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Synchronization of chaos in an array of three lasers

John R. Terry,* K. Scott Thornburg, Jr., David J. DeShazer, Gregory D. VanWiggeren, Shiqun Zhu,† Peter Ashwin,*
and Rajarshi Roy

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
~Received 21 October 1998!

Synchronization of the chaotic intensity fluctuations of three modulated Nd:YAG lasers oriented in a linear
array with either a modulated pump or loss is investigated experimentally, numerically, and analytically.
Experimentally, synchronization is only seen between the two outer lasers, with little synchrony between outer
and inner lasers. Using a false nearest-neighbors method, we numerically estimate the experimental system
dynamics to be five dimensional, which is in good agreement with analytical results. Numerically, synchroni-
zation is only seen between the two outer lasers, which matches the experimental data well. Lack of synchrony
between outer and inner lasers, is explained analytically and then we numerically investigate loss of synchro-
nization of the outer two lasers, observing the occurrence of a blowout bifurcation. Finally, the effects of noise
and symmetry breaking are examined and discussed.@S1063-651X~99!03604-1#

PACS number~s!: 05.45.xt, 42.50.Lc, 42.65.Sf, 42.55.Ah
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I. INTRODUCTION

Experimental and theoretical investigations of chao
synchronization in coupled nonlinear systems have attra
much attention in recent years due to the possibility of pr
tical applications of this fundamental phenomenon. Sev
papers have studied the synchronization of chaotic signa
the context of electronic circuits@1–3#, secure communica
tion @4–6#, turbulence in fluids@7,8#, chemical and biologica
systems@9#, and laser dynamics@10–14#. Winful and Rah-
man have numerically investigated the possibility of sy
chronization of chaos in semiconductor laser arrays o
nanosecond time scale@10# and previously, we have als
performed experimental measurements and demonstr
synchronization of two chaotic lasers@15#. To our knowl-
edge, however, the experimental synchronization of chao
laser arrays with more than two lasers has yet to be repo

In this paper, the synchronization, both experimenta
and numerically, of three coupled, chaotic, Nd:YAG~triva-
lent neodymium doped yttrium aluminum garnet! lasers in
the separate cases of pump and loss modulation is repo
In a linear array of three lasers, a high degree of synchr
zation between the two outer lasers is seen, while little if a
synchronization is observed between the outer and inne
sers. The experimental observations are in good agreem
with analytical results, which clearly explain the lack of sy
chronization between outer and inner laser. Similar res
were seen by Winful and Rahman@10# in a numerical model
for three semiconductor lasers coupled in a linear array.

The numerical simulations show similar behavior in th
coupled linear array of three lasers to that seen in a syste
two coupled lasers@14# and we present numerical eviden
to suggest that synchronization between the two outer la
may be lost through ablowoutbifurcation, where an attracto
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contained within the synchronized submanifold loses
transverse stability@16#. This indicates that as in the tw
laser case, forced symmetry breaking is not necessary
desynchronization of the two outer lasers to occur.

The rest of this paper is arranged as follows. In Sec. II
describe the experimental setup for a system of th
Nd:YAG lasers coupled in a linear array and explain t
techniques that we used in obtaining the experimental d
Section III describes the equations we used to model
laser system and investigates the occurrence of synchron
tion between the two outer lasers and also the lack of s
chronization between the outer and inner laser. In Sec.
we describe how the numerical simulations were perform
in the case of loss modulation and finally, in Sec. V, w
discuss our findings and consider the implications for c
pling large systems of lasers in a linear array.

II. EXPERIMENTAL SETUP

To study the dynamics of a pump or loss modulated th
laser array we use the experimental system as shown in
1. This setup consists of three equal intensity, parallel
laterally separated beams created by pumping a Nd:Y
rod, 5 mm in both length and diameter in a plane para
cavity. Three Ar1 pump beams (l5514.5 nm! are formed
by passing a single beam through a fan-out grating desig
to produce equal intensities for the zeroth- and first-or
beams, and negligible intensities elsewhere. The separa
and relative orientation of the three beams of interest
controlled using a simple telescope. The pump beams, in
end, are parallel and symmetric with respect to the axis of
YAG crystal. The optical cavity consists of one high refle
tion coated end face of the rod and of an external pla
output coupler with 2% transmittance. The pump power
the pump modulation case is approximately 5.8 W, and
W for the loss modulation case. For these parameters,
relaxation oscillation frequency,nR , is of the order of 100
kHz. A thick etalon ensures single longitudinal mode ope
tion. This etalon doubles as an intracavity acousto-opt
modulator~AOM! for the loss modulation case. Pump mod
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lation is attained using an AOM positioned before the fa
out grating.

Thermal lensing in the YAG rod, generated by Ar1 pump
beams with waist radii'20 mm allows the formation of
three separate and stable cavities@11#. The TEM00 infrared
laser beams generated in the YAG crystal have ra
'200 mm. Radii are measured at 1/e2 of the maximum
intensity of the Gaussian profile. The coupling between
beams is determined by their nearest-neighbor separa
which can be shifted by adjusting the grating and the te
scope lenses’ positions. The pump beam separations and
files are measured directly using a rotating slit method. T
minimum value for nearest-neighbor separation used
0.64 mm, for which there is no appreciable overlap of
pump beams and coupling is entirely due to the spatial o
lap of the infrared laser fields. The couplings and detuni
were chosen such that, in the absence of modulation,
lasers exhibit an instability caused by the resonance of

FIG. 1. Experimental system for generating three latera
coupled lasers in a Nd:YAG crystal and observing the synchron
tion of chaotic laser intensities. A diffractive optic is used to sp
the argon laser into three beams with almost equal intensities.
three beams are made parallel by a telescope; changing the m
fication of the telescope changes the separationd between each
laser. An Acousto-Optic Modulator~AOM! is placed in position~a!
in the case of loss modulation and in position~b!, in the case of
pump modulation. The Nd:YAG crystal is coated for high reflect
ity ~HR! on one side and antireflection coated~AR! on the other.
The output coupler~OC! is 2% transmissive; both mirrors are fla
A charge-coupled device camera is used to measure the far-
intensity pattern of the array, while the three photodetectorsPD1,
PD2, and PD3 simultaneously measure each laser’s intensity
namics, which are subsequently recorded on a digital sampling
cilloscope~DSO!.
-
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phase dynamics with the relaxation oscillations as describ
for example, in@13#.

The three infrared beams produced by the Nd:YAG la
are separated using a sequence of non-polarizing cube b
splitters and prisms. The intensity dynamics of the individu
lasers are recorded simultaneously using fast photodio
and a four-channel digital oscilloscope. A scanning Fab
Pérot interferometer is utilized to ensure that the individu
lasers have only a single longitudinal mode.

Experimental measurements for the pump modulated c
are displayed in Fig. 2 for nearest-neighbor separations
approximately 0.975 mm. Chaotic synchronization betwe
the two outer lasers is clearly seen, whereas there is no
parent synchronization between outer and inner lasers. In
case of loss modulation they are displayed in Fig. 3
nearest-neighbor separations of approximately 0.64 mm.
spite additional noise present in the loss modulated exp
mental setup, chaotic synchronization between lasers 1 a
is readily apparent. Again, pairing intensities of lasers 1 a
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FIG. 2. Experimental measurements of the relative intensitie
three coupled lasers for pump beam separationsd50.975 mm and
modulation depthp1i50.20 ~for i 51,2,3). A high degree of inten-
sity synchronization is seen only between lasers 1 and 3.

FIG. 3. Experimental measurements of the relative intensitie
three coupled lasers with loss modulation. Here the nearest ne
bor separationd50.64 mm. Once again, a high degree of intens
synchronization is seen only between lasers 1 and 3.



e
e
ic
m

Th
kH
H
hi

a

an
rre
n

ly

u
th

ses,

th
re
t

ut
ly
ntr
ti

eri-
ing
ark
ent

anti-

4038 PRE 59JOHN R. TERRYet al.
2, as well as lasers 3 and 2, show little synchrony.
It is interesting to note the harmonic relationships b

tween the side lasers, 1 and 3, and the center beam, las
The intensity of laser 2 oscillates at a rate approaching tw
the frequency of the side beam oscillations. Figure 4 co
pares the power spectrums of the individual beams.
dominant peak of the central beam approaches 150
while the side beams display peaks at approximately 80 k
The sharp spike at 166 kHz is due to modulation at t
frequency.

The intensity time series dynamics of all three lasers w
numerically estimated to be five dimensional~Fig. 5!, using a
false nearest-neighbors method@17#, with 25 000 time units
considered. This result agrees with the dynamically invari
state labeled amplitude antisynchronized in Table I, co
sponding to a system with amplitude synchronization a
equal left and right detunings present.

III. EQUATIONS OF MOTION

The equations describing the time evolution of the slow
varying, complex electric field amplitudeEi and real gainGi
of laseri in an array of three spatially coupled, pump mod
lated single-mode Class B lasers are similar to those of

FIG. 4. Power spectrum of three linearly coupled lasers, in
case of loss modulation at a rate of 166 kHz. Here the nea
neighbor separations are again 0.64 mm. Notice the peak in
central beam close to 150 kHz, which is not present in the two o
beams. However, the side beams display a peak at approximate
kHz of a greater intensity than the corresponding peak in the ce
beam. The peak in all beams at 166 kHz corresponds to modula
at this rate.
-
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two-laser system@15# and are as follows:

dE1

dT
5tc

21@„G12e1~T!…E12kE2#1 iv1E1 ,

dG1

dT
5t f

21
„p1~T!2G12G1uE1u2

…,

dE2

dT
5tc

21@„G22e2~T!…E22k~E11E3!#1 iv2E2 , ~1!

dG2

dT
5t f

21
„p2~T!2G22G2uE2u2

…,

dE3

dT
5tc

21@„G32e3~T!…E32kE2#1 iv1E3 ,

dG3

dT
5t f

21
„p3~T!2G32G3uE3u2

….

In these equations,tc is the cavity round-trip time,t f is the
fluorescence time of the upper lasing level of the Nd31 ion,
and pi(T)5p0i1p1icos(VT), ei(T)5e0i1e1icos(VT), and
v i are the modulated pump parameters, modulated los
and detunings~from a common cavity mode!, respectively,
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FIG. 5. Using the false nearest-neighbors method, we num
cally estimate the dimensionality of the experimental system, us
measured time series of the intensity fluctuations. The 1% m
suggests that the system is five dimensional, giving good agreem
between the experiments and the dimension of the amplitude
synchronized subspace.
of
ained an
system.
TABLE I. Dynamically invariant subspaces in Eqs.~3!. A list of symmetry forced invariant subspaces
the equations for a system of three linearly coupled lasers. We have listed only those states that cont
attractor in the numerical simulations. Note that other states exist but are not seen as attracting for the

Symmetry Representative point Dim. Name

Z2(j)3Z2(m)00 (X1 ,F1 ,X2 ,F2,0,0,0,0) 4 synchronized
Z2(j)3Z2(m)pp (X1 ,F1 ,X2 ,F2,0,0,p,p) 4 antisynchronized
Z2(mj) (X1 ,F1 ,X2 ,F2,0,0,f,2f) 5 amplitude antisynchronized
Z2(m)00 (X1 ,F1 ,X2 ,F2 ,X2 ,F2,0,0) 6 phase synchronized
Z2(m)pp (X1 ,F1 ,X2 ,F2 ,X2 ,F2 ,p,p) 6 phase antisynchronized
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of laseri. It is assumed thatnot both the pump and the los
are modulated at the same time. In the Nd:YAG lasers c
sidered in the experiments, the round-trip time of light in t
cavity tc is 0.4020.50 ns, while the decay time of the upp
lasing levelt f is '240 ms. V is the modulation frequency
and is chosen to be near the relaxation frequency.

The lasers are coupled linearly to one another w
strengthk i j , assumed to be small. For laser beams of Gau
ian intensity profile and 1/e2 beam radiusw0 the coupling
strength, as determined from overlap integral of the two e
tric fields i and j is defined as

k i j [expS 2
~di2dj !

2

2w0
2 D . ~2!

The coupling strength is normalized such thatk i j 51 if
di2dj50. As the coupling between lasers 1 and 3 is
sumed negligible, only nearest-neighbor coupling is cons
ered in 1.

In the analysis that follows we only consider the case
loss modulation, i.e.,p115p125p1350, but note that the
analysis is equally valid in the case of pump modulat
@18#.

We first letEi5Xie
if i whereXi is the amplitude andf i

the phase of laseri and rescale time, expressed in units of t
round-trip time of light around the cavitytc . We subse-
quently introduceFL5f22f1 andFR5f22f3 ~and simi-
larly for DL andDR), so that we may rewrite Eqs.~1! as the
following system of ordinary differential equations defin
on R8,

dX1

dt
5@F12e1~ t !#X12kX2cos~FL!,

dF1

dt
5g~A2F12F1X1

2!,

dX2

dt
5@F22e2~ t !#X22k„X1cos~FL!1X3cos~FR!…,

dF2

dt
5g~A2F22F2X2

2!,

~3!
dX3

dt
5@F32e3~ t !#X32kX2cos~FR!,

dF3

dt
5g~A2F32F3X3

2!,

dFL

dt
5DL1kXS X2

X1
1

X1

X2
D sin~FL!1

X3

X2
sin~FR!C,

dFR

dt
5DR1kXS X3

X2
1

X2

X3
D sin~FR!1

X1

X2
sin~FL!C.

The issue of synchronization between the two outer las
may be addressed by introducing the sum and differenc
these lasers and assuming that all three lasers are eq
detuned, i.e.,DL5DR50. Then, X1315 1

2 (X11X3),X132
n-

h
s-

c-

-
-

f

rs
of
ally

5 1
2 (X12X3),F1315 1

2 (F11F3),F1325 1
2 (F12F3), and

synchronization between the two outer lasers occurs w
X1325F13250. The transformed system is equivariant u
der the action of the following symmetries:

j~X1 ,F1 ,X2 ,F2 ,X2 ,F2 ,FL ,FR!

5~X1 ,F1 ,X2 ,F2 ,2X2 ,2F2 ,FR ,FL!,

corresponding to interchanging the two outer lasers,

m~X1 ,F1 ,X2 ,F2 ,X2 ,F2 ,FL ,FR!

5~X1 ,F1 ,X2 ,F2 ,X2 ,F2 ,2FL ,2FR!,

corresponding to conjugating the phases of the electric fie
of all three lasers.

There is also a parameter symmetry involving the co
pling parameterk that takes

~k,FL ,FR!→~2k,FL1p,FR1p!,

which addsp onto the phase of the middle laser while r
versing the sign ofk. It is interesting to note that all thre
lasers are phase synchronized whenk is negative, corre-
sponding toFL5FR50. However, only the two outer laser
are phase synchronized whenk is positive and this is the
physically relevant situation sincek is assumed positive in
some sense.

Owing to these symmetries, the dynamically invaria
subspaces illustrated in Table I exist. Notice, in particul
the five-dimensional subspace labeled amplitude antis
chronized, corresponding to the case where them symmetry
has been broken, via equal detuning of the two outer be
from a common cavity mode. The dimensionality of the e
perimental system as calculated using the false nea
neighbor method gives good agreement with this state
gives emphasis to our assumptions about the paramete
gimes considered.

Note that although there are several invariant subspa
where the phases of all three lasers are locked, there arno
invariant subspaces forced by symmetry such that all
amplitude and gains are equal,X15X2 and F15F2 . We
may examine this using two approaches; first by examin
the set of such points in the phase space and showing th
is not invariant~cf. @19#! and second by reducing the syste
of three lasers to one of two lasers with unequal couplin

To this end, we define the manifold

M125$~X1 ,F1 ,X2 ,F2 ,X3 ,F3 ,FL ,FR! :

X15X2 ,F15F2 & FR50 orp%

corresponding to perfect~anti!synchronization between la
sers 1 and 2 in terms of the original variables.

A. Noninvariance ofM12

We demonstrate that ifkÞ0, any nonzero trajectory ca
only be inM12 instantaneously, by assuming thatX1 andX2
are nonzero and examining the evolution of the differen
x25 1

2 (X12X2) and sumx15 1
2 (X11X2). Note that
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dx2

dt
5

F11F2

2
x21

F12F2

2
x12e~ t !x21kx2cosFL

1 1
2 kX3cosFR .

If the system state lies onM12 this means thatx250 and
F15F2 ; so the trajectory at this point will have

dx2

dt
5

1

2
kX3cos~FR!.

Thus the trajectory must leaveM12 unlessk50, X350
and/orFR5(p/2)1kp,kPZ. We eliminate the first possi
bility by assumption. IfX350 then we note that

dX3

dt
52kX2cos~FR! ~4!

and so this will be nonzero as long asFRÞ(p/2)1kp for
somekPZ, but from our definition ofM12,FR50 or p, so
any trajectory satisfying Eq.~4! will not be contained in
M12. For the same reason we rule out the caseFR5(p/2)
1kp and this implies that a trajectory can only be inM12
for an instant in time. As a result,M12 is only an invariant
subspace for the ordinary differential equation ifk50 and
the only trajectories that remain withinM12 for all time have
X15X25X350.

B. Reduction to a system of two lasers with unequal coupling

If we assume that we lie on one of the amplitude synch
nized subspaces, whereX25F250, i.e., X15X3 and F1
5F3 , then the system~3! simplifies to a two laser system
with unequal coupling between the two lasers.

dX1

dt
5@F12e~ t !#X12kX2 cos~F!,

dF1

dt
5g~A2F12F1X1

2!,

dX2

dt
5@F22e~ t !#X222kX1 cos~F!, ~5!

dF2

dt
5g~A2F22F2X2

2!,

dF

dt
5k~X2X1

2112X1X2
21!sin~F!.

Introducing sum and difference variables in this case gi
us the transformed system,
-

s

dX1

dt
5X1„F12e~ t !…1F2X22k cos~F!~3X11X2!,

dF1

dt
5g„A2F1~11X1

2 1X2
2 !22F2X2X1…,

dX2

dt
5X2„F12e~ t !…1F2X11k cos~F!~3X21X1!,

~6!

dF2

dt
52g„F2~11X1

2 1X2
2 !12F1X2X1…,

dF

dt
5kS 3S X1

2 1
2

3
X1X21X2

2 D
~X1

2 2X2
2 !

D sin~F!

If we assume that the two lasersX1 andX2 are synchronized
then we find that

dX2

dt
5k cos~F!X1 ,

dF2

dt
50, ~7!

dF

dt
53k sin~F!,

assuming thatkÞ0,X1Þ0, then we see thatX250 for at
most an instant in time. Since if cos(F)50 thenF5(p/2)
1kp for some kPZ and so

dF

dt
53k, ~8!

which is nonzero and thereforeF moves away from (p/2)
~modp). ConsequentlydX2 /dt moves away from 0 and so
X2 also moves from 0. Therefore synchronization is n
achieved in the asymmetric two laser setup and thus
achieved in the original three laser system.

IV. NUMERICAL RESULTS

We carried out numerical simulations independently
both the loss modulation situation as well as modulation
the pump excitation. We concentrate on the loss modula
situation due to numerical considerations, but note that
results remain valid in the case of pump modulation@18#.

A. Loss modulated case

For the loss modulated case, the simulations were p
formed using both Bulirsch-Stoer and Runge-Kutta integ
tors. Due to numerical considerations we were forced to c
sider more moderate values of the stiffness parameterg,
which was of the order 0.01 and 0.001. The parameter
gimes considered were also altered in order that the dif
ence in g was taken into account. In both the casesg
50.01 andg50.001 we saw similar results, and althoug
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the experiments were carried out withg'1026, the use of
longer resonators would give a value of the stiffness par
eter somewhat closer to that considered numerically. We
ried out simulations for many values of the pump coefficie
and various modulation strengths for the loss.

As in the model for a two laser system, in the case
,g!1, the system undergoes a period doubling cascad
chaos as the strength of loss modulation is increased. T
cally we see that for small values of the coupling parame
k, there is no amplitude synchronization and the amplitu
behavior of all three lasers appears to be independent
though with antiphase synchronization between adjacen
sers. As the coupling strength is increased, a period of on
intermittent type behavior@20#, is observed in the amplitud
fluctuations of the two outer lasers. During this period th
are times when the two outer lasers appear to be sync
nized in both amplitude and phase, before bursts away f
amplitude synchronization, while remaining complete
phase~anti!synchronized. Then as the coupling strength
increased still further, there is no more bursting away fr
synchrony and the two outer lasers remain amplitude s
chronized for all time after an initial transient phase.

For the particular case where all losses are modula
equally at the rate, 0.91 0.2 cos~0.045 t!, the pump param-
eters were equal to 1.2 for each laser andDL5DR50, the
behavior of a typical trajectory is as follows. Upon varyin
the strength of couplingk, we see that there exists a critic
valuekc;0.003 125 such that for values ofk,kc , trajecto-
ries evolve on to the phase antisynchronized state. For va
of k.kc trajectories evolve on to the amplitude antisynch
nized state. This transition atkc is strongly suggestive of a
blowoutbifurcation, as was the case in a system of two las
@14#.

A blowout bifurcation occurs when anormal Lyapunov
exponent governing the exponential rate of change transv

FIG. 6. Lyapunov exponent diagram in the case of modula
loss. The parameter values for the lasers were assumed ide
and werea0i50.9,a1i50.2,pi51.2 ~for i 51,2,3). We assumed th
detunings of the lasers were such thatDL5DR50. We have labeled
the largest tangential Lyapunov exponentL1 . Notice that this is
positive for most values of the coupling strengthk. The non-
normality of k is apparent through the windows of stability th
arise when varyingk. These correspond to the periods whereL1 is
negative. The blowout occurs when the normal Lyapunov expon
l1 passes through 0. In this case this occurs fork;0.003 125.
-
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to a submanifold of the total phase space passes through
the case where there is more than one transverse Lyap
exponent we need consider only the largest ornormal
Lyapunov exponent. If the normal exponent is negative, th
on average nearby trajectories are attracted onto the
manifold and the attractor within the subspace is an attra
for the full system. If the exponent is positive then on av
age trajectories close to the submanifold are repelled a
from it.

We have numerically computed the Lyapunov expone
of Eq. ~3! by integrating the variational equations and exa
ine the change that occurs in the exponents upon varying
coupling strengthk. These are illustrated in the case of n
detunings in Fig 6.

For this system, the blowout bifurcation does not occur
an isolated parameter value because the bifurcation pa
eter k varies the dynamics tangentially within the antisy
chronized subspace as well as those in a transverse dire
from it; it is not a normal parameterfor the dynamics
@21,22#. Because of this~and apparent fragility of the chaoti
attractors! we do not expect the Lyapunov exponents to va
smoothly or even continuously with the parameter. Hence
observe ablurred blowout@22#.

The tangential variation of the dynamics is clearly ind
cated in Figs. 6 and 7, where windows of stability arise
the coupling strengthk is increased. These windows of st
bility correspond to all Lyapunov exponents of system~3!
being negative. In particular, there is a window of stabil
shortly after the bifurcation point.

In order to examine the branching behavior at blowo
we have simulated the behavior of typical trajectories t
are not in any invariant subspace. Starting atkc , there ap-
pears to exist a chaotic attractorA within the antisynchro-
nized subspace, since after an initial transient phase~which
may be prolonged for some initial conditions!, all trajectories
eventually appear to converge to the antisynchronized s

d
cal

t,

FIG. 7. Lyapunov exponent diagram in the case of modula
loss. Here the detunings were assumed equal withDL5DR

50.001 and the exponents were plotted upon varying the stre
of coupling k. The parameter values for the lasers were assum
identical and were once againa0i50.9,a1i50.2,pi51.2 ~for i
51,2,3). We have labeled the largest tangential Lyapunov ex
nentL1 and the normal Lyapunov exponentl1 . Similar behavior
to the case of no left and right detuning is seen. However, the p
of blowout is altered, in this casek;0.003 175.
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FIG. 8. Numerical simulated three laser model with pump modulation. The modulation rate was again chosen to be near the r
oscillation frequency of the lasers so as to induce chaotic fluctuations in the intensities.
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are
space. Reducingk towardskc we find regions of region of
on-off intermittent type behavior, typical for a supercritic
blowout.

After the blowout, we no longer observe any attractors
the antisynchronized subspace, but there is a new branc
attractors in the phase antisynchronized subspace are cr
at the bifurcation. Just afterkc these attractors are apparen
on-off intermittent and close to the antisynchronized s
space. The average position of the trajectory moves awa
k→0. This is a strong indicator that the blowout is of sup
critical, soft or nonhysteretic type@16#.

We also performed simulations of three loss modula
lasers in situations where the detunings were equal, i.
DL5DR5D. We calculated the Lyapunov spectrum in th
case and saw similar results to that of the purely symme
case, with the main difference being a bifurcation from t
amplitude antisynchronized subspace, rather than the
synchronized subspace. Again the blowout appears to be
with an extended period of on-off intermittent behavior.

For the particular case with parameters identical to th
considered above and a value of the detuning,D50.001, the
Lyapunov spectrum upon varyingk is illustrated in Fig. 7.
Again a blurred blowout is evident, and the norm
Lyapunov exponent passes through zero atkc;0.003 175.

B. Pump modulation

The numerical simulations in the case of modulation
the pump excitation were carried out using a Runge-Ku
integrator with a variable time step. Frequency of the de
of modulation was chosen so that the dynamics of the sys
was in a region of chaotic behavior and in this case w
chosen to be 100.53 kHz~in the case of loss modulation
was 139.62 kHz!. As in the case of loss modulation, exce
lent agreement between the experimental results and the
merical simulations are seen. A high degree of synchron
tion between the two outer lasers and no appar
n
of
ted
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e

l
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u-
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nt

synchronization between outer and inner laser. The trans
behavior displayed similar characteristics when compare
the loss modulated simulations, such as bursts away f
synchronization over short time scales, before settling on
the synchronized subspace after longer periods of time.

Some of the numerical simulations we performed are
lustrated in Fig. 8. The bifurcation analysis is not perform
here, since the simulations indicate similar bifurcation b
havior to that of the loss modulated case, as would be
pected@18#.

V. DISCUSSION

Concluding this work, the synchronization of three cla
B Nd:YAG lasers, coupled in a straight line linear array,
investigated experimentally, analytically and numerical
We investigate the separate cases of pump modulation
loss modulation both experimentally and numerically. In t
experiments, a high degree of synchronization is obser
between the two outer lasers of the array, while no synch
nization is observed between outer and inner lasers. Th
in good agreement with the theory, which demonstrates
lack of synchronization between outer and inner laser. In
case of loss modulation we see numerically how the loss
synchronization between the two outer lasers is lost in b
the fully symmetric case and in the case with equal left a
right detunings, via an apparent supercritical blowout bif
cation. This is achieved by varying the strength of coupli
between the three lasers.

For the experimental system, noise and symmetry bre
ing are both inherent, but even with quite high levels
noise, we have demonstrated a good degree of synchron
tion particularly in the loss modulated case. In the numeri
simulations, noise and symmetry breaking have similar
fects; in the region of on-off intermittency, it is unlikely tha
there will be a noticeable change if the perturbations
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small. Low levels of noise and imperfections can result
bubbling type effects@23#, which can resemble on-off inter
mittency in numerical simulations. Consequently, the eff
of bubbling on systems such as ours is similar to the effe
of on-off intermittency, namely bursts away from a synch
nized state. Such bubbling persists up to a point known
bubbling transition@24# ~see also the related riddling bifur
cation@25#!. This situation arises when an orbit embedded
a symmetric chaotic attractor loses its transverse stability
more detailed description of this situation may be found
@26#.

It is interesting to see the harmonic relationships betw
the central and the outer beams. Particularly for the l
modulated case with small nearest-neighbor separations
central beam appeared to be at a rate approaching twice
of the two outer beams. We conjecture that this surpris
phenomenon may be caused by the central beam comm
cating a greater quantity of information than the two ou
beams. One area of future research is to investigate t
dynamics and examine the effect of parameter variation
the harmonic relationship.

Although we have shown that there will be no synchro
zation between the outer and inner lasers in a three l
array, the question of generalized synchronization@27#
arises. As we have shown, assuming that the two outer la
are synchronized allows us to simplify the model to a syst
of two lasers with unequal coupling between the two lase
This does not immediately fall into the category of gener
i-

.
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ized synchronization, since there is feedback from the ‘‘
sponse’’ system into the ‘‘driving’’ system. However, it ma
still be possible to make similar conclusions to those of g
eralized synchronization in the case where the feedback f
the one system is small compared to the input from the ot

Numerical simulations of the model suggests that
small symmetry breaking perturbations of the amplitude s
chronized state, an instability should arise in the phase lo
ing of the three lasers as predicted analytically and num
cally in a system of two lasers coupled in a linear straig
line array@19#. Another interesting area of future experime
tal work would be to heterodyne the outer beams, exam
the beat frequencies over time to investigate the pha
locking instability. Such an instability may have an impo
tant bearing on maximizing power output and coherence
larger arrays of coupled lasers.
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