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We consider the problem of metastability in a probabilistic cellular autom@@) with a parallel updat-
ing rule that is reversible with respect to a Gibbs measure. The dynamical rules contain two pargraaters
h that resemble, but are not identical to, the inverse temperature and external magnetic field in a ferromagnetic
Ising model; in particular, the phase diagram of the system has two stable phaseg isHarge enough and
h is zero, and a unique phase wheis nonzero. When the system evolves, at small positive valubsfadm
an initial state with all spins down, the PCA dynamics give rise to a transition from a metastable to a stable
phase when a droplet of the favoredphase inside the metastablte phase reaches a critical size. We give
heuristic arguments to estimate the critical size in the limit of zero “temperatu@>¢), as well as
estimates of the time required for the formation of such a droplet in a finite system. Monte Carlo simulations
give results in good agreement with the theoretical predictid@5063-651X99)04304-4

PACS numbdis): 64.60.My, 64.60.Qb

[. INTRODUCTION in which all the spins of the system are updated simulta-
neously, at integer times=1,2,3 ... . Inparticular, we are
Metastable states are ubiquitous in systems undergoinigiterested in finding how the escape time and escape path
first-order phase transitions. During their lifetifghich can  from the metastable phase are influenced by the parallel dy-
be very long indeedthese states are practically indistin- namics. A natural setting for this question is that of probabi-
guishable from equilibrium states. Nevertheless, they canndistic cellular automatdPCA), specifically those whose sta-
be described in the framework of the equilibrium Gibbsiantionary measures are Gibbs states of Ising models with short
formalism[1-3]. Their analysis in terms of dynamical mod- range interactions.
els has led to a deeper understanding of metastability by PCA were first studied in the Soviet literature of the early
providing detailed descriptions of the “escape routes” fromseventies/15] and since then have been applied in many
metastable to stable states in certain idealized limiting situagjfferent contexts; in particular, their connections with statis-
tons. _ _ _ tical mechanics were investigated[it6,17). In this paper we
Following earlier work on systems with long range inter- ;| consider a PCA for which the dynamics depends on two
actions[4,1], the pathwise approach to metastability was in'parameters,@ and h, and which has the property that its

troduced in[5]. It was then used if6] and[7] to study stationary states are Gibbs measures for a certain Hamil-

rigorously the escape _from m_etastability in the Ising mOdeltonianH([.—% h). Hereg plays the role of an inverse tempera-
with nearest-neighbor interactions and a small external mag; C

L ) . - S ure andh that of an external magnetic field, but the coupling
netic field, evolving via metropolis Glauber dynamics in aconstants i depend ong in a complicated wav: in particu-
finite periodic domain, in the limit of temperature going to ' P B Pl way, in particu

zero. The effect of the boundary conditions on the exit patiar, H(8,h)#BH(h). As in the standard Ising model, we

from the metastable phase was analyzefBinMetastability ~have that wherg is large enough antl is zero there exist

for spin systems with different interactions was investigatedwo different stationary Gibbs measures for the PCA, char-

in [9] and in[10] the problem was considered in a more acterized by nonzero average magnetizatian®*, while

general context. for h#0 there is a unique stable phase. We then pose the
The case of finite temperature, infinite volume and exterusual question of metastability: if at large the system is

nal magnetic field going to zero was studied[il]; this  prepared in the minuglus) phase and the magnetic field is

situation, very interesting from the physical point of view, is chosen positivénegativg and small, how does the system

mathematically much more complicated than the zeroveach the stable phase? For definiteness we will always con-

temperature limit. The finite-temperature case also has bessider the escape from an initial all minus phase.

studied by means of Monte Carlo simulatidsee, e.g.[12]) In spin models with continuous time dynamics, an impor-
and by transfer-matrix method43]; a clear discussion of tant role in this transition is played by tfstable configura-
these results can be found [ib4]. tions [6—9], which are fixed points of the evolution in the

In all the above works(except for that of Penrose- limit of zero temperature. For example, a rectangle of pluses
Lebowitz[1] dealing with deterministic continuum systems of width greater than one inside a sea of minuses is a stable
the spin systems evolve according to a stochastic continuownfiguration for the nearest-neighbor Ising model with a
time or serial dynamics, for which at most one spin of thesmall positive external field. The tendency of such a rect-
system is updated at any time. In this paper we investigatangle to grow or to shrink by the repeated addition or loss of
metastable behavior in systems with parallel evolution, i.e.single sites, as a function of its size, yields the behavior of
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the exit from the metastable state. In the PCA discussed b&summing Eq.(3) over ¢ shows that any satisfying Eq.(3)
low all configurations are accessible at a single updatingis stationary for the PCA; the opposite need of course not be

Nevertheless, we will argue that, for largk the only con-

true. It is, however, straightforward to check thatki{z)

figurations relevant for the description of the exit from the =K(—2z) then the proces§2) is reversible with respect to
metastable phase are those in which the plus phase is insitlee measure
well separated rectangles in the minus sea. We then discuss

guantitatively the growth and shrinkage of such droplets andy,;,h
compare our theoretical prediction with results of Monte “4

Carlo simulations.

4

(o)=2"1 HA ghho() cos?{ﬂ( > K(x—y)o(y)+h
Xe y

In Sec. Il we define our model and show that it undergoes
a phase transition at low temperature, and in Sec. Il describ&hereZ is a normalization constant. To see this one simply
the specific model on which we will focus in the balance ofnotes thaip,[ 7(x)|o] can be written as
the paper. We discuss our heuristics on the critical behavior

of droplets in Sec. IV, and compare theoretical and Monte
Carlo results in Sec. V. Section VI is devoted to some brief

conclusions.

Il. DESCRIPTION OF THE GENERAL PCA MODEL

Let A be ad-dimensional torus containirig® lattice sites,
i.e., ACZ%is a cube containing. points and having peri-
odic boundary conditions. At each siie= A there is spin
variableo(x)= = 1; the spacd1,— 1}* of configurations is
denoted by().

To define the dynamics of the model we introduce the

discrete time variable=0,1, . .. anddenote byo,, the sys-

tem configuration at time. All the spins are updated simul-
taneously and independently at every unit time; the condi-

tional probability that the spin at sitetakes valuer at time
n, given the configuration at time—1, is

Prol o(x) = 7'| an-1]=px( 7'| On-1)

1+ Ttanh,B( EA K(X=y)o,_1(y)+h
ye

oY)

Thus the time evolution is a Markov chain &hwith non-
zero transition probabilitie® , (7|o) given by

Pa(rlo)=11 pu(n(x)]o), 2

xeA

Yo,ne().

The coupling is of finite ranggéK(z)=0 if |z|>z,, with
Zo<L and typicallyzo<<L] and the coupling constant§(z)

_ lexg ghn(x)+ B2 K(x—y) n(x)o(y)]
PL7(¥)]0]=3 CoShB[Z K (x—y)a(y)+h]

®)

The measurg4) must of course be the unique stationary
measure referred to above. From H¢) it is clear that
vﬁ'h(a) is a Gibbs measure for a Hamiltoni&h( 8,h) with
(generally many spininteractions of finite range, which by
our assumptions are independent/of

H(B,h)(0)= —BhEX: o(X)

—2 In

cosh,B( > K(x—y)a(y)+h
y

(6)

Hence taking the limitA ~Z9 yields a Gibbs measure®"
for H that is stationary for the PCA oR¢, defined by the
natural extension of the Markov proce@ to Z¢.

The stationary measures for the infinite volume PCA need
of course no longer be unique. It is known in general, how-
ever, that if one stationary translation invarigat periodig
measure is Gibbsian, then all such measures are Gibbsian for
the same Hamiltoniafil8]. Hence to find all translation in-
variant stationary states of our PCA we need only investigate
translation invariant Gibbs states fidi(8,h). Such an inves-
tigation begins with the ground states of the Hamiltonian.
For the model considered here it is easy to see from(&q.
that if K(z)=0 for all z, and if the set ofK(z) that are
nonzero is not chosen in a very special way, thenhferQ
there are exactly two ground states f3,h), +1, in
which o(x)=1 for all x, and —1, in which o(x)=—1 for

will be held fixed throughout our discussion. The parametergy| x, while for h=0 there is only one ground state. It then
B and h play the role of inverse temperature and externaloliows from the Pirogov-Sinai theorj1 9] that ford=2 and
magnetic field, respectively, as discussed above. Note tha sufficiently large there will be in general two extremal

for large|h|,o,(x) =sgnf) with high probability, while for
large positives, on(X) = sgi = K(x—Y)ay,-1(y) +h] with high
probability.

We say that a probability measupéo) on the configura-
tion space(} is stationary for the PCA if and only if it
remains invariant under the dynamics, i.e,,

translation invariant Gibbs measures for0 and a unique
such measure foh#0. By the argument above, the same
conclusion holds for stationary states of the infinite volume
PCA. We are thus in exactly the same setup as in the familiar
ferromagnetic Ising model. We remark that although we are

iff not dealing here with pair interactions, or even exclusively

2,Pa(n]o)p(o)=p(7n). By the general theory of Markov ferromagnetic interactions, it is easy to see that the measures

processes there exists, for ayh, andA, a unique station-
ary measure/ﬁ’h for the PCA. We say that the PCA ie-
versiblewith respect to a measugeiff

Yo,pe().

Pa(nlo)p(a)=P(a|n)p(n), €)

(4) satisfy both the FKG20] and GKS[21] inequalities.

We may now pose the paradigm question of metastability:
if we prepare the system in the starting configuratioh and
take h to be small and positive, how quickly and in what
manner does the PCA reach its stationary measure? We want
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to answer this question in the limit g#—oc, with A andh J4(B,0)=% In[ (cosh 58)(coshB)?/(cosh 33)3]<0.
fixed, in which the stationary state is1, and hence may (12

formulate the first part of the problem as that of esUmatmgThe pair interactions are thus ferromagnetic while the four-

he first hitting ti =inf{n=0:0,=+1}, in the limi A : o
fgiolrst,vhlgr']n?hgrge;é% ilsn {rne ;)r;j”. :-_} ’1"]“2 :n;:/nvgr spin interactions are not, so the usual conditions for GKS
' y brep o = itrﬂequalities are not satisfied.

the second part of the question, we need to describe the pa
that the system follows to reach1; typically, such a path
will involve the necessity of passing through one of a small

number of critical configurations. , , We shall first give a heuristic argument showing that the
As in the case of continuousr seria) dynamics, the first  jnortant configurations for exiting from the metastable state
problem is to understand the behavior of the “stable” con-in the PCA are, as for the usual Glauber dynamics, isolated
figurations, that is, to estimate the probability that a stablgectangles of pluses of minimum width two. We shall then
configuration will grow or shrink. Rather than discussing thisdescribe, again on a heuristic level, the growth and shrinkage

problem in general terms, we shall now focus on a specifi¢)f gne such rectangle. We find a critical valigh), for h

model. <1, for the lengtH of the smaller side of the rectangle such
that, in the limit 8—oo, all rectangles withl <I* (h) will
ll. A SPECIAL MODEL shrink to zerdexcept for some special valueshyffor which
the condition id <I* (h) — 1] while those withl =1* (h) will
grow, resulting in an escape from the metastable state.

Let us begin by comparing Glauber dynamics—realized
via the metropolis algorithm, as is usual in questions of
gnetastability—with the PCA dynamics considered above, fo-
cusing on differences which are relevant whreis small and
B is very large. The former, for a spin system with Hamil-
tonian H=H(h) and inverse temperaturg, proceeds by
spin flips at single sites, with the rat€x;o) at sitex in
configurationo given by

IV. TIME EVOLUTION

For the rest of this paper we will focus on one special
model from among those specified b§l): the two-
dimensional model d=2) with K(z)=1 for ze A, and
K(z) =0 otherwise, wheréd,={0,=e;,*e,} is the set con-
sisting of the origin and its four nearest neighbors. Thus th
probability distribution of the spirr,(x) is determined by
the spins at timen—1 at the five sites in a cross centered at
X. According to Eq.(4), the stationary measune‘j'h of this
system will then be

RN o) =Z"Y(B;A)

o) {1, it A(o)<H(0),
X;0)= ~ ~ - ~
xexp — 2, Uy(o;B,h)+ph> a'x), 7) expB[—H(o™)+H(o)], if H(e*)>H(0),
XeA xeA
(13
whereU,(o;8,h)=Uy(7_,0;8,h) with 7, the shift opera- wherec* is the configuration obtained fromby flipping the
tor (with periodic boundary conditions oft) and spin at sitex:
2 — won | —oly), fory=x,
Uo(e i) == 3 J(B.mo(A) o <y>—[a(y), for yx. (14

Sincec(x; o) depends only oB[H(c*)—H(o)] and is in-
dependent of if H(o*)<H (o), the dynamical landscape is
determined entirely by the functiorBd) (o), and thestable

with o(A)=11,.a0(y) for any ACA. The six coefficients configurationsi.e., those invariant under the dynamics in the
Jja(B,h) are determined by the six values which the . B— 0, are the local minima off.

2yen,o(¥) cantake. Foh=0 only even values d#A occur, In contrast, the PCA dynamics permits transitions from
and we find one configuration to any other in a single updating; we will
see, however, that this distinction will play only a minor role
Uo(o B,0)= — Jo( B,0)— J(B,0 in the analysis of metastability. Recall that the probability of
ol 7380 ol A0~ 2B ){x,yE}:cAo X%y a transition fromo to another configuratiorp in one time
step is given by the product of the probabilities of spin flips
— 3,80 X 2) (W), at sites wherer and # differ with the probabilities of non-
(B ){x,y,z,zw}CAo c()o(y)o(Z)o(w) flips at sites where they agree. Probabilities of all possible

, 8

=—In cosr{ﬁ E o(y)+ph

yeho

©) single site flips are shown in Fig. 1; it is clear that, at lagye
certain flips are almost sure to take place, while all others

with have exponentially small probability. Thus from an arbitrary
initial condition we expect a very rapid evolution to a stable
Jo(8,0)= 75 In[ (cosh 58)(cosh 33)°(coshp)'%|=0, configuration, with further change taking place on an expo-

(10) nentially slow time scale, and involving primarily flips of
single spins—in fact, on six different exponential time
Jo(B8,0)= 3 In[ (cosh 58) (cosh 3B)/(coshB)?]=0, scales, well separated forx 1 and very larges, correspond-
(11 ing to the six slow spin flip processes of Fig. 1. The paral-
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+ i + 1+ e28(5+h) ¢ _ 1 4 ¢28(5-h) €
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— + 1
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lelism of the dynamics is of relevance during the first, rapid,and that the time to react* is typically of order exp B(1
phase, but the analysis of metastability involves the slow;—h). Thus the path for escape from metastability must pass
essentially serial, second phase—although in certain cas@srough configurations in which all the pluses are inside
we must consider the effect of a small number of unlikelywell-separated rectangles.
single-site events occurring simultaneously. We do not attempt to discuss the most general situation
A second difference is that although, in the PCA dynam-put instead consider the fate of a single rectangle; we expect
ics, transitions that lower the energy are generally favoredhat, as for Glauber dynami¢s], this is the key element in
over those that do not, the probability of a transition froem an analysis of metastability. Let us consider, then, a configu-
to # is not specified entirely by the energy difference ration » for which all spins inside a rectangle of sideand
H(#;8,h)—H(o;8,h). In particular, for the specific model m are up and all other spins are down, and suppose for defi-
introduced in Sec. I1l, the single-step probability of flipping a niteness that<m. We will say that such ahx m droplet is
spin that agrees with two of its nearest neighbors is exponersupercritical if, starting from 7, the system will reach the
tially small, even when such a flip ignergetically favored  configuration+ 1 before it reaches- 1, with probability that
by the magnetic field, and hence there are pairs of configuapproaches 1 in the limjB—o; the droplet issubcritical if
rationso and  which differ at a single site but are such that the reverse is true. We will argue heuristically thatl if
the probability of jumping between the(im either directiol <2/ then the droplet is subcritical andlif-2/h the droplet
goes to zero ag—co. This is illustrated in Fig. 1. Conse- s supercritical, while if 24 is an integer andi=2/h then the
quently there are many more stable configurations for theyroplet may either shrink or grow. Theitical length I¥ is

PCA than for the Glauber dynamics. In fact it is easy to segne smallest integer such that the droplet is supercritical if
that any configuration in which the value of the spin at everyzm  thus|* = 2/h)+ 1.

site agrees with that of at least two of its neighboring sites is

stable. considerations, with the assumption that if the system starts

Des_p|_te the large number of stable co_nflguratlons, hovV’from a rectangular droplet then the next droplet reached will
ever, it is rectangular droplets that are important for exit e one with lower energy. For example, jfcontains arl
from the metastable state, due to the effect of the most rapi | droplet ande(l)= H(??). one may apbroximate(l) at

of the “slow” singIeA flip processes of Fig. 1. We formalize very large 8 by writing In coshx~glx| in Eq. (8). In this
this as follows. LetQ) be t_he set of configurations in WhiCh approximationg(l) is a parabola, the maximum of which is
every plus spin agrees with at least two of its nearest neighyhieved at =2/, supporting the result® =[2/h]+1 de-

bors, and defind:()— () so thatTe is the configuration scribed above.

obtained froma by flipping all the minus spins with at least  For a correct calculation of the critical length we must
two pluses among their nearest neighbors. Foraay) the  analyze in detail the mechanisms of growth and shrinkage of
sequence of configuratio&o, k=0,1, . .., isnondecreas- a rectangular droplet; these are in general similar to those for
ing, in the sense thafTt " 1o)(x)=(T o) (x) for all x, and  Glauber dynamic§6], although the details are different. We
hence must reach a fixed poiat, in which the set of plus will comment below on the possibilities of making the fol-
spins forms well separated rectangles bands around the lowing heuristic discussion rigorous.
torug inside the sea of minuses. Moreover, if we takas Consider first growth. From Fig. 1 it is clear that a single
the initial conditiona, of the PCA dynamics, and I&,_ be  plus protuberance on one of the four sides of the rectangular
the event that for some, o,=o* and the sequencer(,) is is not stable; growth proceeds through the formation of a
increasing for G&ms=n, then it is clear from Fig. 1 that double protuberance, which then grows “quicklyl’e., on
the time scale exp@1—h)] to complete the additional side.
The parallel dynamics permits the double protuberance to
lim ProbE, =1, (15  formin one time step, as shown in Figap, the typical time
B— for this process is

A very rough estimate of} may be based on energy
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I — ;] - T e2ﬁ(l—h)
m m m+1
| e2B(th)
(a)
— — —
! ’E ‘j FIG. 3. Approximate description of the behavior of the edge of
™ m ™ m+1 a droplet.
) (1
ZaBc if 1=k+1,
2 e
| IR j ;
m m m m —e_Bb |f Izk—l,
P(k,)={ 2
¢ 1 1 :
© 1- e fe—se ™ it I=k,
FIG. 2. Growth and shrinking mechanisnta) double protuber- _
ance growth mechanisntp) single protuberance growth mecha- \ 0, otherwise,

nism, (c) corner erosion.
and

~ @3B(3=h)
Tdouble™ € : (16) P(O,D)=2e %, P(0,00=1-3e *
Alternatively, the protuberance can grow in two consecutiquhere k=1, c>b>0, and8>0. This chain, withb=2(1
time steps, as shown in Fig(l8; the parallel character of the _h) andc;2(1+h): is an approximate déscription of the

dynamics enters here as well, since after formation of 3 ehavior of the edge of a dropletee Fig. 3, if one thinks of

Socle rolberanee ot ne T sten tere must ocer, 1 U as epresening he number o mins sinson this edge
P, P P ' e t. In order to estimaterg,;,x one should calculate the

probability exp—2(1-h)], and the flip of a minus spin ad- | time to sed —1 minus spins on the edge, startin
jacent to th? protuberanpe, e}lso with probability [exps(1 . f?gm zero minus spins. Such anpestimate, whicﬁl a;grees V\?ith
—h)] (see Fig. 1; the typical time for this growth process is Eq. (18), is provided by the following lemma, the proof of

thus which is parallel to that of lemma 1 ¢6].
2B R ARI) Lemma 4.1 For_kz 1, define the hitting timer; for the
single _ . , (17) Markov chainX; with Xo=0 by
first step second step
def
Clearly 7ingie< Taoupie fOr B large and hence the most effi- re={t=1:X,=k}. (19

cient growth mechanism is the two-step one.

Again from Fig. 1 it is clear that the most efficient shrink- Then for anys>0,
ing mechanism is the usual corner erosion, shown in Fig.
2(c); the shrinking is performed via a sequence of stable
configurations. We estimate the time needed for the loss of P
one of the shorter sides of the rectangle, which requires the

erosion ofl —1 sites(after which the remaining single pro- 14 complete the derivation of the critical length for rect-
tuberance vanishes rapidlywhen g is large, such a process angular droplets we compare E&7) and (18): growth oc-

will typically occur without backtracking. The rate at which s \ith probability one in the zero temperature limit, that
the entire process occurs is thus estimated as the rate for 0@? I=1*  if lim 5 Tsinglel Tsprini=0. This again leads to

erosion, exp??™M times the probability that—2 further
erosions occur within the lifetime e%f5*~" of a stable con-
figuration, which is of ordefexp 221" ex?A1~N1-2 Thus Ik =
the shrinking time is estimated as

— 00

B
(eﬁck—ﬁb(k—l)—ﬁs<TE<eﬁCk—Bb(k—1)+Bs) 1.
(20

2
+1. (21)

We believe that the above argument could be made rigor-
(19 Ous along the lines of the corresponding arguments in Sec. 2
of [6]. The main complicating factor appears to be that, be-
cause the growth time;ge is SO large, processes beyond
The estimate of the shrinking timein can be supported simple corner erosion must be accounted for when evaluat-
by considering a random walk that models what happens oing the shrinking time. For example, several corners may
one edge of the droplet. Consider a Markov chXin t  disappear in one step; more complicated processes, such as
=0,1,2 ..., taking values in the nonnegative integers andthe two-step shrinkage by two sites shown in Fig. 4, are also
with transition probabilities relevant. These modifications appear to be technical only and

e2B(1+h))1-2

2B(1+h
P | prm

Tshrink™
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TABLE |. Estimates of the critical lengthj; ,, with their stan-
- - dard deviations, obtained from Monte Carlo simulations via the
procedure described in Sec. V. FB=« we givel} as obtained

. . . from Eq. (21).
FIG. 4. One mechanism occurring on a time scale faster than a.(2Y

Tsingle @Nd hence relevant for complete treatmentrgfi.

B
. 0.9 11 1.3 %o
should not affect the estima(&8) of 7¢y,ink, but we have not
carried out a complete analysis. 0.05 38.5%1.60 40.16:1.50 40.581.35 41
h 0.1 19.76:1.13 20.2%1.20 20.36:0.92 21
V. MONTE CARLO RESULTS 0.2 9.96:0.20 9.96:0.20 9.98:0.14 11

The critical lengthl}; introduced in the previous section
characterizes the behavior of the system in the lighit.  shrink. We also introduced a cutoff on the total length of
In this section we define a critical lengt}, at finite 3and ~ each run, chosen as a function@8&o that for most runs the
describe the results of Monte Carlo simulations evaluatindate of the droplet was determined before the cutoff was
%, numerically for several values ¢ andh. We find that ~ reached; in the casg=1.3, the highest value g8 we have
when 8 is large enough the resulting estimateslg)j] are considered, this cutoff was 200000 iterations. Letting
close the theoretical estimate tf given in the previous Csn(l) denote the number of times that the droplet grew and
section. Sg,n(l) the number of times that it shrank, and assuming that

Let ps (1) denote the probability that a square droplet of th€ fraction of the remainind =G~ S,y cases(in which
side | grows and covers the whole lattice, that is, that in'& did not determine the behavjoin which the droplet

evolving from this initial configuration the system reachesould have grown if we had waited long enough is the same
the state+1 before the state-1. Clearly pj (1) is a non- as for the cases in which the behavior was determined, we

decreasing function dfwith p;,(0)=0 andpgy(L)=1,s0 &€ led to the estimate
that the differences

p (|):Gﬁv—h(|) (25)
dgn(D=Pgn(1)—Pgn(l—1) (22 PR G n(D+Spn(l)

form a normalized probability distribution. In the limjg From the estimated values @f; ,(I) we computed the

— o (assuming for simplicity that ®/is not an integer pz,  finite-temperature critical length, via E(R4), and the stan-

reduces to a step function, dard deviation of the distributiony,; the values are re-
corded in Table I. The results are in very good agreement
1, if I=1f, with our theoretical prediction: when the temperature is low-
P n(1)= 0. if 1<|* (23)  ered, the numerical measure of the critical length tends to the

zero-temperature theoretical predictign=|2/h|+ 1. We did
andd, (1) to a unit mass on the critical lengthi . At finite not consider higher values ¢f because too long runs would
temperature, then, we define the critical length to be thdae been needed, but the values we have considered seem
mean of the distribution ; to be sufficient to see the zero temperatL'lre.hm.lt behavior.

‘ Note that the standard deviation of the distributithn,(1)
decreases whefiis increased. This good behavior is clearest
2,h=2 Id g n(l). (24)  in the case of small external magnetic field; presumably,
! higher values ofB should be considered at highlkrto ap-
: x 1% . proach the limiting behavior.
o o it of . el . W OBSeved at h il e o grovih of he i
ferent from that used ifg] square deper_]ded_stro_ngly grandh, b_ut not onl;_wh|le the
) typical shrinking time increase sensibly whers increased.

In the above d'SCUSS'Sn we have _suppressegl the depe his is qualitatively in agreement with theoretical estimates
dence ofpg,, dgn, andly, on the lattice sizé, since for (17) and(18)

large 8 andL we expect Z,h as defined by24) to be essen-
tially independent ot..

We have carried out numerical experiments to estimate
the functionp (1), and hencéy ,, for 54=0.9,1.1,1.3 and In this paper we have studied the problem of metastable
h=0.05,0.1,0.2; we varied over the range of values in states in probabilistic cellular automata, viewing the latter as
which pg n(l) changes rapidly and made=100 runs for the simplest instance of models evolving under parallel dy-
each value of. For each run, we first prepared our system innamics. All detailed work has been focused on a particular
a starting configuration characterized by a single squarease: a two-dimensional model on the square lattice in which
droplet of plus spins of sizk placed in a lattice the siZeof  the probability of a spin flip at site& depends only on the
which was chosen large enough to avoid boundary effectdotal magnetization of the set of five spins in a cross centered
We then followed the evolution of the system and decidedat x [see Eq.(1)].
by means of lower and upper cutoffs on the total system We conclude that the general pattern of analysis which
magnetization, whether the droplet would ultimately grow orhas been used for similar models evolving under Glauber
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dynamics applies here as well, since events in which thenate the critical length in the serial case one should compare
system makes a one-step transition to a configuration signifthe shrinking time(18) with a new growing timergoumn
cantly different from the current one can be neglected in the- exd28(3—h)+28(1—h)], obtained by noting that in the
low-temperature limit. In particular, we argue that the path ofsecond step of the double protuberance growth the persis-
escape from metastability passes through a critical rectanggence probability of the single protuberance need not be
lar droplet. On the other hand, the parallel nature of the dytaken into account. Comparison of these two times shows
namics does influence the details of the analysis of the espat the critical length in the serial case is given, fiovery
cape time and, in particular, adds enough complications t@mq)|, by|3/2h|+ 1. Thus, for these models, the parallel rule
make a rigorous analysis more difficult than in the Glaubeligaqs 1o a larger critical droplet and a slower exit from the

case. _ _ metastable phase.
For the model in question we have shown, through heu-

ristic arguments and Monte Carlo simulations, that the criti-
cal length of a rectangular dropletli§=|2/h|+1. Our the-
oretical prediction is valid only in the limit of zero
temperature, but our simulations confirm estimates close to One of the author¢E.C) wishes to express his thanks to
the theoretical ones even at finite temperature. the Mathematics Department of Rutgers University for its

It is natural to ask whether escape from the metastableery kind hospitality, and to Enzo Olivieri for useful discus-
state is facilitated or hindered by the use of paralded op- sions. E.C. also thanks the Istituto Nazionale di Fisica
posed to serialdynamics. It is not clear that this question Nucleare—Sezione di Bari and the Dipartimento di Fisica
has a universal answer, but as a preliminary approach weell’'Universitadegli Studi di Bari for their financial support.
may ask what would happen in the model of this paper if aThe work at Rutgers University was supported by NSF Grant
serial evolution rule were adopted, so that at each time steNo. DMR 95-23266. J.L.L. would also like to thank
one spin is chosen at random, with uniform probability, andDIMACS and its supporting agencies: the NSF under Con-
then updated with probability given by E€L). tract No. STC-91-19999 and the N.J. Commission on Sci-

As mentioned in Sec. IV, we used the parallel character oénce and Technology. We thank Alex Mazel for very useful
the dynamics only in the estimate of,4e SO that to esti- discussions.

ACKNOWLEDGMENTS

[1] O. Penrose and J. L. Lebowitz, in “Molecular theory of meta- Dordrecht, 1994 pp. 265—301; R. H. Schonmann, S. B. Shlos-
stability: An update,” appendix to the reprinted edition of the man, Commun. Math. Phy494, 389(1998.
paper by the same authors, “Towards a rigorous moleculaf12] K. Binder, Phys. Rev. B3, 3423(1973; K. Binder and H.

theory of metastability,” inFluctuation Phenomena&nd ed., Muller-Krumbhaar,ibid. 9, 2328 (1974; K. Binder and E.
edited by E. W. Montroll and J. L. LebowitédNorth-Holland Stoll, Phys. Rev. Lett31, 47 (1973; H. Tomita and S. Mi-
Physics, Amsterdam, 1987 yashita, Phys. Rev. B6, 8886(1992.
[2] S. N. Isakov, Commun. Math. Phy85, 427 (1984. [13] C. C. A. Ginther, P. A. Rikvold, and M. A. Novotny, Phys.
[3] O. Lanford and D. Ruelle, Commun. Math. Phy3 194 Rev. Lett. 71, 3898 (1993; Physica A212 194 (1994); V.
(1969. Privman and L. S. Schulman, J. Phys.1A, L231 (1982; J.
[4] R. B. Griffiths, C. Y. Weng, and J. S. Langer, Phys. Rb49, Stat. Phys29, 205(1982.
301(1966. [14] P. A. Rikvold, H. Tomita, S. Miyashita, and S. W. Sides, Phys.
[5] M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares, J. Stat. Rev. E49, 5080(1994.
Phys.35, 603(1984). [15] O. N. Stavskaja, Math. USSR Sborn#, 395 (1973; A. L.
[6] E. J. Neves and R. H. Schonmann, Commun. Math. Pt8/3. Toom, N. B. Vasilyev, O. N. Stavskaja, L. G. Mitjushin, G. L.
209 (1991); Prob. Theor. Rel. Field91, 331 (1992; R. H. Kurdomov, and S. A. Pirogonpublishegl
Schonmann, Commun. Math. Phyil7, 231 (1992. [16] P. Rujan, J. Stat. Phy49, 139(1987; A. Georges and P. Le
[7] G. Ben Arous and R. Cerf, Electronic Journal of Probability Doussal,ibid. 54, 1011(1989.
Paper No. 101996. [17] J. L. Lebowitz, C. Maes, and E. Speer, J. Stat. PB@s117
[8] E. N. M. Cirillo and J. L. Lebowitz, J. Stat. Phy80, 211 (1990; J. L. Lebowitz, C. Maes, and E. Speer,Rrmobabilistic
(1998. Cellular Automata: Some Statistical Mechanics Consider-
[9] E. N. M. Cirillo and E. Olivieri, J. Stat. Phy83, 473(1996); ations Lectures in Complex Systems, SFI Studies in the Sci-
R. Kotecky and E. Olivieri,ibid. 70, 1121 (1993; 75, 409 ences of Complexity, Lecture Volume Il, edited by E. Jen
(1994; F. R. Nardi and E. Olivieri, Markov Proc. and Rel. (Addison Wesley, New York, 1990
Fields2, 117(1996. [18] P. DaiPra(private communication
[10] E. Olivieri and E. Scoppola, J. Stat. Phy®, 613(1995; 84, [19] S. A. Pirogov and Ya. G. Sinai, Theor. Math. Phg§, 1185
987 (1996. (1989; 26, 39 (1989; Ya. G. Sinai,Theory of Phase Transi-
[11] R. H. Schonmann, Commun. Math. Ph§§1, 1 (1994; R. H. tions: Rigorous Result@Pergamon, Oxford, 1982

Schonmann, ifProbability and Phase Transitign/ol. 420 of ~ [20] P. Ferrari, J. L. Lebowitz, and C. Maes, J. Stat. PHgs.295
NATO Advanced Study Institute Series C: Mathematical and (1988.
Physical Science®dited by G. GrimmettKluwer Academic, [21] J. L. Lebowitz(unpublished



