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Algebraic perturbation theory for polar fluids: A model for the dielectric constant
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An alternative microscopic theory of the dielectric constant is proposed based on the algebraic technique due
to Ruelle and the statistical mechanical perturbation approach. The resulting analytical expression is third order
in the interaction energy and fifth order in the density. A comparison with other theoretical models and
computer simulations for dipolar hard spheres and Stockmayer fluids is presented. The theory is equally
applicable for describing the initial magnetic susceptibility of ferrofluids, in which case it is in good agreement
with experimental datd.51063-651X99)01804-9

PACS numbses): 61.20.Gy, 77.22.Ch, 75.50.Mm

[. INTRODUCTION straightforwarg. The potential energy for an arbitrary con-
figuration consists of an interparticle interaction energy and
The theory of the dielectric constaatpioneered in 1912  an external field contributiori) (r\) = UO(?N)+U1(Q,N),

by Debye[1] still remains an intensively developing area. Its

fundamental and practical importance has motivated a lot of (dd)

theoretical work and computer simulation studiésr re- U0:i2<. [Ug,ij+uij™ ], @

views see, e.g[2] and[3]). However, agreement between .

various models and simulations remains rather poor, espe-

cially for condensed systems at relatively low temperatures U= _SEeXKE cosb, . (2

when interparticle interactions play an increasingly impor- [

tant role. In a seminal papégt], Debye obtained by study-

ing the response of a dilute gas of particles to an appliedi€reuqi; =uq(ri;) is the hard-sphere interaction; the par-

external electrical fieldE,,, (in the same fashion as Langev- ticle separationg; the angle betweeg andE,,;, and

in’s work on a paramagnetic gas in an external magnetic

field). Subsequent models mainly used an approach which (dd)_Sz .

relatese to the properties of the system in tladsenceof Uij _?D("l)

Eex- INn these theories each particle is regarded as a source of !

a field acting on its neighbors ardiescribes the response of {he gipole-dipole potential in which the angular part is given

the system to this field. by

In the present paper we propose a theory of the dielectric

constant for a polar nonpolarizable fluid in the spirit of the

original Debye-Langevin approach: we study the response of

a dielectric system to a weak external field, taking into ac- - . .

count dipole-dipole interactions. These are long ranged anyyherex qlenotes a unit vectox. The formulatlon of any

anisotropic and represent the main source of difficulties arisperturbanon theory starts _W'th decom_posmg the system into

ing in theoretical descriptions and simulation studies. ouf reference and perturbative parts. Since we are aiming at a

model is based on a statistical mechanical perturbatioﬁem"ed description of the influence of interparticle interac-

theory and a powerful “algebraic technique” due to Ruelletlons on the dielectric constant, it is reasonable to include
[4]. In view of the similarity between electrical and magneticthem in a reference model. The latter is characterized by the

guantities, this model is straightforwardly applicable for the.energyUo and represents the system of dipolar hard spheres

description of the static initial magnetic susceptibility of fer- in a zero field. The llnteractlon W'th an extemal f|e_Id IS
rofluids. treated as a perturbation. Introducing the Mayer function

D(i,j)=55—3(srj)(5Ti),

Il. MODEL fimer -1,
We consider a polar fluid, in which polarizability effects Where

are neglected, as a systemMfhard spheres with point di-
poles at their centers. The fluid is contained in a voli/ret o= SEext
temperaturd and placed into a weak external homogeneous kgT '
electric fieldE,,;. Each particld is characterized by a five-
dimensional vector;= (r; ,;), wherer, is its radius vector
and w;=(0;,¢;) denotes the orientation of its dipole mo-
ments . We assume that particles are identical, so tha Q:J’ drNe—AYo
the hard-sphere diameter ag] = s (extention to mixtures is

we write the configuration integral as

N
1+ ( > fij-fi )
1<i;<-<ip=N ! n

n=1
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1 A — aly aT 7 ay it
_ g%=(constgi(r),q5(r¢,rs,), ... 0a(re, o)y -2 2)
B=1T 3
into the algebra of power seriegz).
The same quantity for the reference model reads Comparing Eq(4) with Egs.(5) and(6) we identify
FNe—BU p Q :
Qo=jdr e P-o, -F — < a_ 140 _
z ypr a(z) 0y’ an Hlf' g,, h=12,....
Then Eq.(3) b
en Eq.(3) becomes Thus
—1+ fdr fio-f || = (pl4m)"
Qo E Qo 1si1<2<in<N 't '”” g=ex > (p—w)bn : 9
Qo im0 N!

Each term of the sum is a thermal average over the refer-
ence model of the quantity in the round brackets. This im-The first terms of the sequen¢gl} read
plies that introducing th@-body reference correlation func-

tion g°(r"), we can rewrite this expression as ar=fag9=11, (10
Q N 1 n 2 2
-1+ ol 2] [ (H ) O, @ q2=(Hfi)[98 (H )ho, 1D
QO n=1 n'\4 = =1 =
wherep=N/V is the number density of the fluid. The stan- 3 o
dard scheme of the perturbation approasee, e.g.[5]) is = H f {ho ) E , h3(r, I - (12
= <i<js

based on the expansion @fin terms of the Mayer functions.
However, in our case, this is not appropriate, sirf¢ds
purely orientational and therefore does not compensate f
the long-range behavior af°:g°—1 when mutual separa-
tions between particles become large.

Instead of the standard route, we use an approach based “ (plam)"
on the algebraic technique proposed by Ruplle(see also BF=BFo— E |
[6]). Not entering into the way in which this technique is n=1 M

established, we merely formulate here its main result and

outline the way it can be applied to our problem. Consider Juhereso is th? reference free energy. Equatids) is exact:
no appoximations have been imposed so far.

o We stress that taking into accousdich termin Eq. (9) is
équalent to taking into account amfinite number of terms
in Eq. (4). The configurational free energy reads

bn, (13

series o, : )
For the derivation of the dielectric constant we need to
2N find the linear response of the system to a weak external field
a(z)= 2, Sran (5)  which corresponds to keeping only the leading term in the
n=0 N

expansion of the free energy in powersaaf SinceF is an
even function of the field, we should cut off this series, keep-
ing the termO(«?) and neglecting all the rest. The cutoff is
only possible if theb,, contain converging integrals. This is
J' o really the case sincg’ in Eq. (4) are replaced by’=g?

rq

where z is a formal parameter and the coefficierts are
given by

n=1, (6) —1in Egs.(11) and(12), vanishing at large separations, thus
ensuring convergence of E@.3) for n=2. Substituting Eqgs.
g2(r") being arbitrary real functions. It is rigorously proved (10)—(12) into Eq.(8) and expanding the Mayer functions to
in [4] thata(z) can be rewritten in the form of aexponen-  second order inx we obtain, for the free energy,

tial of some other series )

b,+o(a?). (14)

a? 1 p
;{w 2" Bf:ﬁfo_“'?‘z(ﬂ
a(z)=exg b(z)]=ex Z —b,l, 7)

—o N!

The second term gives the energy of independent dipoles in
where an external fieldg,,; (cf. paramagnetic Langevin gawhile
the third one accounts for interparticle interactions in the

~n b~ presence ofE,,;. The pair correlation function of dipolar
bo=0, bn:j drgn(r"), n=1, (8 hard spheres reads]

and the functionqﬁ are unambigously constructed algebraic om

combinations of?:q°=7R(q2, ... .,q3). It is worth empha- 92(r12'“’1'“’2):gd(r12)+r;1 (BS7) (T 12, 01, @7),
sizing that this method is a rigorous mathematical procedure (15)
based on a homomorphism of the algebra of infinite-

dimensional vectors where
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9u(r 1) to replace integration over a cylinder by integration over a
g1=— dr31 D(1,2), (16 sphere. Only the contribution from EL9) survives:
12
1( 4|2
by =2 =] p(Bs?)?y
194112 2 3( 3 o
9:=5 D*(1,2 (17
2e where the dimensionless quantipy is
1 1+ 3 cosa; COSa, COSar3 3 co
+ng(1,2)f drg . 94(123 yo—J drlzf a2t oy (29
(r1323) (rigz9)°
(18)
For g4(123) Kirkwood'’s superposition approximation gives
1 3cofaz—1
pA(12 f dr3—3 0q(123). (19
(F1af23

o 94(123~g4(12)g4(13)gqg(23) ~ H 0.
Here A(1,2)=s;S,,dq4(r) andgy(123) are the two- and Isi<j=s
three-body  hard-sphere  correlation  functions andE

a1, a,, as are the angles of the triangle formed by the guation(23) can then be integrated analytically to give

three particleg7]. A cutoff of Eq. (15 at m=2 implies 5
2
2 Yo=37 (24)
_a2vz b(zm)- N - -
m=0 Summarizing, we can write the free ener@y)) in a closed
form,
where
o o 2/ 43 S 5, 3 2)
F=BFo—N———=pVd*| 47w\ + = 7pd°\°|,
(2):_[ drlzf dwldwz 00301 Cosez[gd(rlz)_l], B B 0 6 54p 3 P
(25
where

b(21)=(,832)f drlzf dw,dw, cosh; cosb,g;,
A=pBs%/d3

b(22>:([;52)2J' drlzj dw,dw, cosh, cosh,g,. (200 is a coupling constant characterizing the strength of the
dipole-dipole interaction. The macroscopic polarizativis

Integration overw;, w, yieldsb{®’=0 and related to the free energy Vi8]

) 1 0F
o[ AT 1 P=- |N v,T)
—Bs?| — f dri,—-(1-3cog6y,), (21) V 0Eeqy
3 rip>d i
yielding
where we replacedy(r ) with the step function
4 5
1 for r;,>d, P= 3pS 1+ ?pd37\+ w2 (pd3\)2|.

®("12>d)5®12:{ 0 for ryp<d. (22
Finally, the dielectric constant is obtained from the ther-

o . modynamic relationshi
We assume that the container is (@finitely) long cylin- y P

der with an axis parallel to the external field. This ensures (€—1)Epy=4mP,
the absence of a depolarization field inside the sarfthle

depolarization factor of a long cylinder is zém@nd therefore  which results in

the macroscopic electric field in it is juBt,;. Integration of

Eq. (21) over a long cylinder gives e—1=3y| 14y+ i_zyz)' 26
A
=Bs ( ) ’ where
This is a direct manifestation of the long-range nature of _Am 2
dipole-dipole interactions. The last contributiontig given y= ?ﬁps '
by Eqg. (20) contains in turn three terms originating from
02(r12,®1,@,) in EQs.(17)—(19); in all of those the radial As in other theoretical modelsg,in Eq. (26) is a function

dependence is short rangesd {/r®) which makes it possible of only one parametery- Physically, one can expect, how-
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ever, a dependence on two parametarsand the volume 9a(r)=0(r>d)+ ¢G(r)+ $p?Gy(r)+ - - -,

fraction ¢ = (7/6)pd®. The ¢ dependence can be introduced

IT We 9o beyqnd the van der_WaaIs step-function approximag o diametersG,(r) can be found by linearizing in density
tion for gq(r) in the perturbative terms of the free energy andine orpstein-zernike equation for hard spheres in the Percus-
set Yevick approximation

where the function§&;(r) vanish atr exceeding several par-

Pf drac(ri3;p=0)h(rp3;p=0)+0(p% for ri>d,

ha(riz;p)= 27
-1 for ry,<d.
|
Here cy(r;p) is a direct pair correlation function and 15 o o
ha(r;p)=gq(r;p) — 1. Routine integration gives e-1=3y|1+y+ jg(ltard+a¢?y”, (28

r r\3 which is third order in the coupling constantand fifth order
a) +§( a) , d<r<2d. in the density.

Gy(r)=d(r)=8-6

) IIl. RESULTS AND DISCUSSION
Forr>2d ®(r)=0. The second-order term can be esti-

mated using the “kinetic theoretical considerations”[61, Figure 1 shows the dielectric constant as a function of

yielding for p* =pd®=0.8 predicted by various theoretical models—
Debye [1], Onsager[10], mean-spherical approximation
(MSA) [11], linearized hypernetted-chain approximation

1, (LHNC) [12], and the present, algebraic perturbation theory
Ga(r)=5@(r). (APT)—and that found in simulation studi¢3]. The De-
bye theory
Thus, bothG,; andG, are nonzero all<<r<2d and zero 3y
outside this interval. The only contribution g affected by e-1= m (29)

this correction isy, given by Eq.(23). The product of step
functions in the Kirkwood approximation fayy(123) is re-

placed by has a singular behavior gt=1 which is known to be incor-
rect[5]. In the Onsager theory
[  ©5+oWi+ ¢ Wyt .-,
1=i<j<3 Deb LHNC| AP
150 | / J
whereW; is a sum of product®;;H;; 00, with p=08 :
q)iqu)(rij), H”E@(r”>d)(r”<2d) 100
and W, contains terms of the typeD;;H;;®Hy0 . ® %
Hence,y, is replaced by . MSA
50 | f
%
Y= Yo(1+arp+a6?). / Ons
S
% 1 > 3 4
All the integrations can be performed analytically. Both
coefficients prove to be positive and small: A

FIG. 1. Dielectric constant as a function af for pd®=p*
a;~0.036, a,~0.372, =0.8. Labels correspond to various theoretical models: Deb, Debye
theory; Ons, Onsager theory; MSA, mean-spherical approximation;
implying that e is slightly sensitive to the density depen- LHNC, linearized hypernetted-chain approximation; APT, algebraic
dence ofy; the correction toy, does not exceed 2-5%. perturbation theory, Eqi28). Squares: simulation resulf43] for
Equation(26) now becomes dipolar hard spheres and Stockmayer fluid.
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3
e~1=3(3y—1+ I+ 2y+9y?), (30) ol =

the singularity is avoided bu¢ is underestimated. In the

MSA e is written in a parametric form § or
q(28)—a(—§) w0l
—l=— 31
¢ 9~ &) (31
where¢ is a real root of the equation 20 2;50 360 350
T(K)
a(2é)—a(—§) =3y, (32

FIG. 2. Temperature dependence of the initial magnetic suscep-
tibility of a ferrofluid. Squares, experiment4]; solid lines, theo-
retical predictiongnotations are the same as in Fig. Comparison
with experiment is made by adjusting the corresponding theoretical
x to the experimental value #y"®'=24.7 at the temperatur&"f
=343.15 K.

with the functiong(x) given by

=(1+2x)2

gxX)=—""—-.
) (1—x)
)(L( ) we assume that at the highest examined temperature

T'*'=343.15 K, where interparticle interactions are at mini-

i ref_ H i
APT orientational correlation is completely ignored, then the M. the experimental valuer™"=24.7 is described by

H ; ; ; ; ref
reference pair correlation function reduces to that of haroEq' (26). Solving this cubic equation fq we find A,
spheresgg=gd, providing thatb,=0. Thus, the APT ex- ~4.86. Then, for other temperatures using E38) we have

pression(28) becomese—1=3y, which is the dielectric

constant of the Langevin gas. Exactly the same result follows ref

from all the other above mentioned theori@$)—(31) in the x(T)= _X[ef[l_ﬁl(-r_-rref)]’ (34)
limit of small y. T

In all likelihood MSA also underestimates [2]. If in the

In view of the long-range nature of dipolar forces, com- ] )
puter simulation ofe proved to be a very difficult problem Where the term in square brackets takes into account the

[2,3]. None of the simulation methods givedor truly infi- thermal expansmins of 1<leros_erqenth the expansion coeffi-
nite systems described by approximate theories. Neverth&lent 81~0.9x10"° K~7). Figure 2 shows a good agree-
less, simulation results can give an idea about the accuradj€nt of APT with experimental data for the whole tempera-
of various models. Simulations of dipolar hard spheres apturé range studied. In the same figure predictions of the
pear to be technically more difficult than the simulations of aOnsager theory and the MSA are also shown. To be consis-
Stockmayer fluid[3], for which a larger amount of data is €Nt we use the same procedure for each of these models,
available. In Fig. 1 simulation results for both systems aredjusting the corrr(:fspondlng tflgoretlca{r;@ to the experi-
shown. It is found in(12] that for\ <2, € of a Stockmayer Mental value 4ry’"=24.7 atT™=343.15 K to calculate
fluid is close to that of equivalent dipolar hard spheres; forx,” - This implies that the reference Langevin susceptibility
larger\ the Stockmayek is considerablyjower than that of XrLef calculated for different models will be different. For
the corresponding hard-sphere system. other temperatureg (T) is found from Eq.(34). It is seen

Real molecules usually have both dipole and quadrupolg,,; yhe agreement with the Onsager theory and the MSA is
moments which makes a straightforward comparison of APT

yvith real dielectric_ liquids prob_lematic. However, by chang-" | conclusion, we have proposed a microscopic model for
ng from'the e'eCF“C to magnetic Iang_ugge, APT ca}n.t')e COMihe dielectric constant of a polar nonpolarizable fluid. The
pared v'vlth.expelnmental data on the |n|'t|al susceptibilitgf resulting analytical expression is third order in the interac-
ferrofluids in which quadrupole interactions are absent. Thus;,, energy and fifth order in the density. The model proves
S Is now a magnetic moment of a ferroparticle;- 1 be- (4 e in fair agreement with computer simulation data on the
comesu—1=4my, andy=(4w/3)x, , where dipolar hard spheres and the Stockmeyer fluids. The model
has been also applied to ferrofluids: theoretical predictions of

1,82 the initial magnetic susceptibility are shown to be in good

_+1pS agreement with experiment.
XM=317 (33
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