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Algebraic perturbation theory for polar fluids: A model for the dielectric constant

V. I. Kalikmanov
Department of Applied Physics, Computational Physics Section, University of Delft, Lorentzweg 1, 2628 CJ Delft, The Nether

~Received 6 November 1998!

An alternative microscopic theory of the dielectric constant is proposed based on the algebraic technique due
to Ruelle and the statistical mechanical perturbation approach. The resulting analytical expression is third order
in the interaction energy and fifth order in the density. A comparison with other theoretical models and
computer simulations for dipolar hard spheres and Stockmayer fluids is presented. The theory is equally
applicable for describing the initial magnetic susceptibility of ferrofluids, in which case it is in good agreement
with experimental data.@S1063-651X~99!01804-8#

PACS number~s!: 61.20.Gy, 77.22.Ch, 75.50.Mm
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I. INTRODUCTION

The theory of the dielectric constante pioneered in 1912
by Debye@1# still remains an intensively developing area.
fundamental and practical importance has motivated a lo
theoretical work and computer simulation studies~for re-
views see, e.g.,@2# and @3#!. However, agreement betwee
various models and simulations remains rather poor, e
cially for condensed systems at relatively low temperatu
when interparticle interactions play an increasingly imp
tant role. In a seminal paper@1#, Debye obtainede by study-
ing the response of a dilute gas of particles to an app
external electrical fieldEext ~in the same fashion as Lange
in’s work on a paramagnetic gas in an external magn
field!. Subsequent models mainly used an approach wh
relatese to the properties of the system in theabsenceof
Eext. In these theories each particle is regarded as a sour
a field acting on its neighbors ande describes the response
the system to this field.

In the present paper we propose a theory of the dielec
constant for a polar nonpolarizable fluid in the spirit of t
original Debye-Langevin approach: we study the respons
a dielectric system to a weak external field, taking into
count dipole-dipole interactions. These are long ranged
anisotropic and represent the main source of difficulties a
ing in theoretical descriptions and simulation studies. O
model is based on a statistical mechanical perturba
theory and a powerful ‘‘algebraic technique’’ due to Rue
@4#. In view of the similarity between electrical and magne
quantities, this model is straightforwardly applicable for t
description of the static initial magnetic susceptibility of fe
rofluids.

II. MODEL

We consider a polar fluid, in which polarizability effec
are neglected, as a system ofN hard spheres with point di
poles at their centers. The fluid is contained in a volumeV at
temperatureT and placed into a weak external homogeneo
electric fieldEext. Each particlei is characterized by a five
dimensional vectorr̃ i5(r i ,vi), wherer i is its radius vector
and vi5(u i ,w i) denotes the orientation of its dipole mo
mentsi . We assume that particles are identical, so thatd is
the hard-sphere diameter andusi u5s ~extention to mixtures is
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straightforward!. The potential energy for an arbitrary con
figuration consists of an interparticle interaction energy a
an external field contribution,U( r̃N)5U0( r̃N)1U1(vN),

U05(
i , j

@ud,i j 1ui j
~dd!#, ~1!

U152sEext(
i

cosu i . ~2!

Hereud,i j 5ud(r i j ) is the hard-sphere interaction,r i j the par-
ticle separation,u i the angle betweensi andEext, and

ui j
~dd!5

s2

r i j
3

D~ i , j !

the dipole-dipole potential in which the angular part is giv
by

D~ i , j !5 ŝi ŝj23~ ŝi r̂ i j !~ ŝj r̂ i j !,

where x̂ denotes a unit vectorx. The formulation of any
perturbation theory starts with decomposing the system
a reference and perturbative parts. Since we are aiming
detailed description of the influence of interparticle intera
tions on the dielectric constant, it is reasonable to inclu
them in a reference model. The latter is characterized by
energyU0 and represents the system of dipolar hard sphe
in a zero field. The interaction with an external field
treated as a perturbation. Introducing the Mayer function

f i5ea cosu i21,

where

a[
sEext

kBT
,

we write the configuration integral as

Q5E dr̃Ne2bU0F11 (
n51

N S (
1< i 1,•••, i n<N

f i 1
••• f i nD G ,
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b5
1

kBT
. ~3!

The same quantity for the reference model reads

Q05E dr̃Ne2bU0.

Then Eq.~3! becomes

Q

Q0
511 (

n51

N F E dr̃N
e2bU0

Q0
S (

1< i 1,•••, i n<N
f i 1

••• f i nD G .
Each term of the sum is a thermal average over the re

ence model of the quantity in the round brackets. This
plies that introducing then-body reference correlation func
tion gn

0( r̃n), we can rewrite this expression as

Q

Q0
511 (

n51

N
1

n! S r

4p D nE dr̃nS )
i 51

n

f i D gn
0~ r̃n!, ~4!

wherer5N/V is the number density of the fluid. The sta
dard scheme of the perturbation approach~see, e.g.,@5#! is
based on the expansion ofQ in terms of the Mayer functions
However, in our case, this is not appropriate, sincef i is
purely orientational and therefore does not compensate
the long-range behavior ofgn

0 :gn
0→1 when mutual separa

tions between particles become large.
Instead of the standard route, we use an approach b

on the algebraic technique proposed by Ruelle@4# ~see also
@6#!. Not entering into the way in which this technique
established, we merely formulate here its main result
outline the way it can be applied to our problem. Conside
series

a~z!5 (
n50

`
zn

n!
an , ~5!

where z is a formal parameter and the coefficientsan are
given by

a051, an5E dr̃nqn
a~ r̃n!, n>1, ~6!

qn
a( r̃n) being arbitrary real functions. It is rigorously prove

in @4# that a(z) can be rewritten in the form of anexponen-
tial of some other series

a~z!5exp@b~z!#5expF (
n50

`
zn

n!
bnG , ~7!

where

b050, bn5E dr̃nqn
b~ r̃n!, n>1, ~8!

and the functionsqn
b are unambigously constructed algebra

combinations ofqn
a :qn

b5R(q1
a , . . . ,qn

a). It is worth empha-
sizing that this method is a rigorous mathematical proced
based on a homomorphism of the algebra of infini
dimensional vectors
r-
-

or

ed

d
a

re
-

qaW5„const,q1
a~ r̃1!,q2

a~ r̃1 , r̃2 ,!, . . . ,qn
a~ r̃1 , . . . ,r̃n!, . . . …

into the algebra of power seriesa(z).
Comparing Eq.~4! with Eqs.~5! and ~6! we identify

z[
r

4p
, a~z![

Q

Q0
, qn

a[S )
i 51

n

f i D gn
0 , n51,2, . . . .

Thus,

Q

Q0
5expF (

n50

`
~r/4p!n

n!
bnG . ~9!

The first terms of the sequence$qn
b% read

q1
b5 f 1g1

05 f 1 , ~10!

q2
b5S )

i 51

2

f i D @g2
021#[S )

i 51

2

f i D h2
0 , ~11!

q3
b5[S )

i 51

3

f i D Fh3
02 (

1< i , j <3
h2

0~ r̃ i , r̃ j !G . ~12!

We stress that taking into accounteach termin Eq. ~9! is
equivalent to taking into account aninfinite number of terms
in Eq. ~4!. The configurational free energy reads

bF5bF02 (
n51

`
~r/4p!n

n!
bn , ~13!

whereF0 is the reference free energy. Equation~13! is exact:
no appoximations have been imposed so far.

For the derivation of the dielectric constant we need
find the linear response of the system to a weak external fi
which corresponds to keeping only the leading term in
expansion of the free energy in powers ofa. SinceF is an
even function of the field, we should cut off this series, kee
ing the termO(a2) and neglecting all the rest. The cutoff
only possible if thebn contain converging integrals. This i
really the case sincegn

0 in Eq. ~4! are replaced byhn
05gn

0

21 in Eqs.~11! and~12!, vanishing at large separations, th
ensuring convergence of Eq.~13! for n>2. Substituting Eqs.
~10!–~12! into Eq.~8! and expanding the Mayer functions t
second order ina we obtain, for the free energy,

bF5bF02N
a2

6
2

1

2S r

4p D 2

b21o~a4!. ~14!

The second term gives the energy of independent dipole
an external fieldEext ~cf. paramagnetic Langevin gas! while
the third one accounts for interparticle interactions in t
presence ofEext. The pair correlation function of dipola
hard spheres reads@5#

g2
0~r 12,v1 ,v2!5gd~r 12!1 (

m51

`

~bs2!mgm~r 12,v1 ,v2!,

~15!

where
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g152
gd~r 12!

r 12
3

D~1,2!, ~16!

g25
1

2

gd~r 12!

r 12
6

D2~1,2! ~17!

1
1

6
rD~1,2!E dr3

113 cosa1 cosa2 cosa3

~r 13r 23!
3

gd~123!

~18!

1
1

3
rD~1,2!E dr3

3 cos2a321

~r 13r 23!
3

gd~123!. ~19!

Here D(1,2)5 ŝ1ŝ2 ,gd(r ) and gd(123) are the two- and
three-body hard-sphere correlation functions a
a1 , a2 , a3 are the angles of the triangle formed by t
three particles@7#. A cutoff of Eq. ~15! at m52 implies

b25a2V (
m50

2

b2
~m! ,

where

b2
~0!5E dr12E dv1dv2 cosu1 cosu2@gd~r 12!21#,

b2
~1!5~bs2!E dr12E dv1dv2 cosu1 cosu2g1,

b2
~2!5~bs2!2E dr12E dv1dv2 cosu1 cosu2g2. ~20!

Integration overv1 , v2 yields b2
(0)50 and

b2
~1!52bs2S 4p

3 D 2E
r 12.d

dr12

1

r 12
3 ~123 cos2u12!, ~21!

where we replacedgd(r 12) with the step function

Q~r 12.d![Q125H 1 for r 12.d,

0 for r 12,d. ~22!

We assume that the container is an~infinitely! long cylin-
der with an axis parallel to the external field. This ensu
the absence of a depolarization field inside the sample~the
depolarization factor of a long cylinder is zero! and therefore
the macroscopic electric field in it is justEext. Integration of
Eq. ~21! over a long cylinder gives

b2
~1!5bs2S 4p

3 D 3

.

This is a direct manifestation of the long-range nature
dipole-dipole interactions. The last contribution tob2 given
by Eq. ~20! contains in turn three terms originating fro
g2(r 12,v1 ,v2) in Eqs. ~17!–~19!; in all of those the radial
dependence is short ranged (;1/r 6) which makes it possible
d

s

f

to replace integration over a cylinder by integration ove
sphere. Only the contribution from Eq.~19! survives:

b2
~2!5

1

3S 4p

3 D 2

r~bs2!2g0 ,

where the dimensionless quantityg0 is

g05E dr12E dr3

3 cos2a321

~r 13r 23!
3

gd~123!. ~23!

For gd(123) Kirkwood’s superposition approximation give

gd~123!'gd~12!gd~13!gd~23!' )
1< i , j <3

Q i j .

Equation~23! can then be integrated analytically to give

g05
5

3
p2. ~24!

Summarizing, we can write the free energy~14! in a closed
form,

bF5bF02N
a2

6
2

a2

54
r2Vd3S 4pl1

5

3
p2rd3l2D ,

~25!

where

l5bs2/d3

is a coupling constant characterizing the strength of
dipole-dipole interaction. The macroscopic polarizationP is
related to the free energy via@8#

P52
1

V

]F
]Eext

uN,V,T ,

yielding

P5
a

3
rsF11

4p

9
rd3l1

5

27
p2~rd3l!2G .

Finally, the dielectric constant is obtained from the the
modynamic relationship

~e21!Eext54pP,

which results in

e2153yS 11y1
15

16
y2D , ~26!

where

y[
4p

9
brs2.

As in other theoretical models,e in Eq. ~26! is a function
of only one parameter—y. Physically, one can expect, how
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ever, a dependence on two parameters,l and the volume
fractionf5(p/6)rd3. Thef dependence can be introduce
if we go beyond the van der Waals step-function approxim
tion for gd(r ) in the perturbative terms of the free energy a
set
d

ti

th

n-
.

-

gd~r !5Q~r .d!1fG1~r !1f2G2~r !1••• ,

where the functionsGi(r ) vanish atr exceeding several par
ticle diameters.G1(r ) can be found by linearizing in densit
the Ornstein-Zernike equation for hard spheres in the Per
Yevick approximation
hd~r 12;r!5H rE dr3c~r 13;r50!h~r 23;r50!1o~r2! for r 12.d,

21 for r 12,d.
~27!
f
—
n
n

ory

bye
ion;
aic
Here cd(r ;r) is a direct pair correlation function an
hd(r ;r)[gd(r ;r)21. Routine integration gives

G1~r ![F~r !5826S r

dD1
1

2S r

dD 3

, d,r ,2d.

For r .2d F(r )50. The second-order term can be es
mated using the ‘‘kinetic theoretical considerations’’ of@9#,
yielding

G2~r !5
1

2
F2~r !.

Thus, bothG1 andG2 are nonzero atd,r ,2d and zero
outside this interval. The only contribution tob2 affected by
this correction isg0 given by Eq.~23!. The product of step
functions in the Kirkwood approximation forgd(123) is re-
placed by

)
1< i , j <3

Q i j 1fW11f2W21••• ,

whereW1 is a sum of productsF i j Hi j Q ikQ lm with

F i j [F~r i j !, Hi j [Q~r i j .d!Q~r i j ,2d!

and W2 contains terms of the typeF i j Hi j FklHklQmn .
Hence,g0 is replaced by

g5g0~11a1f1a2f2!.

All the integrations can be performed analytically. Bo
coefficients prove to be positive and small:

a1'0.036, a2'0.372,

implying that e is slightly sensitive to the density depe
dence ofg; the correction tog0 does not exceed 2–5%
Equation~26! now becomes
-

e2153yF11y1
15

16
~11a1f1a2f2!y2G , ~28!

which is third order in the coupling constantl and fifth order
in the density.

III. RESULTS AND DISCUSSION

Figure 1 shows the dielectric constant as a function ol
for r* [rd350.8 predicted by various theoretical models
Debye @1#, Onsager @10#, mean-spherical approximatio
~MSA! @11#, linearized hypernetted-chain approximatio
~LHNC! @12#, and the present, algebraic perturbation the
~APT!—and that found in simulation studies@13#. The De-
bye theory

e215
3y

12y
~29!

has a singular behavior aty51 which is known to be incor-
rect @5#. In the Onsager theory

FIG. 1. Dielectric constant as a function ofl for rd3[r*
50.8. Labels correspond to various theoretical models: Deb, De
theory; Ons, Onsager theory; MSA, mean-spherical approximat
LHNC, linearized hypernetted-chain approximation; APT, algebr
perturbation theory, Eq.~28!. Squares: simulation results@13# for
dipolar hard spheres and Stockmayer fluid.
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e215
3

4
~3y211A112y19y2!, ~30!

the singularity is avoided bute is underestimated. In the
MSA e is written in a parametric form

e215
q~2j!2q~2j!

q~2j!
, ~31!

wherej is a real root of the equation

q~2j!2q~2j!53y, ~32!

with the functionq(x) given by

q~x![
~112x!2

~12x!4
.

In all likelihood MSA also underestimatese @2#. If in the
APT orientational correlation is completely ignored, then t
reference pair correlation function reduces to that of h
spheres,g2

05gd , providing thatb250. Thus, the APT ex-
pression~28! becomese2153y, which is the dielectric
constant of the Langevin gas. Exactly the same result follo
from all the other above mentioned theories~29!–~31! in the
limit of small y.

In view of the long-range nature of dipolar forces, com
puter simulation ofe proved to be a very difficult problem
@2,3#. None of the simulation methods givese for truly infi-
nite systems described by approximate theories. Never
less, simulation results can give an idea about the accu
of various models. Simulations of dipolar hard spheres
pear to be technically more difficult than the simulations o
Stockmayer fluid@3#, for which a larger amount of data i
available. In Fig. 1 simulation results for both systems
shown. It is found in@12# that for l,2, e of a Stockmayer
fluid is close to that of equivalent dipolar hard spheres;
largerl the Stockmayere is considerablylower than that of
the corresponding hard-sphere system.

Real molecules usually have both dipole and quadrup
moments which makes a straightforward comparison of A
with real dielectric liquids problematic. However, by chan
ing from the electric to magnetic language, APT can be co
pared with experimental data on the initial susceptibilityx of
ferrofluids in which quadrupole interactions are absent. Th
s is now a magnetic moment of a ferroparticle,e21 be-
comesm2154px, andy5(4p/3)x

L
, where

x
L
~T!5

1

3

rs2

kBT
~33!

is the Langevin susceptibility. Figure 2 shows the tempe
ture dependence of the initial susceptibility for a colloid
solution of magnetite in kerosene predicted by various m
els and the recent experimental results of@14#. To obtain
e
d

s

-

e-
cy
-

e

r

le
T

-

s,

-
l
-

x
L
(T) we assume that at the highest examined tempera

Tref5343.15 K, where interparticle interactions are at mi
mum, the experimental value 4px ref524.7 is described by
Eq. ~26!. Solving this cubic equation fory we find 4px

L

ref

'4.86. Then, for other temperatures using Eq.~33! we have

x
L
~T!5

Tref

T
x

L

ref@12b1~T2Tref!#, ~34!

where the term in square brackets takes into account
thermal expansion of kerosene~with the expansion coeffi-
cient b1'0.931023 K21). Figure 2 shows a good agree
ment of APT with experimental data for the whole tempe
ture range studied. In the same figure predictions of
Onsager theory and the MSA are also shown. To be con
tent we use the same procedure for each of these mo
adjusting the corresponding theoretical 4px to the experi-
mental value 4px ref524.7 at Tref5343.15 K to calculate
x

L

ref . This implies that the reference Langevin susceptibil

x
L

ref calculated for different models will be different. Fo

other temperaturesx
L
(T) is found from Eq.~34!. It is seen

that the agreement with the Onsager theory and the MS
poor.

In conclusion, we have proposed a microscopic model
the dielectric constant of a polar nonpolarizable fluid. T
resulting analytical expression is third order in the intera
tion energy and fifth order in the density. The model prov
to be in fair agreement with computer simulation data on
dipolar hard spheres and the Stockmeyer fluids. The mo
has been also applied to ferrofluids: theoretical prediction
the initial magnetic susceptibility are shown to be in go
agreement with experiment.
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FIG. 2. Temperature dependence of the initial magnetic sus
tibility of a ferrofluid. Squares, experiment@14#; solid lines, theo-
retical predictions~notations are the same as in Fig. 1!. Comparison
with experiment is made by adjusting the corresponding theore
x to the experimental value 4px ref524.7 at the temperatureTref

5343.15 K.
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