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Confined harmonically interacting spin-polarized fermions in a magnetic field: Thermodynamics
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We investigate the combined influence of a magnetic field and a harmonic interparticle interaction on the
thermodynamic properties of a finite number of spin-polarized fermions in a confinement potential. This study
is an extension using our path integral approach of symmetrized density matrices for identical particles. The
thermodynamical properties are calculated for a three-dimensional modehafmonically interacting spin-
polarized fermions in a parabolic potential well in the presence of a magnetic field. The free energy and the
internal energy are obtained for a limited number of particles. Deviations from the thermodynamical limit
become negligible for about 100 or more particles, but even for a smaller number of fermions present in the
well, scaling relations similar to those of the continuum approximation to the density of states are already
satisfied [S1063-651X99)02604-3

PACS numbg(s): 05.30—d, 03.75.Fi, 32.80.Pj

[. INTRODUCTION dom. This property makes it well suited as a trial model for
the variational treatment of the thermodynamics of systems
In the present paper we study the thermodynamical propwith more realistic interactions because the model param-
erties of a confined system of spin-polarized fermions in theeters can be related with the system characteristics with the
presence of a magnetic field. The method used is an extemid of the Jensen-Feynman inequalig}. The present paper
sion of the combination of the path integral formaligd]  addresses only the first part of such an approach because it
and the method of symmetrized density matric2ls devel-  requires also the density and the pair correlation function
oped previoushyf3-6] for a model system of harmonically which we could obtain under the simplifying assumptions of
interacting identical particlegosons or fermionsin a para-  no magnetic field[6]. Furthermore, it provides a testing
bolic well (hereafter for brevity referred to as the harmonicground for new approaches to Monte Carlo simulations of

mode). _ o _ _interacting fermions such as many body diffusi@i—-23.
Because of the experimental realization of Bose-EinsteifEgpecially for quantum dots, it is important to take the mag-

condensat|i0|ﬁ_7—9] z?]nd the tr?eoretical V\]{olrlkdon t_f;isfpherr]]_om- netic field into account in order to freeze out the opposite
enon employing other method$0-17, full details for this g, siates In the present paper we present an extension of

harmonic model with interactions were first wprkec_i out forthe methods mentioned above to harmonically interacting
bosons. The model shows the onset of Bose-Einstein conden-

S o S confined fermions in a magnetic field.
sation in the specific hedil8] for a finite number of par- The paper is oraanized as follows. In Sec. Il we present
ticles, and its moment of inertia is drastically reduced below, pap 9 ) ' P

the condensation temperatufed]. An application of the the path integral for harmonically interacting particles in a
method to real systems can be found in R&f] for 8’Rb parabolic confinement potential in the presence of a homo-

The actual calculations for the fermion case require mor&eneous magnetic field. This will be done for distinguishable

advanced techniques, such as the generating function ag}s well as fpr ident_ical particles_. The mathema_tical details of
proach and the corresponding contour integration, because H1€ calculation for identical parucles are given in the Appen—
a numerical sign problem. In the absence of a magnetic fieldix. In Sec. lll the permutation symmetry will be taken into
explicit results for the thermodynamics and the static correaccount with the aid of the projection technique. The intro-
lation functions of the harmonic model of spin-polarized fer-duction of the permutation symmetry implies the rewriting of
mions were already obtained with these technid@ed). the sum over all possible permutations to a cyclic summation
The harmonic model clearly has intrinsic value on its[2] which leads to the generating function of the partition
own, because it is one of the rare examples of an exactlfunction. Specific results for fermions will be presented in
soluble many-patrticle system with interactions. The physicsSec. IV. This involves the extraction of the partition function
of the model is relatively straightforward in the sense that itand other thermodynamical quantities from the generating
allows for center-of-mass excitations that oscillate at frefunction. Also the ground state energy and the magnetic sus-
quencies different from those of the internal degrees of freeeeptibility in the zero-temperature limit will be investigated.
Additionally we will study the finite number corrections to
the thermodynamic limit for the free energy and the internal
*Also at Universiteit AntwerpefRUCA) and Technische Univer- energy as a function of temperature and magnetic field. In
siteit Eindhoven, NL 5600 MB Eindhoven, The Netherlands. the last section some conclusions are given.
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II. IDENTICAL OSCILLATORS IN A MAGNETIC FIELD from which

The calculation of the path integral f&t identical inter- 1 wa XN
acting oscillators in a magnetic field is similar to the case V;+V,=V.n,+V, Vc_mlzzNQZRz, V= 72 2
without a magnetic field ifi3]. This approach crucially relies =
on the detailed investigation of the classical action and the )
path integral corrections to this classical action. Alterna-yjith
tively, a more stochastic approach could be follow2d].

The Lagrangiar(in atomic unit$ for N oscillators with har- w= Q%+ Nw?. %)
monic two-body interactions and in the presence of a homo-

geneous magnetic field is given by For a repulsive two-particle potential the internal frequency

w has to satisfy the stability condition that the confining
N potential has to be sufficiently strong to overcome the repul-
L=2=>, (fl?— chxjyj) -V;—V,, (1)  sion between the particles. We draw attention to the fact that
1 the transformation to the center-of-mass coordinate system
wherew, is the cyclotron frequency and diagonalizes neith'er. the Lagrg_ngian nor the Hamiltonian, be-
¢ cause of the subsidiary condition

2

Q N o N ) N
1:72 and Vo==— > (r;—r)% (2 jZl(rj—R)=0. 6

j,I=1
It is obvious that the two- bOdy potential is either attractive or We obtain the propagator for d|st|ngu|shakﬂed|cated

repulsive depending on the plus sign or the minus sign conpy 3 subscripD) particles from the action expressed in the

sidered inV,. The magnetic field introduces a coupling in jmaginary time variablgg=1/kT and it is written as
the plain perpendicular to its direction. This means that we

can separate the Lagrangian into two contributionrsL,, " " ’ /
. . . ) . Kp(r . Blri, n:0)
+L,. The Lagrangiar., simply describes a harmonic oscn—
lator, whereas. ,, contains the magnetic field. The Lagrang- =Kp((X",y"),B|(X",y"),00XKp(Z",8|Z',0),
ian can be rewritten in terms of the center-of-mass coordi-
nateR(X,Y,Z) and the coordinates;(u;,v;,w;) describing ()
the coordinates of the particles measured from the center of ..o the vectox denotes the\-dimensionalx coordinates
mass, . . —
of the particles, with the notatiox’' = (x4,X,, . .. Xy), and
N similarly for y andz. The propagator for a single oscillator
R=£E r 7i=r—R 3) with frequencyw in a magnetic field is well knowh3] and
N= D given by

Wepr Blr’ 0=/ kil > o ———{[(2')?+(2")?]coshBw — 227"}
' ' 27 sinhBw 27 sinhBs 2 smhﬁm

" p[ s[(x”)2+(y”)2+(x’)2+(y’)2]coshﬂs—2(x’x”+y’y”)coshﬂw|_]
expl —

2 sinhBs

H "y M ! ! Sinhﬁwl‘ " "\ ! 8
Xexp —I wL(Xy—XY)—SSin—h’&Q,(yX—yX) ) (8)

wherew| = w /2 is the Larmor frequency and the eigenfrequeadty given by

s=\w’+ w’. 9

The propagator foN distinguishablénteracting oscillators in a magnetic field thus becomes

Ka(VNZ",B1VNZ',0) Koy s, (VNX,WNY”, B VNX',VNY',0)
Ku(VNZ",81VNZ',0) K, (VNX",YNY",BYNX',NY',0)

Ko(r”,B[r",0)=

><H Ko, sX Y1 81X Y] 0K W(Z Bz ,0), (10
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where

. 1 — -
2,(pN) = [ k(0= 1S & [ drio(Pr a0,
(13

s= W2+l and s;m=VOQ%+w?. (12)

The factory/N in the center-of-mass coordinates in Ef0)

describes the masN (in atomic unitg of the center. The gnaivtical progress can be made with this summation as will
denominator in Eq(10) accounts for the fact that the internal g giscussed in the next section. First of all, one has to deal
degrees of freedom are linearly dependent because of thgih the center-of-mass contribution to the propagator. Af-

subsidiary conditiong6). Intuitively this factor is quite natu- gryards, the summation over all possible permutations will
ral, because the propagator would be the product of onse rewritten as a summation over all possible cycles.
particle propagatorE3] if the particles were independent.

Knowing the propagator for distinguishable particles, the
symmetrized density matriK, for identical particles can be IIl. GENERATING FUNCTION OF THE PARTITION
obtained through the appropriate symmetric or antisymmet- EUNCTION
ric projection
The center of mass is not independent of the positions of
— = 1 — the other particles, which complicates the calculation of the
Ki(r",Blr",0)= m; EPKp(Pr",glr",0), (12} trace of the propagator. To deal with the contribution of the
center-of-mass coordinaf® to the propagator, we introduce
where P denotes the permutation matrix, with=+1 for  the delta function&(R—(llN)E}\‘:lrJ) in its Fourier repre-
bosons andé=—1 for fermions. Even for this harmonic sentation as if3]. This & function allows one to formally
model, with or without magnetic field, the sum over the per-treat the center-of-mass coordinate as an independent vari-
mutations has to remain rather formal at the level of theable. Applying this identity to the partition function, one
propagator. However, for the partition function ends up with

- N):deJ dk eik'RKQ(\/ﬁz,m\/ﬁz,O) Kap som(VNXNY, BVNX, VNY,0)
o (2m° Ku(WNZBIINZO) K, (VNXINY,BVNX,VNY,0)

_1 N .
X f drgre €11 Ko, (P20 (PY); Bl Y; OKu(P2); Blz;, 000" 11", (14

The problem at hand is the rewriting of the summation over dk KQ(\/NZ ,3|\/NZ 0)
the permutations as a sum over all possible cyt3sThis Z,(,B,N)zf de 3e'k'R : '
cyclic decomposition requires the solution of the path inte- (2m) Kl \/Nz,ﬂ|\/ﬁz,0)
gral for a driven harmonic oscillator in a magnetic field,
which is discussed in the Appendix. % K“’L,Sc-m-( NX, \/NY”8| VNXVNY.0)
A permutation can be decomposed intb, cycles of Ko, s(VNXNY, B[ VNX, VNY,0)

length/, and the positive integeid , and/” have to satisfy ’ .
the constraint g/,

X [k (k)IM7, (16

Ml,_E__YMN ,Hl TRV
with
Z /M, =N. (15)
K/(k):f dr/+1"‘Jdr15(r/+1_r1)

The numberM(Mq, ... ,My) of permutations withMy 4
cycles of length 1...,M, cycles of length/, . .. is given X Hl Koy s(Xj+1:Yj+1,81%.Y;,0)
by M(Mq, ... My)=Nl/[II,M 1/M7]. Furthermore, a =
cycle of length/” will be obtained from/'— 1 permutations. X KW(ZJ+1,ﬁ|Zj.0)e_”Z'Fi’N- (17)

Thus, the sign factoré” can be rewritten aséP
=11,¢£“~YM/ These considerations enable one to rewriteThe & function explicitly indicates that the trace is taken over
the partition function as a cycle of length/. It is obvious thatC,(k) factorizes as
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KK =K (kg k) K (k). (18) for a driven harmonic oscillator in a magnetic field, with the
Lagrangian

Taking into account the semigroup property of the propaga- ,
torsK,, Ys(xj+1,y]-+1,,[3|x,-,y]-,0) andKW(zHl,,8|zj,O), one (1) 1., ., oW

L = — — P
immediately recognizes it (k) the partition function of a Lf""L_ 2(X Ty 2mxy 2 OCHYT) ()X
driven harmonic oscillator in a magnetic field, with the driv-
ing force +y(ny, (20)

is illustrated in the Appendix. As mentioned above, the hard
. . core of this approach is the evaluation of the classical action,
f(r)= N -20 S(r=1B). (19) but a fully stochastic methof24] could as well have been
followed. After tedious algebra one eventually finds for the
The calculation of the propagator and the partition functionpartition function

2 BN) deKQ(\/NZ,,BNNZ,O) KwL,sc_m,(JNX,JNY,BNNX,JNY,O)f dk . .
N)= e
i Ku(VNZ,B[\NZ,0) K, (VNXNY,BVNX,NY,0 J (2m)3
p( 1 KE+K? sinhBs 1 k¥ sinhpw )
“€XA T 4s TN  coshBs—coshBw, 4w N coshpw—1
N g(/*l)M// 1 M,
x —— —— —— ) (D)
My My 121 ML MA 8 sin/ B(s+ @) 12]sinH / B(s— w ) /2]sink(/ Bwi2)
The remaining integrations ov&randR are Gaussian and relatively easy to perform, leading to
3 sini B(s+ w)/2]sinH B(s— w)/2]sinh( pw/2)
PPN SR B (5o + 00 2SI (e — o0 2IsinR p02) " 22
with
N é(/—l)M/ 1 M,
npN= 2 ]l 23

M1, S My 121 MM 8 SINH/B(s+ wy)2]sinH / B(s— @y )/2]sinh(/ Bwi2)

The contributionZ,(B,N) derives from the internal de- [with Z,(8,0)=1 by definition, the partition function for the
grees of freedom, treated as independent particles. It contaitisternal degrees of freedom can be obtained from
the full influence of the statistics of the particles, and leads to

the true partition functiorz,(8,N) by multiplication with a 1 gN
simple analytical factor. In practice, the conditi@b) com- ZL(BN)= _NEI(U)|u=O- (25)
plicates the use of the above expression for the partition N du

function for a large number of particles. However, this diffi-
culty can be overcome through the use of the generatinghe generating function itself can be obtained with straight-
function. From the generating function one can then extracforward algebra

the partition function through an inversion of its defining
Taylor series.

[

/=1 e
E.(ﬂ.U)=eXP< s £ (bibab)

Generating function and recurrence relation for the partition = 7 (1- b/)(l— b’l/)(l— bz/) ’
function (26)

The generating function technique was used bef8t¢o ) i
obtain the partition function of a set of harmonically inter- With the notation
acting identical oscillators in the absence of a magnetic field.

In the presence of a magnetic field, a similar construction can b=e A", by=e Aol p,=e Asel)  (27)
be used. Introducing the generating function as
o The cyclic summation can be rewritten in terms of the occu-
=,(8,u)= 2 7,(N)uN (24) pation number representation which directly involves the

N=0 single-particle energy levels:
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1 1 1 1 1 1 1
0.75 -
g
% < 050
w z
(4]
w g.25
©
0.00
-25 T T T
0.0 0.5 1.0 1.5 2.0
FIG. 1. Lowest single-particle energy leveis units ofw) as a a /W

function of the Larmor frequency. The Fermi energies correspond- . o
ing to 1, 4, 10, and 20 fermior(ge., for closed shells in the absence  FIG. 2. Scaled magnetic susceptibility K)(dEg/dw,) as a
of a magnetic fielflare emphasized by dashed lines. The results cafunction of the magnetic field for 1, 4, 10, and 20 fermions in the

also be found in Refl25]. ground state.
o that the magnetic field does not substantially influence the
EBuw= Il (1-éublr™Vpret i1z ¢ magnitude of the Fermi energy, which remains of ond&?
viv1,v2=0 for sufficiently largeN. The magnetic field immediately lifts

28 the degeneracy, but with increasing magnetic field other de-
generacies appear and disappear again at particular values of

By S|mply applymg the chain rple, the expressi(g) for . the magnetic field. Although these degeneracies have little
the partition function can be written as a recurrence relation :
effect on the magnitude of the ground state eneEgy

N /i =3>e-e_E, they have a drastic effect on the magnetic sus-
v 1 _ (bybyb) - T . .
7Z,(B,N)= = 2 gt ~ ~ ~ ceptibility, which is proportional t@Eg/dw,, as shown in
N 7=1 (1-b3)(1-b5)(1-b") Fig. 2 as a function of the magnetic field. The discontinuities
XZ(B,N=7). (29 M the magnetic susceptibility occur at those values of the

magnetic field where the single-particle energies become de-

However, if the number of particles increases, this recurrencgenerate'

relation becomes numerically unpractical because of a nu- _

merical sign problem for fermions and drastically increasing B. Free energy and internal energy

simulation time for bosons. For the remaining part of this As mentioned above, the sign problem for fermions can

paper, the attention will be focussed on the fermion case. be worked around by inverting the defining Taylor series
(24) for the generating function. The Fowler-Darwin method

IV. THERMODYNAMICAL PROPERTIES [26] provides an accurate and elegant Way] to realize this
inversion:
The thermodynamical properties of the fermion model
can in_essence be determined from theT contribufiaB,N) / 1 Ee(B.2)
of the internal degrees of freedom. As is clear from &), Ze(BN) =5 Wdz- (30

the center-of-mass correction only adds a trivial contribution
to the free energy. All the effects of the fermion statistics are .
collected inZg(B,N). We first study the zero-temperature If One considers a circular contonr u€'? with radiusu, an
limit, in which special attention will be paid to the two- optimal value ofu can be determined by the method of steep-
dimensional case in they plane, and subsequently the evo- €st descent:

lution of the free energy and the internal energy as a function
of the temperature and of the magnetic field. i[In Ee(B,u)—NInu]=0=N= uiln Ee(B,u).

du du

A. Zero-temperature limit (3D

The ground state properties of the fermion model cru
cially depend on the single-particle energy IevEI,ng,VZ.

These levels and their occupation by fermions have been o
discussed and plotted earlier, e.g., in R&b]. For easier N= 2
reference, we plot the 20 lowest levels Fig. 1. To guide the v,v1,v2=0
eye, the Fermi energidse corresponding to the fully occu-

pied levels atw, =0 are indicated by the dashed line. Note with

“Using Eq.(28), this condition becomes

(32

nv,vl,vzl
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FIG. 3. Scaled chemical potential(T)/«(T=0) as a function
of the scaled temperature=kT/wNY® for 2 fermions and for
w /w=0, 1, and 2.

1
1+ePEvr iy’

n =
V,Vq,Vp

1

1
El/ vy (V1+ 5)514'

V2+ E) 32+ v+ =

5 w. (33

If u were to be interpreted as the fugacity=e?* with
chemical potentiak, one thus would recover similar results

as for the expectation value of the number of particles in the
grand canonical ensemble. The result for the chemical poten-

tial as a function of temperature is shown in Fig. 3 for vari-
ous values of the magnetic field and fd=2. The chemical
potential is plotted in units of the chemical potentialTat
=0 and the temperature in units wiN'3, which is the order

FIG. 5. Same as Fig. 3, but for 100 fermions.

tor in Eq.(30) has to be applied. Using the symmetry of the
integrand in Eq(30), the partition function can be rewritten
as

Er(B.u) 1 [27Ex(B,ue?)

BN= N 27)o  Er(Bu) e do
_EF(Bvu) L
= fo W(6)de, (34)
1 Ec(Bue’
\P(0)=RE{;e""N% (35)

The functionW¥(6) has to be calculated and integrated nu-
merically. The determination of the free energy

of magnitude for the Fermi energy. In Figs. 4 and 5 the

corresponding results are shown fér= 10 andN=100. For
N=100 it turns out thatu(T)/x(T=0) as a function of

kT/wNY® becomes almost independent of both the number

of particles and of the magnetic field.

F ’ N F 1 F ) ﬂ

However, in the present treatment the determination of

=eP* from Eq.(32) only gives the zero-order contribution
to the partition function. A correction by the integration fac-

1.0

, W)

-
o
1

g
o
]

N
@

)
0.5 1.0 1.5 2.0
t=kT/WN"®

o
=3

FIG. 4. Same as Fig. 3, but for 10 fermions.

-1 1

Exact
———— Zero order steepest descent

F/(NE;)

-2

-3 T T T T
0.0 0.2 04 0.6 0.8 1.0

KT/E,

FIG. 6. Scaled free energy per parti¢te I'r /NEg as a function
of the scaled temperatukel/E¢ for 10 fermions and with the Lar-
mor frequencyw, =2w. The zero-order “steepest descent” contri-
bution is indicated by the dashed line.
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
KT/E, KT/E,
FIG. 7. Same as Fig. 6, but for 100 fermions. FIG. 8. Scaled internal energy per particle Uz /NE for 100

fermions as a function of the scaled temperatuféE, for several
then becomes straightforward, with the zero-order contribuvalues of the Larmor frequenay, =0, w, and 2v.
tion
sufficiently large(in the order ofN=100) the results are
©0) Ee(B,u) shown to agree and the finite number corrections become
Fe?(B,N)=— Eln—’\' relatively small. The internal energy turns out to obey a scal-
u ing law, similar to the scaling from the continuum approxi-

from the steepest descent approximation. In the absence oﬁ‘&a“O” for the density of states.

magnetic field, the results are discussedldh For w, =2w

the free energy per particle in units of Fermi energy is plot- ACKNOWLEDGMENTS

ted as a function okT/E for 10 fermions in Fig. 6 and for . .

100 fermions in Fig. 7, and compared to the zero-order Part of .th|s work was performed in the framework of

steepest descent contribution. Again, fé= 100 the finite FWO Projects Nos. 1.5.729.94, 1'5'545'95.3.’ G.0287.95,
number corrections upon the thermodynamical limit becomé>:0071.98, and WO.O?3.S‘)‘Afl‘(JVVete.nscha}ppelljke Onder- "
negligible for all practical purposes. The internal enetgy zoeksgemeenschap over “Laag-dimensionele systemen

- " ; ; : . the “Interuniversitaire Attractiepolen—Belgische Staat
=(d/dB)(BFg) shows the same universality, as is shown in _. 7 N ’
Fig. 8 where the internal energy per particle in units of the2/€NSten van de Eerste Minister—Wetenschappelijke, and

Fermi energy is plotted versus the temperature in units of th echnische en Culturele aangeleger_wheden,” and ?n the
Fermi tempgeyratupre foi, =0, w, and ZNp ramework of the BOF NOI 1997 projects of the Univer-

siteit Antwerpen. One of the authais.B.) acknowledges the
FWO (Fonds voor Wetenschappelik Onderzoek—
V. CONCLUSION AND DISCUSSION Vlaanderei for financial support. S.F. acknowledges the

Using the path integral approach of symmetrized densitNiversity of Antwerpen(UIA) for a research grant.
matrices for identical particles, the thermodynamical proper-

ties were calculated for a three-dimensional mode\ dfar- APPENDIX: THE PATH INTEGRAL OF THE MODEL
monically interacting spin-polarized fermions in a parabolic FOR DISTINGUISHABLE PARTICLES
potential well in the presence of a magnetic field. The IN THE PRESENCE OF A MAGNETIC FIELD

method used is a generalization of the procedure developed AND A TIME-DEPENDENT DRIVING FORCE
earlier in the absence of a magnetic field. Explicit results ) ) ) ]
were obtained for the ground state energy, the free energy, The propagator of a two-dimensional harmonic oscillator
and the internal energy for a limited number of particles. Then the presence of a magnetic field, characterized by the Lar-
model can be described as a number of spin polarized idefbor frequencyw = w./2, and under the influence of a time-
tical particles in a parabolic confinement potential interactingdependent driving force= (f,,f,), provides the basic build-
through a special many-body interaction with the conseing blocks for the harmonic model system of identical
quence that the center of mass is allowed to move indepenateracting particles which is the subject of the present paper.
dent from the other degrees of freedom. For an ana|ogou§|though the calculation of this propagator relies on standard
model other forms of confinement potentials have been intechniques, to the best of our knowledge it is not documented
vestigated without two-body interacti§@9]. With two-body  in the literature. Therefore we discuss its derivation here in
interactions, the model has been studied with the operatdiome detail. The Lagrangian under consideration is given by
formalism in several papef80,31], with emphasis on the (in atomic unitsi=m=|e|=1)
ground state properties.

The statistics with a finite number of particles in the con- D 1., ., oW _
finement potential and the crossover to density-dependent Lo =5 (X TY%) =20 Xy— - (X"+y*) + Tx(7)X
expressions known from the thermodynamical limit can be
studied in this model: as soon as the number of fermions is +f(7)y. (A1)
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The classical equations of motion in Euclidean time=it This set of coupled differential equations can be solved and
are yields

d?x d X(7)=Xp(7) +X5(7), =yu(1)+ys(7). (A4
_F:_Zide_Z_WZX"”fxa (A2) () =Xp(7) +Xp(7),  Y(T)=Yn(7T) +Yp(7).  (Ad)
T The solutionsx,(7) and y,(7) of the homogeneous equa-
q tions of motion(without the driving forcg which exhaust
=2iwL—X—w2y+fy_ (A3)  the boundary conditionsx,(0)=x", X,(B8)=xX", yn(0)
dr =vy', yu(B)=Yy", are found to be

d?y
dr?

(Xh(r)) B sinhs(IB—T)( coshw, 7 iSinthr)(X’) sinhsq-( coshw (B—7) —i Sinth(,B—T))(X")
Yn(7) ~ sinhBs —isinhw, 7 coshw 7/\y’ +sinhﬁs i sinhw (B—7) coshw (B—17) '

(A5)
with
s= o +W2. (AB)

The derivation of the particular solutiomg(7) andy,(7), with the boundary conditions,(0)=x,(8) =y,(0)=Y,(B8) =0, is
slightly more involved but eventually results in

(xp(r)) 1 sinhs(8— T)f ( coshw| (7— o) iSinth(T—U))(fx(g)) —
Yp(7)) s sinhgs —isinho (1—0) coshw (1—0) || f (o) sinhsodo
1 sinhs7 (8 cosho (7—0) iSinth(T—U))(fX(a’)) -
+§Sinhﬁ$ﬁ —isinho (7—0) coshw (7—0) ]\ fy (o) sinhs(8—o)da. (A7)

Given the classical trajectory with initial positiox'(y’) and final position X”,y") after an imaginary time lapsg, the
corresponding classical aCti(Sa’d:fgLde can be found by elementary methods. This eventually results in

1
oy s SLX)2+(y")?+(x")?+(y")?]coshBs o
Sf,Cl(X Y ,ﬁ|X Y !0):_ Sinh,BS 2 _IwL(X y =Xy )
—(X'X"+y'y")coshBw +i(x'y"—x"y")sinhBw,

B
+x’ j [fx(7)coshw 7—if (7)sinhw 7]sinhs(B—7)d7T
0

L + X,,fﬁ[fx( r)coshw| (B— 1) +if(7)sinhw (8—7)]sinhsrdr
0

* sinhBs

B
+y’ J [fy(7)coshw 7+if,(7)sinhw 7]sinhs(S—7)dT
0

+y" foﬁ[fy( 7)coshw (B— 7)—if(7)sinhw (B— 7)]sinhsrdr

ssmh,BsJ J

Since the Lagrangian is quadratic in the coordinates and the velocities, the quantum mechanical propagator is determined
by the classical action, apart from a trivial normalization factor. The latter can be determined by elementary methods. The
calculation presents no difficulties and results in

[fx(D)fx(0) + (1) fy(0)]coshw (7—0)

+i[f (D, (o) + (D), (0)]sinho (7— o) sinhossinhs(B— r)dodr.

(A8)

s
Ki(x",y",BIx",y",0)= mexﬁsf,cl(x",Y"ﬂX',Y',0)]- (A9)

If one takes the limitw, — 0, the correct resultl] is recovered.
For the treatment of the cyclic summations for identical particles, it is essential to know the trace of this propagator
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Zf=J J’ Ki(X,Y,B|X,y,0)dxdy. (A10)

The calculation of this quantity is straightforward and after some algebra one obtains

7. 1 O (B) (ALD)
f_2(cosh,8s—cosh,8wL)ex 4s(coshBs—coshBw )|’
with
B (B coshw, (7—o)sinhs(8—|7—o])
®B)= fo fo LX) +h(DTy()] +coshw (B—|7— a]|)sinhs(7— a))dUdT
(B (B sinhw (7— o)sinhs(B8—|o—1|)
+|f0 fo [fX(T)fV(U)+fV(T)fX(U)](—sinhaL),_(B—|T—o|)sinhs(r—o))d0d7' (A12)

Again, if one takes the limit of a vanishing magnetic field, one finds the correct @8t
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