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Synchronization of chaos in an array of three lasers
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Synchronization of the chaotic intensity fluctuations of three modulated Nd:YAG lasers oriented in a linear
array with either a modulated pump or loss is investigated experimentally, numerically, and analytically.
Experimentally, synchronization is only seen between the two outer lasers, with little synchrony between outer
and inner lasers. Using a false nearest-neighbors method, we numerically estimate the experimental system
dynamics to be five dimensional, which is in good agreement with analytical results. Numerically, synchroni-
zation is only seen between the two outer lasers, which matches the experimental data well. Lack of synchrony
between outer and inner lasers, is explained analytically and then we numerically investigate loss of synchro-
nization of the outer two lasers, observing the occurrence of a blowout bifurcation. Finally, the effects of noise
and symmetry breaking are examined and discugSi63-651X%99)03604-]

PACS numbg(s): 05.45.xt, 42.50.Lc, 42.65.5f, 42.55.Ah

[. INTRODUCTION contained within the synchronized submanifold loses its
transverse stability16]. This indicates that as in the two
Experimental and theoretical investigations of chaoticlaser case, forced symmetry breaking is not necessary for
synchronization in coupled nonlinear systems have attractedesynchronization of the two outer lasers to occur.
much attention in recent years due to the possibility of prac- The rest of this paper is arranged as follows. In Sec. Il we
tical applications of this fundamental phenomenon. Severaflescribe the experimental setup for a system of three
papers have studied the synchronization of chaotic signals iNd:YAG lasers coupled in a linear array and explain the
the context of electronic circuitsl—3], secure communica- techniques that we used in obtaining the experimental data.
tion [4—6], turbulence in fluid$7,8], chemical and biological Section Ill describes the equations we used to model the
systemd 9], and laser dynamicgl0—14. Winful and Rah- laser system and investigates the occurrence of synchroniza-
man have numerica”y investigated the poss|b|||ty of Syn-tion between the two outer lasers and also the lack of syn-
chronization of chaos in semiconductor laser arrays on ghronization between the outer and inner laser. In Sec. IV,
nanosecond time scald0] and previously, we have also We describe how the numerical simulations were performed
performed experimental measurements and demonstratéd the case of loss modulation and finally, in Sec. V, we
Synchroniza‘[ion of two chaotic |ase['$5]_ To our knowl- discuss our findings and consider the implications for cou-
edge, however, the experimental synchronization of chaos iRling large systems of lasers in a linear array.
laser arrays with more than two lasers has yet to be reported.
In this paper, the synchronization, both experimentally
and numerically, of three coupled, chaotic, Nd:YA{t&va-
lent neodymium doped yttrium aluminum garné&isers in To study the dynamics of a pump or loss modulated three
the separate cases of pump and loss modulation is reporteldser array we use the experimental system as shown in Fig.
In a linear array of three lasers, a high degree of synchronil. This setup consists of three equal intensity, parallel and
zation between the two outer lasers is seen, while little if anyaterally separated beams created by pumping a Nd:YAG
synchronization is observed between the outer and inner laod, 5 mm in both length and diameter in a plane parallel
sers. The experimental observations are in good agreemecavity. Three AF pump beamsX=514.5 nm are formed
with analytical results, which clearly explain the lack of syn- by passing a single beam through a fan-out grating designed
chronization between outer and inner laser. Similar resultso produce equal intensities for the zeroth- and first-order
were seen by Winful and Rahm@h0] in a numerical model beams, and negligible intensities elsewhere. The separation
for three semiconductor lasers coupled in a linear array. and relative orientation of the three beams of interest are
The numerical simulations show similar behavior in thiscontrolled using a simple telescope. The pump beams, in the
coupled linear array of three lasers to that seen in a system ehd, are parallel and symmetric with respect to the axis of the
two coupled laser§l4] and we present numerical evidence YAG crystal. The optical cavity consists of one high reflec-
to suggest that synchronization between the two outer laset®n coated end face of the rod and of an external planar
may be lost through bBlowoutbifurcation, where an attractor output coupler with 2% transmittance. The pump power for
the pump modulation case is approximately 5.8 W, and 5.0
W for the loss modulation case. For these parameters, the
*Present address: Department of Mathematics and Statistics, Unielaxation oscillation frequency;g, is of the order of 100

Il. EXPERIMENTAL SETUP

versity of Surrey, Guildford GU2 5XH, U.K. kHz. A thick etalon ensures single longitudinal mode opera-
"Present address: School of Physics and Technology, Suzhou Urtion. This etalon doubles as an intracavity acousto-optical
versity, Suzhou, Jiangsu 215006, P.R.O.C. modulator(AOM) for the loss modulation case. Pump modu-
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_____ sity synchronization is seen only between lasers 1 and 3.

OC | : :I phase dynam_ics with the relaxation oscillations as described,
for example, in[13].

The three infrared beams produced by the Nd:YAG laser
CCD ——) N e , are separated using a sequence of non-polarizing cube beam
— NN - splitters and prisms. The intensity dynamics of the individual
lasers are recorded simultaneously using fast photodiodes
and a four-channel digital oscilloscope. A scanning Fabry-

FIG. 1. Experimental system for generating three laterally . . : - AT
coupled lasers in a Nd:YAG crystal and observing the SynchrOIniZal?erot interferometer is utilized to ensure that the individual

tion of chaotic laser intensities. A diffractive optic is used to split lasers ha}ve only a single longitudinal mode.

the argon laser into three beams with almost equal intensities. The EXPerimental measurements for the pump modulated case
three beams are made parallel by a telescope; changing the magR€ displayed in Fig. 2 for nearest-neighbor separations of
fication of the telescope changes the separatidmetween each approximately 0.975 mm. Chaotic synchronization between
laser. An Acousto-Optic ModulatdAOM) is placed in positiorta) the two outer lasers is clearly seen, whereas there is no ap-
in the case of loss modulation and in positit®, in the case of Parent synchronization between outer and inner lasers. In the
pump modulation. The Nd:YAG crystal is coated for high reflectiv- case of loss modulation they are displayed in Fig. 3 for
ity (HR) on one side and antireflection coaté&R) on the other. nearest-neighbor separations of approximately 0.64 mm. De-
The output couplefOC) is 2% transmissive; both mirrors are flat. spite additional noise present in the loss modulated experi-
A charge-coupled device camera is used to measure the far-fieldhental setup, chaotic synchronization between lasers 1 and 3
intensity pattern of the array, while the three photodeted®®4,  is readily apparent. Again, pairing intensities of lasers 1 and
PD2, and PD3 simultaneously measure each laser’s intensity dy-

namics, which are subsequently recorded on a digital sampling 0s- 300 200
cilloscope(DSO). :
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beams with waist radi=20 pwm allows the formation of
three separate and stable cavitiéd]. The TEMy, infrared
laser beams generated in the YAG crystal have radii
~200 um. Radii are measured atef/of the maximum o
intensity of the Gaussian profile. The coupling between the = ™°  ™%® [ o0 1% O ey 0
beams is determined by their nearest-neighbor separation _ze 200
which can be shifted by adjusting the grating and the tele-
scope lenses’ positions. The pump beam separations and prcs '®
files are measured directly using a rotating slit method. The & ® -
minimum value for nearest-neighbor separation used was foo a0 1600 1e00 o s 10 w0 20
0.64 mm, for which there is no appreciable overlap of the fime ) taser 3 nensly
pump beams and coupling is entirely due to the spatial over- F|G. 3. Experimental measurements of the relative intensities of
lap of the infrared laser fields. The couplings and detuningshree coupled lasers with loss modulation. Here the nearest neigh-
were chosen such that, in the absence of modulation, thigor separatiomi=0.64 mm. Once again, a high degree of intensity
lasers exhibit an instability caused by the resonance of theynchronization is seen only between lasers 1 and 3.
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FIG. 5. Using the false nearest-neighbors method, we numeri-

FIG. 4. Power spectrum of three linearly coupled lasers, in thecally estimate the dimensionality of the experimental system, using
case of loss modulation at a rate of 166 kHz. Here the nearesheasured time series of the intensity fluctuations. The 1% mark
neighbor separations are again 0.64 mm. Notice the peak in thsuggests that the system is five dimensional, giving good agreement
central beam close to 150 kHz, which is not present in the two outebetween the experiments and the dimension of the amplitude anti-
beams. However, the side beams display a peak at approximately 8ynchronized subspace.
kHz of a greater intensity than the corresponding peak in the central
beam. The peak in all beams at 166 kHz corresponds to modulatiofyvo-laser systenil5] and are as follows:
at this rate.

dE; i

2, as well as lasers 3 and 2, show little synchrony. a1 =7 LG ea(M)E1—«kEp]+iwEy,

It is interesting to note the harmonic relationships be-
tween the side lasers, 1 and 3, and the center beam, laser 2. dG,
The intensity of laser 2 oscillates at a rate approaching twice a9t - r{l(pl(T)—Gl—Gl|E1|2),
the frequency of the side beam oscillations. Figure 4 com-
pares the power spectrums of the individual beams. The d4E
dor_nlnant peak of the_ central beam approe_lches 150 kHz —2=T_l[(GZ—EZ(T))EZ—K(E1+E3)]+ia)2E2, 0
while the side beams display peaks at approximately 80 kHz.  dT
The sharp spike at 166 kHz is due to modulation at this

frequency. dG, )
The intensity time series dynamics of all three lasers was a7 (P2(T) = G2= G| o),
numerically estimated to be five dimensioffig. 5), using a
false nearest-neighbors methdd], with 25000 time units dE,
considered. This result agrees with the dynamically invariant aT rc‘l (G3—€3(T))E3s— kEs ] tiwqE3,

state labeled amplitude antisynchronized in Table I, corre-
sponding to a system with amplitude synchronization and

equal left and right detunings present. dGs

a7 = Tfl(pg(T) —G3— G E3|2)-

I1l. EQUATIONS OF MOTION . . . . .
Q In these equations;; is the cavity round-trip timer; is the

The equations describing the time evolution of the slowlyfluorescence time of the upper lasing level of the*Nibn,
varying, complex electric field amplitude and real gairG; and p;(T)=pei+ p1;cosQT), &(T)=e€g+ €;;c0s2T), and
of laseri in an array of three spatially coupled, pump modu-w; are the modulated pump parameters, modulated losses,
lated single-mode Class B lasers are similar to those of thand detuninggfrom a common cavity moderespectively,

TABLE I. Dynamically invariant subspaces in Ed8). A list of symmetry forced invariant subspaces of
the equations for a system of three linearly coupled lasers. We have listed only those states that contained an
attractor in the numerical simulations. Note that other states exist but are not seen as attracting for the system.

Symmetry Representative point Dim. Name
Zo()XZy( ) (X4 ,F4+,%X5,F,,0,0,0,0) 4 synchronized
Zy(E)XZy(u)™™ (X4 ,Fy,X5,F5,0,00,7) 4 antisynchronized
Zy(pné) (X4 ,Fy ,X5,F5,0,000,— @) 5 amplitude antisynchronized
Zo(w)®° (X4 ,F4 ,X,,F,,X_,F_,0,0) 6 phase synchronized
Zo(p)™™ (X4 ,Fy X5, Fo X_JF_,m,m) 6 phase antisynchronized
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of laseri. It is assumed thatot both the pump and the loss = 3(X;—X3),F13, =3(F1+F3),Fiz-=3(F,—F3), and

are modulated at the same time. In the Nd:YAG lasers consynchronization between the two outer lasers occurs when
sidered in the experiments, the round-trip time of light in theX,5_=F,3_=0. The transformed system is equivariant un-
cavity 7. is 0.40-0.50 ns, while the decay time of the upper der the action of the following symmetries:

lasing levelr; is =240 us. Q) is the modulation frequency

and is chosen to be near the relaxation frequency. EX, F4 X5, Fo X F_, @ ,dR)

The lasers are coupled linearly to one another with
strengthx,J , assumed to be small. For laser beams of Gauss-
ian intensity profile and & beam radiusv, the coupling
strength, as determined from overlap integral of the two elec~
tric fieldsi andj is defined as

:(X+ 1F+ 1X21F21_X7 1_F7 vq)R'ICDL)y
corresponding to interchanging the two outer lasers,
M(X+ 1F+ 1X2!F21X— !F— !q)L !(I)R)

2
Kijzexp( - (d.zwdzl) ) . = (X, Fy Xp Fp X F_—®,—dp),
0 corresponding to conjugating the phases of the electric fields
The coupling strength is normalized such thgt=1 if ~ of all three lasers.
di—d;=0. As the coupling between lasers 1 and 3 is as- There is also a parameter symmetry involving the cou-
sumed negligible, only nearest-neighbor coupling is considpling parametei that takes
ered in 1.
In the analysis that follows we only consider the case of (k, P, PR)—= (=K, P+ 7, D+ ),
loss modulation, i.e.p1;=p1,=p13=0, but note that the
analysis is equally valid in the case of pump modulationwhich addsm onto the phase of the middle laser while re-
[18]. versing the sign ok. It is interesting to note that all three
We first letE;= X;e'% whereX; is the amplitude andy;  lasers are phase synchronized wheris negative, corre-
the phase of laserand rescale time, expressed in units of thesponding tob = ®z=0. However, only the two outer lasers
round-trip time of light around the cavity,. We subse- are phase synchronized whenis positive and this is the
quently introduceb, = ¢,— ¢, and®g= ¢,— ¢5 (and simi-  physically relevant situation since is assumed positive in
larly for A| andAg), so that we may rewrite Eqél) as the  Some sense.
following system of ordinary differential equations defined Owing to these symmetries, the dynamically invariant
on R8, subspaces illustrated in Table | exist. Notice, in particular,
the five-dimensional subspace labeled amplitude antisyn-

dX; chronized, corresponding to the case whereghgymmetry
dt =[F1— (D) ]Xy— xXcoq @y ), has been broken, via equal detuning of the two outer beams
from a common cavity mode. The dimensionality of the ex-
dF, perimental system as calculated using the false nearest-
o y(A—Fl—lef), neighbor method gives good agreement with this state and
gives emphasis to our assumptions about the parameter re-
dX, gimes considered. _ _
W:[Fz—Gz(t)]xz—K(XlCOS(‘I’LHXsCOS(@R)), Note that although there are several invariant subspaces
where the phases of all three lasers are locked, theraare
invariant subspaces forced by symmetry such that all the
@_ A—F._E.X2 amplitude and gains are equ¥,, =X, andF,=F,. We
ar 2~ FX2), may examine this using two approaches; first by examining
(3)  the set of such points in the phase space and showing that it
3 is not invariant(cf. [19]) and second by reducing the system
gt~ [Fa~ (D) ]X3— kXcoq D), of three lasers to one of two lasers with unequal coupling.
To this end, we define the manifold
dF; )
ar = YA-Fs—F3Xy), Mpp={(X1,F1,X3,F2,X3,F3,®,Pp) :
dq)L XZ X X1:X2,F1:F2 & (I)R:O Or’IT}
a9t =A + (X_ sm(<1>|_)+ sm((I)R) _ o
1 corresponding to perfed@antisynchronization between la-
4P Xs X, X, sers 1 and 2 in terms of the original variables.
dtR Ap+ K( %, Fx; S ®@r) + sm(CDL))

A. Noninvariance of M,

The issue of synchronization between the two outer lasers We demonstrate that ¥+ 0, any nonzero trajectory can
may be addressed by introducing the sum and difference adnly be in M, instantaneously, by assuming théat and X,
these lasers and assuming that all three lasers are equallye nonzero and examining the evolution of the difference
detuned, i.e.A =Ag=0. Then, X;3,=3(X;+X3),X153-  X_=3(X;—X5) and sumx, = 3(X;+X,). Note that
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dx. Fy+F, F;—F

dX
T Xt g XemelbX +ax cosd —gp =X+ (Fy—e()+F_X_—kcog ®)(3X. +X-),
+ 3 kX3c0sDR. dF.
g = YA-FL(1+XE+X2)—2F X X,),

If the system state lies oM 4, this means thak_=0 and

=F,: i i i i ax_
F,=F,; so the trajectory at this point will have X (Fy—e()+F_X, + Kk cOgD)(3X_+X,.),

dt
dx 1 ©®
T: EKX3CO${CDR). dE_ , ,
9 Y(F_(1+ X5 +X2)+2F  X_X,),
Thus the trajectory must leavé1,, unlessk=0, X3=0 5
and/or®g=(7/2)+km ke Z. We eliminate the first possi- 3[ X2+ X, X_+X2
bility by assumption. I1fX;=0 then we note that do _ 3 .
E_ K > 2 sin(®)
(X+ —X,)
a%s_ _ kX,Co{ D) (4)  Ifwe assume that the two laseXs and X are synchronized
dt then we find that
L dx_

and so this will be nonzero as long @+ (7/2)+k for szcos{tb)x+ ,
somek e Z, but from our definition ofM,,,®zr=0 or 7, so
any trajectory satisfying Eq(4) will not be contained in dE
M,. For the same reason we rule out the cdse=(7/2) —— =0, (7)
+kr and this implies that a trajectory can only beAr, dt
for an instant in time. As a resuliy1,, is only an invariant
subspace for the ordinary differential equatiorki#0 and @:3,(5"1@)
the only trajectories that remain withit, for all time have dt '
X1:X2:X3:0.

assuming thatc#0,X, #0, then we see tha_=0 for at
most an instant in time. Since if cag)=0 then® =(#/2)
B. Reduction to a system of two lasers with unequal coupling  + ks for some ke Z and so

If we assume that we lie on one of the amplitude synchro- do
nized subspaces, whedé_=F_=0, i.e., X;=X;3 and F; =
=F4, then the systeng3) simplifies to a two laser system dt
with unequal coupling between the two lasers.

3k, (8)

which is nonzero and therefoke moves away from 4/2)
1 (mod 7). Consequentlyl X_ /dt moves away from 0 and so
gt~ [Fa e(O]Xy— Xz cos®), X_ also moves from 0. Therefore synchronization is not
achieved in the asymmetric two laser setup and thus not
achieved in the original three laser system.

dF, )
ar ~ YATF1im Xy, IV. NUMERICAL RESULTS
We carried out numerical simulations independently in
dx both the loss modulation situation as well as modulation of
_ZZ[FZ_E(t)]XZ_ZKXl cog ), (5) the pump excitation. We concentrate on the loss modulated
dt situation due to numerical considerations, but note that our
results remain valid in the case of pump modulafi@8].
dF, ’
o Y(A—F,—F,X5), A. Loss modulated case

For the loss modulated case, the simulations were per-
formed using both Bulirsch-Stoer and Runge-Kutta integra-
. e tors. Due to numerical considerations we were forced to con-
ar = k(XX 42X X ) sin(®). sider more moderate values of the stiffness parameter
which was of the order 0.01 and 0.001. The parameter re-
gimes considered were also altered in order that the differ-
Introducing sum and difference variables in this case giveence in y was taken into account. In both the cases
us the transformed system, =0.01 andy=0.001 we saw similar results, and although
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FIG. 7. Lyapunov exponent diagram in the case of modulated

FIG. 6. Lyapunov exponent diagram in the case of moo_lulate_qOF& Here the detunings were assumed equal wifh=Ag
loss. The parameter values for the lasers were assumed identica

and wereng = 0.9, —0.2p, = 1.2 (for i=1,2,3). We assumed the =0.001 and the exponents were plotted upon varying the strength

: N of coupling k. The parameter values for the lasers were assumed
e o e Nty e eical and vire once agan 09,-0.20.-12 (o |

- N =1,2,3). We have labeled the largest tangential Lyapunov expo-
posmvg for mqst values of the couplmg_ strengih The..”°“' nentA; and the normal Lyapunov exponexyi. Similar behavior
normality of x is apparent through the windows of stability that . S .
arise when varyinge. These correspond to the periods whargis to the case.of no left gnd r!ght detuning is seen. However, the point

. of blowout is altered, in this case~0.003 175.

negative. The blowout occurs when the normal Lyapunov exponent,
4 passes through 0. In this case this occurs«er0.003 125.

to a submanifold of the total phase space passes through 0. In
the experiments were carried out with=10"%, the use of the case where there is more than one transverse Lyapunov
longer resonators would give a value of the stiffness paramexponent we need consider only the largest nmrmal
eter somewhat closer to that considered numerically. We cal-yapunov exponent. If the normal exponent is negative, then
ried out simulations for many values of the pump coefficienton average nearby trajectories are attracted onto the sub-
and various modulation strengths for the loss. manifold and the attractor within the subspace is an attractor

As in the model for a two laser system, in the case Ofor the full system. If the exponent is positive then on aver-
<vy<1, the system undergoes a period doubling cascade tage trajectories close to the submanifold are repelled away
chaos as the strength of loss modulation is increased. Typfrom it.
cally we see that for small values of the coupling parameter We have numerically computed the Lyapunov exponents
x, there is no amplitude synchronization and the amplitudeof Eq. (3) by integrating the variational equations and exam-
behavior of all three lasers appears to be independent, allke the change that occurs in the exponents upon varying the
though with antiphase synchronization between adjacent lazoupling strengthk. These are illustrated in the case of no
sers. As the coupling strength is increased, a period of on-offietunings in Fig 6.
intermittent type behavidr20], is observed in the amplitude For this system, the blowout bifurcation does not occur at
fluctuations of the two outer lasers. During this period therean isolated parameter value because the bifurcation param-
are times when the two outer lasers appear to be synchreter « varies the dynamics tangentially within the antisyn-
nized in both amplitude and phase, before bursts away frorohronized subspace as well as those in a transverse direction
amplitude synchronization, while remaining completelyfrom it; it is not a normal parameterfor the dynamics
phase(ant)synchronized. Then as the coupling strength i5/21,22. Because of thisand apparent fragility of the chaotic
increased still further, there is no more bursting away fromattractor$ we do not expect the Lyapunov exponents to vary
synchrony and the two outer lasers remain amplitude synsmoothly or even continuously with the parameter. Hence we
chronized for all time after an initial transient phase. observe alurred blowout[22].

For the particular case where all losses are modulated The tangential variation of the dynamics is clearly indi-
equally at the rate, 0.9- 0.2 cos(0.045 ), the pump param- cated in Figs. 6 and 7, where windows of stability arise as
eters were equal to 1.2 for each laser and=Ag=0, the the coupling strength is increased. These windows of sta-
behavior of a typical trajectory is as follows. Upon varying bility correspond to all Lyapunov exponents of systésh
the strength of coupling, we see that there exists a critical being negative. In particular, there is a window of stability
value k.~0.003 125 such that for values K k., trajecto-  shortly after the bifurcation point.
ries evolve on to the phase antisynchronized state. For values In order to examine the branching behavior at blowout,
of k> k. trajectories evolve on to the amplitude antisynchro-we have simulated the behavior of typical trajectories that
nized state. This transition af, is strongly suggestive of a are not in any invariant subspace. Startingcat there ap-
blowoutbifurcation, as was the case in a system of two laserpears to exist a chaotic attractdrwithin the antisynchro-
[14]. nized subspace, since after an initial transient plfagéch

A blowout bifurcation occurs when aormal Lyapunov  may be prolonged for some initial conditionall trajectories
exponent governing the exponential rate of change transversventually appear to converge to the antisynchronized sub-
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FIG. 8. Numerical simulated three laser model with pump modulation. The modulation rate was again chosen to be near the relaxation
oscillation frequency of the lasers so as to induce chaotic fluctuations in the intensities.

space. Reducing towardsk. we find regions of region of synchronization between outer and inner laser. The transient
on-off intermittent type behavior, typical for a supercritical behavior displayed similar characteristics when compared to
blowout. the loss modulated simulations, such as bursts away from
After the blowout, we no longer observe any attractors insynchronization over short time scales, before settling on to
the antisynchronized subspace, but there is a new branch gfe synchronized subspace after longer periods of time.
attractors in the phase antisynchronized subspace are createdsome of the numerical simulations we performed are il-
at the bifurcation. Just after; these attractors are apparently |ystrated in Fig. 8. The bifurcation analysis is not performed
on-off intermittent and close to the antisynchronized subygre, since the simulations indicate similar bifurcation be-

space. The average position of the trajectory moves away a%yior to that of the loss modulated case, as would be ex-
x—0. This is a strong indicator that the blowout is of SuDer'pected[lS].

critical, soft or nonhysteretic typgl6].
We also performed simulations of three loss modulated
lasers in situations where the detunings were equal, i.e.,

A =Agr=A. We calculated the Lyapunov spectrum in this  Concluding this work, the synchronization of three class
case and saw similar results to that of the purely symmetri@ Nd:YAG lasers, coupled in a straight line linear array, is
case, with the_ main diff_erence being a bifurcation from theinvestigated experimentally, analytically and numerically.
amplitude antisynchronized subspace, rather than the anfjye investigate the separate cases of pump modulation and
synchronized subspace. Again the blowout appears 10 be sqfiss modulation both experimentally and numerically. In the

with an extended period of on-off intermittent behavior. experiments, a high degree of synchronization is observed

qu the particular case with parameters _identical to thosf)etween the two outer lasers of the array, while no synchro-
considered above and a value of the detuning,0.001, the nization is observed between outer and inner lasers. This is

Lyapunov spectrum upon varying Is illustrated in Fig. 7. in good agreement with the theory, which demonstrates this
Again a blurred blowout is evident, and the normal lack of synchronization between outer and inner laser. In the
Lyapunov exponent passes through zeraat 0.003 175. y . . '
case of loss modulation we see numerically how the loss of

synchronization between the two outer lasers is lost in both
the fully symmetric case and in the case with equal left and

The numerical simulations in the case of modulation ofright detunings, via an apparent supercritical blowout bifur-
the pump excitation were carried out using a Runge-Kuttaation. This is achieved by varying the strength of coupling
integrator with a variable time step. Frequency of the depttbetween the three lasers.
of modulation was chosen so that the dynamics of the system For the experimental system, noise and symmetry break-
was in a region of chaotic behavior and in this case wasng are both inherent, but even with quite high levels of
chosen to be 100.53 kHin the case of loss modulation it noise, we have demonstrated a good degree of synchroniza-
was 139.62 kHg As in the case of loss modulation, excel- tion particularly in the loss modulated case. In the numerical
lent agreement between the experimental results and the naimulations, noise and symmetry breaking have similar ef-
merical simulations are seen. A high degree of synchronizafects; in the region of on-off intermittency, it is unlikely that
tion between the two outer lasers and no apparenthere will be a noticeable change if the perturbations are

V. DISCUSSION

B. Pump modulation
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small. Low levels of noise and imperfections can result inized synchronization, since there is feedback from the “re-
bubblingtype effectq 23], which can resemble on-off inter- sponse” system into the “driving” system. However, it may
mittency in numerical simulations. Consequently, the effecsstill be possible to make similar conclusions to those of gen-
of bubbling on systems such as ours is similar to the effecteralized synchronization in the case where the feedback from
of on-off intermittency, namely bursts away from a synchro-the one system is small compared to the input from the other.
nized state. Such bubbling persists up to a point known as a Numerical simulations of the model suggests that for
bubbling transition[24] (see also the related riddling bifur- small symmetry breaking perturbations of the amplitude syn-
cation[25]). This situation arises when an orbit embedded inchronized state, an instability should arise in the phase lock-
a symmetric chaotic attractor loses its transverse stability. Ang of the three lasers as predicted analytically and numeri-
more detailed description of this situation may be found incally in a system of two lasers coupled in a linear straight
[26]. line array[19]. Another interesting area of future experimen-
It is interesting to see the harmonic relationships betweetal work would be to heterodyne the outer beams, examine
the central and the outer beams. Particularly for the losthe beat frequencies over time to investigate the phase-
modulated case with small nearest-neighbor separations, tiecking instability. Such an instability may have an impor-
central beam appeared to be at a rate approaching twice thi@nt bearing on maximizing power output and coherence in
of the two outer beams. We conjecture that this surprisindarger arrays of coupled lasers.
phenomenon may be caused by the central beam communi-
cating a greater quantity of information than the two outer
beams. One area of future research is to investigate these
dynamics and examine the effect of parameter variation on J.T. and P.A. gratefully acknowledge the support of the
the harmonic relationship. EPSRC via Grant No. GR/K77365. J.T., K.S.T.J., D.J.D.,
Although we have shown that there will be no synchroni-G.D.V., R.R., and S.Z. gratefully acknowledge support from
zation between the outer and inner lasers in a three laséhe U.S. Office of Naval Research. It is a pleasure to also
array, the question of generalized synchronizati@Y] thank the Georgia Institute of Technology and the China
arises. As we have shown, assuming that the two outer lase8cholarship Council for their financial suppdi$.Z). Fi-
are synchronized allows us to simplify the model to a systermally, we would like to thank Steve Strogatz and Henry
of two lasers with unequal coupling between the two lasersAbarbanel for a helpful discussion concerning generalized
This does not immediately fall into the category of general-synchronization.
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