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Velocity-curvature dependence for chemical waves in the Belousov-Zhabotinsky reaction:
Theoretical explanation of experimental observations
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Experimental observations dfwaves in the Belousov-Zhabotinsky reaction show a deviation from linearity
of the front velocity dependence on curvature, which we seek to explain. The extent of deviations depends on
the method of measuring velocity) and curvaturgk). For one method, our theory predicts a cubiof-V
curve, deviating from the eikonal approximation towards smalleior large negative curvatures. This is
shown to agree well with our numerical study\éfwaves in the Oregonator model and to be consistent with
experimental result$§S1063-651X99)03004-4

PACS numbd(s): 82.40.Ck

The Belousov-Zhabotinsk§BZ) reaction provides an ex- Two experiments explore thé&/-of-k dependence for
cellent experimental system for studying the geometry ohegative curvature in the BZ reaction. Almost a decade ago,
dissipative traveling waves in reaction-diffusion systems. Infrom a study of cusps formed in the collision of two circular
bulk solution (usually gelled to prevent convectioand in  waves, the eikonal approximatidf) was pronounced to be
thin layers of reagent, zones of oxidation are seen movingalid far beyond the region of its applicabilitjf considered
through a background of more reduced reagent. The movings a perturbation expansiofi7]. For very large curvatures
front between reduced and oxidized zones is easily disgough, the data obtained were, as mentioned by the authors,
cerned, and its local curvature and velocity can be measureot reliable. The cusps monitored in such experiments are
The dependence of local front velocity on curvaturek ot stationary, they change their curvature and velocity with

g'st thCh |?fcr>1rmaftf|on ab;)ut how the wave movles.'t time, which was one of the major obstacles to obtaining re-
theory of the effects of curvature on wave velocity Was ipje gata. To eliminate this deficiency, the region of large

developed by Zykoy1] and by Tyson and Keeng?] using negative curvatures was reexamined recently by making use

singular perturbation arguments. They proved, as is observeq ¢ : : ;
experimentally, that those parts of an excitation front with® V-shaped wavefd,10], which are stationary propagating

positive curvature in the direction of the movement propa-p"fltter.nS and hen.cg do not change their \{elocity and curvature
gate more slowly than those with negative curvature. TheVith time. Surprisingly, for large negative curvatures, the
linear velocity-curvature dependence for slightly curveddata obtained indicate a strong deviation\ofrom Eq. (1)
fronts, towards higher velocities, an observation that still remains
unexplained.

In this paper we present a theoretical study of the
velocity-curvature dependence fdrwaves based on an ap-
proximate partial differential equation®®DE) model. We
(hereV, is the velocity of a plane wave ardlis diffusivity ~ explain deviations from the linear eikonal equation observed
of the fast-changing componenis known as the eikonal in experiments, and propose a nonlinear analytical expres-
approximation. It shows explicitly the stabilizing role of dif- sion for theV-of-k dependence which contains a parametric
fusion for such waves, and enables one to incorporate théependence on the anglebetween thé/ wave’s wings. The
curvature phenomenon into a coarse-scale geometrical modgleory is shown to compare well with experiments on the BZ
which has become a powerful tool in the study of waves inreaction and with numerical results for the Oregonator
two and three dimensioné&BD) excitable medidEM) [3-5]. model.

Further theoretical exploration of th¥-of-k dependence V(k) fromV waves in BZ reactiorV waves are formed in
(analytical[1] and numerica[6]) has revealed its nonlinear the oblique collision of two plane waves—the colliding parts
character: while for negative curvature Ed) is still be-  of the fronts annihilate, and after a corner between the plane
lieved to hold, for positivek it was shown to exhibit a critical waves becomes smooth, a stationary propagating wedge with
value beyond which propagation of a continuous front isfinite negative curvature appears. The wedge travels as a
impossible. stationary structure, without change of shape. Experimental

Experimentally, theV-of-k dependence has been studiedstudies ofV waves in a regular liquid BZ and in the light
in the BZ reaction[7—10], aggregation patternll], and sensitive version of BZ reaction in a silica gel were reported
heart tissud12]. All experiments confirm the linear depen- in [9,10]. In the former case ¥-shaped silver wire was used
dence ofV on k for modestly curved fronts. For larger posi- to initiate patterns while in the latter case an initial pattern
tive curvatures, experiments are not able to establish theias generated by illuminating only a portion of the gel with
theoretically predicted deviation from E(L) toward smaller some angler. The pattern then quickly evolved in time to its
V, but are consistent about the existence of a critical curvafinal stationary configuration on which measurements were
ture. made. The authors have also performed a study-efave

V=V,— DK, 1)
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4'A often diffusion of the recovery variable is neglecte®, (
i =0 if the catalyst is immobilized in a g¢9].)

Consider stationary waves propagating along Xhaxis
with velocity V,, (for plane waves/,=V,). For the tradi-
tional scaling used in Eq$2a and (2b), the traveling front
(u~0 carried tou~1) is narrow A x~ &2 and moves rap-
idly (fo~vs‘1’2). For our purposes, it is convenient to res-
cale time, t'=t/e, and space,x'=(¢D) Y% and y’
=(eD) Y2, to resolve the structure of the fronhx’~1)
and its velocity,V,=(/D)*»/,~1. Now, in the moving
frame, g’:x’—v,;t', Egs. (2a) and (2b) can be written
(dropping the primg

u—q
—Vpu=u(&y)—u?—fo m+uff+uyy' (33)

FIG. 1. Dependence of the normalized local front velodity/, ~Vpve=e(u—v). (30)

versus the normalized front curvaték,od (K10 is the curvature . . .

of the vertex of thev wave ata=100°): diamonds correspond to  Analytical solutions for the systex8a),(3b) are not avail-

numerical simulations with the two-variable Oregonator model@Ple even for one spatial dimension; therefore we proceed

[Egs.(2a), (2b)], crosses are experimental data for measurements iMith further simplification. Similar to the way it was done in

the BZ reaction[9], and the solid line corresponds to the scaled@ singular perturbation approadl2], we distinguish the

eikonal equationV/Vy=1—(1—V00/ Vo) (k/|kiod). (The straight  front, top, and tail parts of the excitation pulse, and because

solid line assigned in Fig. 8 if®] to the eikonal approximation does we are interested solely in solitary waves, we concentrate

not have the correct slope, diamonds and crosses have to be intérere only on the front part. For a fully developed excitation

changed in order to correspond to the description in the figure cappulse, the value of along the front of the solitary wave is

tion, and also the abscissa axiski§k,od. These are corrected in small (v~0.005 for the set of parameters in Fig) and

[10] and in our Fig. 1. In our figure we have also omitted, in order changes slowly; therefore, we consideto be in this region

to avoid cluttering, some experimental points from the original datag constant €=v0). (We will not consider situations where

set) The triangles present our numerical datalues for parameters the influence of the second component, on the front

of the Oregonator model are as [i8], namely,D=1.0,D,=0,f  nropagation is significant, e.g., the case of the lateral insta-

=3.0,0=0.001,¢=0.01) for the front defined as a constant-level pjjiv 15 ) We are going to construct solutions for the prob-

I|_ne at the levelu;=0.1, and filled circles fou,=0.8; space and lem (3a), (3b) which approximate the exact solution in the

time steps Wer@x=0.02 andAt_=0.0001. The dashed line shows region of smallu but are still large enough compared do

the corresponding curve resulting from our theoty=0.1), Eq. ) :

(15), with 5=0.7. (e.g.,u~0.1); thgrefore, for th|s purpose we set-q)/(u
+q)=1 on the right hand side of Eq3a). Thus, for the

. ically i iable O d l;)wer part of the front of a propagating wave we end up with
propagation numerically in a two-variable Oregonator mode nly one equation,

(see below. For eachV wave with givene, the velocity of
the wave as a whole was measured together with the curva- —Voug=u— ul—fo+ UgetUyy. 4
ture of the wave front at the vertex. Since for different angles

a the velocity of the wave and its curvature at the wedge arehe latter can be reduced by the shift=u"+(1

different, the set of measurements for differenproduces a —J1=4fvg)l2 and dilatation u"=\1—4&fogl, ¢

function V(k) reported in[9] and depicted in Fig. 1. = [1—2fonf V= J1—4afo.v to the 2D version of the well-
Analytical expression for k). For theoretical calcula- known qﬁgg,rgtic Fisherve(ayuation

tions the BZ reaction is often modeled by the Oregonator,

which describes only five of the most important reaction —cpugzu—u2+ UggtUyy, (5)
steps[13]. The Oregonator can be further simplified to a

two-variable version written for the propagator variable where again we have omitted tildes. In E§), cp=V,/(1
(dimensionless concentration of HBjOand the recovery —4fp) YA

variablev (dimensionless concentration of feriias[14] In replacing Eqs(2a),(2b) by Eq. (5), we are neglecting
processes occurring behind the excitation front, the effect of
@:E(u_uz_fv u—q +DAU(t,X,y) (2a) which on the speed of a solitary wave is actually small.
at e ut+q e Equation(5) describes only a propagating front, because by

fixing the inhibitor at small constant level we eliminate the
o mechanism which otherwise would prescribe a finite lifetime
—=u—v+D,Av. (2b)  for the excitation. Since in the experiments we are going to
Jt discuss waves passing through the medium only once, it does
not matter whether or not the medium regains excitability.
Numerical values for the parameters in the above system The V-shaped solution for the linearized version of Eq.
usually areD~1.0,D,~0.5,f~1.0,g~0.001,6~0.01, and (5) was constructed ifil6]. It reads as
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Co \eD Y V2
ugy)= Mlexr{—c—g} —————k=Bsif .| —||[1-| —] |. (12
p (1_4fU0) 0 V0
c
+ Mzex;ﬁ —Cpt i £ ]cosr[a+ cog ¢..)Y],
Cp For small curvatures this cubic curve becomes
(6)
where M, , are some phase constantg,is the plane front VoVeD
L : ; - Y_(_ V=V,— - k (13
velocity for the Fisher traveling wavecg=2), o™ =(—cg 2B8(1—4fvy) Y sir? ¢

+ \/002—4)/2, ando,, is the asymptotic angle between each
wing and theX axis (¢.=a/2). Also c,, Cq, and ¢, are
related to each other as or, if we account for the rescaling 1),

Cp=Co/SiN(¢-). (7)
yD

V=Vo- sir? .,

This is a special case of the local relationship K. (14

cp=C/sin(¢), (8) B B
The dimensionless constapt=Vy/28(V,) here would be 1
with ¢ being the local normal velocity of the front, and o the Fisher wavéwhenV,= (cg) i, andB=—o*]. Note
being the angle between the tangent to the front line and thgat, in order to be consistent with our choice of sriahere
X axis (¢ly.-«—*¢.). For a constant level linaJ(£,y)  we also have to replace ia, by 1, since small curvatures

=u;=const,¢ is defined by can be achieved only for slightly curvatlwaves, for which
o~ 2. Finally, if we adopt that for EMy differs negligi-

d_y: _ (E) —tan(o) 9 bly from its value for the minimal Fisher wave, we recover

d¢ Uy/ oy, @ for small k the eikonal approximation. For large negative

curvature, on the other hand, E42) gives the deviation of
V from the linear approximation towards smaller velocities.
In Eq. (14) we intentionally retained the Sig,, factor to
show explicitly that the slop in the eikonal approximation
derived this way forV waves depends on the asymptotic

The curvature of the level line for the solutidf) can be
evaluated via the standard formula={—d?y/d&?/[1
+(dy/d€)?]*%,—,- Combining then appropriately the last

k=—0o" sir’ ¢,

three expressions, one can fildas a function ok andu;.  gngle of thev wave. In experiments, the angle was increas-
If one accounts only for the leading term grithe first term ing for every new pointk(¢..),V(¢.)}, moving from zero
) introduces a larger slope for each point. The whdlg)
2) 1_(&) (10) curve obtained in this way obviously deviates monotonically
Co Co) |’
matter of fact, the experimental data were plotted witin
which does not depend an . [An expression similar to Eq. Fig. 1 as the velocity of the pattern as a whole, thaw/g,
tion for the nonlinearized Fisher equatifi®].] the asymptotic angle. Accounting for this in E42) leads to
In order to interpret this result, E¢L0), in the context of

in Eq. (6)], this expression takes the form to high negative curvatures, which, according to Etf),

from the linear dependence toward higher velocities. As a
(10) has been derived from an approximateshaped solu- The latter, as we know from Ed7), is defined in terms of
the Oregonator model, we have to account for the rescaling

we have done which introduces multiplicative prefactors to veD _[Vo V
curvature and velocity, (1—4fog) ™ k=8lv ~ Al (15

eD e/D
kﬂLmk, cC—»— V. (11)  which is the velocity-curvature relation to be compared to
(1-4fvg) (1-4fvg) the kind of data reported ii®]. The curve(15) is depicted in
Fig. 1 by a dashed line. It sketches correctly the nonlinear

Also we want to recall here that the specific character of th@yehavior demonstrated by the experimental data. The ob-
dependence o0& on c, is due to the linearization of the served deviation is attributed, as discussed below, to differ-
original equatior{ 16]. In general, for the nonlinear case, this ent definitions of the front line in our theory and|il.
dependence is eXpected to be different. Therefore below we The presence in Eq14) of a coefficient in front ok that
replace— o with some constang whose value may depend depends on plane-wave velocity is consistent with another
on the dimensionless velocity of the plane excitation waverecent observation on curvature effects for excitation waves.
V,. For quantitative purpose we consigeas a free param- Namely, a recent studyl?7] on wave trains in EM reported
eter of the order of unityits value for the Fisher cageln  that not only does the first term in E€l) depend on wave-
fact, we will see later thaf3=0.7 fits our numerical data train period, but also the second term has, apart from the
well. Thus Eq.(10) turns into diffusion coefficient, a train-period-dependent prefactor. But
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FIG. 2. Two plane waves collide at an angte=2¢,,=60° in a stripe of width 382 space units.u) and length 638 s.u., according to
the numerical solution of the Oregonator equati@a, (3b) for the parameters as in Fig. (@) the V-shaped front propagating along the
X axis in its positive direction is depicted in 11 different moments of time in the Cartesian frame of references; in the area between dashed
lines the front propagates stationarily, without change of its shi@péhe V, component of the front velocity as a functionygfthe plateau
in the functionV,(y) corresponds to the area where the vertex wave front propagates stationarilg) dmel vertex velocityV,gex @S a
function of timet; the plateau in the functiol,,(t) corresponds to the time when the vertex propagates stationarily.

wave-train period is connected to the front velocity by a2(a)]. The effect of these two processes on the rest of the
dispersion relationship, and therefore the period dependendeont (areas between the vertex and preboundary layiers
of the slope becomes equivalent to the velocity dependenddifferent: while the negative curvature of the vertey ey
of the slope. remains localized around the point of collision and quickly
Numerical resultsin order to check our theory, we have reaches its stationary value, the preboundary curvature dis-
performed a corresponding numerical study\ofvaves in  turbance propagates towards the vertex with velodity
system(2) in the region of parameters explored[#]. Com- =V, cote, [9,18]. Thus if the width of the strip&V is such
putations were performed on a sufficiently wide stripe. Inthat the time needed for the preboundary perturbation to
order to produce/ structures, we collide two plane waves, reach the vertext* =W/(2V,cose.,), is much larger then
tilted (in opposite directionsto the long axis of the strip€X  the time for establishing the stationary curvature of the ver-
axig) at angles* ¢../2. No-flux boundary conditions were tex, there exist unperturbed nearly straight regions on the
applied on each side of the stripe. As time proceeds, thavings of the wave connected by the stationary vertex, see
initially sharp corner between the colliding waves smoothsFig. 2(a). We do our measurements on this nearly stationary
out. At the same time, the preboundary parts of the waveV wave before it disappears, when the perturbations from the
front curve tend to become perpendicular to the boundarpoundaries approach the vertex area and convert the pattern
lines, as required by the no-flux boundary conditisee Fig. into a plane wave. Figuregtd and Zc) show that there is a
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FIG. 5. Squares, triangles, and diamonds correspond to the
FIG. 3. The velocity-curvature dependence Yowaves in the  yg|ocity-curvature dependence for thievave witha=10° numeri-
Oregonator model: ~ open circles, triangles, squares, and diamonggyly determined at the cut levels=0.1, 0.4, and 0.8, respectively
are our numerical data fdr waves with the angle between wings (the Oregonator model, parameters as in FigSblid fitting curves

being 30°, 20°, 10°, and 5°, respectiveflyarameter values as in are generated by our theoretical expression, (E8). with adjusted
Fig. 1,u;=0.1, andt= 1200 time unit§ solid lines are correspond-

ing analytical curves, Eq12), with =1 as for the Fisher waves;
and dashed lines are curvgl?) but with 3=0.7.

struct aV-of-k curve equivalent to the one reported 10|

and shown in Fig. 1. Our numerical data are depicted in Fig.
finite domain in spacéy) and time when we can accurately 1 by triangles and circles for low and high level cuts,
measureV andk for a stationaryv wave. =0.1 and 0.8, respectively. The theoretical prediction for

In our numerical experiments the width of the stripe wasthis kind of dependence, E@15), which is valid only for

sufficiently large so that, whek,qy iS Set to its stationary low level cuts, is shown in Fig. 1 by a dashed line and agrees
value, relatively large areas of thepattern wings remained well with numerical resultstriangleg. Our numerical results
unaffected by the preboundary perturbations. We have peindicate that the steepness of tNgeqedKyerew CUrve de-
formed computations fov waves with different angles start- pends on the level of the cut, which can be understood from
ing from &= 10° up toa=120°. Similarly to the way we did the contour plot of thé/ wave shown in Fig. 4: level lines
it in our theory, we defined the front line as a line of constanthave essentially different curvature around the vertex—
level and measured the curvature and the normal velocitpmaller for higher cuts—but since the pattern is stationary,
along the front linek(y) andV(y). These two together give all front lines must propagate with the same velocity. In
a parametriqwith the parametey) representation o¥/(k) [9,10] the front line was defined by the maxima at the wave
for stationaryV waves. As can be seen from Fig. 3, our front, therefore it is our numerical data for the high level cut
theoretical curve turns out to be quite close to our measurecircles which repeat pretty well the trend of numerical data
ments ofV(k) along the front of the stationaly wave. The  from [9,10] (diamonds.

agreement becomes even better if we choose in(E2). 8 Numerical study ofV waves allows us to investigate the
=0.7 instead of the Fisher wave valjge=1. effect of the cut level on the shape of tWék) curve. Figure

We also collected numerical data abolf., and 5 shows thre&/(k) curves, numerically determined at the cut
Vverte)(EVp) for different anglese and therefore can con- levelsu;=0.1, 0.4, and 0.8, for th¢ wave witha=10°. As
expected, the curves for higher cuts are “lifted” to higher
, velocities. Figure 5 shows, as well, that the dependence of

V(k) on cut level can be absorbed into the adjustable param-
300+ eter B in our theoretical expressiofi2). The “wedge” of

the V-k value observed in Fig. 5 represents a predicted con-
Y 2001 (( fidence interval for experimental measurements of velocity
1004 and curvature. These measurements will be uncertain be-

cause the cut level) for a front is neither well defined nor
0 : , : easily reproducible. Nonetheless, theory predicts that mea-

0 600

0 20 400 800 surements should be within this wedge, becaugk) be-
X comes independent af; for low cut levels (1;=<1) and the
front disappears if cut level is too highu¢1).

FIG. 4. The contour plot of th¥/-shaped wave with the angle ~ Conclusions.In this work we have shown both analyti-
between wingsr=60° from our numerical experimerparameters ~ cally and numerically that the velocity-curvature relationship
as in Fig. 2: only front lines are shown for the level cuts=0.1  Will deviate from linearity(the eikonal approximationand
and u;=0.4, while both front and back-front lines are shown for that the extent of deviation depends on how the measure-
u,=0.8 andu,;=0.85. ments are made. In experimen®,10], V(k) deviates to-
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wards higher velocities for large negative curvatures, but oufor k<k,enex by measuring local velocity (y) and curvature
analytical result, Eq(12), for stationaryv waves, deviates in  k(y) of the front(parametrized by, which increases from
the opposite direction. We have shown that this discrepancyzo as we move away from the vertexVhen we take into
is due to different ways that(k) is measured in experiments 5.count precisely how th¥/(k) dependence is measured,

and in our analysis. In experiments, a family\bwaves is  ,an our theory and reported experimental measurements are
created, parametrized by, the angle between the wings. ;, good agreement.

EachV wave from this family generates one point on the

V(k) curve, given by the velocit¥,eef @) and curvature We are grateful to V. Rez-Muruzury for supplying us
Kvertex @) Of the vertex of the wave. In our analysis, from a with numerical and experimental data. This work was sup-
single stationary/ wave, we generate the entiv€k) curve  ported by NSF Grant No. CHE95-00763.
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