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Robust method for periodicity detection and characterization of irregular cyclical series
in terms of embedded periodic components
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A method for periodicity detection is proposed where unlike available methods a periodic component is
characterized in terms of three bageriodicity attributes the periodicity (or period length, the periodic
pattern, and the scaling factors associated with the successive nearly repetitive segments. A scheme is proposed
for subsequent successive detection and extraction of §udten periodic or nearly periodic components
constituting an irregular cyclical series. To our knowledge, the proposed decomposition is much more powerful
in terms of information content and robustness than the presently available tools based on Fourier decompo-
sition. Through the analysis of a variety of natural, experimental, and simulated data series, it is shown that the
features of the periodicity attributes of the embedded periodic components can lead to a meaningful charac-
terization of an irregular series in a new perspecti$1063-651X99)00404-3

PACS numbd(s): 05.45—-a

[. INTRODUCTION ers(e.g., EEQG there is usually no repetitive pattern. Analysts
have shown that some irregular cyclical series are composed
Any periodic or nearly periodic serig¢tke electrocardio- of a number of componentg.g., the yearly sunspot number
gram(ECG) [1,2]] can be precisely defined in terms of three series has been shown to comprise two components or three
basic features aperiodicity attributes namely,the periodic- ~ component$13—14)). In some cases, the decomposition of a
ity (or period length, the patternover the successive repeti- Series into components can be directly meaningful. For ex-
tive segments, anthe scaling factorsassociated with the ample, from the composite ECG signal obtained from the
repetitive pattern segments. A real life irregular series mayjadominal lead of an expectant mother both fetal ECG and
comprise a number of such components. Conventional andf@térnal ECG components can be obtaifi&}l here, since

lytical tools[3] based on the Fourier model can provide de-the two components have overlapping frequency bands, con-

composition of an irregular series into sinusoidal Comloo_vent|onal Fourier decomposition cannot be applied for sepa-

nents with constant scaling only for each repetitive segmen{,]a;;zri]g?]fatlwo nearly periodic components from a single chan-

and hence lack in meaningfulness as far as individual nonsi- Thus for a cyclical series, the basic characteristics that

nusoidal components of a rea! Iife_ series are corlcerned. Th§and out are that the signals are bounded in magnitude; the
paper seeks 'to make a contribution by proposing a r_netho&/clicity shown may be regular, or may be irregular where
for the detection and 'subsequent separapon of periodic COMRAe degree of irregularity can vary. Forsarictly periodic
ponents embedded in an irregular series, where the indisgrieg(which may or may not be sinusoidiall three peri-
vidual componentsnay not be sinusoidaind the repetitive  qgicity attributes remain unchanged. In case of a real life
successive segments may be scaled differently; the charagyclical seriesie.g., ECG, far infrared ammonia laser inten-
teristic features or periodicity attributes of the componentssjty), all three attributes may vary to some extent, where the
are shown to provide a platform for the characterization ofhature of variation may relate to the characteristics of the
irregular cyclical series. underlying procesEl5]); we use the broad term “nearly pe-
The motivation for the proposed paper is basic and vast agodic” for such processes. Thus, an irregular cyclical series
follows. Bounded yet cyclical processes are ubiquitous incan belong to three broad categoriéssseries which can be
nature as well as in man-made systems, e.g., EC#H and  decomposed into a number of sinusoidal or nonsinusoidal
electroencephalogratEEG) [4] signals, the white blood cell constituents(e.g., the sunspot serjegii) series that show
count in a patient of leukaemi®], the childhood epidemic only one periodic component, whose periodicity attributes
phenomenori6], the oscillation in global temperature time may remain stationary only locally but may vary globally
series[7], the solar activity as reflected in sunspot numberge.g., the far infraredFIR) laser series (iii ) series that con-
[8], the mass extinction activit}9], the intensity of a vari- tain no periodic components that are at least locally stable
able dwarf staf10], the light intensity pulsations of laser (e.g., heart rate variability series for healthy subjét]).
[11], the electrical power load pattern in urban argh3|, The constraint in analyzing such irregular cyclical series
etc. In many casedike ECG), the signals are nearly periodic through conventional techniqug3] (such as power spectral
with characteristic nearly repetitive patterns, whereas in othdensity, periodogram etds that it is assumed that the series
can be decomposed into multiple components, where only
sinusoidal pattern is permissible for each component and the

*Electronic address: ppk@ece.iitkgp.ernet.in successive periodic segments of each component cannot be
"Present address: Max Planck Inst. Fur Komplex System, Dresscaled differently. As a result, the decomposed components
den D01187, Germany. lack physical significance. Again, the cyclic theory of chaos
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[17] offers different approaches for the detection of periodicSVD provides the orthonormal basis of the range and the
orbits, where periodicity in terms of repeating occurrences ofiull space of the matrixA,. The columns of U
points are detected; in the case of chaotic processes, su¢k[u;,Uy,...,uy]) (i.e., the left singular vectoyscorre-
periodic orbits are found to be unstable. Here also the availsponding to nonzero diagonal elementsSaépan the range,
able insight into the nature of the individual componentsand the columns o¥ (=[vy,v,,...,v,]) (i.e., the right sin-
constituting the irregular cyclical series is limited. gular vectors corresponding to zero diagonal elementsSof

The basic questions that need addressing (@ecan un- ~ are an orthonormal basis of the null spaceAgf. The num-
known periodic or nearly periodic components constitutingP€r of nonzero singular values;J gives the rank oA, .
an irregular series be detected and extracted, where the com- In the present context, SVD offers some unique advan-
ponents can be nonsinusoidal and may have overlapping fré2g€s in connection with the assessment of embedded peri-
quency bands, anth) can the periodicity attributes of the °diCity in {x(K)}, as follows. _ _ _
single or multiple components detected offer newer under- (1) For astrictly periodic{x(k)} with period lengthN, i.e.,
standing in terms of the characterization of the underlying‘(K) =*(k*+N), A, will be a strictly rank one matrix if row
process? This paper attempts to address these issues. engthn=N. Here,s, is nonzero bus,=...=5,=0; s,/s,

=o. The vectorv, represents th@eriodic patternof the

_The_ proposed method of penodl(_: d_epomposmon IS de'signal normalized to a unit vector. The successive elements
tailed in Sec. Il. The concept of periodicity spectror p

spectrunh is introduced, and it is shown hoprspectrum can of the vectoru;s, represent thamplitude scaling factorsf
bp d to detect th ' ¢ ! %’ P ¢ hi uccessive pattern segmerts(k)} being perfectly periodic,
e used to detect the presence of a periodic component hig=. o 1aments ofi;s, will all be the same.

d_en in any datq series. The pr_ocedure f_or successive detgc— (ii) If {x(k)} is nearly periodicwith fixed period lengtiN

tion and extraction of the constituent periodic components ig) ¢ x(K) #x(k+N), two possibilities may arise@) {x(k)}
discussed. A corollary to the above procedure iSltig)- K35 same repeating pattern of lenddhbut with different
term predictionof the composite series through the periodic scajing over different periods. Still rank()=1 ands, /s,
prediction of individual component series. The proposed de=c; v, represents the pattern but the elements;sf now
composition scheme is based on singular value decomposjary according to the scaling associated with the rowa of
tion (SVD), a robust algebraic tool, which has been widelywe use the term “periodic” to include such phenomenon
used for solving least-squares estimation probl¢t®19,  also.(b) {x(k)} has nearly repeating patterns with different
for modeling and predictiof20—23. The results are detailed scaling factors over successive segments. The mAfizan

in Secs. Il and 1V. Section Il demonstrates the superioritynow be a full rank matrix but witls; much larger compared
of the proposed method against Fourier decompositionto the rest of the singular values, i.6;,/s,>1.

Since Fourier decomposition provides only a partial picture Remarks.(1) A dominant first singular value for anm

of the underlying process because of the inherent limitationk n matrix A, is indicative of the presence of a strong peri-
of each component being sinusoidal with constant scalingdic componentof period lengthn) in {x(k)}, given by the
throughout, a direct comparison is not possible; however, itows ofulsle. (2) SVD is the most robust null-space de-
is shown how Fourier decomposition can be misleading evetector of a matrix compared to other eigen decompositions
for periodicity detection, when noise and signal bandwidthg22]; it is numerically well conditioned and can be computed
overlap or when the constituent periodic components havi a numerically stable way. The efficiency of SVD in noise
overlapping frequency bands, whereas fhapectrum re- separation and in estimating embedding dimension is well
mains relatively unaffected. In Sec. IV, the potential in theestablished23]. (3) The present configuration of the data
proposed method for providing a platform for characterizingmatrix (1) is different from the conventional form of the
irregular cyclical series is demonstrated through four exirajectory matrix formed of lag vectors or staf@8], where
amples:(1) the natural series of sunspot numbe(®), the  all the stategin sufficient embedding dimensional spaeee
experimental series of FIR-ammonia laser intensity pulsaeonsidered, whereas only the states, whichraeequences
tions, and(3) the simulated chaotic series of the Mackey-apart from each other, are considered in Ep, with no
Glass equation an@) the logistic map process. overlapping of data elements across the rows of the matrix.

Il. THE PROPOSED METHOD B. The proposed method of periodicity detection

{x(k)} is configured intomXn matrix A, with varying
. ] ) i row lengthn and SVD ofA,, is performed. The spectrum of
Let the serie{x(k)} be configured into amxn matrix  the ratio of first two singular values /s, vs. row length(n)
An: is called theperiodicity spectrumor “p spectrum” [24],
which will show repetitive peaks at=iN (wherei is a

A. Data configuration and singular value decomposition

[ (1) X(2) o X(n) positive integey, if there is any embedded periodic compo-
x(n+1) x(n+2) -+ x(2n) nent of periodicityN in {x(k)}, and this serves as periodicity
A= : : : : 0 detection.

Here, the repetitive peaks in tipespectrum are formed at
. . . . n=iN as the presence of a periodic component of periodicity
L x((M—1)n+1) . o x(mn) N tends to increase the closeness to rank oneness, of
(when configured am=iN), which is reflected in the in-
SVD [18-21] of A,, producesA,=USV', whereU andV crease in the value & and decrease in the valuesf. The
are orthogonal matricesJUT=UTU=1, VWT=VTV=I; S  p spectrum is detrended for improving the readability of the
=diag;,s,,.--5 :0), r=min(mn) ands;=s,=...5,=0. The  peaks[25].
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Remarks.(i) {x(k)} has to be at leastM long for the elements of the pattern of the first componeni(k,) are
periodicity of lengthN to be detectable using theespectrum, elements of the pattern of the second component,
as at least two peaks.e., atn=N andn=2N) are neces- [Vl(l),...,Vl(Nl)]:VI, the first right singular vector of
sary. (i) The absence.of a set of repetitive pea.ks .in phe data matrixAy, [v5(1),....v2(Ny)]=V], the first right sin-
spectrum ofix(k);} confirms the absence of a periodic com- g ,jar vector of data matriAy, generated fromix,(k)} and
ponent in the seriegiii ) Many ramifications of the proposed . 2=, . S

{gli v41(kq)} is a component series with periodicily; ; the

periodic detection scheme are possible, for example, the da ! s of th a5 haveNt it
may be nonlinearly transformed prior to periodicity detec_sgccesswe segments of the series haveNiwong pattern

tion; the appropriateness of the transformation may be as/i: Which are scaled bgy;,9:5, etc.
sessed through the improvements in the sharpness of the
peaks in thep spectrum.(iv) For automated detection of E. Long-term prediction

periodicity, any suitable index(n) may be defined ex-

pressed as a function of the strengthssefs, at jn roW ;o mponents is performed. The overall prediction is obtained
lengths, wherg is a positive integetsee, for exampld26]). 1, a4ding up the predicted components. For any periodic

(v) The computational load for the proposed method is ex'series,g(k+i|k), thei step ahead prediction ¢g(k)?, will

pected to be moderate. It is not necessary to compute ﬂ]gad toi period ahead predictiog(k+i|k)v}, with the as-

completg S.VD‘ Computation of singular values for an sumption that patteriv; remains unchanged over the pre-
Xn matrix involves 4nn-4m?/3 flop counts{18]. dicted horizon(the suffixes as in Eq(2) are omitted for
_ ) o clarity). The modeling is performed as follows) First con-
C. Successive extraction of periodic components sider the linear model for the scaling factor series for one
Following the detection of a periodic or nearly periodic component:
componeniof periodicity N), {x(k)} is configured intdA,,,
(with n=N), for extraction of{the ci)ncerned period. The best g(k)=ag(k—1)+axg(k—=2)+---+ag(k—r). (3
rank-1 approximation of\y in least square¢LS) sense is
given byu;s,v; [18-19. Here[27], v, represents the pat- i g ~E 203
tern over the periodic segments of the extracted componefCdified QR with column pivoting factorization rf-QRe,
of periodicity N; the successive elements of the veaigs, actorization[28]), with minimum C,, statistic[29], as ex-

(which is modeled as the seriég(k)} as in Sec. Il & will plained in the Appendix(ii) From the selected; variables,

give the scaling factors for the successive periodic segment§’9uare and bilinear variables are generd&al; it is ex-

The time series defined hys,v!, being periodic with pe- pecteq t.hat incorporation of the_se addltlpnal variables in the
riod lengthN, is the LS estimation of the periogic component gﬁfecgép(tff))r}r?fE\aar('%blﬁm ?ﬁ;%\%t?h??n%ré%'{zﬁsg_?ﬁg ;fr?zrall
present m{x(k)} having m$X|mum energyz(gl). . set of variables are determined usimgQR;, factorization,
The matrix[ An—(uyS1v4)] can be made into a residual i inimum C,, statistic, and thus an optimal linear in the

series{x,(k)}. The p spectrum of{x,(k)} will show the o2 eter but nonlinear in the variables model is developed.
presence of additional dominant periodic comporigeny), gv) The parameters of the model are estimated using the LS
wh|ch. can be extracted the same way as above, and the pr Stimation, andy(k+i|k) predictions are produceév) The
cess is repeated. The extraction stops whenptseectrum

- individual predicted components are added up to give the
does not show any repetitive peaks. overall prediction31]

Thus the method leads to periodic decomposition through Remark The unique advantage of the proposed approach
the successive extraction of periodic components from th%f

s T N ' . modeling and prediction is that the conventiomadtep
original series; an individual component has fixed periodyeaq predictiofg(k+i|k), etc} is renderedN step ahead
length and periodic pattern, which is not necessarily sinu '

. prediction.
soidal. P

For an irregular series, if no globally stable periodicity is _ _ o _
detectable through thp spectrum, presence of periodicity F. Detection and extraction of periodic component using

The long-term prediction of each of the extracted periodic

The best set of; (<r) lagged variables is selected using

over shorter local data segments may be detected using a moving data window
moving data window as discussed in Sec Il F. In Secs. 1B and Il C the detection and the extraction of
the periodic componef®) was assumed to be over the entire
D. The final model data set. But for nonstationary data series, the periodicity

attributes are dynamic in nature, and all three periodicity

attributes may vary throughout the process. To accommodate

such nonstationarity, a moving data window is considered as
{x(K}={guvak)}+{gzva(ko)}+-, (2)  follows. The data seriefx(k)} is divided into overlapping

data segments, referred to as data windows, as shown in Fig.

wherei is the period index of first componeijtis the period 1. Here,m=a parameter determining the length of one win-

index of second componerk;=1,...N;, whereN; is the  dow, N;=the periodicity in the first data window, ard,

periodicity of first component,=1,...N,, whereN, is the  =the periodicity in the second data window, etc.

periodicity of second componenyy; is the scaling factor for In general, ifN;=the periodicity in theth data window,

1st component irth periodic segmenty,; is the scaling then the length of theit1)th data window ismN;. Two

factor for 2nd component ifth periodic segmeni;;(k;) are  data windows(say, ith and (+1)th thus overlap over

A data series{x(k)} with multiple components can be
modeled as
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FIG. 1. The schematic diagram of the moving data window. reauency period ength
There are two variations of this algorithrti) moving data window 1 ‘ i ‘ . : B ‘ ‘
with fixed period, andii) moving data window with varying peri- o5l ]
ods. In the former case, the periodicity is globally stable but the 5 F/JM\M\/\/\“/J\/
pattern and the scaling factors associated with each window cary ° ° ' 1® 20 2 %0340 45 %0
vary. In the latter casey spectrum is performed for each data win- :é o4
dow; all three periodicity attributes can vary over the total data set. é o 27“
(m-1)N; data points. In each data winddgay,jth window), % s 10 15 20 25 a0 3 40 45 50
dominant periodicity(say, N;) is detected through the period length
spectrum and the periodic component associated with the _
detected periodicity is determined; only the first period FIG. 2. (a) FFT of the sunspot seri¢d700-1988 (b) p spec-

lengthN;) from this periodic series is extracted, and this part'um of the same seriet;) FFT of the colored noise generated)
of the series is truncated. The whole procedure is repeaterSpeCtrum of the colored noise sign@) FFT of the contaminated
for the next data window. The obtained extracted period%unSpOt series where the strongest peak is different from that of Fig.
from the successive data windows are stitched together 3.2 (f) P spectrum of the contaminated sunspot series, showing the
form the entire estimated component. This estimated com (?nme periodicity of 11 yeardg) the periodicity index profilé (n)
. " d of g'ff : havi dpf or the original sunspot seridglerived from thep spectrum[26)),

nent is ac;ua_y composed o '_ erent segments having . : ‘and(h) for the contaminated sunspot series; in both cases, the stron-
ferent per|od|_C|ty, as well as different pattgrn and sc.allnggest peak is at 11.
factors associated with the pattern. The estimated series can
resemble one being generated by an oscillatoperiodicity ) ) o )
generato)' with time_varying per|0d|c|ty attributes. years[13,14]. The features of this series are studied in detail

For some processes, the periodicily) may be globally in Sec. IVA. Thep spectrum for the sunspot seriesver
stable, while the associated pattern can vary. This is a special00 to 1938 in Fig. 4@ shows repetitive peaks ah{)

case, wherdN;=N,=...=N;=...=N, and may be termed integer multiples of 11, validating the presence of the most
asmoving window with fixed periodicity dominant component of periodicity of 11 years.
In this paper, we usm=>5, unless otherwise stated, which  Again, as detailed in Sec. IV C 2, the one-dimensional lo-
is not a limitation. gistic map[32] x(k+1)=rx(k)(1—x(k)), which is usually
a chaotic process, exhibits stable periodicity for specific val-
lll. COMPARATIVE PERFORMANCE ASSESSMENT ues ofr within 3 and 3.57. The spectrum Figs. 13a) and
AGAINST FOURIER DECOMPOSITION 13(b)] show distinct periodicity of 32 for =3.5687, and

lQeriodicity of 2 forr=3.6786; the series of distinctly repeti-

As argued in Sec. |, the fundamental difference betwee kS | trumunlike th t casemplies th
the proposed method of periodicity detection and the Fourie?ve PEAKS Irp Spectrumuniike the SUnSpot casaplies the
presence of onlypne prime periodic component.

decomposition based approaches is that while the latter i
confined to components with sinusoidal patterns and constant
scaling for the successive repetitive segments, the former B. Study with white noise contamination
does not have any such restriction, and hence may be con- The sunspot series is reconsidered here with noise con-
sidered to provide a generalized decomposition. In this s€Gymination. The strongest peak in fast Fourier transform
tion, first the results withp spectrum are discussed. Next, (FFT) also shows the most dominant peak corresponding to
through some simulation studies, it is shown how Fouriefye prime periodicity{Fig. 2a)]. However, when contami-
decomposition may lead to erroneous conclusions. nated by white noise, beyond 220% noise contamination
(with respect to the signal in terms of energlFT fails to
correctly detect this periodicity, whereas thepectrum can
The yearly averaged sunspot series is widely known tovithstand up to 300% contamination and yet detect 11 years
contain a dominant periodic component of periodicity of 11as the prime periodicity.

A. The p spectrum of some processes
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FIG. 3. (a) and(b) The pattern
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C. Study with colored noise contamination the periodicity indexX26] profile shown in Figs. @)—2(h).

If colored noise has a strong peak at a frequency different® The sunspot series is contaminated with a noise signal
than that due to the embedded periodic component in thgiven by[33]
signal, the strongest colored noise frequency is picked up by _ 0.25 2050 i pL2/D4
FFT as the prime component, whereas fhepectrum re- 7(k) =870 alm)==expak®/2-+ | pT2+ jwk),
mains unaffected as followsa) The sunspot series is con- where = 0.000005,8=0.00035,w=101, andj=/(—1).

taminategl by- band-pass filtered white noise. First, the whitehis series has an overlapping frequency band with that of
noise series is passed through a low-pass filer-p1)/(1  the sunspot series. FFT fails to show 11 years as the prime
—pP1q )] with single polep, at 0.8; the output of the filter ,eriggicity in the contaminated data for11.45% noise,

is subtracted from the original series. The resulting series i§nereas the spectrum can still show 11 years as the prime
passed through a filter with a pofg, at 0.2. FFT of this periodicity.

colored noise shows a peak at frequency of{BR). 2(c)],
while the sunspot series has the prime peak gtF9g. 2(@)]
(i.e., corresponding to a periodicity of 1024/460.91).
With 239% of this colored noise, FF[Fig. 2(e)] of the Two periodic components of periodicity 18 and 17 having
composite signal shows 1gears as the most dominant pe- close patterns are generafédgs. 3a)—3(b)]; the scaling of
riodicity (as the peak is at 88n the contaminated sunspot the repetitive segments of the former is contaminated by
series. The spectrum of the sunspot series, the noise signalnoise elements derived from the Henon map pro¢8d$

and the contaminated sunspot series are shown in Figs. 2 and the two series of periodicities 18 and 17 are added to-
2(d), and 2f), respectively, wherg spectrum still shows 11 gether, where the former is 4 times stronger than the other.
years as the prime periodicity irrespective of the contaminaThe FFT of the composite seri¢Big. 3(c)] is misleading,
tion, which is also confirmed by the strongest peak at 11 irand no clear picture emerges from the FFT about the actual

D. Study with (multiplicative ) chaotic noise contamination
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periodicities present. On the other hand, thepectrum of 0.6 L N AL B —
the composite series detects 18 to be the most dominant pe ,~
riodic component presefifig. 3(d)] and when it is extracted,
the p spectrunFig. 3(e)] of the residual series shows 17 to
be the next periodic component present.

04 -

0.2

Filtered s1/
T

0.0

E. Justification for the superiority of the p spectrum
in periodicity assessment

The p spectrum involves LS estimatidin rank-1 sense o
of the most dominant periodic pattern in the signal or data -
sequence, where the successive segments can be scaled dg
ferently. In a noise-free case, the strongest sinusoidal com-£
ponent will correspond to the strongest periodic component*™
present in the signal. But when there is significant variation
in either or both,(i) the optimal pattern from a sinusoidal

pattern of the same period length aid the scaling over FIG. 4. (a) Thep spectrum of the sunspot series showing repeat-
successive repetitive segments, FFT is likely to miss théng peaks an=11 and its multiples, which is due to the most
prime periodicity, because another sinusoidal componerominant embedded periodicity of 11 yealts). The p spectrum of
with constant scaling may appear to be stronger than the oribe surrogate series, showing much pronounced peaks &t and
corresponding to the periodicity of interest. Thus FFT can béts integer multiples. Such a feature is also observed irpthpec-
misleading. In wide ranging trials, we found no occasiontrum of logarithmically transformed sunspot series. The relative

where FFT detects the periodicity correctly, wherpapec- ~ dominance of the peaks is due to the underlying nonlinearity asso-
trum fails. ciated with the series.

Remark 1. pspectrum is conceptually, numerically, and gjyely detect and extract two additional periodic components
.cc.)mputauo.nally perhap;_the_ most robust method for penod[,:igs_ 5b) and 5c)] of periodicity 10, and 12 yearén de-
icity detection. The Just|f|cat|c_)n is as follo_ws: “Nearness 10 creasing order of energjyrespectively. The estimation using
rank-oneness assessment” is implicit with any method ofhree stable periodic components is shown in Fig. 6. The
periodicity detection(including Fourier decomposition and multistep prediction was performed on each of the periodic
autocorrelation-function-based approacfihe p spectrum  components, which added together produce the overall 1 to
does it more formally than the existing methods. Sint® 50 step ahead predictidiFig. 7(a)] over 1939-1988, where
trix rank is the most basic property of any data set, and sincé¢he predicted peaks are found to be correct-tb year; the
SVD is the most robust tool for rank assessm@mth nu-  corresponding correlation coefficiefy) vs prediction time
merically and computationally for a given data set, there (T,) profile is shown in Fig. {b). Note that the correlation
can be no better way of detecting embedded periodicity thagoefficient remains high over much longer prediction horizon
through nearness to rank-oneness assessment thpapgie-  (in contradiction tof37]). o _ _
trum, particularly when there are multiple periodic compo-  Study of noise sensitivityo the original series, four dif-
nents present and/or when there is significant noise preserigrent types of additive disturbances, namely, white noise,
Even in the case of a single time-varying comporfeng., ~ correlated noise, chaotic disturbances implemented through
laser intensity(see Sec. IVB], sinusoidal decomposition M-G equation, and Henon map process, are added. All the

cannot provide as complete insight as obtained by the prot_hree periodic components could be detected for 74%, 58%,

75%, 35% contamination, respectively; the original series
posed method. and the corresponding noise contaminated series are shown
Remark 2 Although in the present studies, different types.” . P 9 : X .

. e . e in Figs. 8a)—8(e). For each contaminated series, multistep
of extraneous noise contaminations are considered, it is un-

derstood that additional periodi mponents within the si prediction was performed with the possible number of ex-
erstood that additional periodic components N N€ Si%%racted periodic components; the corresponding residual sum
nal may act as contamination for the compo®ndf inter-

of squaresS e?/a? profile is shown in Fig. 9. The results
est. demonstrate the robustness of the proposed method against
disturbances.

IV. MISCELLANEOUS RESULTS Analysis of p spectrumn the p spectrum of the original
series[Fig. 4(a)], some peaks appear at row lengths, which
are not integer multiples of the periodicity of 11; the possible

Data type.The series of sunspot numbers is widely re-reasons aréa) the presence of additional periodiciti@ghere
searched7,13,14,35-3J, as it is an indicator of the general the individual periodic components may have overlapping
solar activity. Here, the yearly averaged data over 1700-frequency bands (b) the noninteger period lengths of peri-
1938 are used for modeling, and the data over 1939-1988dic components, ant) the nonlinearity in the underlying
are used for validation. dynamics. It is already shown that the series is composed of

Periodic decomposition and predictioithe p spectrum  three periodic componen(gig. 5); the two remaining issues
of yearly averaged data over 1700-1938 shows repetitivare addressed as follows. To accommodate noninteger peri-
peaks at (=) integer multiples ofN; =11 [Fig. 4a)]; the  odicity, the original data are interpolated tenfold, when three
extracted periodic component of periodicity 11 years iseffective periodicities detected are 11.1, 1(a8 in[13,14)),
shown in Fig. %a). Proceeding the same way, we succes-and 11.9. To study the nonlinearity in the series, a phase-

20 40 60 80 100 120

Row length n

A. The natural process of sunspot numbers
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FIG. 5. (8—(c) The individual components of periodicitiedl(=) 11, 10, and 12 years, respectively, successively extracted from the
sunspot series. The components have been successively extracted in order of the decreasing energy content.

randomized surrogate series is generated from the origingleriodic extraction is performed with moving data windows
series[38] having the same mean and similar power spechaving fixed periodicityas in Sec. Il F as it permits varia-
trum as the original series. Thespectrum peaks become tions in pattern over different windows, enhancing the ex-
significantly pronounced for the surrogate sefieigy. 4b)],  traction performance. Figure () shows the gradual varia-
confirming nonlinearity in the daté@s in[35—-37). tion of the patterns of the periodic segments of the extracted
Observations(i) The sunspot series is composed of threeperiodic component. No subsequent periodicity is detectable
stable(nearly periodic componentéwhere the residual en- in the residual series throughspectrum.
ergy is less than 8% of the signal enexggii) Long term Stability of periodicity attributesin the subsequent analy-
(with respect to the length of the data series concerpest  Sis the periodicity and pattern are both permitted to vary with
diction of the series is possiblén contradiction to[37]).  the moving data window. The dynamics primarily show os-
This demonstrate&) the “richness of the information con- cillations in periodicity[Fig. 10(c)] with relatively similar
tent” of the periodic components obtained by the proposederiodic patterriFig. 10(c)] within one data segment, while
method and(b) the inherent strength of the proposed ap-over different data segments the patterns tend to vary. Fig-
proach for “long-term periodic prediction.[See also obser- ures 1Qe) and 1@f) show the closeness of the state-space
vation (i) of Sec. IVC1] (ii) Although analysts have re- diagrams for the original and the extracted global series,
ported the sunspot series as chafpti4,35 with reservation ~Where the residual energy is less than 0.2% of the signal
due to the insufficiency of dafd 3], according to the present €nergy.

results theconcerned length of the data seridses not dis- ObservationsThus the present study reveals the follow-
tinctly reveal chaoticity, although we confirm inherent non-ing interesting(hitherto unavailableinsights into the laser
linearity and determinism. intensity dynamics. The laser series exhilfijsstable local

periodicity but unstable pattern within a part of a segment,

B. An experimental process: FIR NH, laser intensity (ii) stable pattern with normalized periodicity within a seg-

] i ment, andiiii) unstable periodicity and pattern in global con-
Data type.The FIR ammonia laser data ser{dd] [Fig.  text confirming inherent chaoticity.

10(a)], is believed to represent Lorenz-like chaoticiBa].
The series is made up of a series of segments, where within
a segment the amplitude gradually tends to decrease. The
length of each segment is about 500 data points and a spiral 1. The Mackey-Glass series

type transition occurs at the end of a segment leading to a Data type.Consider the delay differential Mackey-Glass
subsequent segment, which again starts from a large ampld'MG) equation[5,40]:

tude. Thep spectrum of the global data set5000 points is T

shown in Fig. 11a), the absence of repetitive distinguishable dx(t)/dt=0.2x(t— 7)/[1—x*%(1— 7)]—0.1x(t).

peaks reveal absence of any globally stable periodicity. So

the search for periodicity is extended to the local data :seg'—t has been introduced as a model for the regeneration of

C. Simulated chaotic processes

ments. blood cells in leukaemia patients(t) represents the density
Analysis of local segmentShe first 270 points from one ©f circulating cells at timet, when it is produced, ans(t

segmen{~500 points is taken for analysis. Thp spectrum  — 7) is the density when the request for more blood cells was

[Fig. 1Xb)] shows nonuniformly sized peaks &)

7,14 ...56, 63, 6976/77, 84, 9197, 104, . . . (the largest e ]

peak at 97 is 3.27 times the fundamental peak in terms of
magnitude; note that the peaks in thespectrundrift to row
lengths, which are noninteger multiples of the fundamental
row length 6=7). To verify the presence of noninteger i
periodicity, the data are interpolated 100-fold; thepectrum 1700 1750 1800 1850 1900 1950
[Fig. 11(c)] now shows effective periodicity of 6.88vith Years

relatively uniformly sized peaks at 688, 1376, 2064, 2752, F|G. 6. Estimation of the sunspot series with three additive ex-
3440 4128 ... where the strongest peak at 3440 is 1.7tracted components having periodicities of 11, 10, and 12 years
times that at 68B The extraction based on stable periodicity (original series—, estimated series ..);.the residual energy is
(of Nn=688) and pattern on the interpolated data was found.52% of the original series. Thespectrum of the residual series
to be poor because of the instability of the pattern. So, theloes not show presence of any more periodic component.

%
>
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n

for T,=450. (b) For 7>23, (i) the estimation through peri-
odic decomposition is locally valid only and hence meaning-
ful prediction is not possiblg(ji) over larger data spans pe-
riodicity varies widely. For example, for=30, the prime
periodicity varies irregularlyunlike in the case of the global
laser data seri¢dbetween 85 to 109 detected overl000
points, using moving data windows.

1020 30 40 50 Observations(i) Once again high prediction correlation is
Years Prediction Time  Years obtained for long prediction horizor§ig. 12b)] irrespec-
tive of the underlying process being chaotamntradicting
conventional understanding of poor predictability for chaotic

~N
=4
S

|

Magnitude
g

2
n

0

Correlation Coefficient p

1940 1950 1960 1970 1980 1988

<
=]

FIG. 7. (@ 1 to 50 year ahead predictiqover 1939—-198Bof

the sunspot series using three separately predicted compdAents . - .
tual series—, predicted series ..)..The scaling factors for 11, processes(41]. The following conjectures are in orde@)

10, and 12 yearly components are modeled a&)=f(g(k the components obtained though the proposed periodic de-
~1),0%(k—2)), g(k)=f(g(k—10)), and g(k)="f(g(k—6),g%(k composition contain rich mfor_maupln about the .underlymg
—6)), respectivelyf is a nonlinear functioid0] formed from the ~ Process, andb) long-term predictability of a chaotic process
past value of thég(k)} series, where the best set of variables hasay be possible, if the inherent ordgf any) can be deter-
been selected through minimization of tk, statistic [29]. (b) mlned and can be__properly modeled by a prediction algo-
Correlation coefficientp) between the predicted and the actual val- fithm, as proposedii) For 7=17 to 23, there are two em-
ues, shown as a function of prediction horizdf), remains at a bedded periodicities of 3and 2, where “chaoticity is
high value signifying much improved long-term predictability than revealed through the variations in the periodicity
others[35-37 and inherent determinism. attributes.” (ii) For 7>23, with increasing chaoticityi.e.,

with increasingr [41]), the zone of relative regularityin
made. For 4.5 7<13.3, there is a stable limit cycle attrac- terms of stable periodicity attributesontracts. This is a spe-
tor. A period doubling bifurcation sequence is observed afial case where the “variability of the periodicity surpasses
1.33<7<16.8. Forr>16.8, numerical simulations exhibit the concerned period lengths,” a typical characteristic of
chaotic attractor§40]. strong chaoticity.

Analysis.The present study is confined to two broad cha-
otic zones of the serie§a) For =17 to 23, two dominant
periodicities close to 8and 2r are detectable. The periodic-  The one-dimensional logistic map[(32] x(k+1)
ity attributes are dynamically varying; modeling and predic-=rx(k)[ 1—x(k)] exhibits stable periodicity for specific val-
tion are possible for short rangésith respect to the period- ues ofr within 3 and 3.57; beyond whiclr &3.57) the map
icity) only. For 7=23, with the first 3000 points discarded, exhibits chaoticity mixed with order. We analyze the map for
two components of periodicities of 72 and 4@&ver ~500 different values for. Thep spectruniFigs. 13a) and 13b)]
pointg are foundFig. 12a)]. The long term predictiofFig.  show distinct periodicity of 32 for=3.5687, and periodicity
12(b)] produces p=0.729 for prediction horizon T) of 2 for r=3.6786, both being globally valid. The periodic
=200, while p drops gradually beyond 200, e..=0.552  extraction with fixed period and pattern is performed. In the

2. The logistic map process
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200 a b .
2 1
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FIG. 8. (a)—(e) The original sunspot data series and the series contaminated with four types of additive measurement disturbances such
as white Gaussian noig@4%), correlated nois€58%), chaotic contamination through Henon m@d%), and Mackey-Glass proce685%)
with 7=100, respectively. The bracketed term indicates the percentage of noise energy compared to signal energy. We have shown only
those noisy data series with a maximum amount of disturbances for which the proposed algorithm successfulblldbeettisee periodic
componentsvith periodicity 11, 10, and 12 years.
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to 2.599, confirming instability in pattern in global sense.
160 For r=3.92, no globally stable periodicity is observed
throughp spectrumFig. 13c)] except for short data spans.
For data segments of 50, periodicity varies betweadr-§ 5
to 8; the periodic extraction over a segment fd=5 is
shown in Fig. 14c). Here larger RSS variatioriffom 10.5%
to 17.2% are observed over different data segments con-
firming the absence of any globally stable periodicity.
ObservationsThe study reveals that the logistic map pro-
cess possessés globally stable periodicity and pattern be-
fore entering into the chaotic regim@,) globally stable pe-
0 20 40 60 80 100 riodicity but unstable pattern for certain specific values,of
Noise level (%) e.g.,r =3.6786(expectedly due to inherent chaotigityand
(iii ) globally unstable period and pattern well into the chaotic
FIG. 9. Residual sum of squaferron/variance(i.e.,S&?/0?) is  ZONe.
shown as a function of measurement disturban@ass% of the
signal energyin terms of white noisé—), colored nois«......), V. CONCLUSIONS
Henon map[34] (—e—), and Mackey-Glas440] equation ¢
=100) (—-—). We could detect all the periodic components for ~ The proposed spectrum based method is possibly the
the worst type of additive disturbancés to 35% of Henon mgp ~ Most robust method for the detection of periodicity of sinu-
the prime periodicity could be detected for all types of disturbancessoidal or nonsinusoidal periodic components contained in an
up to 99%. Similarly, effects op were assessefb.g., for worst  irregular data sequence. The proposed is a generalized con-
casesp=0.498 for 99% disturbances cept (for the detection of embedded periodicity and the de-
composition of a data series into multiple periodic compo-
former casqFig. 14@)], there is perfect matctRSS=0%) nents, which are not necessarily sinusoidaf which the
between the extracted component and the original series. F&ourier decomposition can be considered to be a special sub-
the latter ¢=3.6786) a relatively larger error is observed set.
(RSS varying between 3.0% to 13.5% over different data The proposed characterization in terms of the three de-
segments To accommodate the variation in the pattern intected “orthogonal”periodicity attributes namely, the peri-
the latter case, the periodic component is extracted with adicity (or period length periodic pattern, and scaling factor
moving window with fixed period=2) and is shown in Fig. for the successive periodic or nearly periodic segments of a
14(b); the error reduces significant§RSS varies from 1.5% periodic series, provide complete description of a periodic

10
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FIG. 10. (a) Chaotic pulsations of FIR-NHaser.(b) The local variations of pattern with effective periodicity 6.88 showing gradual drifts
of the patterns. The extraction based on stable periodicity and pattern was found to be poor because of the instability of the pattern with fixed
period. So for extraction from the 100-fold interpolated data series, a moving window lemighhfixed periodicity 688 has been used as
it permits variations in pattern, enhancing the extraction performaoc¥ariations of the periodicity over the global data set; within a data
segment, periodicity varies approximately between 6.7 to 9.7. The period usually starts from the lowest value, and then increases gradually;
on reaching the upper limit, the periodicity abruptly drops to the lowest value, and gd)dFhe normalizedwith respect to the period
length patterns within one segment showing nearly repetitive profi@sand(f) State-space plots of the original series5000 point$ and
the extracted series, respectively, show that the extracted component carries almost the same dynamical information as in the original series;
the residual energy is as low as 0.46% of the original series.
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(a) If a globally or locally stable periodicity is not detect-
able through thep spectrum, the series must be stochastic or
strongly chaatic. It cannot have any component that is strong
enough and yet predictable to render the overall series to be
locally or globally predictable.

a— (b) If globally stable periodicity is not detectable but lo-
| cally stable periodicity is detectable througtspectrum, the
’\ \ | series will be low dimensionally chaotic. Here the periodicity
‘ ‘ ‘ / | attributes) will vary. For segments over which spectrum
0 e 70 B0 %0 100 shows relatively steady periodicity, the pattern and/or the
‘ scaling factors will vary to limited extents, making predict-
20.€ /\ ) ability possible over ranges commensurate with the zone of

| / \

30| N /\ stable periodicity.
foi A j\\ J J\

Filtered s,/s,
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(c) If globally stable periodicity is detectable, long-term
%500 1000 1500 2000 2500 3000 3500 4000 4500 predictability may be possible in spite of variability in other
periodicity attributes, whichas is demonstrat¢dioes not
Row length n necessarily imply lack of chaoticity.
It is demonstrated that the characterization of a process in
FIG. 11. () The p spectrum of the global FIR-Nfidata series  terms of its embedded periodic comporiehand the stabil-
(~5000 point$, which shows the absence of any stable periodicity.ity of the periodicity attributes of the individual compo-
(b) The p spectrum of a local data span270 data poinswithin - nents) can provide a new insight into the understanding of a

one data segment. The  peaks appear abh  |grge class of irregular cyclical processes.
=7,14,...56,63,69,76/77,84,9%,104,..; the drifting of the peaks to

noninteger multiples of the fundamental periGd?) indicates the
presence of fractional periodicityc) The p spectrum of 100-fold
interpolated data clearly indicates the presence of nearly stable pe- The financial support for the research by DOE, Govern-
riodicity of 688 (i.e., effective periodicity-6.88). ment of India(J.B) and CSIR, India(G.S) is thankfully

series. It has been demonstrated that the proposed approa%‘f‘}(mw'edged'

can lead to the unearthing of rich information about the un-

derlying process in terms of the characteristic periodicity at- APPENDIX: OPTIMAL MODELING USING = m-QRg,

tributes, and thereby extract the orderly part hidden within FACTORIZATION AND  C, STATISTIC

any !rregular sgries, which can make .Io.ng-term prediction Consider the modeling problem

possible even in the presence of chaoticity. The proposed is

fundamentally different from the existing Fourier-model- y=G#, (A1)

based approaches, and has been shown to be more noise

immune and to be able to provide more meaningful analysigvhere themxn matrix G=[g;,9,,...,8i,..-,0,] contains

than the existing analytical tools. n (<m) m- long regressor vectoxg, y is the output vector,
Periodic componerd) in a chaotic process are unstable in and @ is the parameter vector. For optimal modeling, the

nature in terms of periodicity or pattern or both; the detect{<n and unknowh most significant variables are selected

ability of periodic components will depend on the locality leading to the modey=G* §.+e, whereG* e G, 6, is the

(with respect to the periodiciiyof the stability of periodicity.  corresponding LS estimatgdparameter vector, anelstands

The proposed characterization of the underlying procesfor the uncertaintym-QRcp factorization can lead to “opti-

through the periodicity attributes can be summarized by thénal successive selection” of thg(=<n) regressors irG in
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by two additive periodic componenti) The prediction performance in terms of correlation coefficiens prediction horizor, over 450
data points.
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FIG. 13. (a)—(c) The p spectrum of the logistic map for
=3.56876,r =3.6786, and =3.92, respectively. For the first two
cases, th@ spectrums show the presence of distinct globally stable
periodicity of length 32 and 2, respectively, but in the last case
(which is well into the chaotic regimi82]) no repetitive peaks are
found, demonstrating the absence of any globally stable periodic L , , )
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First, the column vector o6 producing majgy|, i=1
to n, is selected and is swapped wit). The subsequent
columns of G are pivoted as follows. Using the Gram-
Schmidt orthogonalizatiof18], if g, be the unit vector inthe 4 pattern: the residual energy is 0%b) The estimation forr

direction of g;, the portion ofg; (j=2 ton) %ndy ina  —36786(original series—, estimated series ..).using the mov-
direction orthogonal tg, will be given by @;—d;0;d1) and  ing data window. The requirement for the moving data window has

FIG. 14. (a) The estimationoriginal series—, estimated se-
ries .....) for r=3.567 86 shows that there is a perfect match with
just one periodic component, which has globally stable periodicity

(Yy—q1yqs), respectively. been explained in Sec. Il F and Sec. IV 2(c) The estimation
At the ith stage of selection, the rotated variables vector®ver a local segment having periodicl=5 for r =3.92 (original
(g*) and the rotated output/t) vector are series—, estimated series ..)..The estimation error is large but

in some sections there is a nearly perfect fit by the estimated peri-
odic component, which is due to the recurrence of the periodicity
_ T T i i
g =gi—(q1Gd1+" -+ 0 19,Gi_1), and pattern in the chaotic process.

andith selected vector is the one maximizitgf 'y*|; the
selection procedure is repeated umniilregressors are se-
lected. MinimumC,, statistic[29] leads to the selection of

i=2 ton, j=i ton

y*=y—(aiyds+- -+ 1yai-1), the optimal model ordefp).
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