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Entropy production and phase space volume contraction

D. Daems1,2 and G. Nicolis2
1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, United Kingd

2Center for Nonlinear Phenomena and Complex Systems, Universite´ Libre de Bruxelles, 1050 Brussels, Belgium
~Received 30 June 1998!

We inquire whether the connection between entropy production and phase space volume contraction rate
reported recently for a class of thermostatted systems is an intrinsic property of a wide class of dynamical
systems, or the result of the particular algorithm devised for thermostatting a system of interacting particles
obeying, in the presence of nonequilibrium constraints, a time-reversible, dissipative dynamics. A nonequilib-
rium thermodynamics based on the balance equation for information entropy is developed for dissipative
dynamical systems subjected, in addition, to a stochastic forcing. This latter accounts for the thermodynamic
fluctuations accompanying the reduced description of the thermostat by a dissipative perturbation, for the
interaction between the system and the external reservoirs or for perturbations of external origin. Entropy flux
and entropy productionlike terms depending on the characteristics of the dynamics in phase space, particularly
the rate of phase space volume contraction, are identified. Their connections with irreversible thermodynamics
are explored. In particular, for thermostatted systems we find, without invoking anad hocconservation law
between the system and the reservoir, that information entropy production is related to the opposite of the rate
of phase space volume contraction to the second order in the distance from equilibrium.
@S1063-651X~99!06303-5#

PACS number~s!: 05.45.2a, 05.70.Ln, 05.20.2y
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I. INTRODUCTION

Recently, a number of relationships linking phase sp
dynamics to thermodynamic quantities like entropy prod
tion and Onsager coefficients have been put forward@1–7#.
In their general setting they are concerned with an initia
isolated conservative system subjected subsequently to a
sipative perturbation, describing the combined effect of
external constraint and of a thermostat. As such a sys
possesses an~generally multifractal! attractor, it will undergo
on average a contraction of the phase space volume,

lim
t→`

d

dt
ln DG~ t ! t5(

i
s i,0 ~1!

wheres i are the~mean! Lyapunov exponents@8#. The rate of
this contractionud ln DG(t)/dttu is thendefinedby some au-
thors as the entropy production of the dynamical system
the grounds of its positivity@5,7#. Alternatively, in certain
types of thermostatted Hamiltonian systems it is shown to
equal in the nonequilibrium steady state to the work per u
time performed on the system by the external constrai
which is in turn formally proportional to the expression
intrinsic entropy production as given by irreversible therm
dynamics.

As is well known, phase space contraction is also giv
by the time derivative of the Gibbs entropy,

SG52E dx r~x,t !ln r~x,t !, ~2!

where x5$xi% denotes the set of phase space coordina
provided that the rate of change of the probability densitr
is evaluated from the Liouville equation
PRE 591063-651X/99/59~4!/4000~7!/$15.00
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lim
t→`

dSG

dt
5(

i
s i,0. ~3!

One is then led immediately to the paradoxical conclus
that in such systems Gibbs entropy decreases without l
for long times and becomes eventually unbounded, ther
precluding the existence of a steady state value lim

t→`
SG

52`. This is to be related to the singularity of the invaria
densityrs , confined on an object—the attractor—whose
formation dimension is strictly less than that of the embe
ding phase space.

Inasmuch as irreversible thermodynamics, in particu
the distinction between entropy flux and entropy producti
must be generated from a balance equation describing
entropy evolves in time within the system, the result summ
rized in Eq.~3! seems to preclude the possibility of buildin
a self-consistent thermodynamics of the above defined t
mostatted systems. It is indeed not clear why one can pla
use the expression of entropy production of classical ir
versible thermodynamics, which finds its origin in quite d
ferent assumptions such as local equilibrium and the Gi
entropy postulate. One is thus led to inquire whether
connection between entropy production and phase space
ume contraction~or equivalently Lyapunov exponents! stipu-
lated in recent literature is an intrinsic property, a matter
definition, or the result of the particular algorithm devis
for thermostatting the system. One might even argue
under the setting of Eqs.~1!–~3! there is no place for entropy
production at all: as the system collapses toward the att
tor, it merely experiences an~negative! entropy flux, reflect-
ing the fact that time going on its localization in phase spa
becomes increasingly sharper.

The difficulties summarized above are sufficiently co
pelling to warrant an alternative approach and a complem
4000 ©1999 The American Physical Society
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tary viewpoint. Our objective in the present work is to ou
line a step in this direction accounting for the followin
features: To identify a general class of dynamical systems
which a link between phase space dynamics and therm
namiclike quantities may be established; to generate for s
systems, in a self-consistent manner, a thermodynamic
malism bearing a direct link with the entropy production
classical irreversible thermodynamics; and to provide an
ternative approach to thermostatted systems in the ligh
this formalism, free of the singularities of the entrop
pointed out in connection with Eq.~3!.

The general formulation, based on the introduction
fluctuating forces along with the action of the dissipati
perturbation, is laid down in Sec. II. In Sec. III a balan
equation for the information entropy is derived, from whi
two alternative forms of~information! entropy production
are identified. A more explicit form of these terms is deriv
in Secs. IV and V for the particular classes of thermostat
and mesoscopic systems, respectively, leading to an exp
relation with thermodynamic entropy production. The ma
conclusions are drawn in Sec. VI.

II. GENERAL FORMULATION

In what follows we shall be concerned with system
whose state vectorx5(x1 ,...,xn) satisfies the following ge-
neric form of evolution equations:

dx

dt
5F~x,m!1R~ t !. ~4!

The evolution operatorF, the control parameterm and the
stochastic forcingR are designed to account for the follow
ing situations:

~i! The evolution operatorF is a dissipative operator, in
the sense of

div Ft,0, t>t0 . ~5!

It may describe the evolution of a set of macroscopic obse
ables, or the evolution of microscopic degrees of freedom
an initially conservative system put subsequently in con
with a thermostat and subjected to a dissipative perturba
removing it from equilibrium.

~ii ! The control parameterm monitors the thermodynami
behavior of the system,

m5me1h, ~6!

me being the equilibrium value andh the deviation from
equilibrium. We emphasize that in this formulation th
evolution operatorF remains dissipative in equilibrium
~Canonical! equilibrium is nevertheless achieved, provid
that the forcing termR satisfies certain conditions, as di
cussed further below.

~iii ! The stochastic forcingR may be of external origin,
its role being solely to regularize the singularities of the
variant densityrs associated to the dissipative character ofF;
account for the thermodynamic fluctuations around the a
age values of the observables associated with the dissip
perturbation added to the initial conservative dynamics,
which case it should satisfy appropriate fluctuatio
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dissipation relationships; and account for the interaction
tween the system and external reservoirs~heat baths, etc!. In
either case,R will be modeled as a multi-Gaussian whi
noise,

^Ri~ t !&50,

^Ri~ t !Rj~ t8!&5«Qi j d~ t2t8!, ~7!

Qi j being a positive definite matrix and« a strength param-
eter.

Equations~4! and~7! define a Markov process of the dif
fusion type and induce a Fokker-Planck equation@9# for the
evolution of the probability densityr(x,t)

]r

]t
52(

i

]

]xi
Fir1

«

2 (
i j 51

n

Qi j

]2r

]xi]xj

5Lr1
«

2 (
i j

Qi j

]2r

]xi]xj
, ~8!

whereL is the Liouville operator.
We will often be interested in the properties of Eq.~8! in

the ‘‘weak noise’’ limit «!1. In this limit one may seek for
solutions of the form@10#

r~x,t !5Z«
21 expF1

«
f~x,t !1O~1!G , ~9!

whereZ« is the normalization factor, andf is referred to as
the stochastic potential. Substituting into Eq.~8! and keeping
only dominant terms in«, in the steady state one obtains

1

2 (
i j

Qi j

]fs

]xi

]fs

]xj
5(

i
Fi

]fs

]xi
. ~10!

It can be shown for large classes of systems thatfs , and
hence the invariant densityrs , are smooth as long as« is not
strictly zero @9–11#. This reflects the regularizing action o
the stochastic forcing anticipated earlier in the present s
tion. In the noise-free limitr becomes singular—essential
a d-type distribution having the attractor as support.

We notice that the above formulation contains thermos
ted systems as a particular case, provided thatFi andQi j are
such that the mean energy is conserved in time. This clas
systems will be analyzed in some detail from this standpo
in Sec. IV.

III. INFORMATION ENTROPY AND ITS BALANCE

In a discrete state, stationary stochastic process ent
can be defined uniquely once the Shannon-Khinchin po
lates are adopted@12#. It represents the information~amount
of data! necessary to localize the state of the system i
phase space cell of linear dimensiond, and is given by

SI52(
i

pi ln pi ~11!

where the indexi stands for the state, andpi is the probabil-
ity vector. As the resolutiond becomes finer,pi tends tord,
where r is the corresponding density. Equation~11! then
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shows thatSI contains a singular part in ln(1/d), plus a regu-
lar contribution depending solely onr. As the singular part is
independent of the dynamics, it can be used as refere
value and one obtains the continuous version of Eq.~11!,

SI52E dx r~x,t !ln r~x,t !. ~12!

Having a definition of~information! entropySI and an evo-
lution equation forr, one can now derive a balance equati
for SI , identify entropy productionlike terms bearing the si
nature of dynamics in phase space, and compare them
the entropy production of irreversible thermodynamics. W
first observe, from Eqs.~8! and ~12!, that

dSI

dt
52E dxF2(

i

]

]xi
~Fir!1

«

2 (
i j

Qi j

]2r

]xi]xj
G ln r.

~13!

The right hand side of this relation can be transformed
performing partial integrations. Dropping boundary term
@13# ~a legitimate procedure since the probability dens
tends rapidly to zero asuxu→`!, after some straightforward
manipulations one obtains the following form of informatio
entropy balance:

dSI

dt
5E dx r div F1

«

2 (
i j

Qi j E dx
1

r

]r

]xi

]r

]xj
. ~14!

The second term in Eq.~14! is positive definite on the
grounds of the positive definiteness of the matrixQi j , while
the first one has no definite sign. This suggests identify
the latter with~information! entropy flux and the former with
~information! entropy productionPI , given by the relation

PI5
«

2 (
i j

Qi j E dx
1

r

]r

]xi

]r

]xj
. ~15!

A more explicit representation ofPI can be obtained in
the steady state, and in the limit«!1, using expressions~9!
ce

ith
e

y
s

g

and ~10!. We obtain

PI5
1

2« (
i j

Qi j E dx rs

]fs

]xi

]fs

]xj
5E dx(

i
Fi

]rs

]xi

~16!

or, after a partial integration,

PI52E dx rs div F52div F`52(
i

s i1O~«!.0,

~17!

where s i are the Lyapunov exponents of the determinis
system @Eqs. ~4! in the absence of noise#. We have thus
shown, for a very general class of dynamical systems,
information entropy production as defined by Eq.~15! is
equal to the negative sum of Lyapunov exponents or equ
lently @cf. Eq. ~1!# to the rate of phase space volume contra
tion, plus a correction vanishing with the noise streng
@14,15#. This result is rather remarkable, since it would se
at first sight from Eq.~15! that PI should tend to zero as«
→0. The fact that it nevertheless gives a finite contributi
in this limit reflects the nonanalytic dependence of the pr
ability density in« @Eq. ~9!#.

In short we have established, throughPI , a link between
thermodynamically inspired quantities and the quantifiers
the underlying dynamics in phase space, free of the diffic
ties outlined in Sec. I. Still, no connection with the entro
production of irreversible thermodynamics has been mad
this stage, since the distance from equilibrium has not b
explicitly displayed. To achieve this we decompose the d
fusion term in the Fokker-Planck equation~8! in a new way
exhibiting the equilibrium distributionre , using the identity

]2r

]xi]xj
5

]

]xi
Fr ] ln re

]xj
G1

]

]xi
Fre

]

]xj

r

re
G . ~18!

We emphasize thatre is the stationary solution of the ful
equation~8!, in which the parameterm ~included inFi! is
simply set equal to its equilibrium valueme . In particular,re
incorporates effects due to the fluctuations. The informat
entropy balance, Eqs.~13! and ~14! now yields
ith
dSI

dt
52E dx ln rF2(

i

]

]xi
~Fir!1

«

2 (
i j

Qi j

]

]xi
S r

] ln re

]xj
D G

2E dx ln re

«

2 (
i j

Qi j

]

]xi
S re

]

]xj

r

re
D1E dx r

«

2 (
i j

Qi j S ]

]xi
ln

r

re
D S ]

]xj
ln

r

re
D . ~19!

We notice that the first, second, and third integrals in Eq.~19! are of zeroth, first, and second order, respectively, w
respect to the deviation from equilibrium. Performing partial integrations as above, one obtains

dSI

dt
5div Ft1

«

2 (
i j

Qi j E dx rF2
] ln re

]xi

] ln re

]xj
12

] ln r

]xi

] ln re

]xj
G1

«

2 (
i j

Qi j E dx rS ]

]xi
ln

r

re
D S ]

]xj
ln

r

re
D . ~20!
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This new decomposition of the rate of change of informat
entropy now features a partPI8

PI85
«

2 (
i j

Qi j E dx rS ]

]xi
ln

r

re
D S ]

]xj
ln

r

re
D>0, ~21!

which is both positive definite and of second order in t
deviation from equilibrium, thereby fulfilling the principa
condition required on entropy production. On the other ha
the first term on the right-hand side of Eq.~20!, div Ft, has no
definite sign and contains, in principle, contributions of
orders in the deviation from equilibrium. In the steady sta
dSI /dt50, and the contribution of this term and of the se
ond one in Eq.~20! must cancel that ofPI8 . The role of this
latter term in this balance is, then, to remove the contri
tions of all but second orders in the deviation from equil
rium contained indiv Ft. We may therefore write, in the
steady state

PI852div F`2~ terms of 0th and 1st order inh!
~22!

or @cf. Eq. ~17!#

PI852(
i

s i2~ terms of 0th and 1st order inh!.

~23!

This establishes a connection between irreversible therm
namics on the one side, and phase space dynamics o
other. At this stage this connection cannot be made m
explicit, as our analysis encompasses a very wide clas
dynamical systems. In the next two sections more exp
forms of entropy balance are derived for the specific case
thermostatted systems and mesoscopic systems.

IV. THERMOSTATTED SYSTEMS

As mentioned in Sec. I, thermostatted systems have
cently attracted considerable attention since they provide
interesting way to incorporate the nonequilibrium constrai
in the form of an external ‘‘mechanical’’ force added to th
equations of evolution of the microscopic degrees of fr
dom @1,16–18#.

The approach to thermostatted systems developed in
section is based on the idea that thermostatting should
ready be present in equilibrium. This entails that the evo
tion operatorF(x,m) should remain dissipative even form
5me . To express the action of the nonequilibrium co
straint, we decompose the deterministic partF in Eq. ~4! into
the sum of a contributionF05F(x,me) to whichF reduces in
the absence of nonequilibrium constraint@h50 in Eq. ~6!#
and of a contributionh(]F/]m)me

5hF1 associated with the
action of the constraint. Equation~4! then becomes

dx

dt
5F0~x!1hF1~x!1R~ t !. ~24!

The variablesxi now represent the coordinatesqi and mo-
mentapi of a system of particles in contact with a reservo
n

,
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The equilibrium partF0 together with the fluctuating force
R ensure that in the limith50 the system is driven irrevers
ibly to canonical equilibrium.

The Fokker-Planck equation associated with Eq.~24!
reads

]r

]t
52(

i

]

]xi
F S F0i2

1

2 (
j

Qi j

] ln re

]xj
D rG

2h(
i

]

]xi
~F1ir!1

1

2 (
i j

Qi j

]

]xi
S re

]

]xj

r

re
D

~25!

where the contribution of the diffusion part has been deco
posed as in Eq.~18!. In equilibrium,h50 andr5re . The
second and third terms on the right-hand side of Eq.~25!
then vanish identically, entailing that the first term must a
vanish. This imposes a relation between the parameters
pearing in the functionsF0i and the matrixQi j , which can
be looked at as the manifestation of a fluctuation-dissipa
type of theorem~we assume for simplicity thatQi j is not
affected by the nonequilibrium constraint!. More explicitly,
one has

2(
i

]

]xi
~f ire!50 ~26!

where the ‘‘effective’’ vector fieldf i governing the dynam-
ics around equilibrium is given by

f i5F0i2
1

2 (
j

Qi j

] ln re

]xj
. ~27!

Now Eq. ~26! must be compatible with the equilibrium limi
of the full-scale~microscopic! Liouville equation in the ab-
sence of constraint,

re;exp~2bH !, ~28!

H being the total energy. We therefore stipulate thatf i must
have a symplectic structure and, in particular, be diverge
free:

div f50. ~29!

The underlying dynamics associated with the drift term
Eq. ~25! is, therefore, time reversible and phase space v
ume conserving, and the modified diffusion term in th
equation provides the proper way to account for the fluct
tions around such an equilibrium conservative dynamics.
nally, the term inh in Eq. ~25! expresses the nonequilibrium
part of the dynamics, which will be modeled as a dissipat
~phase space volume-contracting! process,
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div F1
t,0 t>t0 . ~30!

We come now to the information entropy balance. Diffe
entiating Eq.~12! with respect to time and using Eq.~25! we
obtain

dSI

dt
52

d

dt E dx r ln re2E dx ln
r

re
F2(

i

]

]xi
~f ir!

2h(
i

]

]xi
~F1ir!1

1

2 (
i j

Qi j

]

]xi
S re

]

]xj

r

re
D G .

~31!

The new element is now that in isoenergetically thermos
ted systems the term ind/dt vanishes identically, owing to
the conservation of the mean value of total energyH @cf. Eq.
~28!#. The remaining part of Eq.~31! is then automatically of
second order in the deviation from equilibrium, in particu
since the action of2( i (]/]xi)f i on re gives zero: the ze-
roth and first order terms in Eq.~23! are therefore absent. W
may give to this part a more explicit form by performin
partial integration. Noticing that the action of the part inf i
gives a vanishing result, one obtains

dSI

dt
5h2E dx dr div F11h2E dxS (

i
F1i

] ln re

]xi
D dr

1
«

2 (
i j

Qi j E dxrS ]

]xi
ln

r

re
D S ]

]xj
ln

r

re
D , ~32!

wherehdr5r2re. We thus recover the entropy productio
term PI8 @Eq. ~21!#, together with a more explicit expressio
of the remaining, entropy flux like terms,JI8 , as compared to
Eq. ~20!:

JI85h2E dx dr div F12bh2E dx(
i

F1i

]H

]xi
dr. ~33!

Here the first part represents the rate of phase-space vo
contraction to the second order, whereas the second par
be viewed as the average of the work per unit time of
external forcings acting~tangentially! along the different de-
grees of freedomi . In the steady state,

PI852JI8 , ~34!

providing an explicit relation between irreversible thermod
namics and phase space dynamics.

As an illustration of the foregoing we consider Brownia
motion in an external field@19#,

dv
dt

52zv1
eE

m
1R~ t !, ~35!

wherem is the mass,e is the charge, and the coefficientz
expresses the effect of friction exerted on the particle by
host fluid, which acts like a heat bath at constant tempera
T. This can thus be viewed as a thermostatted system w
remains dissipative when the nonequilibrium constraint v
ishes. The correspondence with the general form~24! leads
to the identificationF052zv, F15eE/m.
-

t-

r

me
an
e

-

e
re
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-

The Fokker-Planck equation corresponding to Eq.~35!
can be solved straightforwardly, yielding

re5S m

2pkTD 1/2

e2 ~mv2/2kT!, ~36!

where use was made of the fluctuation-dissipation rela
@9,19#, («/2)Q5 zkT/m.

The flux termJI8 in Eq. ~33! becomes

JI852
1

kT E2`

`

dv eEv~r2re!, ~37!

where the integrand represents the work per unit time p
formed on the particle by the external force. Hence one
tains, in the steady state,

JI852
e2E2

zkT
, PI852JI85

e2E2

zkT
~38!

which is exactly the entropy production of irreversible the
modynamics for this system.

It is worth noting that the ‘‘effective’’ vector fieldf cor-
responding to this dynamical system vanishes identically
to the absence of inertial terms in the field-free limit of E
~35!. Indeed, using the above given explicit forms ofre and
Q, one finds, from Eq.~27!,

f52
z

m
v2Q

]

]v S 2
mv2

2kTD50. ~39!

The Fokker-Planck equation for this system reduces thus
tually to the last two terms of Eq.~25!,

]r

]t
52

eE

m

]r

]v
1

zkT

m2

]

]v S re

]

]v
r

re
D . ~40!

A similar structure will arise in all problems involving purel
dissipative evolution laws.

V. MESOSCOPIC SYSTEMS

We next turn to the case wherex stands for a set of
macroscopic observables, andR for the thermodynamic fluc-
tuations. In the small noise limit«!1 considered in Sec. III
the densityr is expected to be peaked sharply around
attractor of the deterministic~noiseless! evolution equations.
We express this by decomposingx as

x5 x̄1dx,
udxu
ux̄u

!1 ~41!

and by limiting the expansion of the rate functionF(x,m) in
Eq. ~4! aroundx̄ to its linear terms,

ḋx5 ldx1R~ t !, ~42!

where
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l i j 5S ]Fi

]xj
D

x̄

. ~43!

Here x̄ is the macroscopic state~average or more generall
most probable value of the probability density! evolving ac-
cording to

xG5F~ x̄,m!. ~44!

The Fokker-Planck equation induced by Eq.~42! then reads

]r

]t
52(

i j

]

]dxi
l i j dxjr1

«

2 (
i j

Qi j

]2r

]dxi]dxj
. ~45!

Inasmuch as the macroscopic steady statex̄s is stable, Eq.
~45! admits a stationary solution in the form of a multivaria
Gaussian distribution

r~dx,t !5
Ag/«

~2p!n/2expF2
1

2« (
i j

gi j dxidxj G ~46!

where the matrixg is given by@20#

lg211~ lg21!T52Q, ~47!

g being its determinant.
So far we have not specified the thermodynamic statu

our system and, in particular, its distance from thermo
namic equilibrium. Operationally this distance is monitor
by the control parameterm present in the evolution laws@Eq.
~4!#, which may account for the interaction of the syste
with external reservoirs and/or for the direct action of
external field. At equilibrium (m5me), Eq. ~46! reduces to

re~dxe!5
Age/«

~2p!n/2 expF2
1

2« (
i j

gi j
e dxi

edxj
eG ~48!

wheregi j
e is related to the deviationDS of thermodynamic

entropy from its equilibrium value due to a fluctuatio
through@19#

gi j
e 52S ]2DS

]dxi]dxj
D . ~49!

Here we are interested in the linear response to a weak
equilibrium constrainth,

r5re1hdr1o~h2!,

m5me1h, U h

me
U!1. ~50!

As a rule, the effect of the constraint will be twofold.
~i! The macroscopic statex̄ is shifted from the equilibrium

valuexe ,

x̄5xe1hx~1!1¯ ; ~51!

hence

dx5dxe2hx~1!. ~52!
of
-

n-

Substituting Eq.~51! into Eq.~44!, and expanding aroundxe
andme to first order inh yields

x~1!52l e
21S ]F

]m D
e

. ~53!

~ii ! The matrixg and its determinantg will deviate from
their equilibrium values

g5ge1hg~1!,

g5ge1hg~1!, ~54!

as a result of the nonequilibrium corrections to the Jacob
matrix l and to the noise correlation matrixQ in Eq. ~47!:

l5 le1hl~1!1¯ ,

Q5Qe1hQ~1!1¯ . ~55!

Carrying out these expansions systematically in Eqs.~46!
and ~47!, we finally obtain

dr5S g~1!

2ge
1

1

2« (
i j

gi j
e ~dxi

exj
~1!1dxj

exi
~1!!

2
1

2« (
i j

gi j
~1!dxi

edxj
eD re . ~56!

We are now in the position to evaluate the information e
tropy productionPI8 @Eq. ~21!#. Adopting the Onsager defi
nition of the thermodynamic forceXi associated withxi ,

Xi5
]DS

]xi
52(

k
gik

e xk , ~57!

and noting that the partQi j
e of Qi j is twice the Onsager

matrix Li j of phenomenological coefficients@9# we obtain, to
the leading order in the noise strength«,

PI85
1

« (
i j

L i j X̄i
~1!X̄j

~1!1O~h3,«0!. ~58!

This is nothing but the Gibbsian form of entropy producti
of irreversible thermodynamics@19#. The factor 1/« accounts
for the extensivity of the entropy production since it is pr
portional to the volume of the system. Notice that the co
nection with phase space dynamics is now less explicit t
in Sec. IV; see Eqs.~21! and ~22!.

VI. CONCLUSIONS

We have developed a thermodynamic approach to
class of dynamical systems amenable to a Fokker-Pla
type of description based on the balance equation of in
mation entropy. Entropy flux and entropy productionlik
terms depending on the characteristics of the dynamic
phase space have been identified, and an explicit rela
@Eq. ~15!# linking information entropy production to the rat
of phase space volume contraction has been derived. C
nections with irreversible thermodynamics have sub
quently been explored on two case studies pertaining to t
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mostatted and to mesoscopic systems by display
explicitly the distance from equilibrium. For the class
thermostatted systems we showed, without invoking an
trinsic conservation law between the system and the re
voir, that information entropy production is given by th
negative sum of the rate of phase space volume contrac
to the second order, and the average of the work per
time of the external forcings. An explicit example pertaini
to Brownian motion was worked out to illustrate this rel
tion.

Our principal motivation for augmenting the determinis
description by the addition of stochastic forcings is that n
equilibrium constraints reflect the interaction of a syst
with external reservoirs. Such an interaction involves, a
rule, a reduced description of the reservoirs; it is theref
most naturally modeled by a dissipative term, in which ca
it also needs to be complemented by explicit consideratio
the fluctuations. This procedure which in many respects
sembles classical coarse graining@21,22# leads, for free, to a
regularization of the invariant probability densities. It
worth noting that this latter is not necessarily achieved by
noise inherent in a computer simulation of the underly
system. Furthermore, this procedure introduces a source
in the entropy balance, counteracting in the steady state
sink term which was the only one appearing in Eq.~3!. In the
absence of the nonequilibrium constraint this descript
generates quite naturally the correct canonical equilibri
limit. In our view thermostatting should already be active
equilibrium, and this can only be achieved if the evoluti
. A

i,

m

g

x-
r-

on
it

-

a
e
e
of
e-

e

rm
he

n

operatorF(x,me) is dissipative. It is only at the level of the
‘‘effective’’ vector field f @Eq. ~27!# that the conservative
character of the underlying microscopic dynamics will sho
up.

Future work in this area should aim at establishing
link between irreversible thermodynamics and phase sp
dynamics for more representative systems and on a still m
explicit basis. For instance, in most realistic system
Lyapunov exponents and contraction rates fluctuate con
erably along the invariant manifolds. The repercussions
these fluctuations on thermodynamic properties would c
tainly be worth elucidating. Of special interest are also
multivariate, spatially extended systems possessing a l
number of Lyapunov exponents. The extent to which all
exponents contribute to macroscopic level properties like
tropy production is largely unknown, and one might advan
that only a few of them—presumably the slowest ones
would play an important role.
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