=£202  q=—Sq+ T—Z(CO—cl)qz, (19)

€EmM= §Sq2_ hd,q?,

& h(1+cedy)
—q .

@q=—Sq+ —(Co—C1) G2~ (20)
70

70

From our previous determination of the dependencé\of
and wgq on g and €, we can determine many of the CGL
coefficients(or combinations therepfand the higher-order

correction terms:

£0=| - €q/0Q |q o) _ q/?q |q 0 —0.179,
2 2AT,
(21
dwq(€g=0
__M =2.65, (22)
aq 4=0

7o Pwq(€g=0)

Co—Cr=— =0.136ry/£3=4.27,
2B L P
(23
dwy(q=0)
CO_C3:TOq(9f :’}/0T0:20.4T0, (24)
q eq:O
1(936q3
hd1=g—3 =0.001, (25)
09 |,
. g7dy
j+idacs= a9 4 =3.9979, (26)
g=0
2 2
709 “w
== 2q =—g°no70=159%75.  (27)
2 e
q3 q=0
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FIG. 17. Inverse squared amplitude ? vs time for m=23
(g=—0.05) ande=0.001. Solid line is fit to Eq(33).

directly. Also, some of the coefficients are only determined
in pairs and can only be deconvolved through transient mea-
surementse¢y being the principal example.

The measurement of transients in this system is compli-
cated by competing time scales which are not always conve-
niently separated. The primary example of this is the mea-
surement of 7, which we obtained from transient
measurements of, using the side thermistors. The time
scales involved are the fluid thermal relaxation timeand
the convection roll relaxation time,y/e. In order for the
amplitude equation to be vali& must have reached a sta-
tionary value which happens in several. So one has the
condition thatry/e=2 or e< 7,/2~0.01. Thus, it is difficult
to achieve enough resolution into determinery accurately
compared with, for example, convection in helium mixtures
where 7, is ten times largef26]. Another difficulty is that
using the local probe to measure amplitude, which is neces-
sary to achieve sufficient precision, assumes a uniform-
amplitude state. As we see below, phase and amplitude dis-
tortions can exist and may be important. Despite these
problems one can get some indication of the relaxation time
through transient measurements.

We first show the relaxation expected for the CGL equa-
tion. We takeq=0 and assume that there are no spatial
modulations of the state. The latter assumption may not be

The nonlinear coefficients require a normalization of heatstrictly valid but is difficult to test experimentally in the

transport 20] which we take to be

2I'—1)

(
N—1=|Al? 2 =0.36A|? (28)
for I'=5 so that
036 -
g_A_TCaO' (29
0.36day

jdy=-— —— , 30
143 ATC dq 4=0 ( )

which yieldsg=0.74 andjd,= —0.015. Knowingg, we get

j +jd2C3:2.9TO andW: _927]07'0: _055(_ 15)7’0:87'0.

range ofe of interest. The transient-relaxation soluti2v]
for the amplitude and frequency of a spatially uniform state
is

TodtAo= €Ao—GAG, (3
Toz) = GCO - g CgAg y (32)
which can be solved analytically f&¥y(t),

2t —-1/2
exp(‘(ro/a)l |

(33

1 B 1
A2(0)  A3(=)

Ao(t)=

_l’_
Ad()

where Ay(=) = (e/g)¥2. An example of the transient mea-

A few terms are difficult or impossible to obtain from surement is plotted in Fig. 17 for mode number 23in-

steady-state data at fixefor €,=0. In particular, determi-

creased in this measurement and approaceed.001 after

nation of ry requires a transient measurement and the ogibic about 2r,.. Using many such measurements, we obtaif
dependence Ofug is too small to allowh to be resolved as a function ofe which we plot in Fig. 18. If things were
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FIG. 18. Dimensionless inverse lifetime /7 vs e for determi- FIG. 19. Inverse lifetimer, /7¢ of an EBF-unstable state vs

nation of 7,. The solid line is a linear fit to the data at small  for mode numbers 18@® q=—1.05), 27 © q=0.75), and 31
corresponding ta,=0.007. The dashed line is a linear fit to data at (0 q=1.55).
intermediatee with 7=0.050.
2(1+c3)+1+c4cq
well behaved;~* would be linear ine with sloper,. From €ET 1+C4Cq M - (34)
these data, however, it is difficult to determine unambigu-
ously the value ofrgl. The data very near onset would This does not necessarily impty=0 as other combinations
suggestro~0.007 whereas the slope at higheimplies r,  of ¢; andc3 yield similar curves, specifically the casg
~0.050. Another piece of evidence is the apparent crossoverCz. The dotted curve in Fig. 8 shows the case &gr
towards7~1 corresponding to the fluid thermal relaxation =1.1 andc;=0.6 wherec; was suggested by a pulse-
time r,. Since this crossover should occur fgy<2e, this  propagation techniquk28] in a similar convection cell. The
would indicate thatry~0.030. This value corresponds differences are small.
closely to the value,=0.027 obtained for & =2.5 convec- The detailed procedure we used to obtain the EBF-
tion cell at Q=544. Finally, numerical resultg22] for a  Stability boundary is as follows: We prepared a traveling-
plane traveling-wave wall mode suggest thgtincreases Wave state with a desire at a highe; for which the state
slightly with decreasing). On the basis of the evidence was stable. We then waited typically three to four hours to
presented here we take the valtyg=0.030 but clearly there allow the state to equilibrate after which we suddenly de-
is substantial uncertainty in this result. In the results precreasede to slightly below the estimateeg. The unstable
sented below this will not be important for analysis of thestate had a finite lifetimez before it generated or annihi-
EBF boundary or the nonlinear group velocity. It will be lated rolls through the formation of space-time dislocations,
important in comparisons of the phase-diffusion coefficientwhich is the signature of the EBF instabilitys was mea-
between experiment and theory. We will discuss this moreured for differente; starting with a state at a constant high
below. €; which was chosen for two reasons. First, when a state with
mode numbem was prepared, it was typically nonuniform
IV. ECKHAUS-BENJAMIN-EEIR INSTABILITY in space with sizable variation in local wave number. In or-
der to prevent these local variations from becoming EBF
The marginal-stability boundary determined previouslyunstable,e; was chosen to be higher thag for adjacent
does not reveal the stability of the nonlinear states with wavenode numbersn= 1. Second, at higl; the state equilibrates
number g. The nonlinear-stability boundary for traveling faster, allowing more rapid acquisition of data. In Fig. 19, we
waves is the analog of the Eckhaus-stability boundary foplot the normalized inverse lifetime, / ¢ versuse for states
stationary patterns which we denote here as the Eckhaugsith m=18,27,31 (= —1.05,0.75,1.55).¢g is determined
Benjamin-Feir instability 1,3,4,1]. A coarse determination by linearly fitting the data and finding the intercept/ ¢
of this boundary is obtained from analysis ®f as a func-  =0. This procedure is significantly better than the simplest
tion of AT. In Fig. 6, the data do not extend t=1 as  approach of determining the boundary by picking the last
would be expected from linear stability. Instead there aresalue which shows a nucleation within the waiting time. An
gaps inAT where there is no stable state for tltptThese  even better method would take into account the slightly dif-
gaps do not, however, provide an accurate method for deteferent initial relaxation times until a constastis reached
mining the boundary because the time to nucleate a defegihich depends on the fina . It would also measure the
pair can be very long. Therefore, we measure the nucleatiogxponential growth of the unstable mode rather than the time
time for defects as a function efand extrapolate to infinite to dislocation nucleation which involves nonlinear satura-
nucleation time or equivalently to zero growth rate. This pro-tion. This is considerably more difficult, is not likely to
cedure, discussed in detail below, allows us to experimenehange the results much because the maximum variation in
tally determine the EBF boundarATe or eg) as a function 7 caused by variations i; are ten times less than the
of g, which is plotted in Fig. 8. The dashed line;=3¢), shortestrg, and has not been tried here.
with ey (q) = £592, is a very good approximation to the ex-  Using optical shadowgraph, we observed the dynamics of
perimental data, and is obtained by settig=0 in the the- the EBF transition. Figure 20 shows a sequence of shadow-
oretical equation for EBF derived from the CGL equation graph images which correspond to different stages in the
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FIG. 20. Selected time sequence of shadowgraph images corre- FIG. 21. Angle-time plot of traveling wave with mode number
sponding to the space-time plot in the next figure. These images af8=31 (4=1.55) for (a) azimuthal shadowgraph intensit§y) de-
not digitally enhanced, only background division has been permodulated amplitude(c) demodulated wave number. Counter-
formed. The time lapse for the image (@) is about 4.8, from t propagating space-time dislocations and the resulting EBF transi-
=0 in the next figure and is used as the time reference in this figurdion can be seen.
(a) shows an almost uniform state with=31 (q=1.55). Images
(b), (c), and(d) show a propagating dislocation and transition to thewhich lead to dislocation nucleation propagate in the direc-
state ofm=30 (q=1.35). Image(e) shows two dislocations occur-  tjon of rotation and aren-fold periodic inx (n is the azi-
ring simultaneously. Imagef) shows the final state of=25  mythal distortion mode number equivalent to the azimuthal
(9=0.35) after all the transitions. mode numbem for the undemodulated statérhey are also

characterized by amplitude depression and roll compression

EBF transition. The state started with=31 (q=1.55) and (increased local wave numbdeading up to the dislocation
equilibrated to one witm=25 (q=0.35) after multiple dis- nucleations. Immediately after a dislocation forms, the wave
location nucleations. The directions of rotation, precession ohumber decreases dramatically as indicated in Figc)Zdy
the waves, and propagation of wave-number and amplitudéhe sudden change from bright to dark near each dislocation
distortions(labeled defect motignare shown in the figure. nucleation. For the casg<0, the amplitude decreases in a
Figure 21a) shows a space-time plot of all the data repre-similar fashion up to the dislocation nucleation but the rolls
sented in Fig. 20 and illustrates the convection roll annihila-dilate (decreased wave numbeT his latter scenario is illus-
tion through EBF instability. The data in Fig. @] were trated in Figs. 2@3)—22c) which show space-time plots of
taken from shadowgraph images, e.g., Fig. 20, along a ciroll creation through EBF transition starting witimn
cumference at 99% of the cell radius with a width of about=17 (q=—1.25) and ending wittm=21 (q=—0.45). For
2% where the traveling wave had almost maximum ampli-all EBF transitions that we studied with £m=232, the am-
tude. The horizontal axis is the azimuthal angle which in-plitude was always depressed near the dislocation, whereas
creases counterclockwise in the direction of rotation. Thehe wave was stretched whegr<0 to accommodate an extra
time advances from bottom to top with a total duration ofroll pair and compressed whe>0 which squeezes out an
about 6000 s or 947,. The convection rolls traveled clock- extra roll pair.
wise, counter to the direction of rotation. The EBF transition An interesting feature of the EBF transition shown in Fig.
is marked by the development of space-time dislocations, si1 is the large number of dislocations that are nucleated and
of which are visible in Fig. 2(). To get a better picture of the large change in wave number that results. As noted ear-
the nucleation of these defects, we demodulate the image tir, the time for nucleation of dislocations is a strong func-
obtain the modulugamplitude and phase of the state. We tion of the distance of the final state below the EBF bound-
then determine the local wave number as the gradient of thary. For them=31 data shown in the figuresg~0.231
phase field. The gray-scale-coded amplitude and wave numvherease; was 0.16 which yielda\ e= e— ez~ —0.07. For
ber are shown in Figs. 2i) and 21c), respectively, where the data in Fig. 22¢z=0.168 ande; was 0.11 so thate
dark (light) corresponds to smalleflargep amplitude or ~—0.06. The relatively large difference in both of these
wave number. The distortions in amplitude and wave numbeexamples resulted in fast dynamics and multiple dislocations.
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FIG. 24. Angle-time plot of demodulated amplitudeft) and
0, o 0 o demodulated wave numbéright) for the EBF transition withm

=17 (g=-—1.25) atAeg=—0.005. See text for more detail.

As € approachedee from below, the dynamics became
. ) : slower and the number of transitions became smaller, from
m=17 (q="1.25) for (&) azimuthal shadowgraph intensityh) multiple transitions to a single transition. Figures 23 and 24

demodulated amplituddgc) demodulated wave number. Counter- h Him lots of th molitud nd number
propagating amplitude distortions which terminate in space-times ow space-ime plots or the amplitude anad wave-numbe

dislocations which are signatures of the EBF transition can be seeﬁvolution for a slower dynamics. The initial states rof
=31 andm=17 were prepared a =0.35 and 0.27, respec-

tively, and then were quickly lowered t9=0.201 and 0.164
corresponding tAA e= —0.03 and—0.004. In Fig. 23, the
space-time plot starts about 2,2after the initial decrease in

€, and the first transition ton=30 occurred 7.9, later. In

Fig. 24, the space-time plot started about 2@fter the de-
crease ine, and the first transition ton=18 occurred 22,

later. There are several differences in the dislocation nucle-
ations in these examples. For the sequence in Fig. 23, the
first dislocation nucleation which resulted in a state with
=30 generated another localized perturbation which led to
the second transition tm=29. In the other example, Fig. 24,
the two nucleations arise from a threefold periodic distortion
of which only two produce defects while the other decays.
Additional perturbations of amplitude and wave number after
the second transitions in both figures decayed and vanished
as the states equilibrated within the stable wave-number
band. This decay is a measure of the diffusion of phase and
amplitude governed by a slow phase dynamics. In the next
section, we make quantitative measurements of the decay
rate and nonlinear group velocity in the stable wave-number
regime. We will also explain the nucleation of single versus
multiple defects within the context of the phase dynamics
description.

FIG. 22. Angle-time plot of traveling wave with mode number

Amplitude Wave Number

42

t/t,

] ) V. PHASE DYNAMICS
FIG. 23. Angle-time plot of amplitudéeft) and wave number

(right)y for the EBF transition form=31 (q=1.55) at Aeg The modulus of the complex amplitude in E@) relaxes
=—0.030. See text for more detail. on a time scalerg/e. In some regions of parameter space,
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FIG. 25. Demodulateda) frequency andb) amplitude of the

phase modulation form=27 (q=0.85) and e=0.26. Solid 2
(dashedl curves show fits to a decaying periodic functienve- 20t
lope).
phasegor wave-numberdistortions relax much more slowly. 10 .
In that case, the modulus is slaved to the phase so that to =20 0 00 1020
linear order and for long-wavelength modulations the phase q

¢ obeys a diffusion equatiofill] for eachq:
FIG. 26. (a) D, vs q for €e=0.26 (A),e=0.12 ), and e
dPp+vgdyp=D2dyd+ Qodyuxp+Dadyxxxbs (35  =0.06 (O). Corresponding solid symbols are determination of the
o condition D,=0 from location of the EBF-instability boundary.
wherep=dy¢ and the coefficient®,, (1o, andD, depend  sgjid and long-dashed curves are fits consistent with CGL predic-
ong ande. This equation is technically valid near the EBF tions and experimental parameters. Short dashed line is guide to eye
boundary wherd,~0 but we will explore its usefulness in for data withe=0.26.(b) vq vs g for same data a&) with addition
describing properties of phase distortions in the entire bandf ¢=0 linear group velocitys (®). Solid lines are fits to data
of stable states. For that analysis we will ignore spatial dediscussed in the text.
rivatives higher than second order in E§5). Corrections
and limitations will be discussed below. For now let us as-quency, respectively. In Fig. 25, we show the transient decay
sume that some initial perturbation exists which, for the pe-of the amplitude and the frequency distortions about the ho-

riodic boundary conditions applicable here, can be written irmogeneous stat@ve demodulate with the state @and ).
terms of modes with period corresponding to wave number The initial states for different are created by sequences of
p=n/T, changes in rotation and heating rates to produce a spatially
inhomogeneous state. The resulting data, collected after
_ oti(DX— higher modes have decayed substantially, are fit with expo-
X = El ape”t e, (36) nentially decaying sinusoidal functions which are also shown
in the figure. The fits are typically excellent, implying that
Plugging this solution into E¢(35) yields, for eachn, rela-  only a singlen=1 mode is present. Sometimes the fits are
tionships for the growth rate and the oscillation frequency poorer at short times, which indicates that higher modes have
~ not decayed completely. One could measure the phase relax-

0

" ation using the shadowgraph technique but the signal-to-
n2 noise ratio is not nearly as good as for the sidewall probe.
o=—-D,p?>=-D, 5 (37 We measured, andv 4 for several different values of
r and for most of the available values gfas shown in Figs.
26(a) and 2@b). The values oD, can be compared with the
~ n predictions based on pure CGL,
v=—uvg4p VgT (38
£ 2£30°(1+c3)
The resulting expression fer explains the long-time behav- DZ:T_O 1+C1C3_E—q ' (39

ior of states in Figs. 21 and 22: A single dislocation nucle-

ation produces a localized disturbance in wave number madehich is valid neagg at whichD,= 0. Expressions for other

up of many modes with a distribution of Modes withn g away fromqgg and incorporating higher-order corrections

>1 are, however, damped out much fagtike n?) than the have not been calculated. For smak0.12, D, roughly

n=1 mode, so that after a short time only thee1 mode obeys the inverse parabolic form suggested above whereas

survives. for e=0.26, there are clear deviations as the data are highly
The rapid decay of higher modes gives us a useful techasymmetric aboutj=0. A calculation forD, in a Taylor-

nigque with which to measur®, andv,. Using our sidewall ~ Couette system yields very similar deviatid@s29]. In order

probe, we determine the local amplitude and frequency antb evaluate the theoretical predictipbl] for D,, the coef-

obtainD, andvy from their decay rate and oscillation fre- ficients must be determined completely. In particular, since
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TABLE II. Coefficients in CGL equation and its higher-order generalization.

Coefficient Value Valugdimensionless Source

To 17 0.03 Figs. 17, 18
S 2.65 2.65 Fig. 11
& 0.179 0.179 Fig. 8
Co—Cq 47, 0.12 Fig. 11
Co—Cs 20.4+0.9 7, 0.61 Fig. 12a)

g 0.74+0.05 0.74+0.05 Fig. 9

h 0.04r, 0.001 Fig. 26b)
d, 0.025r,* 0.83 Figs. 8, 26)
j 3.7% 0.11 Figs. 12a), 26(b)
d, —0.005r,* 0.17 Fig. 9, 26b)
w 87 0.24 Fig. 12b), 26(b)

we only have combinations af;, ¢,, andcs and because with the fit to thevy data.

7o is poorly determined, it is difficult to do a direct compari- When we started our description of phase dynamics, we
son. Also, as shown below, a good understanding of the bepointed out that a key assumption of this type of model is
havior ofv 4 requires the inclusion of significant higher-order that the modulus of the amplitude is slaved to the slower
effects. Those are unknown here so caution needs to be eRhase field. The data in Fig. 25 support this slaving as, on a
ercised in making comparisons. For the purposes of comparf0arse scale, there is no visible delay between variations in
son, we takec,=1.1, c3=0.6 [30], and 7,=0.03 which amplitude and frequenc&corresgondmg to wave-number
yields the curves foe=0.06 and 0.12. Given the uncertain- distortions via the relationship=v/v4). On closer inspec-
ties, the agreement is quite good. A better calculation idion, there is a discernible time delay of typically 100 s or

clearly called for as is a better determinationmgfandcs.
The nonlinear group velocity, offers a better opportu-
nity for comparison with higher-order CGL models. We re-

about 0.15, with the amplitude lagging the phase oscilla-
tions. Thus, our measurements are consistent over a wide
range of parameters with the assumptions of the theoretical
models.

write Egs.(16) and (18) in terms of fixede andqg and dif-

ferentiate with respect tq to obtain, respectively, In addition to the dynamics of phase distortions in the

stable band, the phase equation has important qualitative pre-
dictions about the growth of distortions in the EBF-unstable
region. In Figs. 21, 22, and 24, there are multiple nucleations
of dislocations arising from quite visible periodic amplitude
and phase distortions. The explanation for why the system

2

0
vg0=—s+27_—o(cg—cl)q, (40

1| (j+jdacs)  4AwEs—2jdy(j+jd,Cy) chooses to nucleate many dislocations with the resulting
Vg™ Qo+7-_0 g €t g2 Qe large change im rather than producing a single dislocation
can be found in an analysis of E@5). WhenD,, is positive,
(j +jd2c3)§(2, the higher-order terr®, plays a secondary role. In the EBF-
- (—+(1+c3d1)h q° unstable regime, howeveb), is negative and without a

higher-order term, all phase distortions with gmypecome
unstable. The presence Dbf, produces a band of unstahpe
with a maximum growth raterma)(pmaQ=3D§/4D4 with
Pmax= ¥V —D»/2D,. As D, becomes negative upon crossing
into the unstable regionp,ax inCreases. Thus, foe~eg
there should be only a single dislocation whereasefaon-
siderably beloweg , the fastest growing mode corresponds to
an n-fold distortion resulting in multiple dislocation nucle-
obtained using the coefficients =5,—1,2.1,-0.55-0.21  ations. We have not studied this thoroughly but the trend is
which are slightly different from those reported earli@6]  clearly consistent with this picture. In Fig. 27, we plot the
and from a direct determination based on the coefficientaumber of periods of the phase distortion versus the dis-
obtained above. The present set is, however, within the errdance from the EBF boundary for several valuesqofThe
bars for the coefficients and the dashed curves in Figs. 9 andcrease im is in qualitative agreement with the model but
12 show slopes implied by the fit. The differences are minutanot with specific CGL calculationgl1l]. The independence
and within experimental uncertainty. The excellent agreeof the ratioD,/D, on 7, suggests that for this system ex-
ment between the amplitude-equation description and the exressions forD, and D, may not work very well. Further
perimental data is startling. The only coefficient not obtain-work on this aspect of the instability would be interesting
able from previous measurements that is determined by thespecially if expressions could be derived o5 and D,

vg data ish although the final best estimate for the coeffi- from the higher-order forms of the CGL equation. Finally,
cients shown in Table 1l combines the direct measurementthe bounds omp appear to be such that the final wave number

6w ) )
- E(Zjd2§0_ghdl)€q

—s+bje+ (b, +bye)q+ (b, +bse)g?,

(41)

where the coefficientb; can be determined from fits to the
vy data at differente. The solid curves in Fig. 26) are
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8 v v v T velocity v, for traveling waves is unique to this system be-
R ] cause of its azimuthal periodicity. Overall, the data presented
ol ] here provide the starting point for a set of future investiga-

tions of nonlinear traveling waves including interactions with
external periodic and aperiodic spatial forcing, the possible
ci4 5 observation of a geometric phase in dissipative sys{@ils
5, and the behavior of nonlinear waves without the restrictions
ol B ] imposed by periodic boundariéise., breaking azimuthal pe-
TEIN riodicity). Unfortunately, the dependence of the experimen-
) ) ) . tally determined coefficients in the CGL equation on rotation
.%_025 0.020 -0.015 -0.010 -0.005 0.00 do not appear to encompass the interesting chaotic regime of
o Benjamin-Feir turbulence.
The only significant uncertainties in our analysis arise

FIG. 27. Phase distortion periodicity vs e—eg for m=30,  from poor measurements of the time constaptand the
g=1.35 (dashed curveand m=27, g=0.75 (solid curve. The inability to independently determine the nonlinear coefficient
horizontal lines indicate the respective bounds on the distortios, . \We hope to better resolve these coefficients in future
corresponding to taking the states back to the critical mOanxperiments using pulse-propagation techniques.
m=23 (q=—0.05). The dashed and solid curves are guides to the \y/e hope that our measurements will provide motivation
eye. for further theoretical work on higher-order expansions and
on better calculations of the phase-diffusion coefficient. Re-
) i cently, calculations of the linear and weakly nonlinear stabil-
duced(increasetithe wave number beyorid when starting iy, of traveling wall modes in rotating convection have been
from higher (lower) wave number. In principle the bound portormed32] which make earlier calculatiori€2,23 more
might be the opposite EBF wave number but our data are nqfjistic. Also, theoretical work on the properties of the CGL
sufficient to comment further on this point. equation in finite domains has shown interesting effects re-

sulting from the existence of a single traveling-wave direc-
VI. CONCLUSION tion [6—9]. This latter case is realized experimentally by in-

We have explored in detail the ability of amplitude and serting a piece of metall foil along the inner wall OT the
phase equations of the complex Ginzburg-Landau type t(go_nvectlon cell, suppressing the wall mode, and breaklng the
describe experimental observations of nonlinear travelin%ZImUthaI symmetry of the system. In tha_t case, a unique
waves in rotating Rayleigh-Bard convection. The quanti- ave number is selected and the (_:onvectl_vely unstable re-
tative agreement between the experimental data and tHéme does not seem .to b.e acc_ess!ble owing to t.he e_ffects
theory is excellent and provides a detailed example of hov;uggested by theoret_lcal investigatidi®d. This subject is
the amplitude/phase-equation approach yields a striking anﬂlanned to be the topic of a sequel to the present 28k
accurate description of a real physical experiment. The abil-
ity to select a discrete set of wave numbers as a consequence
of the periodic boundary conditions of the physical system We acknowledge useful discussions with Roberto Ca-
and thus to probe thg dependence of the amplitude and massa, Dilip Prasad, Mike Cross, Guenter Ahlers, Edgar
frequency is key to this investigation. The measurement oKnobloch, Hermann Riecke, and David Egolf. This work
the phase-diffusion coefficierid, and the nonlinear group was funded by the U.S. Department of Energy.

is the critical one; we never observed a transition that re
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