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Delay differential equations evolve in an infinite-dimensional phase space. In this paper, we consider the
effect of external fluctuationgnoise on delay differential equations involving one variable, thus leading to
univariate stochastic delay differential equatig8®DE’s). For small delays, a univariate nondelayed stochas-
tic differential equation approximating such a SDDE is presented. Another approximation, complementary to
the first, is also obtained using an average of the SDDE’s drift term over the delayed dynamical variable, which
defines a conditional average drift. This second approximation is characterized by the fact that the diffusion
term is identical to that of the original SDDE. For small delays, our approach yields a steady-state probability
density and a conditional average drift which are in close agreement with numerical simulations of the original
SDDE. We illustrate this scheme with the delayed linear Langevin equation and a stochastic version of the
delayed logistic equation. The technique can be used with any type of noise, and is easily generalized to
multiple delays[S1063-651X99)08304-X

PACS numbes): 02.50.Ey, 02.30.Ks, 05.46a

I. INTRODUCTION its sample paths and of its stationary statistical properties

[22]. This linearity has also been used to study the stability

In recent decades, delay differential equati¢B¥E’s) of the first two moments of the steady-state probability den-

have become a powerful tool for the modelization of spa-Sity when subjected to additive/multiplicative white/colored
tially distributed systems. In these systems, the geometry i80iS€[23]. Also, a correspondence has been established be-
often such that one can replace a propagated effect by a tinf@/€en the delayed linear Langevin equation and a delayed

delayed version of this effect. Thus an ordinary DDE may bd@ndom walk, and this has been used to derive an approxi-

used instead of a nondelayed partial differential equation'.ﬁn"’“e Fokker—EIanck equation, thus leading to an approgi-
ate expression for the steady-state probability density

This is justified when the delay of interest is commensurat 24,25

with, or much larger than, other time scales in the system: . : .
Deterministic DDE’s can generate several different types o Unfortunately, the tools which rely on the linearity of the
. . : ; - G;SDDE cannot be used for nonlinear SDDE’s. Coupled map

asymptotic dynamics, such as f|xe_d po_'f“s' limit cycles, aNGattices have been suggested as an alternative approach for
chaos. They can also exhibit multistability. These behaviorg,e gty of both deterministic and stochastic delay differen-
have aIIowedy DDE's to be useful in several f|eI_ds. For &X+tial equations[26]. Such maps can be set to an arbitrary
ample, DDE’s have been used to model optical devicesecision by adjusting the number of variables. This ap-
[1-4], population dynamics[5], physiological systems proach is particularly suited when the evolution of the prob-
[6—8], neural networkg9], economic phenomend0], and  apility density is sought through numerical simulations.
chemical kineticg11]. However, the high number of variables involved in such sys-

When modeling systems which do not noticeably affecttems has hindered analytical progress. In general, this prob-
their environment, stochastic variables are often used tiem cannot be avoided since a SDDE is basically a func-
model the environmental fluctuations, thus leading to stotional differential equation, and thus effectively contains an
chastic delay differential equatiofSDDE’s). Models stated infinite number of degrees of freedom.
in terms of SDDE’s have already started to appear in several In certain regimes, however, the degrees of freedom may
fields, such as physiolody’,12—14 and opticq 15,16 be slaved to one another. It may therefore be possible to

Stochastic terms have been shown to have a profoundonsider only a limited number of special degrees of free-
impact on systems described by nondelayed differentialom. This paper presents an approximation scheme which
equations, leading even to qualitative modifications of a sysleads, for small delays, from a univariate SDDE to an ap-
tem’s behaviof17,18. The same is expected for SDDE’s, proximate univariate nondelayed SDE. From it, a Fokker-
and can indeed be verified numerically2,19. However, Planck equation and the steady-state probability density are
analytical tools for SDDE's are scarce since the ones used tien obtained using standard techniqle18. The steady-
study nondelayed stochastic differential equati¢8DE’S) state probability density is then used to obtain a second ap-
[17,18 cannot, in general, be directly applied to SDDE's. proximate nondelayed SDE. The importance of this approach
Some work has been done relative to the exponential stabilies in its versatility: it can be used for a large class of SD-
ity of SDDE’s [20] and to the existence of smooth probabil- DE’s.
ity densities[21]. However, there is in general no way to  Section Il lays the foundations for the small delay ap-
evaluate the probability densities associated with SDDE’s. proximation. It shows why the usual Fokker-Planck equation

A noteworthy exception is the delayed linear Langevinapproach cannot be applied directly to a SDDE, introduces
equation(see Sec. IV A Indeed, when additive white noise the concept of conditional average drift, and indicates how
is considered, its linearity allows the exact determination ofthe steady-state conditional average drift can be calculated
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once the steady-state probability density is known. The small Up to Sec. lll, Eq.(2) is interpreted using Ito calculus. In
delay approximation scheme, presented in Sec. lll, starterder to study a Stratonovich differential equation in Sec.
with a Taylor expansion to quadratic order in the delay, andV B, we first tranform it into an equivalent Ito differential
proceeds through the calculation of the steady-state probabikquation, after which the formalism developed here for the
ity density and conditional average drift. The latter thenlatter can be applied. This is discussed in the Appendix.
yields another valid approximation. This scheme is applied Let G(x,) be an arbitraryC? function defined oria,b],
to two sample systems in Sec. IV. The first one is the deand for which
layed linear Langevin equation, which can be considered as a . ]
reference point since its steady-state probability density is lim G(x,)= lim G(x,)=0 (2a)
already known, albeit not through a Fokker-Planck approach. o—a Xo—b
The second system to be considered is the delayed logistig, 4
equation[27]. This is a generalization of the well-known
logistic equation, which was one of the first models used in o d o d
population dynamics. For each system, numerical simula- lim +~G(Xo)= lim -~ G(x,)=0. (2b)
tions are compared to analytical predictions. Finally, Sec. V Xo—a =70 Xo—b =70
discusses the results and indicates future paths of researcfhen
An appendix completes the paper.
dG(x(1))=G(x(t)+dx(t))—G(x(t)). (3)
Il. FOKKER-PLANCK EQUATION
If G(x(t)+dx(t)) is developed in a Taylor series around

The systems considered in this paper are described by gt), using Eq.(1), and only terms up to first order it are
state variable, confined td a,b], which evolves according kept, Eq.(3) becomes
to the stochastic delay differential equation

d
dx(t)=f(x(t),x(t— 7))dt+ aog(x(t))dW(t), (1) dG(x(t))= f(X(t),X(t—T))HG(X(t))

where f(X,,X,) and g(x,) are known functions;r is the X &

delay, andr is a parameter which scales the noise amplitude. o

Throughout this papet, and x, are used as dummy vari- + 792(X(t))@e(x(t))}dt
ables, and do not necessarily refex{o) andx(t— 7), nor to °
initial conditions. The quantityV(t) in Eq. (1) is a Wiener d

process whose initial condition is 0 at time 0. It is hence +"9(X(t))d_XOG(X(t))dW(t)' (4)
characterized by

(W(1))=0 where(dW(t))?=dt has been used, as well as the definition
t =

dX,

d d
and - G(X(1))=7-G(Xo)
dXO ° Xo=X(t)
(WA(D)=t,
Equation(4) is the well-known Ito formula, but derived for a
where(- - -) denotes an ensemble averageerage over re- SDDE. It has the same form as for a nondelayed $DE.

alizations. The ensemble average df5(x(t)) can be written as
|
d B d a? ) d?
G CxM)) = f(X(t),X(t—r))KG(X(t))Jr -9 (X(t))d—ng(X(t)) : )

sincedW(t) is independent ok(t) andx(t— 7), and since{ldW(t))=0. In order to evaluate these averages, an appropriate
probability density must be defined. Le(X,,t,;X,,t,|#)dx,dx, be the probability thak(t,)e[X,,X,+dX,] and x(t,)
e[Xx,,X,+dx,], given thatx(t) = ¢(t) for all te[— 7,0]. Thusp(X,,ty;X,.t,|#) is a bivariate probability density which is
conditional only on the initial conditiod¢(t)|te[— 7,0]}. The averages in Ed5) can then be expressed in terms of this
probability density, leading to

b b J
J dXOG(XO)J dXT_p(X01t;XT!t_T|¢))
a a ot

— b b J . UZ (92 2 .
—fadxoaxo)fade = gL (X POk i = A 8]+ 5 67RO ikt =l ]

where the right-hand side has been integrated by parts with respegt aod surface terms have been neglected as a
consequence of Eq&2a) and(2b). SinceG(x,) is arbitrary, this equation leads to
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d a? &
p(Xo,t|¢) [ X01t|¢) dX f(X01 T)p(xryt T|X01t ¢ +__{p(X01t|¢)gz(X0)} (6)
|
where the order in which the integral and the derivatives are lim p(Xg ,to|X, to— 75 )= 8(Xo—X,),
performed has been reversed, and where 7—0
b leading to
Plxa )= [ dxpx toix, L) -
f(Xo ,t0| b)= f(xo ,Xo)-
and
Thus Eq.(10) approaches the usual FPE associated with a
p(XO!tOlXT! T| ¢) SDE )
P(X: b X0t )= CRA (8 Though Eq.(10) is a formally exact Fokker-Planck equa-
01 [0}

tion for the SDDE given by Eq(1), and though Eq(12) is

Thus p(X, ,to|#) is a univariate probability density condi- the corresponding steady-state probability density, these
tional only on the initial condition, while(x,,t,|x,,t,;¢)  €duations are somewhat problematic since they are not self-
is a univariate probability density conditional both on thesufficient. Indeed, the CAD(X,,to| #) must first be evalu-
fact thatx(t,) =X, and on the initial condition. Let ated, and this may not be an easy task. Despite this fact,
these equations constitute an invaluable tool as a starting
— oint for approximation schemes or when used in conjunc-
f(Xo tol #)= fa dXF (X0 X P(Xz to 7{Xo ,tor ), (9) '?ion with thl?a?n. In particular, Sec. Il presents an approxima-
tion scheme which allows the determinationgy{x,| ) in
which is called the conditional average difftAD). Since the small delay regime. Once E@.2) is inverted to yield
(W(t))=0, the CAD is seen to be the average ofdt)x(t)
at timet, given thatx(t,) =X,, thus its name. Using this

2
IE _ T oy 9 s 2 d
=— — + —
CAD, Eq. (6) becomes F(xol ) = 5 0%(Xo) g5 N P(Xol £) + 7°G(Xo) 5~ 8(Xo).

(13
d Ja — o
Ep(xo’”d’):_a_)%{f(xo’”?b)p(xo'tw’)} the steady-state CAD(x,|¢) can also be evaluated. As
discussed in Secs. Il and 1V, the steady-state CAD leads to

a? 9 another valid approximate SDE.

—7{92(X0)D(Xo,t|¢)}, (10)
° Ill. SDDE EXPANSION TO O(7?)

which is the well-known Fokker-Planck equati@fPE). As

For small delays,f(x(t),x(t— can be expanded in
is easily seen, the SDE ys.f(x(t) x(t—17)) p

powers of7 using a Taylor expansion arounxdt). Indeed,

— such an expansion has been shown to be valid to quadratic
dx(t) =f(x(1),t| )dt+ og(x(t))dW(D), (1D order in7 [28]. It leads from the SDDE1) to

in which the diffusion term is the same as in Efy), would dx=f ,(x)dt+ og,(x)dW. (14)

lead to the same FPEEq. (10)]. a a '
Assuming that the system approaches a steady-state limjithere

ast—oo, the functionsfS(x,| ) andp3(x,|¢) are defined as

being, respectively, the steady-state limitsf¢%k, ,t|¢) and fo(%)=F(Xg,X )< —Tif(X X )) (153

p(X,.t|¢). If the boundaries are reflecting, E(LO) then ane oo ax, o)

leads to the so-called potential solution

J
N 2 (%o f_S(X,|¢) ga(xo)Eg(Xo)(1_75f(xo’xo)) ) (15b)
00l )= 5 —ex = | ae- o). a2 T
9°(Xo) o Jc g°(x and
wherec e[a,b]. The constanN is determined from the nor- J
malization condition e f(xo,xo)_ f(XO, )
X,
>(7,=>(0

b
fadxops(xow):l,

In these equations, the subscri@pdtands for “approximate,”

and time is dropped since it is the same for all variables.

and implicitly depends orr. Equation (14) constitutes an approximate SDE which ap-
As the delay vanishes, proaches the exact SDDE as the delay vanishes.
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Let pa(Xo.toldo)dx, be the probability thatx(ty)
€[Xo,X,tdX,] given thatx(0)= ¢,=¢(0) for a system
whose evolution is given by Eg14). Then, following a
procedurg 17,18 similar to what is done in Sec. Il, the FPE
corresponding to this equation is found to be

J J
Epa(xo ,tl bo)=— &_Xo{fa(XO) Pa(Xo 1t| ¢o)}

o? &2 2
+7&—X(2){ga(xo)pa(xo-t|¢’o)}1 (16)

and the steady-state probability density is

N 2 (% fa(x')
p;(xow’o):—ae)q{_zf dX,a—

, 1
ga(x0)  \o?Je gi(x’)) 4
where N, is the normalization constant aredis within the
support. This support need not pe,b], since it may have
been slightly modified by the expansion. As in Ef2), the
normalization constant implicitly depends an Also, even
though the initial conditionp, does not appear on the right-
hand side of Eq(17), it may still affect the probability den-
sity through its possible influence on the support.

Finally, using Eq.(13) with Eq. (17) allows the determi-
nation of the approximate steady-state CAD

f(Xo,Xo) + 7'0'292()(0)

J
dny(y,y)Lx

(%ol )= 5 ,

1-7 f(Xo,Xo)

X,
(18

where, as before,

J f _ f
ax. (y’y)_&_xT (Xo,X7)

Xo=Ys X, =Y

Equation(18) is an approximate expression for the steady-
state CAD of the SDDE, which is the steady-state average of
f(X,,X,) overx.. The situation is much simpler when con-
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dx=f5(x|p)dt+ og(x)dW, (19)

whereg(x,) is the same as in the original SDDOE). The

steady-state CAO®(X,|¢) is calculated in such a way that
Eq. (19) has the same steady-state probability density as the
approximate SDE based dg(x,) andg.(X,). However, the
two approximate SDE’s obviously have different CAD’s
since their drift terms are different. These CAD’s will both
be compared with numerical simulation results in Sec. IV.

Clearly, Eqs/(17) and(18) have not been completely ex-
panded to quadratic order i since the delay appears non-
linearly in them. This is due to the fact that no term has been
dropped after the transition from SDD@) to SDE (14).
Within the range ofx’s over which Egs(17) and (18) are
quantitatively accurate, systematic quadratic order expan-
sions inT of these equations ought to be as accurate as the
originals. Outside this range however, the probability density
and the conditional average drift may undergo qualitative
modifications when subjected to complete quadratic order
expansions. In particular, their convergence radii may be al-
tered. Since Eq917) and (18) follow directly from a SDE
which, for small delays, is close to the original SDDE, they
have a better chance of exhibiting an overall qualitatively
accurate behavior than systematic quadratic order expan-
sions. The delayed logistic case presented in Sec. IVB is a
good example of this. It therefore seems appropriate that
systematic quadratic order expansions be carried out only on
a case by case basis and not in the general theory.

Finally, as the delay goes to zerg(X,)— f(X,,%o) and
0a(X,)—9(X,). The steady-state probability density

pS(Xo| do) and the CAD(x,|4) thus tend to the corre-
sponding quantities of the nondelayed SDE obtained by set-
ting 7=0 in Eq.(1).
IV. APPLICATIONS
A. Delayed linear Langevin equation
1. Deterministic equation

The linear delay differential equation

%X(t)z—ax(t—f), (20

sidering a nondelayed SDE. Since the drift term does nofnereq is a positive coefficient, was studied by Wrigas].

involve any delayed’s, the CAD is the drift term itself. For
example, in Eq(14), the CAD isf (X,)-

It is interesting to note that the steady-state CAD

5(x,| ) is not equal tof ,(,), the drift term of the approxi-

In particular, its eigenvalues, around its one and only fixed
point x(t)=0, can be determined by substituting in it the
sample functiorx(t) =AeM, where\ is complex. This leads
to the characteristic equation

mate system arising from the Taylor expansion. This differ-

ence is due to the fact that the delay modifies both the drift

A=—ae M.

and the diffusion terms in the approximate system of Eq.
(14), whereas it does not appear in the diffusion term of theFigure 1 summarizes the behavior of the roots. 60, this
exact system. Therefore, the CAD must integrate the modiequation has only one roat:= — «. As 7 increases from 0,

fications which are incurred by both the drift and the diffu-

sion terms in the approximate SDE based fofix,) and

this root becomes more negative, and an infinite number of
roots arise whose real parts increase frem. One of these

ga(X,). The examples presented in Sec. IV clearly illustratenew roots is real; the others are complex conjugate pairs. The
the difference between the two drifts and the benefit of usingomplex roots emerge with imaginary parts which are, in

the CAD.
The steady-state CAD given by E@L8), in conjunction
with Eq. (11), leads to the approximate SDE

absolute value, arbitrarily large for arbitrarily smallAs the
delay increases, they grow closer to the imaginary axis as
well as to the real axis. At=1/ae, the new real root merges
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800 o1 <1/ae, the system also decays monotonically for constant
T (a) initial conditions, since all the eigenvalues have negative real
400 OoO | parts. Finally for ldke<r<m/2a, the system undergoes
OOO damped oscillations, and fet> 7/2« diverging oscillations.
~ o
i;/ 0 J g } —— — 2. Exact expression for the variance
= o0 © o . / Before applying the results of Sec. Il to this problem, an
-400 ooo r | i exact expression for the variance of the state variable is de-
& | & g | rived below using the linear properties of the SDDE. This
° 1 a1 08 expression is then used as a reference point for the approxi-
-800 mate expression calculated in Sec. IVAS3.
-80 -60 -40 20 0 (a) Wide-sense stationary noigedding the noise term
Re(A) 7(t) to Eq. (20) leads to the SDDE
d
200 ooor= o (b) &X(t) =—ax(t— 1)+ (1), (21
o)
100 ooO T where (1) is a given wide-sense stationaiy/SS stochas-
- ° 5 tic process, i.e., a process for whi¢h(t)) is constant and
S 0 © : g for which (#(t,) (t,)) depends only or,—t; [30]. Once
E o © X(t)’s initial condition has decayed, E1) is a linear time-
0° invariant transformation. Thereforg(t) is also a WSS sto-
-100 Ooo T chastic process. Furthermore, in this stationary regi(s,
&L and n(t) are jointly WSS, i.e.x(t) and »(t) are WSS and
200 © (x(t1) 7(t2)) depends only om,—t; [30]. o
15 10 5 0 Taking the average of Eq21) allows the determination
of an evolution equation for the ensemble average (0.
Re(A) Indeed,
60 d
=2 (c) GrX(0)=—a(x(t=7)), (22)
30 ks t
OOoo where(7(t)) has been set to zero with no loss of generality
Py 5 9 since it is constant for a WSS stochastic process. The stabil-
E 0 A t 3 & = ity analysis carried out for Eq20) also applies to this one.
= o0 © In particular,(x(t))=0 is the only fixed point.
30 ooO 1 Sincex(t) and 5(t) are jointly WSS, the correlation func-
6;0 tions Ry (At)=(x(t)x(t+At)), Ry, (At)=(x(t) n(t+At)),
andR,,,(At)=(#(t) »(t+At)) do not depend on. Using
-60 Eqg. (21) leads to
-3 2 -1 0 1 q
Re( ) aRxﬂ(t)=—aRX,](t—T)+R,7,,(t) (239

FIG. 1. Eigenvalues of the linear deterministic DI¥®) and of  gn(d
the determininstic part of the two approximate SDES) and(34)
for =1 and various values of the delay. The circles represent, for
Eq. (20), the 11 pairs of eigenvalues with the least negative real aRxx(t): R (t+7) =Ry, (1), (23b
parts. The triangle represents the eigenvalue of the deterministic
part of the approximate SDE ba_sedfcmxo) andga(x,) [Eg.(30)], wheret=t,—t,.
and the square the same based %, | ¢) [Eq. (34)]. On graph(a), Let the Fourier transform of a functid®(t) be defined as
three eigenvalues are so close that an enlargement is required. On
graph (b), the two real eigenvalues of EqRO) are merging. On ® )
graph(c), a pair of eigenvalues of E20) is located on thy axis, S(w)Ef{R(t)}Ef dt €“'R(t).
near the origin. o

i‘Fhen, taking the Fourier transform of Eq239 and (23b),

and introducing the spectral densiti&g,(w)=F{Ry(t)}
ands, ,(w)=HR,,(1)}, leads to

with the old one, and they become a complex conjugate pa

whose real part increases with the delay. 7t 7/2«, this

pair crosses the imaginary axis. For 7/2«, their real part

is therefore positive. S (o)
Consequently, at=0 the system decays monotonically S(w)= UA/ASd )

since the only eigenvalue is real and negative. Fers0 a?+w?—2awsin(wr)

(24)
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Using a slightly different approach, a compatible expression 3. SDDE expansion to Of)
f_or the spectrum of a damped deIay_ed linear Langevin equa- \ynen the theory presented in Sec. Il is applied to the
tion was obtained by Hunter and Miltd81]. _ delayed linear Langevin equation with additive Gaussian

Since(x(t))=0 in the stationary regime, the varlancé white noise[Eq. 26, it leads to the functions 5(x,)=
of x(t) is given by —a(1+ ar)Xx, andg,(X,) =1+ a7, and to the approximate

SDE
02=Ry(0)= Zif do— 25,7,,(@) , .
Tioe  a’te—2aesinoT) 25 dx=—a(1+anx dt+(1+ar)odW. (30)

(b) Gaussian white noiséf 7(t) is set to Gaussian white The corresponding approximate steady-state probability den-

noise, i.e.,p(t)dt=cdW(t), Eq. (21) becomes sity is given by
dx(t)=— ax(t— 7)dt+ odW(t). (26) . —ax2
Pa(Xo| o) = Na €x 21ran)’ (31
(o aT
The noise spectrum is then given E)y,]zaz, and the vari-
ance ofx(t), by whereN, is the normalization constant. The variance can be
directly extracted from this equation. It is thus given, to qua-
g2 (= 1 dratic order int, by
oi=—— 1) . (27
¥ 2m) a’+ w?—2awsin(w7) o2
U)%:Z(l-i-af). (32)

Furthermore, sinc&(t) and »(t) are jointly WSS,x(t) is

also Gaussian. This means that its probability density is fullyThis corresponds to Eq29), which has been directly de-

determined by its average and variance. rived from the exact Eq(27). Finally, using Eq.(18), the

When numerically integrated, Eq27) is seen to be conditional average drift evaluates to

equivalent, for a delay between 0 antR«, to a special case

of a closed form expression obtained bydkiler and Mensch f_s(x0| d)=—a(l—ar)X, (33

[22] for a damped delayed linear Langevin equation sub-

jected to white noise. When specialized to the problem conto quadratic order irr. As seen from Eq931) and(33), the

sidered here, their expression can be written as steady-state probability density and conditional average drift
are effectively independent of the initial condition because

, o’[1+sin(a7) the support is not disjoint.
9= 24| cosar) | (28 The approximate SDE associated with the steady-state
CAD [Eq. (33)] is
using our notation. , dx=—a(1—an)x dt+ o dW. (34)
A Taylor expansion of Eq(27), or Eq.(28), in powers of
7 aroundr=0 leads, to quadratic order in to The corresponding FPE agrees, to quadratic ordet imith
the approximate FPE obtained by Oh[i24] using an ap-
) o? proximate correspondance between EZf) and a delayed
0%= 5, (1t an). 29 random walk.

As stated at the end of Sec. lll, it is normal for the two

When this equation is considered together with the behawdrifts fa(X,) and f5(x,|¢) to be different. Still, looking at
ior of the deterministic eigenvalues as discussed in Sedhe eigenvaluegFig. 1) of the ordinary differential equations
IVA1 and illustrated in Fig. 1, there seems to be a paradox(ODE’s) arising from these drifts in this particular system
Indeed, the deterministic eigenva|ue of the de|ayed |ineaﬁ|ariﬁes what is stated in Sec. Ill. The elgenvalue of the ODE
Langevin equation with the least negative real part initially(d/dt)x=fa(X) is —a(1+a7), which becomes more nega-
drifts towards more negative values as the delay increasd®e as the delay increases. This is in accordance with the
from zero. Intuitively, this should lead to a decreasing vari-behavior of the original eigenvalue of E@0). However, in
ance for the steady-state probability density. This is not socontrast with the original SDDE, it does not seem paradoxal
In fact, the variance increases with the delay. This paradofhat the variance increases with the delay siggex,) ex-
stems from the indirect influence that the diffusion term of aplicitly depends onr. On the other hand, the eigenvalue of
SDDE has on the drift term througk(t— 7). Even though the ODE @/dt)x=f%(x|¢) is —a(1—a7). The latter be-
the delay does not explicitly appear in the diffusion term, itcomes less negative as the delay increases, which intuitively
effectively modifies the influence of the noise on the systemagrees with the fact that the variance increases with the de-
as is shown by the presence oin g,(x,) [Eqg. (15b]. For  lay, and which contrasts with what happens to the corre-
the linear SDDE, as shown in Sec. IV A8,(X,) increases sponding eigenvalue of E420). This is due to the fact that
with the delay, thus indicating that the SDDE becomes efonly the drift term, and not the diffusion term, is modified by
fectively more sensitive to noise as the delay increases. the delay in Eq(34). Thus the CAD must incorporate what



3976 GUILLOUZIC, L'HEUREUX, AND LONGTIN PRE 59

is incurred byf,(X,) andga(X,) in Eqg. (30). Overall, both 0.6
Egs.(30) and (34) are valid approximations of SDDE26). 7=0.1 (a)
However, as illustrated in Sec. IV A4, E34) is the most
advantageous.

4. Numerical simulations

(ol )

Scalingt by ! and x by o, Egs. (26) and (30) are
obtained witha=o=1. The simulations of these two equa- o,
tions were performed using a fixed step size stochastic Eule
integration scheme. The integration step size was varied be
tween 102 and 10°®, and was never larger than one thou-
sandth of the delay. The steady-state CAD’s were obtainec 0.0 e &
through a time average of one realization spanning about 10 -6 -3 0 3 6
integration steps, while the steady-state probability densities
used 100 realizations spanning about Iftegration steps X5
each, and the moments, 20 realizations spanniid® in- 0.6
tegration steps each. The same numbers were used for tF R (b)
approximate SDE simulations. In each graph, the error bar:
on each point are either smaller than the symbol or of similar
size. —_

As seen from Figs. 2 and 3, the agreement between thnE“
small delay approximation and the exact results is excellen: , ©
for small delays. For example, at=0.1, the steady-state —
probability densities can hardly be distinguished from one g,
another. Even at=0.7, the agreement is still reasonable.
Even though there is a 20% difference in the variances, the
probability densities still look quite similar. However, at
=1.2, the quadratic order small delay approximation signifi-
cantly underestimates the variance. Overall, the approxima
tion is seen to be valid for quite a wide range of delaysto

about7=0.7). Xo
__As stated in Sec. lll, even though the SDE based on 06
5(x,| @) of Eq. (18) yields the same steady-state probability =12 ()

density as the one based ég(x,) and g,(X,), they have
different CAD’s. Both are linear functions of,, but the
slope of these linear functions behave very differently as the s

delay increaseéFig. 4). Clearly,f_s(xo|q5) is much closerto  —

the exact SDDE’s steady-state CAD thiyx,). Rad
Q

B. Delayed logistic equation

1. Deterministic equation

The next system to be considered is the delayed logistic
equation[27]

Xo

d
GO =[a=Bx(t=7x(), (35
FIG. 2. Steady-state probability density of the linear SDRB

where @ and 8 are positive coefficients. In the context of for various value§ of the_ del_ay. The cir_cles r_epresent simulation
population dynamicsy usually characterizes the reaction res_ults. Thg continuous line is a Gauss!an Wlth zero mean and a
time of the population to environmental constraints, wiile Vanance given by Eq(28). The dotted line is the approximate
scales these constraints amds the Malthusian growth rate, >2ussian probability density given by E@D). In graph (@), the
In Eq. (35), x(t) is confined to positive real numbers. Indeed,tWO lines are practically indistinguishable.
asx(t) approaches zero, its time derivative also approaches
zero, unlessx(t—7) simultaneously becomes arbitrarily
large. It would be quite pathological for the system to di- Equation(35) has two fixed pointsx; =0 andx,=a/pS.
verge at a certain time and then approach zewaits of time ~ While x; is unstable, linearizing Eq35) aroundx, leads to
later. This would require a very peculiar initial condition. Eq. (20). Thus the stability analysis performed for the de-
This being saidx(t) is therefore bounded from below by the layed linear equation presented in Sec. IV A1 can be applied
origin for any practical applications. to the fixed pointx,.
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100 Since the noise term tends to zeroxds) approaches zero,
the system is still bounded by the origin. Performing the
Taylor expansion presented in Sec. Il leads to the functions
fa(xo):(1+:87X0)(a_on)Xo and ga(xo):(l

10 + B7X,) X, to the approximate SDE,

o

dx=(1+B7X)(a— Bx)x dt+(1+ Bmx)x dW, (37)

and to the steady-state probability density

N X2a/u'2—2
a

0.1 ' ' ' PS(Xo| o) = (39)

0 0.4 0.8 1.2 1.6 (1+’87X)2(r‘1+a)/02+2,

. . ) whereN, is the normalization constant. The moments of this
FIG. 3. Variance as a function of the delay for the linear SDDEsteady-state probability density are found to be
(26) and the approximate SDE based by{x,) and g.(x,) [EQ.
(30)]. The circles and triangles represent simulation results for, re-

spectively, the linear SDDE and the approximate SDE. The con- 20 2
tinuous line is the exact expressig®8) for the variance, and the N —+n-1|T| ——-n+3
dashed line the approximate expressidg). The logarithmic scale . a? ) ( 7072
clearly shows the close agreement between the two formulas for (XM= 2 2 , (39
small values ofr. (BT)nF(_Z_l)F _2_|_3
g TO

2. SDDE expansion to Of)

_ Inthis paper, we choose to makea stochastic parameter \harar(x) is the gamma function. In particular, the mean is
in order to illustrate our approach in a multiplicative no'segiven by

context. This represents fluctuations in the net relative

growth rate of the population. As noise is applied to param- a—o2l2
etera in Eg. (35), the latter becomes the stochastic delayed (Xy= — (40
logistic equation B(1+70°)

and the variance by
dx(t)=[a— Bx(t— 7) Ix(t)dt+ox(t)dW(t). (36)

Z( 02) }
1 g A~ ——
o= 2 . (41)

X 2

0 : : o 2621+ 702 1+ 7

MO oo?® 2
L oS 7 In deriving Eg.(39), it is seen that the arguments of the

gamma functions must all be non-negative. This implies that
. Eqg. (39) can be used to calculate the moments with 3
“Aop +2/(r0?), provided also thair’<2«. Indeed, as seen from
3} J Egs.(40) and(41), the mean and the variance both go to zero
aso’—2a.

Finally, Eq.(18) allows the determination of an approxi-
mate expression for the steady-state CAD,

0_2

at —

1+ 7 5

Xo

m[a—ﬁ(l‘l'TO'z)Xo], (42)

T (%ol ) =

FIG. 4. Slopem of the steady-state CAD for the linear SDDE ) )
(26) and for the approximate SDE{80) and(34). For these equa- from which the approximate SDE
tions, the steady-state CAD'’s are linear functiongof This graph
draws the slopen of these linear relations as a function of delay. =
The circles represent the steady-state CAD’s slope for the linear 1+ 87X
SDDE calculated using numerical simulations of the SDDE. The .
triangles represent the steady-state CAD’s slope for the approxiS obtained.
mate SDE based of,(X,) andga(X,) [Eq. (30)], using numerical Similarly to what is observed for the delayed linear
simulations of Eq(30). The continuous line represents the slope of Langevin equationf,(x,) and f3(x,| ) are different. The
the steady-state CAD3(x,|¢), and the dashed line, of the drift drift f;(x,) has three fixed pointx;=0, x,=a/B, andX;
function f 4(x,). = —1/B7. However, the origin is repelling as in the original

[a— B(1+ r0?)x]dt+ox dW (43
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SDDE. Thusx; is never approached. Linearizini(X,) (a)
aroundx, leads to the eigenvalue a(1+ a 7). On the other

FE . . S 1.0 O000 000000000004
hand, f5(x,| #) has only two fixed pointsx;=0 (which is M
unstable and x,=a/[ B(1+ 70?)]. Linearizing f5(x,|) p

around the second fixed point leads to the eigenvalue

P
—a(1l— a7), which becomes less negativeamcreases. As Ko7
for the delayed linear Langevin equation, the effective scal- 05 il

ing of the noise induced by the delay in the diffusion term of
Eqg. (37) more than offsets the drift of the largest eigenvalue
towards more negative values.
As mentioned in Sec. lll, a systematic quadratic order r=0.1 .
. . . : . 0.0
expansion can lead to quite dramatic changes in the condi
tional average drift. Indeed, carrying such an expansion on
Eq. (42) leads to 02

f—S(X0|¢)=X0[a—ﬂxo+T,BXO(,BXO—C(—O'Z)], (44) 1.4

7=0.1 (b)
for which lim,_, f_s(x|¢)= +00, in contrast with—oo for o ©
Eq. (42. Since lim_ . .. f(Xo,x;)=—0°, the original ex- o°

pression offS(x,| ¢) is clearly preferable. Using E@¢44) as “ o] \
the conditional average drift would require that a boundary g 07
condition be externally imposed in order to prevent the sys- o
tem from diverging. This example illustrates that one must o
be careful when carrying out expansions on results which

follow from the integration of expanded differential equa-

tions. After the original expansion has been carried out, it is

often wise, whenever possible, to postpone any additional 0.0
approximation until the end of the calculation. This allows a 0 1 2
more complete analysis of the implications of such approxi- 02

mations.

T
O

FIG. 5. Mean and variance of the steady-state probability den-
sity for the logistic SDDHA7) and the approximate SDE based on

For the simulations, Eq(36) is interpreted using Stra- fa(Xo) andga(x,) [Eq. (A8)] as a function of noise variance. The
tonovich calculus and is transformed into an equivalent Itceircles and triangles represent simulation results for, respectively,
SDDE, as shown in the Appendix, thus leading to E&f). the logistic SDDE anq its approximate SDE.(H), the line repre-

All the analytical expressions used in the figures are thereSénts the mean as given by Ee10), and in (b) represents the
fore those derived using Stratonovich calculus and presente®fiance as given by EGALL).

in the Appendix. This calculus is used in order to simplify

comparisons with future studies on delay differential equa-

tions subjected to colored noise. variance. Although Fig. 5 indicates that the noise variance

Similarly to what is done for the delayed linear Langevin can contribute to the degradation of the small delay approxi-
equation in Sec. VA4t is scaled bya~! andx by a/p. mation, Fig. 6 shows that the qualitative agreement between
Furthermore, since the main focus of this paper is to discusthe approximate steady-state probability density and simula-
the small delay approximation, and not to completely chartion results for the SDDE remains excellent for large values
acterize the logistic SDDEy/ 82 is fixed to 1 for the simu- of noise variance. This is true even though a noise-induced
lations. This being so, EqéA7) and(A8) are recovered with  transition, as defined by Horsthemke and LefeMis], has
a=pB=1. occurred.

As was done for the linear SDDE, the simulations were As the delay increases, Fig. 7 shows that the approxima-
performed using a fixed step-size stochastic Euler scheméon is quantitatively good up to about= 0.5, at which point
Again, the integration step size was varied betweerfHhd  there is about a 5% difference between the exact value of the
10" °, and was never larger than one thousandth of the delaynean and its approximate expression, and around 20% dif-
All the results were calculated from 100 realizations, eacHerence for the variance. However, the approximation is still
spanning on the order of 10ntegration steps. Here again, qualitatively good up to about=0.9 (Fig. 6). As the delay
the error bars on each point are either smaller than the synincreases up to about 1.4, simulations indicate that a transi-
bol used in the graph or of similar size. tion occurs in which the slope of the steady-state probability

As seen from Fig. 5, for a delay of 0.1 and a noise vari-density changes from zero to infinity at the originot
ance of 1.0, there is only an 8% difference between the meashown. If the delay is further increased, the probability den-
of the steady-state probability density for the approximatesity diverges at the origitinot shown. As expected, these
SDE (A8) and the value obtained numerically from simulat- two transitions are not predicted by the small delay approxi-
ing SDDE (A7), and a 20% difference in the case of the mation.

3. Numerical simulations
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o =0.1
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FIG. 6. Probability density for the logistic SDD®7) for four combinations ofr ando2. The circles represent simulation results for the
exact SDDE, and the line the approximate probability density given by(AQ).

Figure 8 once again demonstrates thﬁkohj’) approxi_ Strongly damDEd. OtherWise, however, our method makes
mates the SDDE’s CAD much better th(x,), and that it  Possible studies of the effect of shorts delays in many sto-
should therefore lead to dynamical properties which arechastic systems where they have been previously neglected.
much closer to those of the original SDDE. The simple quadratic order Taylor expansion presented in

Overall, for this nonlinear SDDE, the small delay ap- Sec. lll leads, for short delays, to steady-state probability
proximation is seen to be very good for small delays, even adensities which are in close agreement with numerical re-
the noise variance increases. Furthermore, it remains reasosults. One detail must however be stressed: even though the
ably good for delays which are far from being negligible delay appears only in the drift term of the initial SDDE, it
(7=0.5). appears in both the drift and the diffusion terms of the ap-

proximate SDE derived using the Taylor expansion. This fact
V. DISCUSSION implies that the noise term must be included before the ex-
. ) pansion. Otherwise, the resulting approximate system would

As seen in Sec. Il, the usual approach to obtain a Fokkemhe flawed. In fact, for the linear SDDE, it would lead to a
Planck equation fails when applied to Eql), since decreasing variance as the delay increases, which is the op-
f(x,,t|¢) requires prior knowledge of the conditional prob- posite of what is observed for the SDDE. This is also the
ability density p(x,,t— 7|X,,t; ). Approximation schemes origin of the main difference between the SDE obtained di-
are therefore required in order to obtain a FPE for problemsectly from the Taylor expansion and the one based on the
involving SDDE'’s. CAD. Whereas the deterministic eigenvalue from the drift

This paper basically presents a simple analytical recipgerm of the former behaves in the same way as the corre-
for the transformation of a large class of SDDE’'s with asponding deterministic eigenvalue of the SDDE as the delay
short delay into approximate SDE’s, opening the door to alis varied, this is not true for the latter. Because the approxi-
the analytical tools which have been devised for the lattermate SDE based on the CAD has the same diffusion term as
Since the linearization of a first-order SDE around a fixedthe original SDDE, its drift term accounts for the influence of
point can only have a real eigenvalue, our approach mathe delay on both the drift and diffusion terms of the SDE
yield close agreement with numerical simulations of a SDDEderived using the Taylor expansion. Indeed, as illustrated by
only in regimes for which possible oscillatory modes arethe two examples presented in Sec. |V, the deterministic ei-
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FIG. 7. Mean(a) and variancéb) of the steady-state probability 1

density for the logistic SDDEA7), as in Fig. 5, but as a function of
delay.

genvalue of the SDE based on the CAD intuitively agrees & 0
with the behavior of the probability density as the delay is —
varied, i.e., the variance of the steady-state probability den- =
sity increases as the real part of the eigenvalue becomes qut,\ !
negative. Therefore, even though both approximate SDE'’s )
lead to the same approximate steady-state probability densit
for the SDDE, their dynamical behaviors are different. They
therefore represent two complementary tools when studying 9
the small delay regime of a SDDE.
The approach presented in this paper does not depend o
the color of the noise. In fact, it can be used with any type of X
noise. It can also be easily generalized to a system with o
multiple delays. Futhermore, another interesting extension of F|G. 8. Steady-state CAD of the logistic SDOE?) for three
the theory presented here is to consider noisy delays, that iggmbinations ofr and o2. The circles represent simulation results
systems on which noise is applied on the delay itself and nobr the exact SDDE. The continuous line is the approximate steady-
only on the dynamical quantities. state CAD of the logistic SDDE as given by EgA12), and the
In Eq. (1), the delayed variable(t— 7) does not appear in dashed line the drift functiof,(x,) from Eq. (A8).
the multiplicative term. The reason for this is that it yields
nonlinear noise in the approximate SDE resulting from theproximation as a case where the number of degrees of free-
Taylor expansion, even for quadratic order expansions in thdom can be reduced to a manageable amount. The large de-
delay. Much caution is required in order to properly interpretlay limit, where the system may sometimes be reduced to a
nonlinear noise and take its white noise limit. A rigorous map, is another case where such a projection may be pos-
analysis of the effect of delayed multiplicative terms is forth-sible. Finally, approximate formulations of the SDDE in
coming. terms of coupled ODE’s could possibly be used to study the
This research has concentrated on the small delay apatermediate delay regime.
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f(XOIXT)Hf(X01XT)+7g(xo)d_g(xo) (Al)
APPENDIX: STRATONOVICH FORMULAS Xo
In this paper, the theoretical analysis is performed usingn analogy with the non-delayed stochastic differential equa-

Ito calculus. Equivalent Stratonovich results are summarizetion case[17]. If Eq. (1) is interpreted using Stratonovich
in this appendix. calculus, its equivalent Ito formulation is thus

2

d
dx(t)=| f(x(t),x(t— 7))+ %Q(X(t))ag(xu)) dt+og(x(t))dW(t). (A2)

This equation can now be subjected to the same analysis d4)Efhis analysis remains valid as long as the transformation
(Al) is applied to every definition and result where the drift tei(x, ,x,) appears. In particular, the CAD is now defined as
2

o d
f(XO!XT)—’_?g(XO)Eg(XO) p(XT,t_’T|X0,t;¢). (A3)

Txotl )= f:de

Once the CAD is defined using EEA3), the Fokker-Planck equation associated with &®) is given by Eq.(10), and the
steady-state probability density by Ed=2). Furthermore, Eq(13) can still be used to calculate the steady-state limit of the
CAD.

2. SDDE expansion taO(72)
Using transformatiorfAl), the approximate driff ,(X,) is now defined as

2

d d
fa(xo)E f(xovxo)+%g(xo)d_xog(xo))(1_7'(9_)(7f(xoaxo) ) (A4)

while g4(X,) is still given by Eq.(15b). Equation(17), which yields the steady-state probability density, is expressed in terms
of fa(X,) andg,(x,), and therefore remains unchanged. On the other hand, the[E4018)] is now approximated by

¢ o? d 5 2 d ¢ ;
B (X01X0)+7g(xo)ﬁg(xo)+70 9(Xo) a’ﬁ_xr (y.y) -
F0xo| )= 5 - (A5)
1_T(9_X.,-f(X0'XO)

2

3. Applications o
a+ ? — ﬂX(t - 7')

dx(t)= x(t)dt+ ox(t)dW(t).

a. Delayed linear Langevin equation

Since in this system the noise is additive, transformation (A7)
(A1) is trivial, and both Ito and Stratonovich calculus lead tOThe associated approximate SDE then becomes
the same results.
2
.. . g
b. Delayed logistic equation dx=(1+87X)| a+ > — Bx|x dt+ (14 Brx)x dW,
For this system, transformatidil) reduces to (A8)
o2 and the approximate steady-state probability density is
a—a+ > (AB)
NaXZa/UZ—l
pS(X |¢ )= -1 2. 3" (A9)
which must be applied to every equation in Sec. IV B. T (14 Brx)2 o3

In particular, if EQ.(36) is interpreted using Stratonovich
calculus, the equivalent Ito SDDE is The mean of this steady-state probability density is given by
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Contrary to what is observed when calculating the moments

(X)=——-, (A10)  for the Ito caseg? is not restricted to values smaller than
B(1+70%) 2. Finally, the steady-state CAD becomes
and its variance by
o?a[1+ 7(a+0?)] . 2
o= p et (Al1) f3(Xo| ) = —1+X° < a+ %—,8(1+ TUZ)XO}.
2821+ 70)? 1+ T?) B (A12)
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