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Effects of bifurcations on the energy level statistics for oval billiards
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We studied the energy level statistics for one parameter family of oval billiards whose classical phase space
consists of some regular and some irregular components. As the parameter is varied, a transition from an
integrable system to a strongly chaotic one occurs with successive bifurcations. We applied the Berry-Robnik
formula to the level-spacing distributions for a variety of shapes of quantum oval billiards and found some
striking effects of bifurcations in the classical mechanical systems on the level-spacing distributions. The
validity of the Berry-Robnik formula is also checked for those shapes of the oval billiard for which there exist
two separated chaotic components in the phase space.@S1063-651X~99!03304-8#

PACS number~s!: 05.45.Mt, 03.65.Sq
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I. INTRODUCTION

An important feature of the quantum system appears
the statistical properties of energy levels. It is widely know
that the level-spacing distribution of an integrable system
characterized by the Poisson distribution@1,2# while a
strongly chaotic system is characterized by the Wigner
tribution @3#. Continuous changes shifting the Poisson dis
bution toward the Wigner distribution have been observed
mixed systems, where the volume ratio of regular and irre
lar components in classical phase space is controlled b
system parameter@4–6#. Berry and Robnik have provided
formula for the level-spacing distributions in mixed syste
@7#. Their formula depends sensitively on the volume ratio
irregular components, which is strongly affected by the
furcations. This means that bifurcations in classic
mechanical systems affect the energy level statistics of
corresponding quantum systems. The validity of the Ber
Robnik formula has been checked by numerical calculati
for several systems@8–18#.

In this paper, using the Berry-Robnik formula, we sho
the effects of bifurcations in the classical oval billiard sy
tems on the level-spacing distributions of the quantum o
billiards. The oval billiard was introduced by Benettin an
Strelcyn @20#, and studied in detail by Henon and Wisdo
@21#. The shape of the billiard depends on the value o
certain parameter. The phase space of the class
mechanical system consists of regular and irregular com
nents, which correspond to tori and chaos, respectively.
the parameter is varied, transitions occur from the integra
to the strongly chaotic system. The transition is accompan
by bifurcations, e.g., the creation and the disappearanc
periodic orbits which affect the volume ratios of regular a
irregular components.

The present paper is organized as follows. The oval
liard is introduced in Sec. II A. In Sec. II B, the Poinca´
surface of section for the oval billiard is defined, and t
bifurcation is also explained. In Sec. II C, we show o
method used in the direct measurement of the phase vol
r i for various components (i 51,2,3, . . . ,K) in classical
phase space. The level-spacing distributions are given in
III A, where the Berry-Robnik formula is successfully a
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plied and the effects of bifurcations on the energy level s
tistics are precisely analyzed in Secs. III B and III C.

II. CLASSICAL MECHANICS

A. Oval billiards

Figure 1 shows the schematic definition of the oval b
liard. The wall ]D for the oval billiard is constructed a
follows. In a rectangular system of coordinates~x,y!, we con-
sider four pointsP1 , P2 , P3 , andP4 with coordinates~1,1!,
~21,1! ~21,21!, and ~1,21! forming a square with side
length 2. Let the pointO1 with coordinate (12d,0) be the

center of an arcP4P1

_
, whered is defined in the interval 0

<d<1. O2 is an intersection of the extension line ofP1O1

and they axis, and is the center of an arcP1P2

_
. The wall]D

of the billiard consists of the above two arcs and another

arcs,P2P3

_
andP3P4

_
, constructed likeP4P1

_
andP1P2

_
. The

initial condition of the motion of a particle is determined b
its position and direction. In the cased51, the shape of the
billiard wall is circular, and hence the motion of the partic
is regular, i.e., the billiard system is completely integrab
On the other hand, in the cased50, the shape of the billiard
wall corresponds to a stadium and the motion of the part
is irregular, i.e., the billiard system is aK system, or strongly

FIG. 1. Schematic picture of the oval billiard whose bounda
wall consists of four circular arcs.
4026 ©1999 The American Physical Society
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chaotic system@22#. Thus one can see a continuous chan
from the integrable case to the nonintegrable case as
parameterd is varied from 1 to 0. In the case of an interm
diate parameter regime 0,d,1, the motion can be regula
or irregular, depending on the initial condition.

B. Poincaré surface of section

We consider the successive collisions of a particle w
the wall ]D and define the Birkhoff coordinates„f,sin(a)…
as shown in Fig. 2, wheref is the curvilinear distance mea
sured along the wall from the originA to the collisional point
B, anda is the angle between the inner normal and the o
reflected from the wall]D. The Birkhoff coordinates defined

FIG. 2. Definition of the Birkhoff coordinates„f,sin(a)….
e
he

h

it

in Fig. 2 are the most natural representation of a Poinc´
surface of section for billiard systems and describe the glo
behavior of motions@23#.

Figure 3 shows the trajectories in the Birkhoff coordina
for various values ofd. In the case of the stadium (d50) and
the circle (d51), the whole surface of the section is com
pletely filled with irregular and regular orbits, respective
In all cases that 0,d,1, regular and irregular componen
coexist in the Poincare´ surface of section.

As d increases from 0, one can observe the gradual
hancement of regular components around two elliptic fix
points,„f,sin(a)…5(0.25,0) and~0.75, 0!, as shown in Figs.
3~a!–3~e!. But the sizes of these two largest islands sudde
change at the critical pointd5dc1 ,

dc15&2150.414 213 56 . . . , ~2.1!

where a hyperbolic periodic orbit bounces just on the joi
of the billiard wall Pi (f5f i), as shown in Fig. 5~a!. One
can see the sudden enhancement of the two largest isl
aroundd5dc1 , as shown in Figs. 4~a! and 4~b!.

As d increases further, the hyperbolic periodic orbits me
tioned above invade into the neighboring regions on
Poincare´ surface,f1,f,f2 andf3,f,f4 , as shown in
Figs. 4~a!–4~e!. This invasion process induces the increa
FIG. 3. Poincare´ surface of section for various values ofd.
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of the second irregular components inside the two larg
islands, as shown in Figs. 3~g!–3~j!. Whend equals another
critical point dc2 ,

dc25
42A7

3
50.451 416 229 . . . , ~2.2!

an elliptic periodic orbit, with a period of 4, bounces just
the joints of the billiard wall as shown in Fig. 5~b!. Here one
can see a bifurcation where the elliptic periodic points s
denly disappear, and, simultaneously, hyperbolic perio
points collide with other elliptic points at„f,sin(a)…
5(0.25,0) and~0.75, 0!, as shown in Figs. 4~e! and 4~f!.
Thus another elliptic periodic point with a period of 2
created. Aroundd50.47, the second irregular componen
mentioned above disappear through the destruction of t
outermost boundary surfaces@24#, and as a result, the vol
ume of the regular regions increases again. The coexist
of the different irregular regions causes remarkable effe

FIG. 4. Poincare´ surface of section near the bifurcation poi
d5dc250.451 416 23 . . . . Thesolid lines represent the joints o
the billiard wall Pi( i 51, . . .,4).
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on the statistical properties of the corresponding quan
system. These points will be discussed in Sec. III C.

Whend.0.76, the irregular regions are divided into tw
or more components by many transversal invariant tori
shown in Figs. 3~n! and 3~o! @20,21#. As d approaches 1, the
number of chaotic components becomes infinite, becaus
most all transversal invariant tori remain stable in o
resonant regions.

C. Estimation of chaotic regions

Here we provide a numerical method to estimate the a
of the irregular component on the Poincare´ surface of sec-
tion. In order to judge the regularity of the trajectory, th
rotation numberRN is calculated numerically for each initia
point,

RN 5

(
i 51

N

~u i 112u i !

2pN
, ~2.3!

where u i is the angle of thei th iterated motion oriented
anticlockwise from thex axis of the rectangular coordinate a
shown in Fig. 6~a!, andN is the number of collisions. Figure
6~b! shows that the value ofRN converges more rapidly in
the case of regular motions than in the case of irregular m
tions. Let us define the regularity or the irregularity of th
trajectory by the convergence speed of the rotation num
RN . The convergence ofRN is characterized by the partia
meanZN as follows:

FIG. 5. ~a! An unstable periodic orbit with a period of 4 bounc
ing on the joints of the billiard wallPi(f5f i) at d5dc1

50.414 213 56 . . . . ~b! A stable periodic orbit with a period of 4
bouncing on the same joints Pi(f5f i) at d5dc2

50.451 416 23 . . . .
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PRE 59 4029EFFECTS OF BIFURCATIONS ON THE ENERGY LEVEL . . .
ZN5
uRN2RNu

uRNu
, ~2.4!

where

RN 5

(
i 51

N

Ri

N
. ~2.5!

Note that the value ofZN converges to 0 whenN goes to
infinity. It is clear that the value ofZN converges to 0 more
rapidly in the case of regular trajectory than in the case
irregular trajectory. Due to the symmetry of the surface
section, it is sufficient to deal with the region defined by
<a<p/2, 0<f< 1

4 . This region on the surface of section
divided into 4003300 grid cells. An initial point is put at the
center of each cell. Figure 7 shows the distributionP̃(Z500),
of the partial meansZ500 at d50.38. There are two peaks i
the distribution functionP̃(Z500), because it is a superpos
tion of two independent distributions; one is very sharp a
located near the origin ofZ500, and the other is broad. Th
former peak corresponds to the contributions of regular
jectories and the latter to those of irregular trajectories. N
that the distributionP̃(ZN) always has two peaks. Therefo
the threshold valueZN

c , which gives the minimum ofP̃(ZN),
enables us to classify the initial points into two parts as f
lows:

ZN<ZN
c ⇒regular trajectory,

ZN.ZN
c ⇒ irregular trajectory.

FIG. 6. ~a! Definition of the rotation angleu i . ~b! Rotation
numberRN versusN for a regular and an irregular trajectory.N is
the number of iterations.
f
f

d

-
te

-

The ratio of the regular componentsr1 and that of the ir-
regular onesr2 are determined by

r15

E
0

ZN
c

P̃~ZN!dZN

E
0

`

P̃~ZN!dZN

, r25

E
ZN

c

`

P̃~ZN!dZN

E
0

`

P̃~ZN!dZN

. ~2.6!

The value ofr2 in the case ofN5105 is shown in Figs. 11
and 13.

Our numerical method shown in this section is quite d
ferent from traditional ones which require calculation of t
local Lyapounov exponents. Here, we will just give a n
merical evidence for the justification of our method. Figu
8~a! shows a plot of ‘‘irregular cells’’ on the Poincare´ sur-
face of section which are determined by our method for
case ofd50.38 andN5500. One can easily see that o
method works very well, and it reproduces almost co
pletely the irregular region in Fig. 8~b!.

III. QUANTUM MECHANICS

A. The energy level statistics and the Berry-Robnik formula

In this section, the statistical properties of the quant
system corresponding to the oval billiard are investigat
The energy levels are obtained by solving numerically
Schrödinger-Helmholtz equation,

¹2c~r !1
2mE

\2 c~r !50, ~3.1!

under the Dirichlet boundary conditionc(rP]D)50. Here
\ is the Plank constant,E the eigenenergy,m the mass of the
particle, andc~r ! the corresponding eigenfunction. Equatio
~3.1! is solved effectively by the boundary element meth
@25,26#.

Figure 9 showsd dependence of the energy levels. Asd
approaches 0 where the classical-mechanical system
strongly chaotic, one can see a number of avoided cross

FIG. 7. Distribution functionP̃(Z500) at d50.38. The vertical
axis represents the number of orbits initialized at the center of e
cell in the Poincare´ surface of section. The criterionZ500

c is chosen
at the minimum point between the peaks.
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FIG. 8. ~a! Poincare´ plots for the cased50.38 andN5500 reproduced by our method mentioned in Sec. III C. Dark region stand
‘‘irregular cells’’ and white for ‘‘regular ones.’’~b! Poincare´ surface of section obtained by numerical plots ford50.38.
al
cc
th

fi
in

th
e

e.
a-

w
-
in
o

ik
e

d
of

-

gy
gly
s
ergy
of
the
the
are,

on
s

urve
~or level repulsions!. At d51 where the classical-mechanic
system is integrable, several accidental degeneracies o
The effect of level repulsions can be characterized by
level-spacing distributionP(S) @1#, where S denotes the
nearest level spacing. The energy levels are unfolded to
the mean spacing unity. Figure 10 shows the level-spac
distributionP(S) for various values ofd. We deal with 2650
energy levels which belong to the even-even parity of
eigenstates, but the lower 100 levels are omitted becaus
the semiclassical consideration.

When the shape of the billiard wall is a circle (d51),
P(S) is well approximated by the Poisson distribution, i.
PPoisson(S)5exp(2S). On the other hand, in the strongly ch
otic case of the stadium (d50), P(S) corresponds to the
Wigner distribution PWigner(S)5 1

2 pSexp(2pS2/4). In the
intermediate case (0,d,1), the distributionP(S) exhibits
systematic deviations from those two distributions, as sho
in Figs. 10~a!–10~h!. In what follows, the level-spacing dis
tributions P(S) in the mixed systems will be analyzed
accordance with the basic idea proposed by Berry and R
nik @7#.

Let us review briefly the distribution of the Berry-Robn
formula. Consider a system whose classical phase spac~or

FIG. 9. Some levels of the eigenenergy.A is area of inner do-
main in the oval billiards.
ur.
e

x
g

e
of

,

n

b-

Poincare´ surface of section! is decomposed into regular an
irregular components, and denote the total volume ratio
the regular components byr1 and the volume ratios of dis
connected chaotic components byr i ( i 52,3,4, . . . ,K). Per-
cival conjectured that in the semiclassical limit, the ener
levels consist of regular and irregular parts having stron
contrasting properties@27#. Berry and Robnik extended thi
conjecture, and surmised that the sequence of the en
levels of a mixed system is given by the superposition
statistically independent sequences corresponding to
classical phase-space components: the distributions of
sequences corresponding to regular and irregular regions

FIG. 10. Numerical results of the level-spacing distributi
P(S) for various values ofd. In each case, 2550 level spacing
which belong to even-even parity are used and the best-fitting c
of the Berry-Robnik formula@Eq. ~3.3!# is shown by the solid line
with parameterr2

q .
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respectively, the Poisson and Wigner distributions@7#. The
statistical independence of each subsequence in the sem
sical limit is justified bythe principle of uniform semiclassi
cal condensation of eigenstatesonto each component of th
classical phase space and by the lack of their mutual ove
@14,28,18,19#. Thus one can obtain the Berry-Robnik fo
mula which describes the level-spacing distribution
mixed systems,

PK
BR~r1 ,r2 , . . . ,rK ;S!

5
d2

dS2 Fexp~2r1S!)
i 52

K

erfcSAp

2
r iSD G ,

~3.2!

where

erfc~x!5
2

Ap
E

x

`

exp~2t2!dt.

Many numerical tests of the Berry-Robnik formula ha
been done for mixed systems having only one irregular co
ponent~i.e., K52) @14#. In particular, Prosen and Robni
@10# and Prosen@18# have numerically shown the validity o
the Berry-Robnik formula in an extremely deep semiclass
limit using a large number of energy levels. However, onl
few attempts have been made thus far with the mixed s
tems having many chaotic components (K>3) @11#.

B. The effect of bifurcations on level-spacing distributions

When there exists only a single chaotic component in
classical phase space, Eq.~3.2! is rewritten into

PK52
BR ~r1 ,r2 ;S!5Fr1

2 erfcSAp

2
r2SD

1S 2r1r21
p

2
r2

3SDexpS 2
p

4
r2

2S2D G
3exp~2r1S!, ~3.3!

wherer11r251. Here we usePK52
BR (r1 ,r2 ;S) as the mea-

sure for the effect of bifurcations on the level-spacing dis
butions.PK52

BR (r1 ,r2 ;S) approximates very well the level
spacing distribution of the mixed system even if the chao
components are multiple. Figure 10 gives the best-fit cu
of the level-spacing distributionP(S) by the Berry-Robnik
formula of Eq.~3.3!, where the parameterr2

q is determined
by the least squares method for the cumulative level-spa
distributionW(S)5*0

SP(S8)dS8. Figure 11 showsr2
q versus

d. 2550 level spacings are used for each value ofd, and 3500
level spacings are used near the bifurcation point 0.41<d
<0.48. Notably, there exists a sudden decrease ofr2

q around
the bifurcation pointdc2 , where two chaotic component
coexist in the phase space.

It is also important that the values ofr2
q arounddc2 are

not equal tor2 values, which are the ratios of chaotic com
ponents and are determined only by the classical-mecha
information as we explained in Sec. II. Figure 11 compa
valuesr2

q and r2 for various values ofd. One can see tha
las-

ap

r

-

l

s-

e

-

c
e

g

al
s

very nice agreement is obtained near the completely irreg
limit d50. However, a remarkable difference appears ad
.dc2 (0.41&d&0.47). Here we have to remember that t
classical-mechanical system exhibits very complicated bi
cations in the same parameter regime as shown in Figs. 3~f!–
3~j! and 4~a!–4~f!. The reason for this disagreement shou
be explained by using the general form of Eq.~3.2! instead
of that of Eq. ~3.3!. Indeed, it will be shown in the nex
section that the dip structure ofr2

q shown in Fig. 11 comes
from the effects of the bifurcations in the classica
mechanical system.

Furthermore, the disagreement ofr2 and r2
q is also ob-

served near the integrable limitd51 as shown in Fig. 11.
The same disagreement has also been pointed out in se
previous papers@8,15#. From the viewpoint of classical me
chanics in the neighborhood of the completely integra
limit d51, there appear a number of Kol’mogorov-Arnol’d
Moser ~KAM ! tori which divide the irregular regions into
many pieces, as shown in Figs. 3~n! and 3~o! @20,21#. Here
we have to use the general form of Eq.~3.2! with K→`.
Remarkable changes ofr2

q are expected to appear near ea
of the division pointsd.0.76,0.85, . . . . However, the ef-
fects of these divisions onr2

q are not observed clearly in ou
numerical calculations. This is because one can never ob
enough condensation of the eigenstates in the neighborh
of sina.61 in the low energy region@29#. In the present
paper, our main concerns will be the bifurcation atd.dc2 ,
where at least two disjoint irregular components contrib
to the Berry-Robnik formula (K53).

C. The Berry-Robnik formula for two chaotic components

As shown in Fig. 11, a remarkable difference appears
tween r2 and r2

q near d5dc2 where bifurcations are ob
served in the classical-mechanical systems. The bifurcat
induce the growth of the second irregular component ins
the two largest islands as shown in Figs. 3~f!–3~j!. Let us
consider the Berry-Robnik formula in the form o
PK53

BR (r1* ,r2* ,r3* ;S) rather thanPK52
BR (r1 ,r2 ;S), wherer i*

( i 51,2,3) is the ratio of thei component defined on th

FIG. 11. Comparison betweenr2 andr2
q for the whole region of

the parameter values ofd. The error bars indicate the statistic
fluctuations due to the finite size effect of ensembles.
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4032 PRE 59H. MAKINO, T. HARAYAMA, AND Y. AIZAWA
Poincare´ surface of section, and satisfiesr1* 5r1 and r2*
1r3* 5r2 . The argumentr3* is the volume ratio of the sec
ond irregular component, and its behavior around the bi
cation point is shown in Fig. 13~b!. It should be noted tha
the sudden decrease ofr2

q at d.dc2 agrees well with the
increase of the second irregular component induced by
bifurcation.

Figure 12~a! shows the numerical data of the leve
spacing distributionP(S) at d50.445. The Berry-Robnik
formulasPK52

BR (r1 ,r2 ;S) andPK53
BR (r1* ,r2* ,r3* ;S) are also

plotted in the same figure. It is quite surprising that the n
merical result of the level-spacing distributionP(S) is al-
most completely adjusted by the Berry-Robnik formula w
K53. This implies that the Berry-Robnik formula approx
mates the numerical data of the level-spacing distribut
very closely, provided that many irregular components
taken precisely into account. Indeed, the detailed informa
of the classical-mechanical systems enables us to explain
sudden change of the parameters ofr i

q’s at d.dc2 .
Now we discuss the behavior ofr i

q . Let us consider the
following least squares method, which gives the appro
mated valuesr i

q by using only classical-mechanical inform
tion. The modified parameterr̃ i is obtained from the renor
malization process as follows:

r̃ i5xi S E
0

`

uPK52
BR ~x1 ,x2 ;S!

2PK53
BR ~r1* ,r2* ,r3* ;S!u2dS5minimumD , ~3.4!

where x11x251, and r̃ i ’s are their extremum solution
( r̃11 r̃251) subordinated to classical-mechanical inform
tion (r1* ,r2* ,r3* ). Figure 12~b! shows that the parametersr i

q

with K52 are well reproduced byr̃ i ’s, where the volume
ratios of three components (r1* ,r2* ,r3* ) are renormalized
into two parameters (r̃1 ,r̃2). Figures 13~a! and 13~b! exhibit
that the renormalized Berry-Robnik formula withK52, i.e.,
PK52

BR ( r̃1 ,r̃2 ;S), well approximates the quantum-mechanic

FIG. 12. ~a! P(S) is numerical result of the level-spacing distr
bution atd50.445 obtained by 3500 energy levels,PK52

BR (r1 ,r2 ;S)
and PK53

BR (r1* ,r2* ,r3* ;S) are the Berry-Robnik formulas obtaine
from the classical-mechanical system. (r150.3, r25r2* 1r3*
50.70: r1* 50.30, r2* 50.468, r3* 50.232.! ~b! Comparison be-
tween PK52

BR ( r̃1 ,r̃2 ;S) and PK52
BR (r1

q ,r2
q ;S) at (r̃150.481, r̃2

50.519: r1
q50.505,r2

q50.495! which are obtained from the leas
squares method Eq.~3.4!. P(S) is also plotted.
r-

e

-

n
e
n
he

i-

-

l

data of level-spacingP(S) in a wide parameter region. In
other words, the numerical result exhibits the following:

r i
q~d!. r̃ i~d! ~ i 51,2!. ~3.5!

It is noteworthy that the renormalized parametersr̃ i com-
pletely describe the quantum-mechanical aspects induce
the bifurcations in classical-mechanical systems.

In the next section, the idea mentioned above will be
tended, and it will be shown that the classical-mechan
parameters (r1* ,r2* ,r3* ) can be derived from the quantum
mechanical information of the level-spacing distributio
P(S).

D. The quantum-classical correspondence
of the Berry-Robnik parameters

Let us consider the parameter region neard5dc2 , where
three characteristic parameters (r1 ,r2 ,r3) play an essentia
role in describing the Berry-Robnik formul
PK53

BR (r1 ,r3 ,r3) (( i 51
3 r i51). It is well known that the pa-

rametersr i
q agree well with the classical onesr i in the case

of K52 @8–10,15,17#. However, relevant parameters in th
case ofK53 have not yet been checked numerically. W
show that the quantum-mechanical information embedde
the energy level statistics enables us to determine the cla
cal parameterr i* ( i 51,2,3). Here we derive the classic
parameterr i* from the quantum-mechanical data of th
level-spacing distributionP(S).

We define the functionI (y1 ,y2 ,y3),

I ~y1 ,y2 ,y3!5E
0

`

uP~S!2PK53
BR ~y1 ,y2 ,y3 ;S!u2dS,

~3.6!

where( i 51
3 yi51. The minimum ofI (y1 ,y2 ,y3) determines

the best-fitting parametersr i8 ( i 51,2,3) in the Berry-Robnik
formula PK53

BR (y1 ,y2 ,y3), i.e.,

FIG. 13. ~a! Comparison betweenr2 andr2
q near the bifurcation

point d5dc2 . 3500 level spacings are used for each value ofr2
q .

~b! Comparison betweenr̃2 andr2
q , and betweenr3* andr38 in the

same parameter range.
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I ~r18 ,r28 ,r38!5minyi
I ~y1 ,y2 ,y3!. ~3.7!

Figure 14 reveals the global behaviors ofI (y1 ,y2 ,y3) on the
two-dimensional plane (y1 ,y3), where the value of
I (y1 ,y2 ,y3) is shown by contour lines with gray scale
Though those minimum pointsr i8 ( i 51,2,3) which are de-
fined by Eq.~3.7! and obtained numerically are fluctuatin
because of the finiteness in numerical data ofP(S), one can
estimate the probable values ofr i8’s within the narrow band
in two-dimensional space (y1 ,y3). It is impossible to deter-
miner i8 ( i 51,2,3) without a large number of energy leve
The striking point is that the classical-mechanical quan
r i* is well approximated by the value ofr i8 ,

r i8.r i* . ~3.8!

The method based on Eqs.~3.6! and ~3.7! enables us to
obtain the classical parametersr i* in principle, since the for-
mula PK53

BR (y1 ,y2 ,y3) is unique at each point on the two
dimensional (y1 ,y3) plane. Figure 13~b! shows values ofr38
determined from the minimum point ofI (r1* ,y2 ,y3) on.

IV. SUMMARY AND DISCUSSIONS

In the present paper, by using oval billiards, we elucida
the effect of bifurcations in classical-mechanical systems
the statistics of the energy levels. We have shown that
Berry-Robnik distribution for one chaotic component a
proximates very well the nearest level-spacing distribution
a quantum oval billiards, and hence the two parameters
determined numerically. Thus we used the Berry-Robnik
rameter as the measure of the effect of bifurcations on
nearest level-spacing distributions in oval billiards. T
Berry-Robnik parameter suddenly decreased just at the p
of bifurcation. We have also shown that the Berry-Robn
formula works very well when the number of chaotic com
ponents is taken precisely into consideration, and espec
in the case of two chaotic components. Therefore,
checked, using numerical calculations, the conjectures
posed by Percival@27# and Berry and Robnik@7# in more
than one chaotic component. It should be noted that one
detect the occurrence of bifurcation in the classic

FIG. 14. Global aspect of the functionI (y1 ,y2 ,y3) at d
50.445. The classical parameter (r1* 50.30, r3* 50.232! is ob-
served in the narrow region minimizing the functionI (y1 ,y2 ,y3).
.
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FIG. 15. ~a! and~b! are the contour plots of the Husimi functio
%n(f,sina) for typical eigenstates@~a! A1/2kn5238.19 and~b!
A1/2kn5238.24, wherekn5(2mEn)1/2/\ and A is area of the bil-
liard# at d50.39. Each localizes in regular and irregular compone
respectively.~c! and~d! are the contour plots of the Husimi functio
%n(f,sina) for typical eigenstates@~c! A1/2kn5132.51 and~d!
A1/2kn5131.85# at d50.44. Each localizes in the second or in th
first irregular component, respectively. The Husimi function
scaled to satisfy the normalization condition*0

1df*21
1 dl%n(f,l )

51.
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mechanical systems from the level-spacing distributions
the corresponding quantum systems. Our findings in this
per are all based on the numerical calculations, but
quantum-classical correspondence in the level-spacing d
bution is completely satisfied in a wide parameter reg
with complex bifurcations.

In this paper, we dealt with the energy levelsn
5400, . . . ,14 400 forcalculation of the level-spacing distr
butions around the bifurcation point 0.41<d<0.48, and
hence the effective Planck constants areheff51/An
50.0083, . . . ,0.050@16#, whereA is area of the billiard and
En is thenth eigenenergy. Quantum mechanics describes
structures beyond the scaleheff of the classical phase spac
In particular, the approximate size of the second cha
component (r3.0.25 at the bifurcation pointd.dc2! is
larger than the effective Planck constant (r3.heff), so that
one can expect to observe the localization of wave functi
in the second chaotic component over in the neighborhoo
the bifurcation point, which will reflect to the third argume
r3* in the Berry-Robnik formula. Here, let us introduce t
phase-space representation of eigenstates by the Hu
function. We have employed the formalism of the Husi
function for the Birkhoff coordinates (f,sina) defined in
@29,30#. Figures 15~a! and 15~b! show contour plots of the
Husimi functions%n(f,sina) for two typical eigenstates in
the cased50.39. One can see that each eigenstate cle
localizes either in a regular region or an irregular one bef
the second chaotic region appears (d,dc1). On the other
hand, Figures 15~c! and 15~d! show the contour plots of the
Husimi functions atd50.44, where the second chaotic r
gion exists. Figure 15~c! reveals the eigenstate which loca
izes in the second chaotic component, and another loca
tion in the first chaotic component is shown in Fig. 15~d!.
Two types of localization mentioned above are observed
the whole energy range which we studied, and the lack
mutual overlap between their eigenstates seems to guara
the use of the Berry-Robnik formula for our syste
@14,18,19#.

The assumptions used in the derivation of the Ber
Robnik formula have not yet been validated from theoreti
viewpoints, although there is much numerical evidence
the case of one chaotic component; Bohigas, Tomsovic,
Ullmo analyzed a two-dimensional system of two coup
one-dimensional quartic oscillators@12#, and numerically
et
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verified the validity of the Percival conjecture@27#. Using
the presence of the mechanical quasidegeneracy, they s
rated the energy levels into regular and irregular subclas
Jacquod and Amiet@13#, Li and Robnik @19#, and Prosen
@18# also separated the energy levels into regular and irre
lar subclasses, and analyzed substatistics for each cla
order to check the Berry-Robnik conjecture@13#. Further-
more, Prosen and Robnik@10,14# and Carlo, Vergini, and
Fendrik @17# estimated the semiclassical convergence of
level-spacing distributions to the Berry-Robnik formula b
precisely using a large number of energy levels in an
tremely deep semiclassical regime. In this paper, we h
shown that the Berry-Robnik formula works very well, eve
in the case of two chaotic components, and follows the
tailed structure of complex bifurcations in classica
mechanical systems.

The studies of the level statistics in nonlinear syste
have been provided in another context in terms of the Bro
distribution@6,30#. Terasaka and Matsushita studied the le
statistics for one parameter family of coupled Mors
oscillator systems, and found that the Brody parameter
veals oscillatory changes in a wide parameter region. Ho
ever, the oscillations were smooth, and hence no sud
change occurred in the Brody parameter. By using the Be
Robnik formula for one chaotic component, we found t
striking effect of bifurcations corresponded to the sudd
change of the values of the Berry-Robnik parameter. In
dition, Prosen has shown that the Berry-Robnik formula
proximates numerical data in the far semiclassical reg
better than the Brody distribution does@18#. Therefore, the
Berry-Robnik formula is an adequate measure for the ef
of the bifurcations in the semiclassical regime.

ACKNOWLEDGMENTS

The authors thank Professor T. Prosen and Dr. Y. Shim
for fruitful discussions and valuable comments. T.H. is gra
ful to Dr. B. Komiyama and Dr. N. Egami for their continu
ous interest and encouragement. This research was supp
by a Grant-in-Aid for Scientific Research~c! ~09640472!
from the Ministry of Education, Science and Culture of J
pan. The computation in this work has been done using
facilities of the Supercomputer Center, Institute for So
State Physics, University of Tokyo.
@1# M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A356,
375 ~1977!.

@2# G. Casati, B. V. Chirikov, and I. Guarneri, Phys. Rev. Lett.54,
1350 ~1985!.

@3# O. Bohigas, M. J. Giannoni, and C. Schmidt, Phys. Rev. L
52, 1 ~1984!.

@4# M. Robnik, J. Phys. A17, 1049~1984!.
@5# T. H. Seligman, J. J. M. Verbaarshot, and M. R. Zirnbau

Phys. Rev. Lett.53, 215 ~1984!.
@6# T. Terasaka and T. Matsushita, Phys. Rev. A32, 538 ~1985!.
@7# M. V. Berry and M. Robnik, J. Phys. A17, 2413~1984!.
@8# H. D. Meyer, E. Haller, H. Koppel, and L. S. Cederbaum,

Phys. A17, L831 ~1984!.
t.

,

.

@9# D. Wintgen and H. Friedrich, Phys. Rev. A35, 1464~1987!.
@10# T. Prosen and M. Robnik, J. Phys. A27, 8059~1994!.
@11# T. H. Seligman and J. J. M. Verbaarschot, J. Phys. A18, 2227

~1985!.
@12# O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rev. Lett.64,

1479 ~1990!.
@13# P. Jacquod and J. P. Amiet, J. Phys. A28, 4799~1995!.
@14# M. Robnik and T. Prosen, J. Phys. A30, 8787~1997!.
@15# T. Prosen and M. Robnik, J. Phys. A26, 2371~1993!.
@16# T. Prosen, J. Phys. A31, 7023~1998!.
@17# G. Carlo, E. Vergini, and A. J. Fendrik, Phys. Rev. E57, 5397

~1998!.
@18# T. Prosen, Physica D91, 244 ~1996!.



A

PRE 59 4035EFFECTS OF BIFURCATIONS ON THE ENERGY LEVEL . . .
@19# B. Li and M. Robnik, J. Phys. A28, 4843~1995!.
@20# G. Benettin and J. M. Strelcyn, Phys. Rev. A17, 773 ~1978!.
@21# H. Henon and J. Wisdom, Physica D8, 157 ~1983!.
@22# L. A. Bunimovich, Funct. Anal. Appl.8, 254 ~1974!.
@23# G. D. Birkhoff, Dynamical Systems~American Mathematical

Society, Providence, RI, 1927; reprinted 1996!.
@24# T. Harayama and Y. Aizawa, Prog. Theor. Phys.84, 23 ~1990!.
@25# M. V. Berry and M. Wilkinson, Proc. R. Soc. London, Ser.

392, 15 ~1984!.
@26# S. Tasaki, T. Harayama, and A. Shudo, Phys. Rev. E56, R13
~1998!.

@27# I. C. Percival, J. Phys. B6, L229 ~1973!.
@28# M. V. Berry, Philos. Trans. R. Soc. London, Ser. A287, 237

~1977!.
@29# B. Crespi, G. Perez, and S-J. Chang, Phys. Rev. Lett.47, 986

~1993!.
@30# Y. Shimizu and A. Shudo, Chaos Solitons Fractals5, 1337

~1995!.


