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Entropy production and phase space volume contraction
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We inquire whether the connection between entropy production and phase space volume contraction rate
reported recently for a class of thermostatted systems is an intrinsic property of a wide class of dynamical
systems, or the result of the particular algorithm devised for thermostatting a system of interacting particles
obeying, in the presence of nonequilibrium constraints, a time-reversible, dissipative dynamics. A nonequilib-
rium thermodynamics based on the balance equation for information entropy is developed for dissipative
dynamical systems subjected, in addition, to a stochastic forcing. This latter accounts for the thermodynamic
fluctuations accompanying the reduced description of the thermostat by a dissipative perturbation, for the
interaction between the system and the external reservoirs or for perturbations of external origin. Entropy flux
and entropy productionlike terms depending on the characteristics of the dynamics in phase space, particularly
the rate of phase space volume contraction, are identified. Their connections with irreversible thermodynamics
are explored. In particular, for thermostatted systems we find, without invokiray droc conservation law
between the system and the reservoir, that information entropy production is related to the opposite of the rate
of phase space volume contraction to the second order in the distance from equilibrium.
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I. INTRODUCTION dSs
lim W:E 0;<0. 3
Recently, a number of relationships linking phase space toe '

dynamics to thermodynamic quantities like entropy producpe s then led immediately to the paradoxical conclusion

tion and Onsager coefficients have been put forfare7l. - ot in such systems Gibbs entropy decreases without limit

In their general sgtting they are poncerned with an initiallonr long times and becomes eventually unbounded, thereby
isolated conservative system subjected subsequently to a di fecluding the existence of a steady state value Sim
sipative perturbation, describing the combined effect of al tooo

external constraint and of a thermostat. As such a system — o This is to be related to the singularity of the invariant

possesses daenerally multifractal attractor, it will undergo densityps, confined on an object—the attractor—whose in-
on average a contraction of the phase space volume, formation dimension is strictly less than that of the embed-
ding phase space.

Inasmuch as irreversible thermodynamics, in particular
the distinction between entropy flux and entropy production,
must be generated from a balance equation describing how
entropy evolves in time within the system, the result summa-
rized in Eq.(3) seems to preclude the possibility of building
a self-consistent thermodynamics of the above defined ther-

. o . : M Ofostatted systems. It is indeed not clear why one can plainly
the grounds of its positivity5,7]. Alternatively, in certain ;5o the expression of entropy production of classical irre-

types of thermostatted Hamiltonian systems it is shown 10 bgegiple thermodynamics, which finds its origin in quite dif-

equal in the nonequilibrium steady state to the work per Uniterent assumptions such as local equilibrium and the Gibbs
time performed on the system by the external constraintsemropy postulate. One is thus led to inquire whether the
which is in turn formally proportional to the expression of connection between entropy production and phase space vol-
intrinsi(_: entropy production as given by irreversible thermo-, . contractiorfor equivalently Lyapunov exponentstipu-
dynamics. o _lated in recent literature is an intrinsic property, a matter of
As is well known, phase space contraction is also giveryefinition, or the result of the particular algorithm devised
by the time derivative of the Gibbs entropy, for thermostatting the system. One might even argue that
under the setting of Eq$1)—(3) there is no place for entropy
— production at all: as the system collapses toward the attrac-
S f dxp(x.B)inp(x.1), @ tor, it merely experiences amegative entropy flux, reflect-
ing the fact that time going on its localization in phase space
where x={x;} denotes the set of phase space coordinatehecomes increasingly sharper.
provided that the rate of change of the probability dengity The difficulties summarized above are sufficiently com-
is evaluated from the Liouville equation pelling to warrant an alternative approach and a complemen-

im %m AT()'=2] ;<0 (1)

I
t—

whereg; are the(mean Lyapunov exponents]. The rate of
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tary viewpoint. Our objective in the present work is to out- dissipation relationships; and account for the interaction be-
line a step in this direction accounting for the following tween the system and external reservéimsat baths, ejcin
features: To identify a general class of dynamical systems foeither caseR will be modeled as a multi-Gaussian white
which a link between phase space dynamics and thermodywise,

namiclike quantities may be established; to generate for such

systems, in a self-consistent manner, a thermodynamic for- (Ri(1))=0,
malism bearing a direct link with the entropy production of , ,
classical irreversible thermodynamics; and to provide an al- (RI(DR;(t"))=8Qs(t—t"), (7)

ternative approach to thermostatted systems in the light of, . - - . i
this formalism, free of the singularities of the entropy (5” being a positive definite matrix anda strength param

pointed out in connection with Eq3) eter.
The general formulation, based on the introduction of Equations(4) and(7) define a Markov process of the dif-

. , . ... —fusion type and induce a Fokker-Planck equafi®hfor the
fluctuating forces along with the action of the d|SS|pat|veevOlution of the probability density(x.t)

perturbation, is laid down in Sec. Il. In Sec. Il a balance
equation for the information entropy is derived, from which J n 2
. . . : p J € Jp

two alternative forms of(information entropy production —=—> —Fp+t= Qj——

are identified. A more explicit form of these terms is derived at 9% 2if=1 77 9X0X

in Secs. IV and V for the particular classes of thermostatted R P

and mesoscopic systems, respectively, leading to an explicit =Lp+ EZ Qij P (8)
T IXioX;’
ij iOA]

relation with thermodynamic entropy production. The main

conclusions are drawn in Sec. VI. ) o
where L is the Liouville operator.

We will often be interested in the properties of Eg) in
the “weak noise” limite<<1. In this limit one may seek for
In what follows we shall be concerned with systemssolutions of the fornj10]
whose state vector=(x4,...,X,) satisfies the following ge-

Il. GENERAL FORMULATION

neric form of evolution equations: _--1 E
p(X,t)=2Z, eXF{s ¢(X,t)+o(1)} 9
dx
gi - P +R(). (4)  wherez, is the normalization factor, and is referred to as

the stochastic potential. Substituting into E8). and keeping

The evolution operatoF, the control parameter. and the  only dominant terms ir, in the steady state one obtains
stochastic forcindR are designed to account for the follow-
ing situations: EE ‘?i’s % => ‘9;’55
. . : o : i =2 Fi——. (10)
(i) The evolution operatoF is a dissipative operator, in 247 “Woox ax; G ax
the sense of
It can be shown for large classes of systems that and
div Fi< 0, t=t,. (5) hence the invariant densipy, are smooth as long asis not
strictly zero[9-11]. This reflects the regularizing action of
It may describe the evolution of a set of macroscopic observthe stochastic forcing anticipated earlier in the present sec-
ables, or the evolution of microscopic degrees of freedom ofion. In the noise-free limip becomes singular—essentially
an initially conservative system put subsequently in contaca &-type distribution having the attractor as support.
with a thermostat and subjected to a dissipative perturbation We notice that the above formulation contains thermostat-

removing it from equilibrium. ted systems as a particular case, provided fh@ndQ;; are
(it) The control parametes monitors the thermodynamic such that the mean energy is conserved in time. This class of
behavior of the system, systems will be analyzed in some detail from this standpoint
in Sec. IV.
w=peth, (6)

. e L IIl. INFORMATION ENTROPY AND ITS BALANCE
Me being the equilibrium value and the deviation from

equilibrium. We emphasize that in this formulation the In a discrete state, stationary stochastic process entropy
evolution operatorF remains dissipative in equilibrium. can be defined uniquely once the Shannon-Khinchin postu-
(Canonical equilibrium is nevertheless achieved, providedlates are adopteld.2]. It represents the informatio@mount

that the forcing ternR satisfies certain conditions, as dis- of data necessary to localize the state of the system in a

cussed further below. phase space cell of linear dimensiénand is given by
(i) The stochastic forcingk may be of external origin,
its role being solely to regularize the singularities of the in- S = _zi b Inp, (11)

variant densityps associated to the dissipative charactef pf

account for the thermodynamic fluctuations around the aver-

age values of the observables associated with the dissipativehere the index stands for the state, any is the probabil-
perturbation added to the initial conservative dynamics, inty vector. As the resolutiod becomes finermp; tends topd,

which case it should satisfy appropriate fluctuation-where p is the corresponding density. Equati¢hl) then
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shows thas, contains a singular part in In(@), plus aregu- and(10). We obtain

lar contribution depending solely gn As the singular part is

independent of the dynamics, it can be used as reference 1 dps I

value and one obtains the continuous version of (Edj), o Qilf prSa_xi X f E F

! axl
(16)

—f dx p(x,t)In p(x,t). (12 or, after a partial integration,

Hgving a de_finition of(information entropyS, and an evo- _f dx pe div F= _divE*= = 4.4 0(s)>0,

lution equation forp, one can now derive a balance equation i

for S, identify entropy productionlike terms bearing the sig- a7
nature of dynamics in phase space, and compare them with

the entropy production of irreversible thermodynamics. WeVNeré o; are the Lyapunov exponents of the deterministic

first observe, from Eqg8) and (12), that system[Eqs (4) in the absence of noifeWe have thus
shown, for a very general class of dynamical systems, that
information entropy production as defined by EQA5) is
ds d 92 - :
j dx| =S = (Fip)+ fz Q___p Inp equal to the negative sum of Lyapunov exponents or equiva-
dt | : U ax;ax ' lently [cf. Eq.(1)] to the rate of phase space volume contrac-

(13)  tion, plus a correction vanishing with the noise strength
[14,15. This result is rather remarkable, since it would seem
The right hand side of this relation can be transformed byat first sight from Eq(15) that P, should tend to zero as
performing partial integrations. Dropping boundary terms— 0. The fact that it nevertheless gives a finite contribution
[]_3] (a |eg|t|mate procedure since the probabmty densnyln this limit reflects the nonanalytlc dependence of the prob—
tends rapidly to zero a|—), after some straightforward ~ ability density ine [Eq. (9)].

manipulations one obtains the following form of information !N short we have established, through, a link between
entropy balance: thermodynamically inspired quantities and the quantifiers of

the underlying dynamics in phase space, free of the difficul-
e 19p 9 ties outl_ined ir_1 Sec. I. Still, no connecti_on with the entropy
:j dx pdivF+= >, Qi.f dx= P _p_ (14)  production of irreversible thermodynamics has been made at
24 ™Y IX; d this stage, since the distance from equilibrium has not been
explicitly displayed. To achieve this we decompose the dif-
The second term in Eq(14) is positive definite on the fusion term in the Fokker-Planck equatit®) in a new way
grounds of the positive definiteness of the ma@ix, while  exhibiting the equilibrium distributiop,, using the identity
the first one has no definite sign. This suggests identifying

t_he Iatter_with(informatior) entropy flu?< and the former_with #p 0| dlnpg| a a p 18
(information entropy productiorP; , given by the relation axiax, o | P X, 7% | Pe %, pa (18)
1 &p é’p . . . .
Z Quf ) (159  We emphasize that, is the stationary solution of the full
o oxi x; equation(8), in which the parameter. (included inF;) is

simply set equal to its equilibrium valye, . In particular,p,
A more explicit representation d?, can be obtained in incorporates effects due to the fluctuations. The information
the steady state, and in the lingit 1, using expression®) entropy balance, Eq$13) and (14) now yields

d € d aln pe
-> a—Xi(FiP)ﬂLE% Qija_Xi(P 7%, )

——jdxlnp
1%

f dXInPeZE Qij = x;

pe&X

dep Z Q”( pe)(ilnﬁ>. (19

We notice that the first, second, and third integrals in @§) are of zeroth, first, and second order, respectively, with
respect to the deviation from equilibrium. Performing partial integrations as above, one obtains

aln pe 0|npe+2¢9|np c?lnpe
X 07)(] X 0")(

dg — ¢ a p\ld p
WZdIVFt-F 5% QijJ dx p| — 2 Q”J pr< Inp—)(—lnp—). (20)



PRE 59 ENTROPY PRODUCTION AND PHASE SPACE VOLUH. .. 4003

This new decomposition of the rate of change of informationThe equilibrium part, together with the fluctuating forces

entropy now features a palf R ensure that in the limih=0 the system is driven irrevers-
ibly to canonical equilibrium.
, € a p\fad p The Fokker-Planck equation associated with E24)
P| :E% Q”J' pr(a—Ximp—e)(&—xj'np—e)Zo, (21) reads
which is both positive definite and of second order in the 9 P 1 gl
- L i~ - p Npe
deviation from equilibrium, thereby fulfilling the principal —=— — (FOi——E Qij—)p
condition required on entropy production. On the other hand, Jt T OXi 2% IXi
the first term on the right-hand side of E80), div F!, has no 9 1 9 J p
definite sign and contains, in principle, contributions of all —hz —(Fyp)+ —E Qij == | Pe7 —)
orders in the deviation from equilibrium. In the steady state, X 27 IXi |77 0% pe
d§ /dt=0, and the contribution of this term and of the sec- (25)

ond one in Eq(20) must cancel that oP| . The role of this

latter term in this balance is, then, to remove the contribu- h th tributi f the diffusi t has b d
tions of all but second orders in the deviation from equilib—W ere e contribution of the difiusion part has been decom-

rium contained indivF!. We may therefore write, in the posed as in EQ18). In equilibrium,h=0 andp=p,. The
steady state second gnd.thlrd. terms on.t_he rlght—han.d side of &%)

then vanish identically, entailing that the first term must also
vanish. This imposes a relation between the parameters ap-
pearing in the function and the matrixQ;; , which can
be looked at as the manifestation of a fluctuation-dissipation
type of theorem(we assume for simplicity tha®;; is not
affected by the nonequilibrium constrginMore explicitly,
one has

P/ =—divF”—(terms of Oth and 1st order ih)
(22

or [cf. Eq.(17)]

P/=—2, o;—(terms of Oth and 1st order ih).
1

J
2 ~2 o (dipe)=0 (26
This establishes a connection between irreversible thermody- I '
namics on the one side, and phase space dynamics on the
other. At this stage this connection cannot be made morehere the “effective” vector fieldp; governing the dynam-
explicit, as our analysis encompasses a very wide class afs around equilibrium is given by
dynamical systems. In the next two sections more explicit
forms of entropy balance are derived for the specific cases of
thermostatted systems and mesoscopic systems. c E d1n pe
i =Fy 22 TRt (27)
]
IV. THERMOSTATTED SYSTEMS

As mentioned in Sec. |, thermostatted systems have reNow Eq.(26) must be compatible with the equilibrium limit
cently attracted considerable attention since they provide aff the full-scale(microscopi¢ Liouville equation in the ab-
interesting way to incorporate the nonequilibrium constraintssence of constraint,
in the form of an external “mechanical” force added to the
equations of evolution of the microscopic degrees of free-
dgm [1,16-18. P g pe~eXp(—BH), (28)

The approach to thermostatted systems developed in this

section is based on the idea that thermostatting should aH being the total energy. We therefore Stipu|ate mamust

ready be present in equilibrium. This entails that the evoluhave a symplectic structure and, in particular, be divergence
tion operatorF(x,«) should remain dissipative even far  free:

=ue. TO express the action of the nonequilibrium con-

straint, we decompose the deterministic gaim Eq. (4) into

the sum of a contributioffy=F(X, ue) to whichF reduces in div¢=0. (29)
the absence of nonequilibrium constrajht=0 in Eq. (6)]

and of a Contr'buuom(‘?':/a“)“e:hFl associated with the The underlying dynamics associated with the drift term in

action of the constraint. Equatid#) then becomes Eq. (25) is, therefore, time reversible and phase space vol-
q ume conserving, and the modified diffusion term in this
X . .
—Z = Fy(x)+hFL () +R(t). (24) gquatlon provides the proper way to accou_nt for the f!uctua_—
dt tions around such an equilibrium conservative dynamics. Fi-

nally, the term inh in Eq. (25) expresses the nonequilibrium
The variablest; now represent the coordinatgs and mo-  part of the dynamics, which will be modeled as a dissipative
mentap; of a system of particles in contact with a reservoir. (phase space volume-contractimyocess,
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divF,i<0 t=t,. (30) The Fokker-Planck equation corresponding to E3p)
can be solved straightforwardly, yielding
We come now to the information entropy balance. Differ-

entiating Eq.(12) with respect to time and using E@®5) we 12

m

— - (mu?/2k
obtain Pe= o kT| © (Mo, (36)
ds p d . S .
—=—— | dxplnp _f dxin—| —> —(oip) where use was made of the fluctuation-dissipation relation
dt — dt e pe| T oox [9,19], (/2)Q= ZKT/m.
hE J . . 1 2 J s p The flux termJ| in Eq. (33) becomes
: a_xi( up) T 5 > Qij[?_xi P pel | L
a J|=—k—TJ7xdveEv(p—Pe), (37

The new element is now that in isoenergetically thermostat\-Nhere the intearand represents the work per unit time per-
ted systems the term id/dt vanishes identically, owing to f € Integrand represe pe ep
X ormed on the particle by the external force. Hence one ob-
the conservation of the mean value of total endgjcf. Eq. tains. in the steady state
(28)]. The remaining part of Eq31) is then automatically of ' y '
second order in the deviation from equilibrium, in particular 2p2 22
since the action of- Z; (d/dx;) ¢; on pe gives zero: the ze- o= iy (39)
roth and first order terms in E(R3) are therefore absent. We ' kT’ ! bLkT
may give to this part a more explicit form by performing
partial integration. Noticing that the action of the partgp ~ Which is exactly the entropy production of irreversible ther-
gives a vanishing result, one obtains modynamics for this system.
It is worth noting that the “effective” vector field) cor-
ds ) aln pe responding to this dynamical system vanishes identically due
W:hZJ dx dp div F1+h2J dx( Z Fai 3—X.) op to the absence of inertial terms in the field-free limit of Eq.
(35). Indeed, using the above given explicit formspgfand
e d p a p Q, one finds, from Eq(27),
+ 5 %‘, Q”J’ dxp % In pe)(ﬁxj In Pe)’ (32

2
wherehdp=p— pe.. We thus recover the entropy production $=-_v- Q%( - 2kT) =0. (39)
term P| [Eq. (21)], together with a more explicit expression

of the remaining, entropy flux like termd; , as compared to  The Fokker-Planck equation for this system reduces thus ac-

Eq. (20): tually to the last two terms of Eq25),
oH
5i=h [ axopaivk,—pn [ xS Fy T op. (39 p__eEdp KT o( 0p)
' X at m v m? av |\ Peou pg)”

Here the first part represents the rate of phase-space volume . . . . :
contraction to the second order, whereas the second part c su_mla_r structure_ will arise in all problems involving purely
be viewed as the average of the work per unit time of the?ISSipative evolution laws.

external forcings actingtangentially along the different de-

grees of freedonn. In the steady state, V. MESOSCOPIC SYSTEMS

P/=-1J, (34) We next turn to the case where stands for a set of
macroscopic observables, aRdor the thermodynamic fluc-
providing an explicit relation between irreversible thermody-tuations. In the small noise limi#<1 considered in Sec. Il

namics and phase space dynamics. the densityp is expected to be peaked sharply around the
As an illustration of the foregoing we consider Brownian attractor of the deterministitoiselessevolution equations.
motion in an external fiel@19], We express this by decomposirgs
dv eE | x|
g vt RO, (35 X=X+ 6X, W«l (41)

wherem is the masse is the charge, and the coefficiefit
expresses the effect of friction exerted on the particle by th
host fluid, which acts like a heat bath at constant temperatur q-
T. This can thus be viewed as a thermostatted system which )
remains dissipative when the nonequilibrium constraint van- ox=16x+R(t), (42)
ishes. The correspondence with the general f@#) leads

to the identificationFy=— (v, F;=eE/m. where

nd by limiting the expansion of the rate functibfx, x) in
(4) aroundx to its linear terms,
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_(aFi)
= %) (43)

HereX is the macroscopic stat@verage or more generally

most probable value of the probability dengigvolving ac-
cording to

x=F(X.p0). (44

The Fokker-Planck equation induced by E42) then reads

(?Zp

oS L x2S 45
T ok, 1XPT o2 Qugsiaae s @Y

Inasmuch as the macroscopic steady siatés stable, Eq.

(45) admits a stationary solution in the form of a multivariate

Gaussian distribution

Jale
PO = o5 X

1
where the matrixg is given by[20]

lg~*+ (g™ H'=-Q,

g being its determinant.

(47)

So far we have not specified the thermodynamic status of
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Substituting Eq(51) into Eq.(44), and expanding arournd,

and u. to first order inh yields

oF
x(1)=—/el<—> . (53
e

Ip

(ii) The matrixg and its determinang will deviate from

their equilibrium values

g=ge+hg"?,

9=ge+hg", (54)
as a result of the nonequilibrium corrections to the Jacobian
matrix | and to the noise correlation mat@ in Eq. (47):

I=lg+hlD 4.

Q=Qe+hQW+--. (55)
Carrying out these expansions systematically in Eg§)
and (47), we finally obtain

g(l)

1
—t ; g5 (oxfx{ P+ oxx(D)

=\ 5.1 26

1
_ (1)
zsiEj g SxEoX® | pe. (56)

our system and, in particular, its distance from thermody-
namic equilibrium. Operationally this distance is monitoredyye are now in the position to evaluate the information en-

by the cpntrol parameter present in the evplution law&q. tropy productionP; [Eq. (21)]. Adopting the Onsager defi-
(4)], which may account for the interaction of the systemyiion of the thermodynamic forck; associated witkx;
with external reservoirs and/or for the direct action of an

external field. At equilibrium &= we), EQ. (46) reduces to

N E

1
Pe(OXe) = mexi{ - Z%‘J g?j 5)(?6)(? (48

Wheregﬁ- is related to the deviatiod S of thermodynamic

entropy from its equilibrium value due to a fluctuation

through[19]

9°AS )
. (49

e—— —

JAS

Xi:a—xi

= —g 95X, (57)

and noting that the partQiej of Qj; is twice the Onsager
matrix L;; of phenomenological coefficienf8] we obtain, to
the leading order in the noise strength

1 _
P,’=g; L X{PX{V+0(h3£0).

(58)

This is nothing but the Gibbsian form of entropy production
of irreversible thermodynamid4.9]. The factor 1¢ accounts

Here we are interested in the linear response to a weak noffer the extensivity of the entropy production since it is pro-

equilibrium constraint,

p=pethéop+o(h?),

<1. (50

h
m=peth, | —

Me

As a rule, the effect of the constraint will be twofold.
(i) The macroscopic stateis shifted from the equilibrium
valuex,,

X=Xg+hxM+---; (51)
hence

%= xe—hxV), (52

portional to the volume of the system. Notice that the con-
nection with phase space dynamics is now less explicit than
in Sec. IV; see Eq921) and(22).

VI. CONCLUSIONS

We have developed a thermodynamic approach to the
class of dynamical systems amenable to a Fokker-Planck
type of description based on the balance equation of infor-
mation entropy. Entropy flux and entropy productionlike
terms depending on the characteristics of the dynamics in
phase space have been identified, and an explicit relation
[Eq. (15)] linking information entropy production to the rate
of phase space volume contraction has been derived. Con-
nections with irreversible thermodynamics have subse-
quently been explored on two case studies pertaining to ther-
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mostatted and to mesoscopic systems by displayingperatorF(x, u.) is dissipative. It is only at the level of the
explicitly the distance from equilibrium. For the class of “effective” vector field ¢ [Eq. (27)] that the conservative
thermostatted systems we showed, without invoking an excharacter of the underlying microscopic dynamics will show
trinsic conservation law between the system and the rese(p.
voir, that information entropy production is given by the  Future work in this area should aim at establishing the
negative sum of the rate of phase space volume contractidihk between irreversible thermodynamics and phase space
to the second order, and the average of the work per uniynamics for more representative systems and on a still more
time of the external forcings. An explicit example pertaining explicit basis. For instance, in most realistic systems,
to Brownian motion was worked out to illustrate this rela- Lyapunov exponents and contraction rates fluctuate consid-
tion. erably along the invariant manifolds. The repercussions of
Our principal motivation for augmenting the deterministic these fluctuations on thermodynamic properties would cer-
description by the addition of stochastic forcings is that nontainly be worth elucidating. Of special interest are also are
equilibrium constraints reflect the interaction of a systemmultivariate, spatially extended systems possessing a large
with external reservoirs. Such an interaction involves, as gumber of Lyapunov exponents. The extent to which all the
rule, a reduced description of the reservoirs; it is thereforeaxponents contribute to macroscopic level properties like en-
most naturally modeled by a dissipative term, in which caseropy production is largely unknown, and one might advance

it also needs to be complemented by explicit consideration ofhat only a few of them—presumably the slowest ones—
the fluctuations. This procedure which in many respects rewould play an important role.

sembles classical coarse grainii®d.,27 leads, for free, to a
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