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Small delay approximation of stochastic delay differential equations
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~Received 19 October 1998!

Delay differential equations evolve in an infinite-dimensional phase space. In this paper, we consider the
effect of external fluctuations~noise! on delay differential equations involving one variable, thus leading to
univariate stochastic delay differential equations~SDDE’s!. For small delays, a univariate nondelayed stochas-
tic differential equation approximating such a SDDE is presented. Another approximation, complementary to
the first, is also obtained using an average of the SDDE’s drift term over the delayed dynamical variable, which
defines a conditional average drift. This second approximation is characterized by the fact that the diffusion
term is identical to that of the original SDDE. For small delays, our approach yields a steady-state probability
density and a conditional average drift which are in close agreement with numerical simulations of the original
SDDE. We illustrate this scheme with the delayed linear Langevin equation and a stochastic version of the
delayed logistic equation. The technique can be used with any type of noise, and is easily generalized to
multiple delays.@S1063-651X~99!08304-X#

PACS number~s!: 02.50.Ey, 02.30.Ks, 05.40.2a
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I. INTRODUCTION

In recent decades, delay differential equations~DDE’s!
have become a powerful tool for the modelization of sp
tially distributed systems. In these systems, the geometr
often such that one can replace a propagated effect by a
delayed version of this effect. Thus an ordinary DDE may
used instead of a nondelayed partial differential equat
This is justified when the delay of interest is commensur
with, or much larger than, other time scales in the syste
Deterministic DDE’s can generate several different types
asymptotic dynamics, such as fixed points, limit cycles, a
chaos. They can also exhibit multistability. These behav
have allowed DDE’s to be useful in several fields. For e
ample, DDE’s have been used to model optical devi
@1–4#, population dynamics@5#, physiological systems
@6–8#, neural networks@9#, economic phenomena@10#, and
chemical kinetics@11#.

When modeling systems which do not noticeably aff
their environment, stochastic variables are often used
model the environmental fluctuations, thus leading to s
chastic delay differential equations~SDDE’s!. Models stated
in terms of SDDE’s have already started to appear in sev
fields, such as physiology@7,12–14# and optics@15,16#.

Stochastic terms have been shown to have a profo
impact on systems described by nondelayed differen
equations, leading even to qualitative modifications of a s
tem’s behavior@17,18#. The same is expected for SDDE’
and can indeed be verified numerically@12,19#. However,
analytical tools for SDDE’s are scarce since the ones use
study nondelayed stochastic differential equations~SDE’s!
@17,18# cannot, in general, be directly applied to SDDE
Some work has been done relative to the exponential sta
ity of SDDE’s @20# and to the existence of smooth probab
ity densities@21#. However, there is in general no way
evaluate the probability densities associated with SDDE’

A noteworthy exception is the delayed linear Langev
equation~see Sec. IV A!. Indeed, when additive white nois
is considered, its linearity allows the exact determination
PRE 591063-651X/99/59~4!/3970~13!/$15.00
-
is
e

e
n.
e
.
f
d
s
-
s

t
to
-

al

d
al
s-

to

.
il-

f

its sample paths and of its stationary statistical proper
@22#. This linearity has also been used to study the stabi
of the first two moments of the steady-state probability d
sity when subjected to additive/multiplicative white/colore
noise@23#. Also, a correspondence has been established
tween the delayed linear Langevin equation and a dela
random walk, and this has been used to derive an appr
mate Fokker-Planck equation, thus leading to an appro
mate expression for the steady-state probability den
@24,25#.

Unfortunately, the tools which rely on the linearity of th
SDDE cannot be used for nonlinear SDDE’s. Coupled m
lattices have been suggested as an alternative approac
the study of both deterministic and stochastic delay differ
tial equations@26#. Such maps can be set to an arbitra
precision by adjusting the number of variables. This a
proach is particularly suited when the evolution of the pro
ability density is sought through numerical simulation
However, the high number of variables involved in such s
tems has hindered analytical progress. In general, this p
lem cannot be avoided since a SDDE is basically a fu
tional differential equation, and thus effectively contains
infinite number of degrees of freedom.

In certain regimes, however, the degrees of freedom m
be slaved to one another. It may therefore be possible
consider only a limited number of special degrees of fr
dom. This paper presents an approximation scheme w
leads, for small delays, from a univariate SDDE to an a
proximate univariate nondelayed SDE. From it, a Fokk
Planck equation and the steady-state probability density
then obtained using standard techniques@17,18#. The steady-
state probability density is then used to obtain a second
proximate nondelayed SDE. The importance of this appro
lies in its versatility: it can be used for a large class of S
DE’s.

Section II lays the foundations for the small delay a
proximation. It shows why the usual Fokker-Planck equat
approach cannot be applied directly to a SDDE, introdu
the concept of conditional average drift, and indicates h
the steady-state conditional average drift can be calcula
3970 ©1999 The American Physical Society
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PRE 59 3971SMALL DELAY APPROXIMATION OF STOCHASTIC . . .
once the steady-state probability density is known. The sm
delay approximation scheme, presented in Sec. III, st
with a Taylor expansion to quadratic order in the delay, a
proceeds through the calculation of the steady-state prob
ity density and conditional average drift. The latter th
yields another valid approximation. This scheme is appl
to two sample systems in Sec. IV. The first one is the
layed linear Langevin equation, which can be considered
reference point since its steady-state probability densit
already known, albeit not through a Fokker-Planck approa
The second system to be considered is the delayed log
equation@27#. This is a generalization of the well-know
logistic equation, which was one of the first models used
population dynamics. For each system, numerical sim
tions are compared to analytical predictions. Finally, Sec
discusses the results and indicates future paths of rese
An appendix completes the paper.

II. FOKKER-PLANCK EQUATION

The systems considered in this paper are described
state variablex, confined to@a,b#, which evolves according
to the stochastic delay differential equation

dx~ t !5 f „x~ t !,x~ t2t!…dt1sg„x~ t !…dW~ t !, ~1!

where f (xo ,xt) and g(xo) are known functions,t is the
delay, ands is a parameter which scales the noise amplitu
Throughout this paper,xo and xt are used as dummy var
ables, and do not necessarily refer tox(t) andx(t2t), nor to
initial conditions. The quantityW(t) in Eq. ~1! is a Wiener
process whose initial condition is 0 at timet50. It is hence
characterized by

^W~ t !&50

and

^W2~ t !&5t,

where^•••& denotes an ensemble average~average over re-
alizations!.
ll
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Up to Sec. III, Eq.~1! is interpreted using Ito calculus. In
order to study a Stratonovich differential equation in S
IV B, we first tranform it into an equivalent Ito differentia
equation, after which the formalism developed here for
latter can be applied. This is discussed in the Appendix.

Let G(xo) be an arbitraryC2 function defined on@a,b#,
and for which

lim
xo→a

G~xo!5 lim
xo→b

G~xo!50 ~2a!

and

lim
xo→a

d

dxo
G~xo!5 lim

xo→b

d

dxo
G~xo!50. ~2b!

Then

dG„x~ t !…5G„x~ t !1dx~ t !…2G„x~ t !…. ~3!

If G„x(t)1dx(t)… is developed in a Taylor series aroun
x(t), using Eq.~1!, and only terms up to first order indt are
kept, Eq.~3! becomes

dG„x~ t !…5H f „x~ t !,x~ t2t!…
d

dxo
G„x~ t !…

1
s2

2
g2
„x~ t !…

d2

dxo
2

G„x~ t !…J dt

1sg„x~ t !…
d

dxo
G„x~ t !…dW~ t !, ~4!

where„dW(t)…25dt has been used, as well as the definiti

d

dxo
G„x~ t !…[

d

dxo
G~xo!U

xo5x~ t !

.

Equation~4! is the well-known Ito formula, but derived for a
SDDE. It has the same form as for a nondelayed SDE@17#.

The ensemble average ofdG„x(t)… can be written as
riate

s
is

s a
K d

dt
G„x~ t !…L 5K f „x~ t !,x~ t2t!…

d

dxo
G„x~ t !…1

s2

2
g2
„x~ t !…

d2

dxo
2

G„x~ t !…L , ~5!

sincedW(t) is independent ofx(t) andx(t2t), and sincê dW(t)&50. In order to evaluate these averages, an approp
probability density must be defined. Letp(xo ,to ;xt ,ttuf)dxodxt be the probability thatx(to)P@xo ,xo1dxo# and x(tt)
P@xt ,xt1dxt#, given thatx(t)5f(t) for all tP@2t,0#. Thusp(xo ,to ;xt ,ttuf) is a bivariate probability density which i
conditional only on the initial condition$f(t)utP@2t,0#%. The averages in Eq.~5! can then be expressed in terms of th
probability density, leading to

E
a

b

dxoG~xo!E
a

b

dxt

]

]t
p~xo ,t;xt ,t2tuf!

5E
a

b

dxoG~xo!E
a

b

dxtH 2
]

]xo
@ f ~xo ,xt!p~xo ,t;xt ,t2tuf!#1

s2

2

]2

]xo
2 @g2~xo!p~xo ,t;xt ,t2tuf!#J ,

where the right-hand side has been integrated by parts with respect toxo and surface terms have been neglected a
consequence of Eqs.~2a! and ~2b!. SinceG(xo) is arbitrary, this equation leads to
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]

]t
p~xo ,tuf!52

]

]xo
H p~xo ,tuf!E

a

b

dxt f ~xo ,xt!p~xt ,t2tuxo ,t;f!J 1
s2

2

]2

]xo
2 $p~xo ,tuf!g2~xo!%, ~6!
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where the order in which the integral and the derivatives
performed has been reversed, and where

p~xo ,touf![E
a

b

dxtp~xo ,to ;xt ,ttuf! ~7!

and

p~xt ,ttuxo ,to ;f![
p~xo ,to ;xt ,ttuf!

p~xo ,touf!
. ~8!

Thus p(xo ,touf) is a univariate probability density cond
tional only on the initial condition, whilep(xt ,ttuxo ,to ;f)
is a univariate probability density conditional both on t
fact thatx(to)5xo and on the initial condition. Let

f̄ ~xo ,touf![E
a

b

dxt f ~xo ,xt!p~xt ,to2tuxo ,to;f!, ~9!

which is called the conditional average drift~CAD!. Since
^W(t)&50, the CAD is seen to be the average of (d/dt)x(t)
at time to given thatx(to)5xo , thus its name. Using this
CAD, Eq. ~6! becomes

]

]t
p~xo ,tuf!52

]

]xo
$ f̄ ~xo ,tuf!p~xo ,tuf!%

1
s2

2

]2

]xo
2 $g2~xo!p~xo ,tuf!%, ~10!

which is the well-known Fokker-Planck equation~FPE!. As
is easily seen, the SDE

dx~ t !5 f̄ „x~ t !,tuf…dt1sg„x~ t !…dW~ t !, ~11!

in which the diffusion term is the same as in Eq.~1!, would
lead to the same FPE@Eq. ~10!#.

Assuming that the system approaches a steady-state
ast→`, the functionsf̄ s(xouf) andps(xouf) are defined as
being, respectively, the steady-state limits off̄ (xo ,tuf) and
p(xo ,tuf). If the boundaries are reflecting, Eq.~10! then
leads to the so-called potential solution

ps~xouf!5
N

g2~xo!
expS 2

s2Ec

xo
dx8

f̄ s~x8uf!

g2~x8!
D , ~12!

wherecP@a,b#. The constantN is determined from the nor
malization condition

E
a

b

dxops~xouf!51,

and implicitly depends ont.
As the delay vanishes,
e

it

lim
t→0

p~xo ,touxt ,to2t;f!5d~xo2xt!,

leading to

f̄ ~xo ,touf!5 f ~xo ,xo!.

Thus Eq.~10! approaches the usual FPE associated wit
SDE.

Though Eq.~10! is a formally exact Fokker-Planck equa
tion for the SDDE given by Eq.~1!, and though Eq.~12! is
the corresponding steady-state probability density, th
equations are somewhat problematic since they are not
sufficient. Indeed, the CADf̄ (xo ,touf) must first be evalu-
ated, and this may not be an easy task. Despite this f
these equations constitute an invaluable tool as a star
point for approximation schemes or when used in conju
tion with them. In particular, Sec. III presents an approxim
tion scheme which allows the determination ofps(xouf) in
the small delay regime. Once Eq.~12! is inverted to yield

f̄ s~xouf!5
s2

2
g2~xo!

d

dxo
ln ps~xouf!1s2g~xo!

d

dxo
g~xo!,

~13!

the steady-state CADf̄ s(xouf) can also be evaluated. A
discussed in Secs. III and IV, the steady-state CAD lead
another valid approximate SDE.

III. SDDE EXPANSION TO O„t2
…

For small delays,f „x(t),x(t2t)… can be expanded in
powers oft using a Taylor expansion aroundx(t). Indeed,
such an expansion has been shown to be valid to quad
order int @28#. It leads from the SDDE~1! to

dx5 f a~x!dt1sga~x!dW, ~14!

where

f a~xo![ f ~xo ,xo!S 12t
]

]xt
f ~xo ,xo! D , ~15a!

ga~xo![g~xo!S 12t
]

]xt
f ~xo ,xo! D , ~15b!

and

]

]xt
f ~xo,xo![

]

]xt
f ~xo,xt!U

xt5xo

.

In these equations, the subscripta stands for ‘‘approximate,’’
and time is dropped since it is the same for all variabl
Equation ~14! constitutes an approximate SDE which a
proaches the exact SDDE as the delay vanishes.
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Let pa(xo ,toufo)dxo be the probability that x(to)
P@xo ,xo1dxo# given that x(0)5fo[f(0) for a system
whose evolution is given by Eq.~14!. Then, following a
procedure@17,18# similar to what is done in Sec. II, the FP
corresponding to this equation is found to be

]

]t
pa~xo ,tufo!52

]

]xo
$ f a~xo!pa~xo ,tufo!%

1
s2

2

]2

]xo
2 $ga

2~xo!pa~xo ,tufo!%, ~16!

and the steady-state probability density is

pa
s~xoufo!5

Na

ga
2~xo!

expS 2

s2Ec

xo
dx8

f a~x8!

ga
2~x8!

D , ~17!

whereNa is the normalization constant andc is within the
support. This support need not be@a,b#, since it may have
been slightly modified by the expansion. As in Eq.~12!, the
normalization constant implicitly depends ont. Also, even
though the initial conditionfo does not appear on the righ
hand side of Eq.~17!, it may still affect the probability den-
sity through its possible influence on the support.

Finally, using Eq.~13! with Eq. ~17! allows the determi-
nation of the approximate steady-state CAD

f̄ s~xouf!5

f ~xo ,xo!1ts2g2~xo!F d

dy

]

]xt
f ~y,y!G

y5xo

12t
]

]xt
f ~xo ,xo!

,

~18!

where, as before,

]

]xt
f ~y,y![

]

]xt
f ~xo ,xt!U

xo5y, xt5y

.

Equation~18! is an approximate expression for the stead
state CAD of the SDDE, which is the steady-state averag
f (xo ,xt) over xt . The situation is much simpler when con
sidering a nondelayed SDE. Since the drift term does
involve any delayedx’s, the CAD is the drift term itself. For
example, in Eq.~14!, the CAD is f a(xo).

It is interesting to note that the steady-state CA
f̄ s(xouf) is not equal tof a(xo), the drift term of the approxi-
mate system arising from the Taylor expansion. This diff
ence is due to the fact that the delay modifies both the d
and the diffusion terms in the approximate system of E
~14!, whereas it does not appear in the diffusion term of
exact system. Therefore, the CAD must integrate the m
fications which are incurred by both the drift and the diff
sion terms in the approximate SDE based onf a(xo) and
ga(xo). The examples presented in Sec. IV clearly illustr
the difference between the two drifts and the benefit of us
the CAD.

The steady-state CAD given by Eq.~18!, in conjunction
with Eq. ~11!, leads to the approximate SDE
-
of

ot

-
ft
.
e
i-

e
g

dx5 f̄ s~xuf!dt1sg~x!dW, ~19!

whereg(xo) is the same as in the original SDDE~1!. The
steady-state CADf̄ s(xouf) is calculated in such a way tha
Eq. ~19! has the same steady-state probability density as
approximate SDE based onf a(xo) andga(xo). However, the
two approximate SDE’s obviously have different CAD
since their drift terms are different. These CAD’s will bo
be compared with numerical simulation results in Sec. IV

Clearly, Eqs.~17! and~18! have not been completely ex
panded to quadratic order int, since the delay appears non
linearly in them. This is due to the fact that no term has be
dropped after the transition from SDDE~1! to SDE ~14!.
Within the range ofx’s over which Eqs.~17! and ~18! are
quantitatively accurate, systematic quadratic order exp
sions int of these equations ought to be as accurate as
originals. Outside this range however, the probability dens
and the conditional average drift may undergo qualitat
modifications when subjected to complete quadratic or
expansions. In particular, their convergence radii may be
tered. Since Eqs.~17! and ~18! follow directly from a SDE
which, for small delays, is close to the original SDDE, th
have a better chance of exhibiting an overall qualitativ
accurate behavior than systematic quadratic order exp
sions. The delayed logistic case presented in Sec. IV B
good example of this. It therefore seems appropriate
systematic quadratic order expansions be carried out onl
a case by case basis and not in the general theory.

Finally, as the delay goes to zero,f a(xo)→ f (xo ,xo) and
ga(xo)→g(xo). The steady-state probability densi
pa

s(xoufo) and the CAD f̄ s(xouf) thus tend to the corre
sponding quantities of the nondelayed SDE obtained by
ting t50 in Eq. ~1!.

IV. APPLICATIONS

A. Delayed linear Langevin equation

1. Deterministic equation

The linear delay differential equation

d

dt
x~ t !52ax~ t2t!, ~20!

wherea is a positive coefficient, was studied by Wright@29#.
In particular, its eigenvalues, around its one and only fix
point x(t)50, can be determined by substituting in it th
sample functionx(t)5Aelt, wherel is complex. This leads
to the characteristic equation

l52ae2lt.

Figure 1 summarizes the behavior of the roots. Fort50, this
equation has only one root:l52a. As t increases from 0,
this root becomes more negative, and an infinite numbe
roots arise whose real parts increase from2`. One of these
new roots is real; the others are complex conjugate pairs.
complex roots emerge with imaginary parts which are,
absolute value, arbitrarily large for arbitrarily smallt. As the
delay increases, they grow closer to the imaginary axis
well as to the real axis. Att51/ae, the new real root merge
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with the old one, and they become a complex conjugate
whose real part increases with the delay. Att5p/2a, this
pair crosses the imaginary axis. Fort.p/2a, their real part
is therefore positive.

Consequently, att50 the system decays monotonical
since the only eigenvalue is real and negative. For 0,t

FIG. 1. Eigenvalues of the linear deterministic DDE~20! and of
the determininstic part of the two approximate SDE’s~30! and~34!
for a51 and various values of the delay. The circles represent,
Eq. ~20!, the 11 pairs of eigenvalues with the least negative r
parts. The triangle represents the eigenvalue of the determin
part of the approximate SDE based onf a(xo) andga(xo) @Eq. ~30!#,

and the square the same based onf̄ s(xouf) @Eq. ~34!#. On graph~a!,
three eigenvalues are so close that an enlargement is required
graph ~b!, the two real eigenvalues of Eq.~20! are merging. On
graph~c!, a pair of eigenvalues of Eq.~20! is located on they axis,
near the origin.
ir

,1/ae, the system also decays monotonically for const
initial conditions, since all the eigenvalues have negative r
parts. Finally for 1/ae,t,p/2a, the system undergoe
damped oscillations, and fort.p/2a diverging oscillations.

2. Exact expression for the variance

Before applying the results of Sec. III to this problem,
exact expression for the variance of the state variable is
rived below using the linear properties of the SDDE. Th
expression is then used as a reference point for the app
mate expression calculated in Sec. IV A 3.

(a) Wide-sense stationary noise. Adding the noise term
h(t) to Eq. ~20! leads to the SDDE

d

dt
x~ t !52ax~ t2t!1h~ t !, ~21!

whereh(t) is a given wide-sense stationary~WSS! stochas-
tic process, i.e., a process for which^h(t)& is constant and
for which ^h(t1)h(t2)& depends only ont22t1 @30#. Once
x(t)’s initial condition has decayed, Eq.~21! is a linear time-
invariant transformation. Therefore,x(t) is also a WSS sto-
chastic process. Furthermore, in this stationary regime,x(t)
andh(t) are jointly WSS, i.e.,x(t) andh(t) are WSS and
^x(t1)h(t2)& depends only ont22t1 @30#.

Taking the average of Eq.~21! allows the determination
of an evolution equation for the ensemble average ofx(t).
Indeed,

d

dt
^x~ t !&52a^x~ t2t!&, ~22!

where^h(t)& has been set to zero with no loss of genera
since it is constant for a WSS stochastic process. The sta
ity analysis carried out for Eq.~20! also applies to this one
In particular,^x(t)&50 is the only fixed point.

Sincex(t) andh(t) are jointly WSS, the correlation func
tions Rxx(Dt)[^x(t)x(t1Dt)&, Rxh(Dt)[^x(t)h(t1Dt)&,
and Rhh(Dt)[^h(t)h(t1Dt)& do not depend ont. Using
Eq. ~21! leads to

d

dt
Rxh~ t !52aRxh~ t2t!1Rhh~ t ! ~23a!

and

d

dt
Rxx~ t !5aRxx~ t1t!2Rxh~ t !, ~23b!

wheret[t22t1.
Let the Fourier transform of a functionR(t) be defined as

S~v![F$R~ t !%[E
2`

`

dt eivtR~ t !.

Then, taking the Fourier transform of Eqs.~23a! and ~23b!,
and introducing the spectral densitiesSxx(v)[F$Rxx(t)%
andShh(v)[F$Rhh(t)%, leads to

Sxx~v!5
Shh~v!

a21v222av sin~vt!
. ~24!
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Using a slightly different approach, a compatible express
for the spectrum of a damped delayed linear Langevin eq
tion was obtained by Hunter and Milton@31#.

Since^x(t)&50 in the stationary regime, the variancesx
2

of x(t) is given by

sx
25Rxx~0!5

1

2pE2`

`

dv
Shh~v!

a21v222av sin~vt!
.

~25!

(b) Gaussian white noise. If h(t) is set to Gaussian white
noise, i.e.,h(t)dt5sdW(t), Eq. ~21! becomes

dx~ t !52ax~ t2t!dt1sdW~ t !. ~26!

The noise spectrum is then given byShh5s2, and the vari-
ance ofx(t), by

sx
25

s2

2pE2`

`

dv
1

a21v222av sin~vt!
. ~27!

Furthermore, sincex(t) and h(t) are jointly WSS,x(t) is
also Gaussian. This means that its probability density is fu
determined by its average and variance.

When numerically integrated, Eq.~27! is seen to be
equivalent, for a delay between 0 andp/2a, to a special case
of a closed form expression obtained by Ku¨chler and Mensch
@22# for a damped delayed linear Langevin equation s
jected to white noise. When specialized to the problem c
sidered here, their expression can be written as

sx
25

s2

2aF11sin~at!

cos~at! G , ~28!

using our notation.
A Taylor expansion of Eq.~27!, or Eq.~28!, in powers of

t aroundt50 leads, to quadratic order int, to

sx
25

s2

2a
~11at!. ~29!

When this equation is considered together with the beh
ior of the deterministic eigenvalues as discussed in S
IV A 1 and illustrated in Fig. 1, there seems to be a parad
Indeed, the deterministic eigenvalue of the delayed lin
Langevin equation with the least negative real part initia
drifts towards more negative values as the delay increa
from zero. Intuitively, this should lead to a decreasing va
ance for the steady-state probability density. This is not
In fact, the variance increases with the delay. This para
stems from the indirect influence that the diffusion term o
SDDE has on the drift term throughx(t2t). Even though
the delay does not explicitly appear in the diffusion term
effectively modifies the influence of the noise on the syste
as is shown by the presence oft in ga(xo) @Eq. ~15b!#. For
the linear SDDE, as shown in Sec. IV A 3,ga(xo) increases
with the delay, thus indicating that the SDDE becomes
fectively more sensitive to noise as the delay increases.
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3. SDDE expansion to O(t2)

When the theory presented in Sec. III is applied to t
delayed linear Langevin equation with additive Gauss
white noise @Eq. 26#, it leads to the functionsf a(xo)5
2a(11at)xo andga(xo)511at, and to the approximate
SDE

dx52a~11at!x dt1~11at!s dW. ~30!

The corresponding approximate steady-state probability d
sity is given by

pa
s~xoufo!5Na expS 2axo

2

s2~11at!
D , ~31!

whereNa is the normalization constant. The variance can
directly extracted from this equation. It is thus given, to qu
dratic order int, by

sx
25

s2

2a
~11at!. ~32!

This corresponds to Eq.~29!, which has been directly de
rived from the exact Eq.~27!. Finally, using Eq.~18!, the
conditional average drift evaluates to

f̄ s~xouf!52a~12at!xo ~33!

to quadratic order int. As seen from Eqs.~31! and~33!, the
steady-state probability density and conditional average d
are effectively independent of the initial condition becau
the support is not disjoint.

The approximate SDE associated with the steady-s
CAD @Eq. ~33!# is

dx52a~12at!x dt1s dW. ~34!

The corresponding FPE agrees, to quadratic order int, with
the approximate FPE obtained by Ohira@24# using an ap-
proximate correspondance between Eq.~26! and a delayed
random walk.

As stated at the end of Sec. III, it is normal for the tw
drifts f a(xo) and f̄ s(xouf) to be different. Still, looking at
the eigenvalues~Fig. 1! of the ordinary differential equation
~ODE’s! arising from these drifts in this particular syste
clarifies what is stated in Sec. III. The eigenvalue of the O
(d/dt)x5 f a(x) is 2a(11at), which becomes more nega
tive as the delay increases. This is in accordance with
behavior of the original eigenvalue of Eq.~20!. However, in
contrast with the original SDDE, it does not seem parado
that the variance increases with the delay sincega(xo) ex-
plicitly depends ont. On the other hand, the eigenvalue
the ODE (d/dt)x5 f̄ s(xuf) is 2a(12at). The latter be-
comes less negative as the delay increases, which intuiti
agrees with the fact that the variance increases with the
lay, and which contrasts with what happens to the cor
sponding eigenvalue of Eq.~20!. This is due to the fact tha
only the drift term, and not the diffusion term, is modified b
the delay in Eq.~34!. Thus the CAD must incorporate wha
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is incurred byf a(xo) and ga(xo) in Eq. ~30!. Overall, both
Eqs. ~30! and ~34! are valid approximations of SDDE~26!.
However, as illustrated in Sec. IV A 4, Eq.~34! is the most
advantageous.

4. Numerical simulations

Scaling t by a21 and x by s, Eqs. ~26! and ~30! are
obtained witha5s51. The simulations of these two equ
tions were performed using a fixed step size stochastic E
integration scheme. The integration step size was varied
tween 1023 and 1025, and was never larger than one tho
sandth of the delay. The steady-state CAD’s were obtai
through a time average of one realization spanning about9

integration steps, while the steady-state probability dens
used 100 realizations spanning about 107 integration steps
each, and the moments, 20 realizations spanning 53107 in-
tegration steps each. The same numbers were used fo
approximate SDE simulations. In each graph, the error b
on each point are either smaller than the symbol or of sim
size.

As seen from Figs. 2 and 3, the agreement between
small delay approximation and the exact results is excel
for small delays. For example, att50.1, the steady-stat
probability densities can hardly be distinguished from o
another. Even att50.7, the agreement is still reasonab
Even though there is a 20% difference in the variances,
probability densities still look quite similar. However, att
51.2, the quadratic order small delay approximation sign
cantly underestimates the variance. Overall, the approxi
tion is seen to be valid for quite a wide range of delays~up to
aboutt50.7).

As stated in Sec. III, even though the SDE based
f̄ s(xouf) of Eq. ~18! yields the same steady-state probabil
density as the one based onf a(xo) and ga(xo), they have
different CAD’s. Both are linear functions ofxo , but the
slope of these linear functions behave very differently as
delay increases~Fig. 4!. Clearly, f̄ s(xouf) is much closer to
the exact SDDE’s steady-state CAD thanf a(xo).

B. Delayed logistic equation

1. Deterministic equation

The next system to be considered is the delayed log
equation@27#

d

dt
x~ t !5@a2bx~ t2t!#x~ t !, ~35!

where a and b are positive coefficients. In the context o
population dynamics,t usually characterizes the reactio
time of the population to environmental constraints, whileb
scales these constraints anda is the Malthusian growth rate
In Eq. ~35!, x(t) is confined to positive real numbers. Indee
asx(t) approaches zero, its time derivative also approac
zero, unlessx(t2t) simultaneously becomes arbitrari
large. It would be quite pathological for the system to
verge at a certain time and then approach zerot units of time
later. This would require a very peculiar initial conditio
This being said,x(t) is therefore bounded from below by th
origin for any practical applications.
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- Equation~35! has two fixed points,x150 andx25a/b.
While x1 is unstable, linearizing Eq.~35! aroundx2 leads to
Eq. ~20!. Thus the stability analysis performed for the d
layed linear equation presented in Sec. IV A 1 can be app
to the fixed pointx2.

FIG. 2. Steady-state probability density of the linear SDDE~26!
for various values of the delay. The circles represent simula
results. The continuous line is a Gaussian with zero mean an
variance given by Eq.~28!. The dotted line is the approximat
Gaussian probability density given by Eq.~31!. In graph ~a!, the
two lines are practically indistinguishable.
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2. SDDE expansion to O(t2)

In this paper, we choose to makea a stochastic paramete
in order to illustrate our approach in a multiplicative noi
context. This represents fluctuations in the net relat
growth rate of the population. As noise is applied to para
etera in Eq. ~35!, the latter becomes the stochastic delay
logistic equation

dx~ t !5@a2bx~ t2t!#x~ t !dt1sx~ t !dW~ t !. ~36!

FIG. 3. Variance as a function of the delay for the linear SDD
~26! and the approximate SDE based onf a(xo) and ga(xo) @Eq.
~30!#. The circles and triangles represent simulation results for,
spectively, the linear SDDE and the approximate SDE. The c
tinuous line is the exact expression~28! for the variance, and the
dashed line the approximate expression~32!. The logarithmic scale
clearly shows the close agreement between the two formulas
small values oft.

FIG. 4. Slopem of the steady-state CAD for the linear SDD
~26! and for the approximate SDE’s~30! and~34!. For these equa-
tions, the steady-state CAD’s are linear functions ofxo . This graph
draws the slopem of these linear relations as a function of dela
The circles represent the steady-state CAD’s slope for the lin
SDDE calculated using numerical simulations of the SDDE. T
triangles represent the steady-state CAD’s slope for the appr
mate SDE based onf a(xo) andga(xo) @Eq. ~30!#, using numerical
simulations of Eq.~30!. The continuous line represents the slope

the steady-state CADf̄ s(xouf), and the dashed line, of the dri
function f a(xo).
e
-
d

Since the noise term tends to zero asx(t) approaches zero
the system is still bounded by the origin. Performing t
Taylor expansion presented in Sec. III leads to the functi
f a(xo)5(11btxo)(a2bxo)xo and ga(xo)5(1
1btxo)xo , to the approximate SDE,

dx5~11btx!~a2bx!x dt1~11btx!x dW, ~37!

and to the steady-state probability density

pa
s~xoufo!5

Nax2a/s222

~11btx!2~t211a!/s212
, ~38!

whereNa is the normalization constant. The moments of th
steady-state probability density are found to be

^xn&5

GS 2a

s2
1n21D GS 2

ts2
2n13D

~bt!nGS 2a

s2
21D GS 2

ts2
13D , ~39!

whereG(x) is the gamma function. In particular, the mean
given by

^x&5
a2s2/2

b~11ts2!
, ~40!

and the variance by

sx
25

s2S a2
s2

2 D F11tS a1
s2

2 D G
2b2~11ts2!2S 11t

s2

2 D . ~41!

In deriving Eq. ~39!, it is seen that the arguments of th
gamma functions must all be non-negative. This implies t
Eq. ~39! can be used to calculate the moments withn,3
12/(ts2), provided also thats2,2a. Indeed, as seen from
Eqs.~40! and~41!, the mean and the variance both go to ze
ass2→2a.

Finally, Eq. ~18! allows the determination of an approx
mate expression for the steady-state CAD,

f̄ s~xouf!5
xo

11btxo
@a2b~11ts2!xo#, ~42!

from which the approximate SDE

dx5
x

11btx
@a2b~11ts2!x#dt1sx dW ~43!

is obtained.
Similarly to what is observed for the delayed line

Langevin equation,f a(xo) and f̄ s(xouf) are different. The
drift f a(xo) has three fixed points:x150, x25a/b, andx3
521/bt. However, the origin is repelling as in the origin
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SDDE. Thusx3 is never approached. Linearizingf a(xo)
aroundx2 leads to the eigenvalue2a(11at). On the other
hand, f̄ s(xouf) has only two fixed points,x150 ~which is
unstable! and x25a/@b(11ts2)#. Linearizing f̄ s(xouf)
around the second fixed point leads to the eigenval
2a(12at), which becomes less negative ast increases. As
for the delayed linear Langevin equation, the effective sc
ing of the noise induced by the delay in the diffusion term
Eq. ~37! more than offsets the drift of the largest eigenva
towards more negative values.

As mentioned in Sec. III, a systematic quadratic ord
expansion can lead to quite dramatic changes in the co
tional average drift. Indeed, carrying such an expansion
Eq. ~42! leads to

f̄ s~xouf!5xo@a2bxo1tbxo~bxo2a2s2!#, ~44!

for which limx→` f̄ s(xuf)51`, in contrast with2` for
Eq. ~42!. Since limxo ,xt→` f (xo ,xt)52`, the original ex-

pression off̄ s(xouf) is clearly preferable. Using Eq.~44! as
the conditional average drift would require that a bound
condition be externally imposed in order to prevent the s
tem from diverging. This example illustrates that one m
be careful when carrying out expansions on results wh
follow from the integration of expanded differential equ
tions. After the original expansion has been carried out, i
often wise, whenever possible, to postpone any additio
approximation until the end of the calculation. This allows
more complete analysis of the implications of such appro
mations.

3. Numerical simulations

For the simulations, Eq.~36! is interpreted using Stra
tonovich calculus and is transformed into an equivalent
SDDE, as shown in the Appendix, thus leading to Eq.~A7!.
All the analytical expressions used in the figures are the
fore those derived using Stratonovich calculus and prese
in the Appendix. This calculus is used in order to simpl
comparisons with future studies on delay differential eq
tions subjected to colored noise.

Similarly to what is done for the delayed linear Langev
equation in Sec. IV A 4,t is scaled bya21 and x by a/b.
Furthermore, since the main focus of this paper is to disc
the small delay approximation, and not to completely ch
acterize the logistic SDDE,a/b2 is fixed to 1 for the simu-
lations. This being so, Eqs.~A7! and~A8! are recovered with
a5b51.

As was done for the linear SDDE, the simulations we
performed using a fixed step-size stochastic Euler sche
Again, the integration step size was varied between 1023 and
1025, and was never larger than one thousandth of the de
All the results were calculated from 100 realizations, ea
spanning on the order of 107 integration steps. Here again
the error bars on each point are either smaller than the s
bol used in the graph or of similar size.

As seen from Fig. 5, for a delay of 0.1 and a noise va
ance of 1.0, there is only an 8% difference between the m
of the steady-state probability density for the approxim
SDE ~A8! and the value obtained numerically from simula
ing SDDE ~A7!, and a 20% difference in the case of th
l-
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variance. Although Fig. 5 indicates that the noise varian
can contribute to the degradation of the small delay appro
mation, Fig. 6 shows that the qualitative agreement betw
the approximate steady-state probability density and sim
tion results for the SDDE remains excellent for large valu
of noise variance. This is true even though a noise-indu
transition, as defined by Horsthemke and Lefever@18#, has
occurred.

As the delay increases, Fig. 7 shows that the approxi
tion is quantitatively good up to aboutt50.5, at which point
there is about a 5% difference between the exact value of
mean and its approximate expression, and around 20%
ference for the variance. However, the approximation is s
qualitatively good up to aboutt50.9 ~Fig. 6!. As the delay
increases up to about 1.4, simulations indicate that a tra
tion occurs in which the slope of the steady-state probab
density changes from zero to infinity at the origin~not
shown!. If the delay is further increased, the probability de
sity diverges at the origin~not shown!. As expected, these
two transitions are not predicted by the small delay appro
mation.

FIG. 5. Mean and variance of the steady-state probability d
sity for the logistic SDDE~A7! and the approximate SDE based o
f a(xo) andga(xo) @Eq. ~A8!# as a function of noise variance. Th
circles and triangles represent simulation results for, respectiv
the logistic SDDE and its approximate SDE. In~a!, the line repre-
sents the mean as given by Eq.~A10!, and in ~b! represents the
variance as given by Eq.~A11!.
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FIG. 6. Probability density for the logistic SDDE~A7! for four combinations oft ands2. The circles represent simulation results for t
exact SDDE, and the line the approximate probability density given by Eq.~A9!.
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Figure 8 once again demonstrates thatf̄ s(xouf) approxi-
mates the SDDE’s CAD much better thanf a(xo), and that it
should therefore lead to dynamical properties which
much closer to those of the original SDDE.

Overall, for this nonlinear SDDE, the small delay a
proximation is seen to be very good for small delays, even
the noise variance increases. Furthermore, it remains rea
ably good for delays which are far from being negligib
(t'0.5).

V. DISCUSSION

As seen in Sec. II, the usual approach to obtain a Fok
Planck equation fails when applied to Eq.~1!, since
f̄ (xo ,tuf) requires prior knowledge of the conditional pro
ability density p(xt ,t2tuxo ,t;f). Approximation schemes
are therefore required in order to obtain a FPE for proble
involving SDDE’s.

This paper basically presents a simple analytical rec
for the transformation of a large class of SDDE’s with
short delay into approximate SDE’s, opening the door to
the analytical tools which have been devised for the lat
Since the linearization of a first-order SDE around a fix
point can only have a real eigenvalue, our approach m
yield close agreement with numerical simulations of a SD
only in regimes for which possible oscillatory modes a
e

s
on-

r-

s

e

ll
r.
d
y

strongly damped. Otherwise, however, our method ma
possible studies of the effect of shorts delays in many s
chastic systems where they have been previously neglec

The simple quadratic order Taylor expansion presente
Sec. III leads, for short delays, to steady-state probab
densities which are in close agreement with numerical
sults. One detail must however be stressed: even though
delay appears only in the drift term of the initial SDDE,
appears in both the drift and the diffusion terms of the a
proximate SDE derived using the Taylor expansion. This f
implies that the noise term must be included before the
pansion. Otherwise, the resulting approximate system wo
be flawed. In fact, for the linear SDDE, it would lead to
decreasing variance as the delay increases, which is the
posite of what is observed for the SDDE. This is also t
origin of the main difference between the SDE obtained
rectly from the Taylor expansion and the one based on
CAD. Whereas the deterministic eigenvalue from the d
term of the former behaves in the same way as the co
sponding deterministic eigenvalue of the SDDE as the de
is varied, this is not true for the latter. Because the appro
mate SDE based on the CAD has the same diffusion term
the original SDDE, its drift term accounts for the influence
the delay on both the drift and diffusion terms of the SD
derived using the Taylor expansion. Indeed, as illustrated
the two examples presented in Sec. IV, the deterministic
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genvalue of the SDE based on the CAD intuitively agre
with the behavior of the probability density as the delay
varied, i.e., the variance of the steady-state probability d
sity increases as the real part of the eigenvalue becomes
negative. Therefore, even though both approximate SD
lead to the same approximate steady-state probability den
for the SDDE, their dynamical behaviors are different. Th
therefore represent two complementary tools when study
the small delay regime of a SDDE.

The approach presented in this paper does not depen
the color of the noise. In fact, it can be used with any type
noise. It can also be easily generalized to a system w
multiple delays. Futhermore, another interesting extensio
the theory presented here is to consider noisy delays, tha
systems on which noise is applied on the delay itself and
only on the dynamical quantities.

In Eq. ~1!, the delayed variablex(t2t) does not appear in
the multiplicative term. The reason for this is that it yiel
nonlinear noise in the approximate SDE resulting from
Taylor expansion, even for quadratic order expansions in
delay. Much caution is required in order to properly interp
nonlinear noise and take its white noise limit. A rigoro
analysis of the effect of delayed multiplicative terms is for
coming.

This research has concentrated on the small delay

FIG. 7. Mean~a! and variance~b! of the steady-state probabilit
density for the logistic SDDE~A7!, as in Fig. 5, but as a function o
delay.
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proximation as a case where the number of degrees of f
dom can be reduced to a manageable amount. The large
lay limit, where the system may sometimes be reduced
map, is another case where such a projection may be
sible. Finally, approximate formulations of the SDDE
terms of coupled ODE’s could possibly be used to study
intermediate delay regime.

FIG. 8. Steady-state CAD of the logistic SDDE~A7! for three
combinations oft ands2. The circles represent simulation resul
for the exact SDDE. The continuous line is the approximate stea
state CAD of the logistic SDDE as given by Eq.~A12!, and the
dashed line the drift functionf a(xo) from Eq. ~A8!.
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APPENDIX: STRATONOVICH FORMULAS

In this paper, the theoretical analysis is performed us
Ito calculus. Equivalent Stratonovich results are summari
in this appendix.
io
to

h

n
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d

1. Fokker-Planck equation

A Stratonovich SDDE can be transformed into an equi
lent Ito SDDE using the transformation

f ~xo ,xt!→ f ~xo ,xt!1
s2

2
g~xo!

d

dxo
g~xo! ~A1!

in analogy with the non-delayed stochastic differential eq
tion case@17#. If Eq. ~1! is interpreted using Stratonovic
calculus, its equivalent Ito formulation is thus
tion
as

the

rms
dx~ t !5F f „x~ t !,x~ t2t!…1
s2

2
g„x~ t !…

d

dxo
g„x~ t !…Gdt1sg„x~ t !…dW~ t !. ~A2!

This equation can now be subjected to the same analysis as Eq.~1!. This analysis remains valid as long as the transforma
~A1! is applied to every definition and result where the drift termf (xo ,xt) appears. In particular, the CAD is now defined

f̄ ~xo ,tuf![E
a

b

dxtF f ~xo ,xt!1
s2

2
g~xo!

d

dxo
g~xo!Gp~xt ,t2tuxo ,t;f!. ~A3!

Once the CAD is defined using Eq.~A3!, the Fokker-Planck equation associated with Eq.~A2! is given by Eq.~10!, and the
steady-state probability density by Eq.~12!. Furthermore, Eq.~13! can still be used to calculate the steady-state limit of
CAD.

2. SDDE expansion toO„t2
…

Using transformation~A1!, the approximate driftf a(xo) is now defined as

f a~xo![S f ~xo ,xo!1
s2

2
g~xo!

d

dxo
g~xo! D S 12t

]

]xt
f ~xo ,xo! D , ~A4!

while ga(xo) is still given by Eq.~15b!. Equation~17!, which yields the steady-state probability density, is expressed in te
of f a(xo) andga(xo), and therefore remains unchanged. On the other hand, the CAD@Eq. ~18!# is now approximated by

f̄ s~xouf!5

f ~xo ,xo!1
s2

2
g~xo!

d

dxo
g~xo!1ts2g2~xo!F d

dy

]

]xt
f ~y,y!G

y5xo

12t
]

]xt
f ~xo ,xo!

. ~A5!
by
3. Applications

a. Delayed linear Langevin equation

Since in this system the noise is additive, transformat
~A1! is trivial, and both Ito and Stratonovich calculus lead
the same results.

b. Delayed logistic equation

For this system, transformation~A1! reduces to

a→a1
s2

2
, ~A6!

which must be applied to every equation in Sec. IV B.
In particular, if Eq.~36! is interpreted using Stratonovic

calculus, the equivalent Ito SDDE is
n

dx~ t !5Fa1
s2

2
2bx~ t2t!Gx~ t !dt1sx~ t !dW~ t !.

~A7!

The associated approximate SDE then becomes

dx5~11btx!S a1
s2

2
2bxD x dt1~11btx!x dW,

~A8!

and the approximate steady-state probability density is

pa
s~xoufo!5

Nax2a/s221

~11btx!2~t211a!/s213
. ~A9!

The mean of this steady-state probability density is given
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^x&5
a

b~11ts2!
, ~A10!

and its variance by

sx
25

s2a@11t~a1s2!#

2b2~11ts2!2S 11t
s2

2 D . ~A11!
r,

.

s.

ty

s

Contrary to what is observed when calculating the mome
for the Ito case,s2 is not restricted to values smaller tha
2a. Finally, the steady-state CAD becomes

f̄ s~xouf!5
xo

11btxo
Fa1

s2

2
2b~11ts2!xoG .

~A12!
-
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