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Effects of bifurcations on the energy level statistics for oval billiards
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We studied the energy level statistics for one parameter family of oval billiards whose classical phase space
consists of some regular and some irregular components. As the parameter is varied, a transition from an
integrable system to a strongly chaotic one occurs with successive bifurcations. We applied the Berry-Robnik
formula to the level-spacing distributions for a variety of shapes of quantum oval billiards and found some
striking effects of bifurcations in the classical mechanical systems on the level-spacing distributions. The
validity of the Berry-Robnik formula is also checked for those shapes of the oval billiard for which there exist
two separated chaotic components in the phase spat663-651X99)03304-4

PACS numbdrs): 05.45.Mt, 03.65.Sq

[. INTRODUCTION plied and the effects of bifurcations on the energy level sta-
tistics are precisely analyzed in Secs. 1lIB and Il C.
An important feature of the quantum system appears in

the statistical properties of energy levels. It is widely known IIl. CLASSICAL MECHANICS
that the level-spacing distribution of an integrable system is -
characterized by the Poisson distributi¢h,2] while a A. Oval billiards

strongly chaotic system is characterized by the Wigner dis- Figure 1 shows the schematic definition of the oval bil-
tribution [3]. Continuous changes shifting the Poisson distri-jiard. The wall D for the oval billiard is constructed as
bution toward the Wigner distribution have been observed irf0||ows_ In a rectangular system of Coordinatgg/)’ we con-
mixed systems, where the volume ratio of regular and irregusider four pointsP;, P, P5, andP, with coordinates1,1),

lar components in classical phase space is controlled by @-1 1) (-1,—~1), and (1,~1) forming a square with side

system parametd¢d—6]. Berry and Robnik have provided a |ength 2. Let the poinD; with coordinate (1 5,0) be the
formula for the level-spacing distributions in mixed systems —

[7]. Their formula depends sensitively on the volume ratio ofcenter of an ardD.4P1, whgre5 Is defined n the. interval 0
irregular components, which is strongly affected by the bi-= 9<1. O, is an intersection of the extension line B{O,
furcations. This means that bifurcations in classical-and they axis, and is the center of an a@gP,. The walloD
mechanical systems affect the energy level statistics of thef the billiard consists of the above two arcs and another two

—_— —_—

corresponding quantum systems. The validity of the Berryarcs,P,P; andP;P,, constructed liké®,P; andP,P,. The
Robnik formula has been checked by numerical calculationsnitial condition of the motion of a particle is determined by
for several system3—18|. its position and direction. In the cage=1, the shape of the

In this paper, using the Berry-Robnik formula, we show pilliard wall is circular, and hence the motion of the particle
the effects of bifurcations in the classical oval billiard sys-js regular, i.e., the billiard system is completely integrable.
tems on the level-spacing distributions of the quantum ovabn the other hand, in the case=0, the shape of the billiard
billiards. The oval billiard was introduced by Benettin and wall corresponds to a stadium and the motion of the particle

Strelcyn[20], and studied in detail by Henon and Wisdom is irregular, i.e., the billiard system iskasystem, or strongly
[21]. The shape of the billiard depends on the value of a

certain parameter. The phase space of the classical-
mechanical system consists of regular and irregular compo- y axis
nents, which correspond to tori and chaos, respectively. As |
the parameter is varied, transitions occur from the integrable 1+ B |
to the strongly chaotic system. The transition is accompanied aD |
by bifurcations, e.g., the creation and the disappearance of :
_perlodlc orbits which affect the volume ratios of regular and 1_3_ AN 0O 5 % axis
irregular components.

The present paper is organized as follows. The oval bil- |

B

liard is introduced in Sec. IlA. In Sec. IIB, the Poincare 0,

surface of section for the oval billiard is defined, and the ! i
bifurcation is also explained. In Sec. IIC, we show our B B
method used in the direct measurement of the phase volume B 0 1

p; for various componentsi€1,2,3... ,K) in classical

phase space. The level-spacing distributions are given in Sec. FIG. 1. Schematic picture of the oval billiard whose boundary
lIIA, where the Berry-Robnik formula is successfully ap- wall consists of four circular arcs.

1063-651X/99/564)/402610)/$15.00 PRE 59 4026 ©1999 The American Physical Society



PRE 59 EFFECTS OF BIFURCATIONS ON THE ENERGY LEME .. 4027

in Fig. 2 are the most natural representation of a Poincare
surface of section for billiard systems and describe the global
., behavior of motiong23].
A - (¢ @) Figure 3 shows the trajectories in the Birkhoff coordinates
for various values ob. In the case of the stadiund&0) and
the circle ¢=1), the whole surface of the section is com-

¢ AKX pletely filled with irregular and regular orbits, respectively.
In all cases that & §<1, regular and irregular components
(¢, @) coexist in the Poincarsurface of section.
o _ _ _ As ¢ increases from 0, one can observe the gradual en-
FIG. 2. Definition of the Birkhoff coordinategs, sin()). hancement of regular components around two elliptic fixed

points, (¢,sin(@))=(0.25,0) and0.75, 0, as shown in Figs.

chaotic systeni22]. Thus one can see a continuous changey5)_3(g). But the sizes of these two largest islands suddenly
from the integrable case to the nonintegrable case as t"@]ange at the critical point= 4

parameters is varied from 1 to 0. In the case of an interme- et
diate parameter regime<05§<1, the motion can be regular 8.1=v2—-1=0.41421356 . . ., (2.1
or irregular, depending on the initial condition.

o . where a hyperbolic periodic orbit bounces just on the joints
B. Poincare surface of section of the billiard wall P; (¢= ¢;), as shown in Fig. &). One
We consider the successive collisions of a particle withcan see the sudden enhancement of the two largest islands
the wall 9D and define the Birkhoff coordinates), sin(c)) arounds= §,1, as shown in Figs. (4) and 4b).
as shown in Fig. 2, wheré is the curvilinear distance mea-  As §increases further, the hyperbolic periodic orbits men-
sured along the wall from the origifx to the collisional point  tioned above invade into the neighboring regions on the
B, and« is the angle between the inner normal and the orbitfPoincaresurface, ¢, < ¢< ¢, and ;< p<¢,, as shown in
reflected from the walbD. The Birkhoff coordinates defined Figs. 4a)—4(e). This invasion process induces the increase

1

sin(a)

0

(j) 6=0. 45 (k) §=0. 475 (1) 6§=0.

[ ]
(m) 6=0. 66 (n) 6=0. 76 (o) 6=0. 87 () 6=1. 0

FIG. 3. Poincaresurface of section for various values &f
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FIG. 5. (a) An unstable periodic orbit with a period of 4 bounc-
ing on the joints of the billiard wallP;(¢=¢;) at 6=
=0.4142135 ... . (b) A stable periodic orbit with a period of 4
bouncing on the same jointsPi(¢=¢;) at =5
=0.4514163... .

on the statistical properties of the corresponding quantum
system. These points will be discussed in Sec. Il C.
1 <. e When 6>0.76, the irregular regions are divided into two
= I ' or more components by many transversal invariant tori as
0 o [0) % 1 0 I [0) % 1 shown in FigsF.) &) and ?3/0) [20,y2]]. As S approaches 1, the
€ &6=0.451 <6, (f) 6=0.452 >4, number of chaotic components becomes infinite, because al-
most all transversal invariant tori remain stable in off-
FIG. 4. Poincaresurface of section near the bifurcation point resonant regions.
6=6.,=0.4514163 ... . Thesolid lines represent the joints of
the billiard wall P;(i=1, . . .,4).

C. Estimation of chaotic regions

of the second irregular components inside the two largest Here we provide a numerical method to estimate the area
islands, as shown in Figs(@—3(j). When § equals another of the irregular component on the Poincanerface of sec-

critical point é¢,, tion. In order to judge the regularity of the trajectory, the
rotation numbeRy is calculated numerically for each initial
4—\7 point,
Oc2= 3 =0.45141629..., (2.2 N
izl (6i41—6)
an elliptic periodic orbit, with a period of 4, bounces just on Ry = By N E— (2.3

the joints of the billiard wall as shown in Fig(5. Here one

can see a bifurcation where the elliptic periodic points sud-

denly disappear, and, simultaneously, hyperbolic periodiavhere 6; is the angle of thath iterated motion oriented
points collide with other elliptic points af(¢,sin(@))  anticlockwise from thex axis of the rectangular coordinate as
=(0.25,0) and(0.75, Q, as shown in Figs. (@) and 4f). shown in Fig. 6a), andN is the number of collisions. Figure
Thus another elliptic periodic point with a period of 2 is 6(b) shows that the value dRy converges more rapidly in
created. Around5=0.47, the second irregular componentsthe case of regular motions than in the case of irregular mo-
mentioned above disappear through the destruction of thetions. Let us define the regularity or the irregularity of the
outermost boundary surfacg®4], and as a result, the vol- trajectory by the convergence speed of the rotation number
ume of the regular regions increases again. The coexisten€d,. The convergence dR is characterized by the partial
of the different irregular regions causes remarkable effectsneanZy as follows:
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FIG. 7. Distribution functionP(Zsy) at 6=0.38. The vertical
05 axis represents the number of orbits initialized at the center of each

cell in the Poincareurface of section. The critericffy, is chosen
at the minimum point between the peaks.
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) N The ratio of the regular componengs and that of the ir-

regular onegp, are determined by
FIG. 6. (a) Definition of the rotation angled;. (b) Rotation

numberRy versusN for a regular and an irregular trajectomy.is Z5~ ¥~
the number of iterations. Jo P(Zy)dZy 50 P(Zy)dZy
N
_ = p=— . (29
|Rn— Rl f P(Zy)dZy f P(Zy)dZy
Iy=——, (2.4 0 0
|Rul

The value ofp, in the case oN=10" is shown in Figs. 11
where and 13.
Our numerical method shown in this section is quite dif-

N ferent from traditional ones which require calculation of the

2 Ri local Lyapounov exponents. Here, we will just give a nu-

R_N - ] (2.5y  merical evidence for the justification of our method. Figure
N 8(a) shows a plot of “irregular cells” on the Poincamar-

face of section which are determined by our method for the
Note that the value oZy converges to 0 whel goes to  case of §5=0.38 andN=500. One can easily see that our
|nf|n|ty It is clear that the value OZN converges to 0 more method works very We”' and it reproduces almost com-
rapidly in the case of regular trajectory than in the case Opletely the irregular region in Fig.(B).
irregular trajectory. Due to the symmetry of the surface of
section, it is sufficient to deal with the region defined by O
<a<=m/2, 0<¢=<1:. This region on the surface of section is
divided into 400 300 grid cells. An initial point is put at the  A. The energy level statistics and the Berry-Robnik formula

center of each cell. Figure 7 shows the distributR(Zsqq), In this section, the statistical properties of the quantum
of the partial mean&sq, at 6=0.38. There are two peaks in system corresponding to the oval billiard are investigated.
the distribution functiorP(Zs,, because it is a superposi- The energy levels are obtained by solving numerically the
tion of two independent distributions; one is very sharp andSchralinger-Helmholtz equation,

located near the origin af5oy, and the other is broad. The

former peak corresponds to the contributions of regular tra- 2 ZLE —

) . ; . - Vey(r)+ —- (r)=0, (3.0
jectories and the latter to those of irregular trajectories. Note h

that the distributiorP(Z,) always has two peaks. Therefore

the threshold valugs,, which gives the minimum oP(Z,),
enables us to classify the initial points into two parts as fol-
lows:

IIl. QUANTUM MECHANICS

under the Dirichlet boundary conditiof(r € D) =0. Here
f is the Plank constanE the eigenenergyn the mass of the
particle, andi(r) the corresponding eigenfunction. Equation
(3.1) is solved effectively by the boundary element method
[25,26.

Figure 9 showss dependence of the energy levels. As
) ) approaches 0 where the classical-mechanical system is
Z\>Zy=irregular trajectory. strongly chaotic, one can see a number of avoided crossings

Zy<Zg=regular trajectory,
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FIG. 8. (a) Poincareplots for the case&=0.38 andN=>500 reproduced by our method mentioned in Sec. lll C. Dark region stands for
“irregular cells” and white for “regular ones.”(b) Poincaresurface of section obtained by numerical plots #¢0.38.

(or level repulsions At =1 where the classical-mechanical Poincaresurface of sectionis decomposed into regular and
system is integrable, several accidental degeneracies occimregular components, and denote the total volume ratio of
The effect of level repulsions can be characterized by théhe regular components by, and the volume ratios of dis-
level-spacing distributionP(S) [1], where S denotes the connected chaotic components igy(i=2,3,4 . .. K). Per-
nearest level spacing. The energy levels are unfolded to figival conjectured that in the semiclassical limit, the energy
the mean spacing unity. Figure 10 shows the level-spacinggvels consist of regular and irregular parts having strongly
distribution P(S) for various values of. We deal with 2650 contrasting propertie27]. Berry and Robnik extended this
energy levels which belong to the even-even parity of theconjecture, and surmised that the sequence of the energy
eigenstates, but the lower 100 levels are omitted because tdvels of a mixed system is given by the superposition of
the semiclassical consideration. statistically independent sequences corresponding to the

When the shape of the billiard wall is a circlé<£1), classical phase-space components: the distributions of the
P(S) is well approximated by the Poisson distribution, i.e.,sequences corresponding to regular and irregular regions are,
Ppoissok S) =exp(—S). On the other hand, in the strongly cha-

otic case of the stadiums&E0), P(S) corresponds to the 1 o -1 = -1 5
Wigner distribution Pyigne( S) = 3 7Sexp(-7SY4). In the sall o - 5034
intermediate case QJ<1), the distributionP(S) exhibits 0s A=0.97 0s o oi=0.82
systematic deviations from those two distributions, as shown
in Figs. 1@a—10h). In what follows, the level-spacing dis-
tributions P(S) in the mixed systems will be analyzed in %5 D 0 5 Yo T o3 TS
accordance with the basic idea proposed by Berry and Rob 1 - -, i
nik [7]. @ C) @
Let us review briefly the distribution of the Berry-Robnik ) 6 =0.49
formula. Consider a system whose classical phase Space os £700
40
0 1 253 4 5
1
2%1_54E [€4]

P(s)
0.5

0o 1 2,3 4 35

30

0 01 02 03 04 05 06 0.7 08 09 1 FIG. 10. Numerical results of the level-spacing distribution
S P(S) for various values ofs. In each case, 2550 level spacings
which belong to even-even parity are used and the best-fitting curve
FIG. 9. Some levels of the eigenenerdyis area of inner do- of the Berry-Robnik formuldEg. (3.3)] is shown by the solid line
main in the oval billiards. with parametep .
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respectively, the Poisson and Wigner distributi¢@ig The w% - y ;
statistical independence of each subsequence in the semicla 44| #q% T
. . : . . - %Mﬁ Q-+
sical limit is justified bythe principle of uniform semiclassi- }@g}% A%
cal condensation of eigenstateato each component of the o8y ﬂ’%
classical phase space and by the lack of their mutual overlay o7 b
[14,28,18,1% Thus one can obtain the Berry-Robnik for- |
mula which describes the level-spacing distribution for 0 06 i H;h
0 %ﬁﬁ%ﬂﬂﬁ#*HWHHHH%
PRY(p1,p2s - - - pK:S) o4 H%
& K \/_ 03} 1
a
=9 exp(—pls)i];[ erfc(TpiS) , 02t 8,
01 S,
(3.2 _ . L _ . .
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
where 0

erfo(x) = \/i_ fm exp( —t?)dt.
v X

Many numerical tests of the Berry-Robnik formula have

FIG. 11. Comparison betwegn andpJ for the whole region of
the parameter values of. The error bars indicate the statistical
fluctuations due to the finite size effect of ensembles.

very nice agreement is obtained near the completely irregular

been done for mixed systems having only one irregular COMfmit 5=0. However, a remarkable difference appears at

ponent(i.e., K=2) [14]. In particular, Prosen and Robnik
[10] and Prosef18] have numerically shown the validity of

the Berry-Robnik formula in an extremely deep semiclassica

=g, (0.41< 6=<0.47). Here we have to remember that the
lassical-mechanical system exhibits very complicated bifur-
ations in the same parameter regime as shown in Fifjs: 3

limit using a large number of energy levels. However, only a30) and 4a)—4(f). The reason for this disagreement should

few attempts have been made thus far with the mixed sy
tems having many chaotic componenks=3) [11].

B. The effect of bifurcations on level-spacing distributions

e explained by using the general form of E§.2) instead

of that of Eq.(3.3). Indeed, it will be shown in the next
section that the dip structure pff shown in Fig. 11 comes
from the effects of the bifurcations in the classical-

When there exists only a single chaotic component in thénechanical system.

classical phase space, E8.2) is rewritten into

au
ps effC( \/2——p25)

o aa
2p1pot EPSS) exl{ - ZP%SZ) }

Pﬁiz(Pl,Pzis):

+

X exp(—p19), 3.3
wherep;+ p,=1. Here we us@®g- ,(p1,p,;S) as the mea-
sure for the effect of bifurcations on the level-spacing distri-
butions. PER ,(p1,p2;S) approximates very well the level-
spacing distribution of the mixed system even if the chaoti

components are multiple. Figure 10 gives the best-fit curvey

of the level-spacing distributio(S) by the Berry-Robnik
formula of Eq.(3.3), where the parameter] is determined
by the least squares method for the cumulative level-spacin
distributionW(S) = [5P(S')dS'. Figure 11 showsp] versus
6. 2550 level spacings are used for each valué, aind 3500
level spacings are used near the bifurcation point €.41
<0.48. Notably, there exists a sudden decreagsf @round
the bifurcation points,,, where two chaotic components
coexist in the phase space.

It is also important that the values pf aroundé., are
not equal top, values, which are the ratios of chaotic com-
ponents and are determined only by the classical-mechanic

C

Furthermore, the disagreement @f and p3 is also ob-
served near the integrable limfi=1 as shown in Fig. 11.
The same disagreement has also been pointed out in several
previous paper§8,15]. From the viewpoint of classical me-
chanics in the neighborhood of the completely integrable
limit 6=1, there appear a number of Kol’'mogorov-Arnol'd-
Moser (KAM) tori which divide the irregular regions into
many pieces, as shown in Figgngand 30) [20,21]. Here
we have to use the general form of H§.2) with K—oo.
Remarkable changes pf are expected to appear near each
of the division points§=0.76,0.85... . However, the ef-
fects of these divisions opJ are not observed clearly in our
numerical calculations. This is because one can never obtain
nough condensation of the eigenstates in the neighborhood
f sina==+1 in the low energy regiof29]. In the present
paper, our main concerns will be the bifurcationsat d..,,
where at least two disjoint irregular components contribute
B the Berry-Robnik formulak =3).

e

C. The Berry-Robnik formula for two chaotic components

As shown in Fig. 11, a remarkable difference appears be-
tween p, and p3 near 5= ., where bifurcations are ob-
served in the classical-mechanical systems. The bifurcations
induce the growth of the second irregular component inside
the two largest islands as shown in Fig$f)33(j). Let us
abnsider the Berry-Robnik formula in the form of

information as we explained in Sec. II. Figure 11 comparePER 5(p¥ ,p3 ,p% ;S) rather tharPE" ,(p1,p,;S), wherep*

valuespd and p, for various values of5. One can see that

(i=1,2,3) is the ratio of the component defined on the
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0.5 0.5 Q Y E .,
g
Q'
_ 04
%12 3 45 Y1323 43 03
(2) S (b) S
0.2 )
FIG. 12. (a) P(S) is numerical result of the level-spacing distri- 0.1 G Te
bution at6=0.445 obtained by 3500 energy leveg" ,(p1,p2;S)

and PER 5(p¥ ,p3 ,p% ;S) are the Berry-Robnik formulas obtained 0 03603 04 0204 046 080512 036 035 04 042044 046 048 05032

from the classical-mechanical systemp;€0.3, p,=p3+p3 6 b 6

=0.70; p¥=0.30, p%=0.468, p5 =0.232) (b) Comparison be- @ (b)

tween P2 ,(51,52;S) and PEiz(_Pg 03:S) at (p;=0.481, 7, FIG. 13. (a) Comparison betweep, andpJ near the bifurcation

=0.519: p]=0.505,p3=0.495 which are obtained from the least point 5= 5,,. 3500 level spacings are used for each valughf

squares method E¢3.4). P(S) is also plotted. (b) Comparison betweeh, andp§, and betweep? andp} in the
same parameter range.

Poincaresurface of section, and satisfig§ =p, and p}

+p3 =p,. The argumenpj is the volume ratio of the sec- data of level-spacind®(S) in a wide parameter region. In

ond irregular component, and its behavior around the bifurether words, the numerical result exhibits the following:

cation point is shown in Fig. 1B). It should be noted that

the sudden decrease pf at §=4., agrees well with the

increase of the second irregular component induced by the

bifur'cation. . It is noteworthy that the renormalized parametgyscom-
Figure 12a) shows the numerical data of the level- el gescribe the quantum-mechanical aspects induced by
spacing distributionP(S) at 6=0.445. The Berry-Robnik e pifurcations in classical-mechanical systems.
formulasPy = ,(p1.p2;S) andPyZs(p7 ,p3 .p3 ;S) are also In the next section, the idea mentioned above will be ex-
plotted in the same figure. It is quite surprising that the NnUyended, and it will be shown that the classical-mechanical

meritcal reslultt Iof tgg I(tavgléspte;]cint distgbttj)ti(flz(fS) is IaI— " parame‘gers ’G ok pgl) can be derived from. the quantum_
most completely adjusted by the berry-obnik formula With yechanical information of the level-spacing distribution
K=3. This implies that the Berry-Robnik formula approxi- P(9).

mates the numerical data of the level-spacing distribution
very closely, provided that many irregular components are
taken precisely into account. Indeed, the detailed information
of the classical-mechanical systems enables us to explain the
sudden change of the parameterpff at 6= 5, . Let us consider the parameter region néars.,, where

Now we discuss the behavior pf . Let us consider the three characteristic parameteys, (p,,p3) play an essential
following least squares method, which gives the approxifole in  describing the Berry-Robnik  formula
mated valueg! by using only classical-mechanical informa- PEFig(pl 'P3,03) (E?zlpi =1). It is well known that the pa-
tion. The modified parametg; is obtained from the renor- rametersp{! agree well with the classical ongs in the case
malization process as follows: of K=2 [8-10,15,1T. However, relevant parameters in the
case ofK=3 have not yet been checked numerically. We
show that the quantum-mechanical information embedded in
the energy level statistics enables us to determine the classi-
cal parametep; (i=1,2,3). Here we derive the classical
parameterp® from the quantum-mechanical data of the
level-spacing distributioP(S).

We define the functioh(y,,Y»,Y3),

pi(8)=pi(8) (i=1.2. (3.9

D. The guantum-classical correspondence
of the Berry-Robnik parameters

bi=xi( fo PR 2(X1,%2:S)
—PER.(p¥ .p% p% :S)|2dS=minimum|, (3.4)

where x; +X,=1, andp;’s are their extremum solutions .
(p1+Pp2,=1) subordinated to classical-mechanical informa- :f _ pBR .qy[2

tion (p* ,p% ,p%). Figure 12b) shows that the parametgs$ 'Y1¥z Ys) 0 IP(S)=P=aly1.y2,y3:9)"dS

with K=2 are well reproduced b¥,’s, where the volume (3.6
ratios of three components] ,p3 ,p3) are renormalized

into two parametersiy ,p,). Figures 183) and 13b) exhibit ~ where=>_,y;=1. The minimum ofl (y;,y,,ys) determines
that the renormalized Berry-Robnik formula with=2, i.e.,  the best-fitting parameterg (i=1,2,3) in the Berry-Robnik
PER,(p1.P2;S), well approximates the quantum-mechanicalformula PER 5(y1,Y5,Y3), i-€.,
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I(y.y,.y,) 1 (a)

0.14
0.12

FIG. 14. Global aspect of the functioh(y,,y,,y3) at &
=0.445. The classical parametepi(=0.30, p3 =0.232 is ob-
served in the narrow region minimizing the functibfy,,y,,ys)-

|(Piapé1Pé)=minyi|(y1'YZuy3)- (37)

Figure 14 reveals the global behaviorsl ¢§,,y»,y3) on the
two-dimensional plane y,y;), where the value of
I(y1,Y2,Y3) is shown by contour lines with gray scales.
Though those minimum points (i=1,2,3) which are de-
fined by Eq.(3.7) and obtained numerically are fluctuating
because of the finiteness in numerical dat#® (%), one can
estimate the probable values gf's within the narrow band
in two-dimensional spacey(,ys3). It is impossible to deter-
mine p; (i=1,2,3) without a large number of energy levels.
The striking point is that the classical-mechanical quantity
pi¥ is well approximated by the value of ,

pi=p; . (3.9

The method based on EgR8.6) and (3.7) enables us to
obtain the classical parametgr$ in principle, since the for-
mula PER 5(y1,Y»,Y3) is unique at each point on the two-
dimensional §,,y3) plane. Figure 1®) shows values op;
determined from the minimum point &fp7 ,y,,y3) on.

IV. SUMMARY AND DISCUSSIONS

In the present paper, by using oval billiards, we elucidated
the effect of bifurcations in classical-mechanical systems on
the statistics of the energy levels. We have shown that the
Berry-Robnik distribution for one chaotic component ap-
proximates very well the nearest level-spacing distribution of
a quantum oval billiards, and hence the two parameters are
determined numerically. Thus we used the Berry-Robnik pa-
rameter as the measure of the effect of bifurcations on the

nearest level-spacing distributions in oval billiards. The g 15. (a) and(b) are the contour plots of the Husimi function

Berry-Rob_nik parameter suddenly decreased just at the inf&n(qs,sina) for typical eigenstates(a) AV%,=238.19 and(b)
of bifurcation. We have also shown that the Berry-Robnikal2 —238.24, wherek,=(2mE,)Y¥# andA is area of the bil-

formula works very well when the number of chaotic com- jiard] at §=0.39. Each localizes in regular and irregular component
ponents is taken precisely into consideration, and especiallygspectively(c) and(d) are the contour plots of the Husimi function
in the case of two chaotic components. Therefore, wep,(¢,sine) for typical eigenstateg(c) A¥%,=132.51 and(d)
checked, using numerical calculations, the conjectures proa%,=131.85 at 5=0.44. Each localizes in the second or in the
posed by Perciva]27] and Berry and Robnik7] in more  first irregular component, respectively. The Husimi function is
than one chaotic component. It should be noted that one castaled to satisfy the normalization conditiggd¢[*,dlo,(¢,!)
detect the occurrence of bifurcation in the classical-=1.
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mechanical systems from the level-spacing distributions of/erified the validity of the Percival conjectuf@7]. Using
the corresponding quantum systems. Our findings in this pahe presence of the mechanical quasidegeneracy, they sepa-
per are all based on the numerical calculations, but theated the energy levels into regular and irregular subclasses.
guantum-classical correspondence in the level-spacing distrdacquod and Amief13], Li and Robnik[19], and Prosen
bution is completely satisfied in a wide parameter regior{18] also separated the energy levels into regular and irregu-
with complex bifurcations. lar subclasses, and analyzed substatistics for each class in
In this paper, we dealt with the energy levets order to check the Berry-Robnik conjectur&3]. Further-
=400, . ..,14 400 focalculation of the level-spacing distri- more, Prosen and Robn{k0,14 and Carlo, Vergini, and
butions around the bifurcation point 04¥$<0.48, and Fendrik[17] estimated the semiclassical convergence of the
hence the effective Planck constants ahgz=1/Jn level-spacing distributions to the Berry-Robnik formula by
=0.0083 . . . ,0.050[16], whereA is area of the billiard and precisely using a large number of energy levels in an ex-
E, is thenth eigenenergy. Quantum mechanics describes thiemely deep semiclassical regime. In this paper, we have
structures beyond the scatey of the classical phase space. shown that the Berry-Robnik formula works very well, even
In particular, the approximate size of the second chaotidn the case of two chaotic components, and follows the de-
component f3;=0.25 at the bifurcation poin=35,,) is tailed structure of complex bifurcations in classical-
larger than the effective Planck constapt® hey), so that ~mechanical systems.
one can expect to observe the localization of wave functions The studies of the level statistics in nonlinear systems
in the second chaotic component over in the neighborhood dave been provided in another context in terms of the Brody
the bifurcation point, which will reflect to the third argument distribution[6,30]. Terasaka and Matsushita studied the level
p% in the Berry-Robnik formula. Here, let us introduce the Statistics for one parameter family of coupled Morse-
phase-space representation of eigenstates by the Husi@$cillator systems, and found that the Brody parameter re-
function. We have employed the formalism of the Husimi veals oscﬂlato_ry c_hanges in a wide parameter region. How-
function for the Birkhoff coordinatesd,sina) defined in  €ver, the oscillations were smooth, and hence no sudden
[29,30. Figures 1%a) and 15b) show contour plots of the change occurred in the Brody parameter. By using the Berry-
Husimi functionse,(,sine) for two typical eigenstates in Robnik formula for one chaotic component, we found the
the cases=0.39. One can see that each eigenstate clear|§t”k'”9 effect of bifurcations correspon_ded to the sudden
localizes either in a regular region or an irregular one befor&h@nge of the values of the Berry-Robnik parameter. In ad-
the second chaotic region appead<(s.;). On the other d|t|or_1, Prosen has_shown that the Berry-Ro.bnlk fprmula ap-
hand, Figures 1) and 13d) show the contour plots of the proximates numerical data in the far semiclassical regime
Husimi functions ats=0.44, where the second chaotic re- better than .the Brody .distribution dogs8]. Therefore, the
gion exists. Figure 1) reveals the eigenstate which local- BerMy-Robnik formula is an adequate measure for the effect
izes in the second chaotic component, and another localiz&' the bifurcations in the semiclassical regime.
tion in the first chaotic component is shown in Fig.(d)5
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