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It is shown that expectation values and transition matrix elements in classically chaotic quantum systems
may not fluctuate randomly, since features of the short-time classical dynamics significantly affect the fluc-
tuations. We analyze semiclassical sum rules constraining expectation values and transition matrix elements in
classically chaotic and integrable quantum systems. We show that these sum rules exhibit a wealth of inter-
esting structuregresonances and oscillatory contributipress well as interesting properties, such as their
asymptotic decay. It is shown how these properties can be explained semiclassically, in terms of periodic and
quasiperiodic classical motion. In particular, we analyze how phase-space inhomogeneities in chaotic systems
give rise to localization of wave functions and hence to exceptionally large matrix elements. These are related
to resonances in classical autocorrelation functions. As an example, we consider a family of billiards in two
dimensions the classical dynamics of which ranges from integrable to chigii@63-651X%99)06201-7

PACS numbd(s): 05.45.Mt

I. INTRODUCTION diagonal quantum-mechanical matrix elements can differ
substantially from the predictions of random matrix theory.
Spectral properties of classically chaotic quantum system€onsider, for example, Fig.(d), which shows the histogram
have received considerable attention over the last years, ad nearest-neighbor level spacings for a chagdied largely
it is now well established that spectral fluctuations in suchergodio quantum billiard. The distribution is well approxi-
systems on small energy scales are universal. Furthermore,tated by Wigner's surmise, the prediction of random matrix
has been shown that spectral correlations on larger enerd§€ory. Figure (b), on the other hand, shows a histogram of
scales can be qualitatively and quantitatively understoo§XPectation values of the dipole operator in the same system.
from a semiclassical point of viefd,2]. It is clearly highly ~ 1he distribution is far from Gaussian. _
desirable to reach a similarly thorough understanding of the,, In this paperwe analyze_ fluctuatl_ons of diagonal a!”.d non-
statistical properties of expectation values and transition ma@agonal matrix elements in a family of quantum billiards,

trix elements since they describe the influence of time_exh|b|t|ng integrable and chaotic classical dynamics. We

independent and time-dependent perturbations and th show how structures in the classical short-time dynamics in-
P . ne-cep P $Rience guantum-mechanical matrix elements. We analyze
many experimental situations.

| kv disordered he f . emiclassical sum rules constraining the fluctuations of diag-
n weakly disordered quantum systems, the fluctuations of 1 ang non-diagonal matrix elemeri15—17 and ex-

diagonal and nondiagonal matrix elements are Gaussian aihin in detail how phase-space structures influence matrix
described by random matrix theof§,4]. While the average gjements in integrable and chaotic quantum systems.
of nondiagonal matrix elements vanishes in the semiclassical

regime, diagonal matrix elements are not necessarily distrib-
uted around zero. A semiclassical estimate for the mean is
given by the phase-space average of the observable in ques-
tion. The variances of diagonal and nondiagonal matrix ele-
ments are relatefb], and hence fluctuations of expectation y
values and transition matrix elements in such systems are S T )
exhaustively characterized by the mean and the variance of A
the distribution of diagonal matrix elements.

One might expect that this would equally apply to diago-
nal and nondiagonal matrix elements in classically chaotic
quantum systems. It has indeed been shown that fluctuations , L Y
of expectation values in systems with exponentially decaying L (b)
classical correlations are described by random matrix theory Loxt
[6]. Recently, fluctuations of expectation values in chaotic
systems have attracted considerable atterjtieri4].

In many chaotic systems, however, and this includes most FiG. 1. (a) Histogram of the nearest-neighbor level spacings
of the experimentally accessible systems, classical dynamiggr a chaotic quantum billiard. Wigners surmisé(A)
exhibits structures on small time scales, leading to nonexpo= A 7/2 exp(~wA%4) is also shown(dashed ling (b) The histo-
nential decay of correlations. In this case random matrixgram of expectation values of the operatérin the same system
theory does not apply and fluctuations of diagonal and nonshows strong non-Gaussian behavior.
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The lowest order classical contributions to the sum rule$33,34,20,3% In Sec. Il we outline the semiclassical theory
in chaotic systems have previously been considered: Austinsed in the present paper. Section IV describes the results for
and Wilkinson[18,19 have studied the quartic oscillator and densities of diagonal matrix elements, in integrable as well
a hyperbolic billiard. Prosen and Robnik have performedas in chaotic systems. In Sec. V we discuss densities of non-
guantum calculations for a range of chaotic billiaf@6,21.  diagonal matrix elements. In Sec. VI we discuss the response
Boose et al. have studied the hydrogen atom in a strongof quantum billiards to external perturbations, using the re-
magnetic field 22]. sults of Secs. IlI-V. Finally, in Sec. VIl we summarize and

The leading order semiclassical contributions to sum ruleslraw conclusions.
for matrix elements in integrable and chaotic systems were
analyzed in[23,24. In the present article, the calculations Il. ROBNIK’S BILLIARD
reported in[23,24] will be discussed in detail. In addition, ) ) ) ] )
the corresponding sum rules for diagonal and nondiagonal " this section we briefly describe the system used in the
matrix elements in integrable systems will be derived. following to illustrate our results. It is a family of two-

As has been outlined above, a classical and semiclassicdimensional quantum billiards, first studied by Robnik
analysis of diagonal and nondiagonal matrix elements is in(33,34, Prosen and Robnik20], and Proser{21,35 and
teresting from a theoretical point of view in its own right, Others. A review of the classical and quantum properties of
However, a semiclassical theory of matrix elements is also ofiS System can be found in Refs3,34. In the following
interest in view of recent experiments on clean®a ,As  We restrict ourselves to introducing those f_eature_s of _the sys-
heterostructures. In many respects, these systems behave i necessary to make the ensuing discussion in Secs.
sentially classically. In order to explain various features of!vV—V! intelligible. , o .
quantum magnetoconductivity in an array of antidots, for 1he boundary of Robnik's billiard is parametrized by
instance, purely classical modélacorporating the essential =11 ac0sp in polar coordinates r(¢). For a=0, the
structure of classical phase spaege sufficient[25]. We boundary is just a C|_rclt_a. Motion in the c[rcular b_|II|ard is
derive the relevant classical approximations to quantum rer_egular.. As the domain is deformed, classllcal motion ceases
sponse functions and compare them in detail with fullyt0 be integrable and soft chaos according to the KAM-
quantum-mechanical calculations. Apart from providing aLf'izutkm th.eorem develops. The last large islands of stability
quantitative theory for the magnetoconductivity in antidotdisappear just befora=1/2. Fora=1, the system has been
arrays — as discussed in Ref&5,26 — these results can Proven to be e_rgodlc. In t_he_ following sections, we dlsc_:uss
be applied to describe the absorption of radiation and th&Vo cases, the integrable limiag0) and the largely ergodic
polarizability of small conducting particles in the ballistic cas€ &=1/2). We take the mass=1/2. o
[27,28 but also in the diffusive regimg29]. The_m;egrable limitFor a=0, chssmaI motion in phase

In some cases it may be necessary to complement th@Pace is integrable. A possible choice of action vquables has
theory based on purely classical phase space information Hyeen given in[36]: since angular momenturh,= ¢r? is
a semiclassical calculation. More refined measurements afonserved, one may take
the magnetoconductivit}30] have shown characteristic os-
cillations. They are thought to arise semiclassically from pe- )
riodic orbit contributions of the type discussed in the present li=¢r?=rpnnVE, (1)
article[31,32. A comparison of such semiclassical contribu-
tions with accurate quantum calculations was first published ) o ] )
in [24] and [23]. In the present paper we give a deta”edwh_erermin is the_mmlma_ll value of the radius at the turning
account of these calculations and discuss the relevance to tR@int of the radial motion. The second action variable is

above-mentioned experiments. taken to be

Finally, a semiclassical theory for diagonal matrix ele-
ments may be used to calculate the thermodynamic response >
of a system of noninteracting particlesuch as electrons in a l— 1 d / 17

) . ; ; o=— r E-— 2
ballistic cavity to static external perturbations. Tt i r2

The present article is organized as follows. In Sec. Il we
briefly describe the system used for the quantum-mechanical
calculations, a parametric family of quantum billiards The corresponding angle variables are

I i w T
d)—arcco%g +W1E r2—r2. . for 0<t<?2,
01: (3)

I mi 1) T
¢>+arcco§$)—ﬁlE r2—rgn, for ?2<t<T2,

02:(1)2': , (4)
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TABLE I. Properties of the shortest unstable periodic orbits for 2 2 4
a=1/2 and positive paritym*. L, denotes the length, the @ @ @
Lyapunov  exponent, u, the Maslov exponent, wp,
=Ly/|detM,—1)| the semiclassical amplitude ang the aver-
age of the observabld=x around the periodic orbip.

Wy, /27 ,

PO Lo/2m Np  up type Xexp(—imuy2) X, 3 3 4
21 (r=1%) 0.3504 0.6165 3 ih —i0.1672  0.433

0.7009 6 h —0.2670
27" 0.6366 1.5907 5 ih i10.2998 0.500

1.2732 10 h —0.1299
3 0.8601 2.2364 8 ih 0.2540 0.463 4 gt 8
3! 0.8924 1.7220 9 h i0.4594 0.467

1.7848 18 h —0.1648
4 0.9479 2.6561 11 ih —i0.2347 0.463
41 0.9649 2.0947 12 h 0.3861 0.471
84 (r=3) 1.2899 2.8308 11 h —-i0.3303  0.495
8% (r=3) 1.3052 1.9470 12 ih 0.4315 0.493 52 5 6
52 1.6003 3.5563 14 ih —0.2629 0.462
53 1.6251 2.8679 15 h —i0.4107 0.463
622 1.7330 2.9845 17 ih i0.3710 0.467
62 1.7343 2.4970 18 h —0.5423 0.469
72 1.8497 4.4276 20 ih 0.1998 0.467
73 1.8640 3.7346 21 h i0.2951 0.469 62 72 73
wheret is the time along the trajectorgw=(w;,w,) are the @ @) @
angular and radial frequencies amg and T, are the corre-
sponding periods.

The largely ergodic caseor a=1/2, motion is largely FIG. 2. Isolated periodic orbits for Robnik's billiard with
ergodic and all large islands of stability have disappearedazl/z' as listed in Table |
While it has been shown in Ref37] that isolated stable ' '
orbits persist aa=1/2 and beyond, it is safe to ignore these N ) ) o
small islands for our purposes and we will assume that théensities provide sum rules for matrix elements constraining
relevant periodic orbits of the system are isolated. Table their fluctuation properties. The semplassmal e\(aluat!on of
summarizes the properties of the shortest unstable periodfeds: (5) and (6) closely follows Gutzwiller's semiclassical
orbits of the billiard aa=1/2. See also Fig. 2. The orbits are @Pproximation for the density of states,
labeled by the number of hits at the boundary. The families
of whispering gallery orbits, which originate from tori with
winding number I (2/n) are denoted by andn? (n? and d(E)=>, S(E—E,). (7
n®). The asymmetric six-hit orbit, which bifurcates from 6 @
ata~0.44, is denoted by#. Since the length of both orbits
is still very close ata=1/2, their contribution to the Fourier

Semiclassicallyd(E) is obtained as a sum of two terms,
transform of the quantum spectra cannot be resolved.

IIl. SEMICLASSICAL THEORY FOR MATRIX ELEMENTS d(E)=(d(E))+d(E). (8)
In this section we discuss the semiclassical theory for lo-
cal averages of matrix elements of the form Here (d(E)) is the so-called Weyl contribution. It is a
smooth function of the enerdgy and asymptoticallyd(E))
daA(E)=2> (¢r,|Al,) S(E-E,), (5) is energy independent for two-dimensional quantum bil-

liards. The second terah(E) is an oscillatory contribution to
the density of states that can be expressed as a sum over
— A 2 _ _ periodic orbits.
CEho) ;ﬁ (dal Al 8o+ B, —Ep) S(E—E,) . Similarly, the energy dependence of the densitisand
(6) (6) can be split into smooth and oscillatory parts. The smooth

part is again related to zero-length orbits, and the oscillatory
HereE, and|y,) are the eigenvalues and eigenstates of theontributions can be expressed as sums of periodic orbits. In
HamiltonianH. Semiclassical approximations for these localthe following we treat classically chaotic as well as inte-
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grable systems. Section Ill A deals with the chaotic case di2 2R \|Y?
while Sec. Il B deals with the integrable case. K" r";t)=| 5—5 > |def —

2mih classical ar’ or’

paths
A. Classically chaotic systems

In this section we derive semiclassical approximations for xex;{%—R(r”,r’;t) —i ;K , (16)
the local densities defined in Eq&) and (6) for chaotic
systems. The results derived in this section are originally due T o _ i
to Wilkinson[16,5]. In Ref.[17], Wilkinson’s derivation was WhereR(r",r';t) is the action integral. It will be seen in the
reformulated for the case of diagonal matrix elements usindP!lowing that the two contributions t6(E, % ), namely the
Wigner transforms. Along similar lines, a semiclassical ex-smooth par{C(E,2w)) and the oscillatory parC(E,% o)

pression for Eq(6) may be obtained, as will be seen in the are obtained by two different approximations to the Van

following. It is convenient to rewrite Eqg5) and (6) as
follows:

dA(E)=Tr[AS(E-H)], (9

C(Ehw)= %f dtexpliot) Tr[A A S(E-H)],
(10

whereA, = exp(—iHt/%) Aexp(HUt/#). The 8 functions are ex-

pressed in terms of retarded and advanced Green'’s functions,

. 1 . A
S(E-H)=~-5—[GT(E)~G (B)]. (11

The next step is to rewrite the traces in E(®.and(10) as
phase space integrals, e.g.,

o s, dpdr .
Tf[AtAG(E)]ZJ'(ZW—ﬁ)dGW(p,r;E) (AA)W(P,T),
(12

where Gy(p,r;E) is the Wigner transform of the Green's
function G=(r’,r;E)

G\ﬁ,(p,r;E):f dry G=(r+r,/2r—r,/2;E) exp(—ili—p-r)
(13

and (A,A)w(p.r) is the Wigner transform ofA. To lowest
order in# one has

(AA)w(p:) =A(p:,r)A(p,T)

h
+ o7 AP AP O(#?), (14

where{,} is the Poisson bracket. In the following only the

lowest-order contributions if to (C(E,hw)) andC(E, % o)

will be considered. A semiclassical approximation to
Gw(p.r;E) is obtained by expressing the Green’s function in

terms of the propagator,

1 (= i
G*(r”,r’;E)zﬁj0 dtK(r”,r’;t)exy{%Et) . (15

For K we substitute the Van Vleck propagator,

Vleck propagator, the short-time approximation and the
stationary-phase approximation for the time integral.
1. Short-time approximation

The short-time approximation t&(r”,r’;t) yields the
smooth contributions toC(E,Zw). For short times,
R(r",r";t)=m(r"—r")/4t—tV(r"+r")/2. Substituting this
into Eq.(13) and performing the integral ovey in stationary
phase approximation, one obtains

Gw(p.T;E) (17)

CE—H(pr)+i0*t’
Using Eqgs.(10) and(12) one finds ind=2 dimensions

dp dr
(27h)?

XS E—H(p,n]A(p.r) A(p.r)

1 o0
(C(E,ﬁw))zmj_mdtexmwt)f

1 [*%)
= mﬁmdtexp(i wt) (A(p,r) A(p,r)) ,
(18

where( ) denotes an average over the energy shell. Equation
(18 gives the leading order classical contribution to the
smooth part ofC(E,%Z w). For an ergodic system, the phase-
space average can be expressed in terms of a classical auto-
correlation function along an ergodic trajectory

(A(pr,r) A(p,1))=(d(E)) CY(E,1), 19
whereC%(E,t) is given by
1 (T
CY(E,t)= lim ?f dt” A(Pe+or o Ferer) APy )
T 0
(20)
The analogous expression for the deng8yis
(An(E)= [ Lo~ H(pr) AP
A - (27Tﬁ)2 p' p!
=(d(E)) (A(P.1)me (21)

as derived in Refg[16] and[17]. The second equality de-
fines the microcanonical phase-space average dif should
be emphasized that Eg4.8) and(21) give only the leading
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{a) (b) The integrals ovep undr; are calculated within the station-
ary phase approximation. The conditions of stationary phase

///(p“,r") @ in Eq. (23) arer;=0 and —(p"+p’)/2+p=0. Hence only

L closed classical orbits contribute in this approximation. For a
wr) R given closed classical pafbompare Fig. @)] one obtains a

p=( D)2 contribution of the form
(c) 1/ 1 \@-ne
m( m) f drA(p.ry) A(p.r)

9

(24)

()

i T
><|D(r,r;E)|1’2ex;{%S(r.r;E)—|E,u :

’
P =p

bl

FIG. 3. lllustrating the contributions to Eq3), (24), and(25).  The final integral overr can again be evaluated in a
(a) shows a path from’ to r”, with intial momentump’ and final  Stationary-phase approximation, which ensures that only pe-
momentump”. (b) shows a closed path returning tq with differ- riodic orbits contribut¢compare Fig. &)] The calculation is
ent initial and final momenta’ and p’, with p=(p’+p")/2. (¢ identical to the original one of Gutzwiller and we only quote

shows a periodic orbit witlp=p’ =p”. the final result for the oscillatory part @(E,#% ),
order contribution to the smooth parts of the densit@snd 1
(6). Higher corrections to Eq(21) are considered in Sec. C(E,fiw)=—2 C,(Eiw) Wy T
IVA. ' mhgr P prop
2. Oscillatory contributions 1 -
In order to calculate the oscillatory contributions to Egs. XCOS(%fSp(E)— >k (25

(5) and (6), the integral in Eq(15) is performed in the sta-

tionary phase approximation, using the Van Vleck propaga- . - . . -

tor. This calculation is outlined in the present section. It will where the sum IS over periodic qrbpsand _thelr repetitions

be assumed that all periodic orbits of the classical system afe Tp &€ the periods of the periodic orbits asf(E) the

isolated. Hence the following derivation is inadequate in thd ©SPective actions. The semiclassical weighs are given

case of classically integrable systems, where motion on toly Wy, = 1/\/|detM,—1)|, where M, are the monodromy

is degenerate. These systems will be dealt with separately.matrices. Finally,C,(E,Ziw) are Fourier transforms of cor-
It is well known that approximating the time integral in relation functions along periodic orbits

Eq. (15) within the stationary-phase approximation yields an

expression for the semiclassical Green’s function. Inserting 1 (=

this into the expression for the Wigner transform of the Co(Ehw)=5— | dtexpliot) Cy(El)

Green'’s function gives -

. 1 1 (d—=1)/2

= ! J”” dt i wt !
—m . eX[ilw)T—p

X | dry|D(r—=ryf2r+r/2;E)| M2

-
. P !’
clsasusr:gal X fo dt’ APt Fertr) AP Ier) -

i T (26)
Xexr{gS(r—rllz,H— ri/2;E)—i TH
Since the autocorrelation functions are periodic functions of
i time with periodT,, they can be expressed as a Fourier sum
+ gp-4 : (22 Cp(E,t) ==, ap,(E) explwp,t) with wp,=2mvT,*. This
yields
Using Eqs.(10) and(12) one obtains for the contribution of
a given classical path from+r/2 tor—r/2 [compare Fig.

3(a)] Co(Efiw)=2 ap,(E) S(ho—thawp,).  (27)
1( 1 \@-ve dpdr
_—( —) f drlJ SAPL M) AP, Finally, we quote the oscillatory contribution to E) (see
1A\ 2mif (2mh) [5] and[17)),

X|D(r—ry/2r+r,/2;E)|¥? -~
_ . da(E)=(da(E))+da(E),
i o i
XeX[{%S(I‘—r1/2,r+l‘1/2;E)—I E,u,-l— gprl .

dA(E)=R 12A T
29 AEI=ReT G Ao or To
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i T
Xexr{grSP(E)—irg,up), <dB(E)>:f A(1,0) SLE-H()], (34

didé
29) 2

(27h)?

WhereApzTrjlfgpth(pt ) is the average of the observ- in analogy with Weyl's rule for the density of stateee Eq.

able along the periodic orbjt. This completes the discussion (21)]. For M#0, the integral ovet is performed in a sta-
of chaotic systems. In the next section we turn to classicalljionary phase approximatidi39,40 and one obtains
integrable systems.

~ _ 7302
B. Classically integrable systems da(E)=1 ReM2>0 A Wy

In this section we derive semiclassical approximations for i
the local densities defined in Eq&) and (6) for classically Xexp(_sM(E)Jri EMM , (35)
integrable systems. h 2
1. Semiclassical theory for diagonal matrix elements where

We consider the quantum-mechanical density of states

de
da(B) =2 (Wil Al Yime) O(E ~ Ernr) (29 An= f 2y 0 (36)

for integrable systems. Het,, and| ¢} are the eigenval-  The summation in Eq(35) is over all rational tori with ac-
ues and eigenfunctions of the circular quantum billiard. Theyjons|,, . The vectoM = (M,M,) characterizes their topol-
are labeled in terms of their radial and azimuthal quanturrbgy, Sy(E) and L,, are the Maupertuis actions and the
numbersm andn. In terms of the actions, the quantization  |engths of the orbits on the tol. In the case of the circular
conditions ar 36] billiard, one has Ly=2M,sin(mM;/M,),  Sy(E)
=\2mELy, wy=(87) YgyuLdM,%E"Y and the
l,= fﬁ dppy=2mnh, I,= fﬁ drp,=27 (m+3/4)% . phasesuy are given byuy=1/2—3M,. The factorgy ac-
(30) counts for the twofold degeneracy of tori with finite angular
momentum= p, which give identical contributions to Eq.
With Eq. (30) the density(29) may be written as _(21). Motion along self-retracing orbits on tori W|th_ vanish-
ing angular momentum (where M=r(1,2) with r
. =1,2,...) hasgy=1, accordingly.
da(E)=2 (| Algy) SIE—H(1)], (31 Equations(35) and (36) provide a semiclassical estimate
! for the density(5) for integrable systems. In the next section

where| ) are the wave functions associated with the quanyve briefly discuss the case of nondiagonal matrix elements

tizing tori |. Within the Wigner-Weyl formalism, the matrix ©).
elements<¢||A|¢|) may be expressed as phase-space inte-

. . . 2. Semiclassical theory for nondiagonal matrix elements
grals of the classical observablep,q) times the Wigner y g

function of the corresponding eigenstatg. In action-angle In the present section we give a semiclassical estimate for
variables, the latter is given HB8] 5(I—1'), and hence the density(6) for classically integrable systems. The desired
result follows immediately from Eq¥35) and (36) by re-
R de placing A(p,r) by A(p;,r)A(p,r), in the same way as Eq.
<¢||A|¢|>:f (ZW)ZA(LO)EA(')- (32)  (6) is obtained from Eq(5) by replacing(i,|A|y,) by

($al A a) =2 gl (| Al Y15) > exeli(E.— E)t/fi]. One ob-
Following Ref.[39], the sum ovel is rewritten as an inte- tains
gration, using the Poisson summation formula

C(E,hw)=(C(E,7w))+C(E,Aw) (37)
d (E)=£E ex izMa>
A 2 with
XfdIA(I)cS[E—H(I)]exp(ZwiMI/ﬁ). (33

1 i
. . <C(E,ﬁw)>2mJ dtexr<%wt)
Here, the actions are integrated ovey,1,>0 and M
=(M1,M,) are vectors on the lattice reciprocal to the EBK j
X

0
lattice (m,n). For a discussion of the phasasee[39]. The 2 ﬁ)zA(l’(H wt) A(1,0) S[E—H(I)]
first term in Eq.(33), M=0, is just the phase-space average &
of A(l, 6) (39
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0.2

C(Efiw)=h 32>, Cy(E fiw)wy SUUUSTIUTTUUIUIURe e
M>0 o1 F ay
™ .
xcos(SM(E)+iEMM>, (39 °r
where

Cm(E.f —f & | o1 |
M( ) w)— mex %wt
0Ff

xf do A(ly, 0+ oyt) Aly, 60) i b

y ) y . F 2
(277)2 M M M -0.1

A PR VT SETEE PRV PR T PP ST
(40) 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 09 1
a

The phase-space observables are periodic functions of the

angle variable®) and can be expanded as follows: FIG. 4. Coefficients of a polynomial fit H(z)) and(da(z)) as

a function of the deformation parameter(a) shows the density of
states(d(z))~a;z+ag. (b) shows(d(z))~b,z+by. Shown are
A(ly,0)= 2 Al exp(iv-6) . (41 the analytical estimatesolid line9 as well as results of numerical
v calculations @), as described in the text.
This gives, usingo,(1) =»- e(1), a perimeter correction. In the presence of diagonal matrix
elements, the perimeter term is given by the averag®(of
(C(E,ﬁw)>:zy f dl|AD? [ho—twyl)] along the boundary,A)pqy,

X S[E=H(1)] (42) A L 1
and (da(E))= <A>mcE - <A>bdyg \/_E (49

For observables of the foré(r) this can be shown using the
method of image$41]. In the presence of symmetries, Eq.
(44) is further modified and holds separately for each sym-
This completes the semiclassical analysis of Efsand(6),  metry clasg2]. The symmetry reduced version of E¢5) is

for integrable as well as for chaotic, ergodic systems. In thé@btained analogously and the perimeter terms are denoted by
following sections we compare the semiclassical theory witk(A)ﬁdy for positive and negativg parity. We have verified

CM<E,ﬁw>=EV A2 ho—to,(w]. (43

results of quantum-mechanical calculations. Eq. (45) by calculating the first 1250 eigenvalues of positive
parity and the corresponding diagonal matrix elements
IV. RESULTS FOR DIAGONAL MATRIX ELEMENTS (1,ba|A| ) as a function of the deformation parameteiVe
have takePA=Xx. In scaled variables, Eq&44) and (45) are

In the present section we discuss the sum r{&3 and
Egs.(34),(35) for diagonal matrix elements and compare nu-
merical results for the system introduced in Sec. Il with the
theory of Sec. Ill. We will first discuss the smooth contribu- (d(2))= iz— L (46)
tions (which are insensitive to the nature of the classical 27" 4w’
dynamic$ and then the oscillatory contributions separately
for chaotic and integrable systems. We choose units in which A L
m=1/2 andh=1. <dA(Z)>:<A>mCZZ_<A>bdyE (47)

replaced by

A. The Weyl part . . .
y'P (see Appendix A For the dipole operatoA=x, the micro-

According to Eqs(28) and(34) Weyl's rule approximates  canonical average is easily verified to He&)m.=a(2
the mean density of matrix elements, just as the smooth parf 32/2)/(2+a?). The elliptic integrals arising in the average
of the density of statesl(E)=2,5(E—E,) is asymptoti- of A(r) along the boundary have to be evaluated numeri-

cally given by[2] cally. Figure 4 shows the numerical coefficients of a polyno-
mial fit to the mean densitie&l(z)) and({d,(z)) as a func-
(d(E))= i_ L i (44) tion of a. Also shown are the analytical values given above.
Am 87 \[E The close agreement shows that the mean pafdgfz))

can be determined accurately, which is important for the
HereA is the area of the billiard and is its circumference. analysis of the fluctuating part. We note that b, as
The first term corresponds to Weyl's rule. The second term isvell as{x), tend to zero fom—0 for symmetry reasons.
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FIG. 5. Modulus squared of the Fourier transform dyf(z)
(with A=x) in comparison with its semiclassical approximation
(49 for a=1/2 andw*. (a) shows the semiclassical approximation.
The perimeter of the billiard — where the lengths of the whispering
gallery orbits accumulate — is marked by (b) shows the quan-
tum spectrum.

FIG. 6. Fourier transformation af~YZd,(z) for A=r? in the
integrable case(a) shows the semiclassical theory as calculated
from Eq.(50). The peaks are labeled by the vedtbrcharacterizing
the topologies of the corresponding tdih) shows the correspond-
ing quantum-mechanical amplitudes.

B. Periodic-orbit contributions )
number 1. Although the shortest orbitsnE 3,4,5) may

It has been shown in Sec. Il how oscillatory contributions g\ he resolved, their actions converge to the circumference
to Eq. (5) arise seml_classmally as sums over periodic orb|tst the billiard as 14? (n—) and are no longer resolvable.
In this section we discuss these contributions for the C|aSSI|-n Fig. 5, the circumference is indicated by the symbol
cally chaotic and integrable cases. In what follows we alway o

Note that the quantum Fourier amplitudes decay to zero as
work with scaled variables, as defined in Appendix A. d P Y

the circumference is approachéat L/27=1.063 544 ata
=1/2). The reason is that at finitg the wave functions
cannot be localized arbitrarily close to the boundary due to
For a scaling system, E(28) is conveniently rewritten as  Dirichlet boundary conditions. Instead, they are localized

1. Chaotic case

follows. We define near some orbit with finita, with n increasing withz. Thus,
due to the finiteness of the numerical spectrum, whispering
dA(Z):E (¢ |A| W) 8(z—2,) (49) gallery orbits with finiten contribute.

wherez,= \E,. According to Appendix A, 2. Integrable systems

~ 1 . . In the present section we discuss periodic orbit contribu-
da(2)= ;Re% WorApLpexdr(izLp—imup/2)], tions to the density5) for integrable systems. In scaled vari-
(49) ables,

whereA =L_1prdsA(ps,rS) is the average of the observ- 1
p=p Jo s/ . ~ 32z g -2
able A(p,r) around the periodic orbjp. In order to analyze da(2)=\/5= > AuguLyM;%\z
) . - 2mvs0
the periodic-orbit contributions tal,(z), we subtract the
Weyl part and Fourier transform the fluctuating part with T
respect taz. In scaled variables, the periodic orbit contribu- xXcog zlyt+ 7 = 5 My (50)
tions (49) appear as a Fourier seriesznthe periodic orbits
stand out as peaks located at their respective lengths o
their amplitudes are given bj, wy, . In the following we Ln order to check the predictiofb0), we have calculated
take A=Xx, such that the amplitudes, are z independent. da(z) quantum mechanically for the Obser\_/awlti_trz. For
Figure 5 shows the Fourier transform of the oscillating parthis observableAy=[1+2cog(7M,;/M,)}/3 is z indepen-

of da(2) for A=x. It is well described by the semiclassical dent. In order to eliminate the dependence in the ampli-
approximation (vertical bar$, provided the difference in tudes in Eq(50), it is convenient to consider YZd,(z). As
length of the orbits is large compared to the quantal resolubefore, the Weyl part has to be subtracted. We have fitted
tion. There are cases where this condition is not met. Ong Y da(z)) and subtracted the mean part numerically. The
example is the unstable horizontal orbit 2 with lengt2 Fourier spectrum ot~ ¥?d,(z) is shown in Fig. 6. We ob-
=0.6366. It cannot be resolved from the stable orBitb#  serve good agreement between the quantum-mechanical and
furcated from 2 ata=2-1. The latter has the length the semiclassical spectrum for lengths sufficiently far away
L/277=0.6406 ata=1/2. The same is the case for the pair of from integer multiples of the circumference. A uniform ap-
six-hit orbits & and 62, whose length are almost degenerateproximation designed to improve the semiclassical length
ata=1/2. Another example is the infinite family of whisper- spectrum in the vicinity of the circumference was discussed
ing gallery orbits originating from resonant tori with winding in [42].
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! tributions are strongly non-Gaussian and reflect the organi-
zation of classical phase space. ket 0, the distribution is
determined by the distribution of tori on the energy shell. For
a=1/2, the non-Gaussian shoulder is caused by states local-
ized in the vicinity of the whispering gallery motion, to
which the observabl€? is particularly sensitive.

V. RESULTS FOR NONDIAGONAL MATRIX ELEMENTS
A. Classically chaotic case
1. Scaling behavior

As before we make use of the fact that the billiard system
introduced in Sec. Il is a scaling system, in the sense dis-
cussed in Appendix A. We introduce a scaled version of the
density(6),

FIG. 7. Diagonal matrix elements of. Top: Matrix elements as
. . . . _ ~ 2 _ _
a function of the corresponding scaled energiefor the integrable C(z,A2)= 2 |<1r/;a|A| ¢’B>| 57](2 z,)0.(Az—z,+ ZB)
case 6=0). Bottom: the same, but for the chaotic case=(1/2). ap
Also shown are the corresponding distributions. (51

(Appendix A), whereAz=fw/2z is a scaled frequency,,
=\E, and 8,(2) = n/[ m(x?+ #?)]. The density(51) has a

C. Distributions particularly transparent semiclassical expansion,
In the preceding two subsections we have discussed the C(z,Az)=(C(z,Az))
semiclassical evaluation of a sum rule for diagonal matrix 1
eIemenFs. Expectgtlon values in chaotic quantum systems are I —ReE Co(AZ) Ly Wi,
constrained by this sum rule and on energy scales larger than T pr

the mean level spacing this leads to deviations from random ) ]
matrix statistic§5]. Semiclassically, these deviations are due Xexdr(izLp—imupl2=yLp)]. (52
to short periodic orbits. .

In adgition, there are other ways in which expectation-l_-he C_P(AZ) are analogous to the quantiti€(E, A w) de-
values may be affected by classical short-time dynamicsf.'ned in Eq.(26),
Even in classically chaotic systems, for instance, substantial 1 [
deviations from Gaussian fluctuations can occur as pointed Cp(AZ)= _J dL Cy(L) exp(iAzL— elL]), (53
out in the introduction. Fig. (&) shows diagonal matrix ele- 2m) -

ments ofA=r? for the circular quantum billiard as a function ) ) ) )
of their energieg,,,. We observe that the matrix elements @1dCy(L) is a scaled autocorrelation functiéhppendix A

fall on lines of constant radial quantum number as ex- around the periodic orbip. Since we are working with
pected for the observablé in an integrable system. This Scaled variables, the functiot},(Az) are independent of.
behavior is quite different from the chaotic casee Fig. Since the same applies to the monodromy matrix, the semi-
7(b)], where the matrix elements scatter irregularly around-lassical amplitudes in E¢S2) are energy independent. The
the microcanonical phase space averde,. (in agreement smpoth contribution a!so simplifies considerably in scaled
with Shnirelman’s theoremThis difference between the in- Variables. It can be written as
tegrable and the chaotic case reflects the different nature of 1 (=
the wave functions in the two cases. While the chaotic wave (C(z,Az)>=<d(z)>—f dL C(L) expliAzL—elL]).
functions are expected to be more or less equally weighted in 27 ) -
configuration space,fpdr|¢,(r)|>~vol(D), the regular (54
wave functions associated with a particular torus are strong
localized radially between the radius of the correspondin
caustic

We emphasize that also in the ergodic cESg. 7 (bot-
tom)] we observe strings of diagonal matrix elemefvtith
A,.=1). These are marked by arrows and are associated
with matrix elements between eigenstates localized in th@vheref(Az) is az-independent scaling function andis the

vicinity of whispering gallery orbits. The observabfewas exponent describing the scaling of the observaﬁbleamely,

Egﬁsen because it couples strongly to whispering gallery moA(p,r): E” Aq(po.ro) as discussed in Appendix A. Figure 8

Also shown in Fig. 7 are histograms of the diagonal ma-Shows C(z,A2) for A=x for different values ofz. For
trix elements ofA=r? for the integrable §=0) and the A=X, one hasy=0 and hence the curves in Fig. 8 fall onto
chaotic caseg=1/2). In both cases, the shapes of the dis-one single curve if rescaled withd(z))~* (inse). The

I . . . . .
évherecc'(L) is a ergodic correlation function in scaled vari-
ables. This implies that the and theAz dependence of

C(z,A2) factorizes in scaled variables,

(C(z,A2))~7*(d(2)) f(A2), (55
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its nth derivative, the Fourier transform of its correlation
function decays adz~2("*1) for largeAz. We note that for
A=x we haven=1 and forA=p,/z we haven=0, which

ﬁ explains the observed decay.
N
<\')/ | aa 17
Az 2. Classical localization
TR In the present section we discuss the origin and interpre-
T 15 2 25 3 35 4 45 5 tation of the fluctuations observed in Figs. 8 and 9. The
Az quantum densities in Figs. 8 and 9 exhibit strong modula-

tions as a function oAz, superposed onto a smooth decay.
- ) ) Classically, these modulations may be understood as a con-
original _spectral - function ~with z —centered = around 2 sequence of nonuniformity of phase space. Generically, the
=70,80,90,100,110,120above and a rescaled according to q . . yorp P ’ y: .
-1 rate of divergence varies locally over phase space with
C(z,A2) (d(2))" " (below. e e : DO
minima near the shortest periodic orbits. The ergodic trajec-

zindependent curves agree well with their semiclassical ap©"y, Which explores the whole energy shell for infinite time,
proximations given by the Fourier transform of the ergodicmay be trapped in the neighborhood of stable or weakly
autocorrelation functiol©®(L) as predicted by Eq54). unstable orbits for some finite time. The correlation function

The factorization of Eq(54) into az-dependent part given C,(L) along a periodic orbit is periodic with,. Due to
by (d(z)) and aAz-dependent part allows us to integrate short-time periodic motion the ergodic correlation function
overz, weighted with{d(z)) ~* in order to obtain an energy- also shows quasiperiodic behavior, at least for sinal\s a
independent expression, i.e., result the Fourier transform has peaks at integer multiples of
Az=27/L,.

Let us describe this in more detail for the case p,/z
(see Fig. 9, where the correlation functions along periodic
orbits may be evaluated analytically. The second peak in Fig.
9 is caused by quasiperiodic motion in the vicinity of the
unstable horizontal orbit Zwith L,/27=0.6366) and the
This is shown in Fig. 9 foA=p,/z. In this casey=1/2 and  stable orbit £ (with L ,/2=0.6406) bifurcated from it. De-
dividing p, by z serves to remove the factor af” in Eq.  noting the angle between the trajectory and xkexis by ¢

FIG. 8. Scaling 0fC(z,Az) for A=x with (d(z)). Shown is the

(Zmax— zmm)‘ljzmaxdz C(z,Az){d(z)) 1.

Zmin

(55). (=0 for the horizontal orb)t the autocorrelation functions
Apart from modulations at small values afz, C(z,Az) of A=pcz along 2 and 4 read Cp(L)

decays asAz increases. This decay is slow;(z,Az2) =[1-4L/L,] cosy for O<Ls=Ly/2 and C,(L+Ly/2)

~Az " andv>0. ForA=p,/z, we haveC(z,Az)~Az 2,  =—Cp(L). Their Fourier transforms shows maxima at odd

repetitions of 27/L,. Since the lengths of both orbits are

and forA=x we haver=4. This decay is of course typical | d —1/2 (th bit £ al ib
for billiards, where the dynamics is discontinuous at the® most degenerate a= (the orbit 4" also contributes

boundary. The classical correlation function of a smooth obWith half its length if in a single parityc?ubspacghgir con-
servableA(p,,r,) for motion in a billiard has discontinuous tributions to the Fourier transform &* are indistinguish-

derivatives due to the change of direction when the particl ble. 'Lhef_main pe;]akf@s Iolcated nekakzz 1‘5"; as CE.IS bedseenh
collides with the boundary. IA(ps,rs) has discontinuities in 'ro'm.t € higure. T e |rst'arge peak may be at'trl uted to the
infinite family of whispering gallery orbit®, which appear

when rational tori with winding number d/are destroyed.
At a=1/2, their lengths converge to the circumference of the
billiard as~ (1— c/n?) with ¢>0. Their Lyapunov exponent
increases logarithmically with, the number of hits on the
boundary. This is shown in Fig. 10 where the Lyapunov
exponents of the whispering gallery orbits are plotted as a
function of the numben of hits on the boundary. The main
contribution to the ergodic correlation function thus comes
from the shorter, less unstable orbits of the family. Indeed,
the maximum inC(z,Az) is found nearAz=1.06 corre-
sponding to a mean lengtty27r=0.94 orn~4.

FIG. 9. Comparison between theintegrated function Zyay A more compelling proof of the origin of the resonance
—Zmi) " dz d2) "1 C(z,A2) for A=p,/z and the semiclassical Structure in the Fourier transform of classical correlation
approximation(54). The resonances are marked according to theifunctions has been given [#3]. The main idea is to decom-
nature,h marks the resonances due to motion in the vicinity of theP0ose the phase space into cells of equal size and to calculate
horizontal orbit 2,w.. marks the resonance due to motion in the the contribution of each cell to the spectrum of the ergodic
vicinity of the whispering gallery orbits. The inset shows the same correlation function at the givefpeak frequency separately.
but for larger values oA z. Following [43], we may write

i
5

)
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S
a
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FIG. 10. Lyapunov exponents, for the whispering gallery or- el e
bits for a=1/2 as a function of the numberof hits at the bound- & =2 . R
ary. There are two kinds of whispering gallery orbits, inverse hy- © ? 0.4t
perbolic onesf in table ) and hyperbolic onesid in Table ). The
dashed lines are fits to,=a+b Inn. i
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f dLC%(L)expiAzL)
—Lc FIG. 11. Classical contribution of phase space cells to the Fou-
1 rier transform of the ergodic correlation functid®®(L) at Az
~ E (A(0)) cel =1.5(left) andAz= 1.0 (right) according to Eq(56). Also shown
Neenl Gells are invariant manifolds of the shortest periodic orhieft) and

fixed points of the whispering gallery orbitsght).

LC
XJ dL(A(L))cen eXp(iAzL),  (56)
—Lc 3. Quantum localization

In the preceding section we have analyzed the resonances

where( ). denotes an average over initial conditions withinin the classical autocorrelation function. Equatii®) al-
a phase-space cell. If we followed the individual trajectorieSows us to discuss the analogous phenomenon in quantum
for long enough [L.— ), every phase-space cell would con- mechanics.
tribute equally to the Fourier transform at any frequency. In A corresponding phenomenon of quantum localization
order to obtain information about subregions in phase spaceas indeed been identified in the form of scars, i.e., higher
one has to choosk, sufficiently small and study the short- than average probability distribution of wave functions along
time correlations of the cells. In practice, we chobg@bout isolated unstable periodic orbits. A wave packet started along
ten times the length of the shortest periodic orbits, Lg., an unstable periodic orbit would travel around it for some
=20. We restrict ourselves to the surface of section and plofinite time before spreading all over phase space, the sooner
the modulus of the cell amplitudes at fixed scaled frequencyhe more unstable the underlying orbit. It is possible to quan-
Az. The surface of section is parametrized as follows. Weize the motion parallel to the orbjd5] approximately. It
choose the polar anglé to parametrize the axis. They  shows in particular that subsequent scars of the same orbit
coordinate is given by sjpwherey is the angle of incidence with lengthL , are separated hz~2=/L . If their overlap
at the boundary44]. The result is shown in Fig. 11 fakz ~ matrix elements is higher than average, the corresponding
=1.5(left) andAz=1.0 (right). At Az=1.5 we find highest C(z,Az) should have a pronounced peak at this valua nf
intensity around the fixed points of the stable orbit Re-  We have found strongly scarred wave functionsaat1/2,
gions of high intensity extend to the fixed points of the un-which are localized around the triangular orbit 3 and the
stable horizontal orbit 2. They are delineated by the maniorbit 42 bifurcated from it and in the vicinity of the family of
folds of the shortest unstable periodic orbitempare Fig. whispering gallery orbits, see Fig. 12. Although the orit 4
11). is stable, the localized wave function may well be termed

At Az=1.0, the picture changes completely. We now findscars, since the stable region around the orbit is much too
high density around the fixed points of the whispering gal-small to quantize individual states, at least for the energies
lery orbits, with highest intensity arouni=4 and 5 in ac- considered here.
cordance with the location of the maximum in Figs. 8 and 9 We have analyzed nondiagonal matrix elements of the
near Az=1.06 (see above Qualitatively, we observe that observabled=r? between scarred states and between irregu-
the high-intensity regions tend to follow the line of fixed lar states. In keeping with the above analysis we have found
points and their invariant manifoldsompare Fig. 111 that nondiagonal matrix elements between scarred whisper-

The above discussion shows that short-time quasiperiodimg gallery states are considerably larger than those between
motion which leads to localization of the classical flow in irregular states or between a scarred and an irregular state.
subregions of phase space, is responsible for the resonan€his shows that inhomogeneities in classical phase space
structure in the Fourier transform of the classical ergodidead to interesting features in the quantum-mechanical den-
autocorrelation function. sity (6), as exemplified in Figs. 8, 9, and 11. We emphasize
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FIG. 13. Real part of the Fourier transform 6f(z,L) with
respect toz for A=x (@) in comparison with its semiclassical

2=142.7029,P+ approximation(solid lines.

effect of classical phase-space localization in quantum me-
chanics.

4. Periodic orbits

According to Eq.(52), the contribution of a particular
periodic orbit to C(z,Az) is weighted by the correlation
function of A(p,r) along the orbit. In the following we dis-
cuss contributions of individual periodic orbits and compare
the semiclassical predictions with exact quantum results. To
this end, we Fourier transform the fluctuating part of &2)
with respect toz and Az. The variable conjugate tdz is
taken to bd_, and the variable conjugate rds AL, follow-
ing the convention introduced [16]. According to Eq(52),

the functionC(AL,L) exhibits peaks as a function afL at

the lengths of the periodic orbits,. The amplitudes depend
parametrically on the length, which is conjugate to the
scaled frequencyz. The dependence dnis given by the
2=140.8081,P+ 2=143.6871,P+ periodic orbit correlation functioi€,(L). In order to com-
pare the semiclassical formulas with the results of numerical
quantum calculations, we proceed as follows. For fikete
determine the amplitude of the quantum Fourier transform at
AL=L,. For each orbit, the results for differeintvalues are
collected together and compared with the semiclassical am-
plitudes modulated by the periodic orbit correlation func-
tions. The results, foA=x, are shown in Fig. 13. In all
cases, the quantum as well as the semiclassical amplitudes
are shown. We find excellent agreement between the quan-
tum and the semiclassical amplitudes.

B. Classically integrable systems

In the preceding section, we discussed classical and
periodic-orbit contributions to the densitg) for classically
FIG. 12. Some examples of wave functions scarred by shor€haotic systems. In the present section we analyze integrable
periodic orbits,(a) triangular orbit 3(compare Fig. 2 (b) stable  Systems. In scaled variables one has
orbit 42, (c), (d), (e) and(f) whispering gallery orbits. In the cases
D o are C(z.A2)=(C(2,42))

(0), ... (f), note that subsequent scars are separatee Dy/L,,,
1
+1/5-Re> guCu(AZ)LIM, 2z
2T MZo

wherel, denotes the length of the scarring orbit.

that other quantities, such as the distribution of nearest-
neighbor level spacings in Fig. 1 show no or little sign of
inhomogeneities in classical phase space. The quantity de-

an
fined in Eq.(6) is therefore particularly suited to analyze the 2 Mam k| (57)

LT 3
xexpizly+iz—i—
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Cm(Az) denotes the Fourier transform of the autocorrelation 0351
function of the observablé on the rational torus,

Cu(Az)= %J':dL Cu(L) expiAzL—e€|L]), (58

Cm(L)=

v, OA(y, 0+ wl/22). (59

(2m)?

In the following we discuss classical and periodic-orbit con-
tributions separately.

1. Weyl contributions: asymptotic analysis

In this section we calculate the Weyl contribution to  FIG. 14. Classical autocorrelation functigsolid line) for A
C(z,Az) for integrable systems analytically. This is possible =r>, and the result of a quantum-mechanical calculati®) (
as an asymptotic expansion for largewhereL is the vari- Shown are two cases$q) the integrable case an) the chaotic
able conjugate toAz. We will show that in general, ¢ase &=1/2) for comparison.

(C(z,L))=(d(2)) L@~V |n scaled variables, as a func-

tion of L, the Weyl part is given by a very long trajectory. Both autocorrelation functions exhibit

characteristic oscillations with frequendyz~ 7. In com-
parison with its chaotic counterpart, the integrable autocor-
relation function exhibits a highly regular structure. In both
cases, the envelope decays to a constahtas. There are,
however, important differences. These will be discussed in
the following.

In order to evaluate this integral, we introduce new Cartesian " the integrable case, the envelope of the autocorrelation
coordinated — &= (¢,,&,) such thaté, is always tangential function decays according te 1/y/L. Using Egs.(41) and

to the curveH(l)=2z2. Performing the integral oveg, (42, we rewrite Eq.(61) as

yields a line integral along the curvd(l)=z2. We para- 4 1

metrize this curve by lI,=g,(l;). Using [dH/dl,| (C(z,L))=(d(z)) —>, J drmianJZ
=w,=2mz/\1-rZ, andl,=r 4.z we obtain ™y Jo

1
(CL)=

XB(l,0+ wlL/22) 6[z— JH(1)]. (60

Xexp(iv.wlL/2z) . (63
(z,L))=(d(2) f drminy1—r2
(e )= 'm min Fmin Here A, are the Fourier coefficients of the observable
420 A(l, ). In the present case, they are functions gf,, as are
the frequenciesw. For a rotationally invariant observable,
+ . ; O . .
f B(I,0)B(l, 0+ wl/2z) . (61) such asA=r2, the Fourier series is one dimensional. Ror

=r2 we have
The symmetryp,— —p, is taken into account by an addi-
tional factor of 2. Sincaw~ 2z, Eq. (61) explicitly exhibits = for y=0
the scaling property ofC(z,Az)) discussed above, namely, (1+2rm'”) orv="=,
that thez andL dependences factorize. AT min) = (64)
Equation (61) can be evaluated further most easily for 2 1- mm otherwise
operators with rotational symmetry. Consider for instance 772 2 '

A=r2, In this case we have

These expressions enable us to evaluate (8. For the
v=0 term in Eq.(63) we obtain 5/18. The remaining terms
are evaluated within a stationary phase approximati.
Dropping terms with »|=2 we obtain

= B[ LAL-2V1- 1)+ & (3 +2r50)2
(62) Cel( L)~—+\/— \/_ {WL-I- ) (65)

A numerical evaluation of this integral, using E®2), is

shown in Fig. 14a) together with the corresponding This result is shown in Fig. 15 together with the numerical
quantum-mechanical data. We observe good agreement bevaluation of Eq(61). Equation(65) proves, moreover, that
tween the quantum-mechanical data and the correspondiribe classical correlation function decays according /L
semiclassical approximation. Figure (b% shows the same for largeL. This very slow decay is in fact generic for two-
data, but for the chaotic case. Here, the ergodic autocorrelalimensional integrable systems.drdimensions one obtains
tion function is evaluated numerically as a time average over-L (Y2 This decay is universally valid for integrable
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systems provided the points of stationary phase are isolated 0.2 L
and sufficiently far away from the boundary.

We conclude by briefly discussing the- limit of au- 0.0 —mrb e
tocorrelations in integrable systems in comparison with the °o 2 4 6,8 02
chaotic case. It is clear from E¢63) that in integrable sys- _ _
tems (A(t) A(0))— fdl STE—H(1)] Ag(l )2’ where Aq(1) FIG. 16. (bottom Solutions ofF, (Az,r ;) =0. Az is plotted

denotes the average of the observad{g, @) over the torus @S @ function of , for »,=1, 2 and 3. The dashed lines show the
with actions I. In chaotic systems, on the other hand position of the resonance@op) Quantum-mechanical dat®( for
(A(t) A0))—(A)? for large t Assu’ming that the phase’(d(z»’l(C(z,Az)} for the operatorA=r?2, together with the

. ) A - . semiclassical estimaiaolid line), a smoothed version of E¢67).
space averageA) vanlshes,. autocorrelations In qhaoﬂc SYS” Also shown is the unsmoothed resonance spectlfa;tmatde(;(z?6 ac-
tems decorrelate for large times. In general this is not true ”Eording 0 Eq.(67)
integrable systems, where autocorrelations decay to a vari- R

ance of torus averages. .
9 tom) shows the solutions d¥V2(Az,rmin)=O for v,=1, 2,

2. Weyl contributions: general case and 3. The corresponding resonance structure,

In the preceding section, the Weyl contributionG¢z,L) 5
was analyzed. We observed oscillatory behavior as a func- (C(z,A2))=(d(2))| 8(AZ) —
tion of L, with an envelope decaying according to 18
~L~(@=2in d dimensions. This behavior is shown in Fig.

15. An analytical estimate for the envelope(@f(z,L)) was il <+ (T 67
given for largeL. In the present section we focus on the 72 v5=1 13 1—(vm/AZ)?’

oscillations in{C(z,Az)) as shown in Figs. 14 and 15. The
oscillatory structure is most conveniently analyzed by Fouis shown in Fig. 16(top). Also shown are quantum-

rier transformation with respect thz. mechanical data fo{C(z,Az)) together with a smoothed
\/2Ve first consider the rotationally invariant case, uskig version of Eq.(67). In all cases, the diagonal contribution
=r°. Using Eq.(42) we have in scaled variables giving rise to the singular part of Eq67) has been sub-

tracted. We observe excellent agreement.

In the remainder of this section we discuss dipolar opera-
tors, such a®\=x. Generalization to more general operators
such as, for instancé=xf(|r|) for a smooth but otherwise

1 arbitrary functionf is straightforward. FOA=Xx one obtains
2 2
x fo drmin V1= ins (1425502 in scaled variables

(C(z.42))=(d(2)

4

_ 2 4
+ > i ldrmin r—rl_rmm(zl_rzm"‘) (C(z,A2))=(d(2)) >, EO;
0

=+
V970 T T V% vi=*1 vy#

1
X Jl) drmin \/:I-_rrznin|xu(rmin)|2 5[Fu(Azyrmin)] )

(68)

with FVZ(Az,rmm)_—Az 1/_277/\/1 rzmm. Individual terms in With F(AZr,)=Az+ vy (arccost )+ Vzw)/m.
the sum ovenw;, will contribute wheneveF, (Az,min) =0 £ig 16 174) shows(C(z,A2)) as a function ofvz as calcu-
The contribution at these points is weighted by the inverse ofated from Eq.(69). In order to allow for comparison with
|0F 10 minl.  Whenever oF, /ory,=0, the function  quantum-mechanical calculations, a finite broaderingas
(C(z,Az)) will hence exhibit a resonance. Figure ifot- introduced in Eq(68). Also shown are results of a quantum

x 5(FV2<Az,rmm>)] (66)
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FIG. 18. Periodic orbit contributions 16(z,Az) for A=r?. (a)
shows the semiclassical amplitude for the tdvis (2,5) calculated
analytically from Eqgs(57) (solid line) and extracted fronT(z,Az)
(solid dots. (b) shows the same, but faM=(1,3), (c) for M
=(1,2), and(d) for M=(2,7).

(d(2))" (C(z,Az))

Figure 19 shows the quantum-mechanical and semiclassi-
cal amplitudes for two cases. First, the top curve in Fig. 19
shows the amplitudes for the tordd=(2,5) for the inte-
grable case. Second, the two lower curves show the ampli-
tudes for two star-shaped orbits in the nonintegrable case
(a=1/2). As the value o& is increased from zero, the ratio-
nal torusM=(2,5) breaks up into isolated periodic orbits. At
a=1/2, we find that the two star-shaped orbits are both un-
mechanical calculation, for the same valuesedGaussian stable. We observe that the integrable case exhibits high-
smoothing. The quantum and classical results agree vergymmetry(periodicity withLyy/M,). In the case of broken
well with each other. Figure 1) shows the corresponding Symmetry @=1/2), the distance between subsequent hits on
data for the chaotic case. We observe that the resonancestite boundary is no longer constaor, equivalently, the in-
Fig. 17a) are sharper as compared with those in Fighl7 tegrals of motionl are destroyedand the period of the au-
This is a consequence of the symmetries of the integrableocorrelation functions is given by the full length, of the

FIG. 17. (3) Quantum-mechanical data féd(z)) 1 (C(z,A2))
for the operato’A=x, together with the results from E¢68). (b)
the same, but for the chaotic case=(1/2).

system enforcing selection rules. respective orbit.
We conclude this section by briefly discussing the dipole
3. Periodic orbits operatorA=xX. In this case, the autocorrelation functi@to)

In the present section we turn to the oscillatory contripu-modulating the semiclassical amplitudes cannot be calcu-
tions toC(z,Az). According to Eq(57), the oscillatory con- lated analytically. We will therefore start from E@3). The
tributions are given as a sum over rational tdri The semi- coefficientsA (Iy) can be calculated numerically, as well as

classical amplitudes are weighted with torus averages df€ summation over. The results are shown in Fig. 20, for
autocorrelation40) or (59). several different toriM, as a function of scaled frequency

We evaluate Eq(59) for two cases: for rotationally in- Az. We also show the results of an exact quantum calcula-
variant and for dipolar operators. To begin with, consider theion. The quantum amplitudes are extracted from the quan-
observableA=r2 which is rotationally invariant. In scaled tum data by Fourier transform with respectztcas described
variables we have Cy(L)=2[1-L2(L—2sin(mry)?] above. We pbserve excellent_ agreement between the quan-
+ &1+ 4cog(mM,/M,) ]2 Due to the high symmetry of the tum calculations and the semiclassical theory.
integrable problemCy(L) is periodic inLy /M. Given the
analytical expression fo€y,(L) we are in a position to as- 0.2¢
sess the periodic-orbit contents of E&7). Since the first 0.1 Wy@

term in Eq.(57) is only the leading-order approximation to & of

the mean density, we extra¢C(z,Az)) numerically and §, ~0.1 W\/{W& @

subtract it. In order to extract the length spectrum of 3 -o02 ?f‘/\/-\/\"\‘/‘e\

C(z,Az) we compute the double Fourier transformation of -03F @

7z Y2C(z,Az) with respect toz and Az. The conjugate —0.4 Bl

lengths areAL and L, respectively, as in Sec. V A. The 0 05 L;’ z 2503
™

amplitudes are modulated by the autocorrelation functions

Cw(L) as shown in Fig. 18. The overall agreement between g\ 19, comparison of semiclassical amplitudes for the inte-
the quantum-mechanical amplitudes and the analytical estyraple and the chaotic case. The uppermost curve shows the semi-
mate (57) is satisfactory. We note that for tori withl;=1  cjassical amplitude for the integrable systea(0) corresponding

and largeM, (whispering gallery toji the autocorrelation to the torusM=(2,5). The two lower curves show semiclassical
functions tend taC\(L)~ 1, the average oA=r? along the  amplitudes for the chaotic casa+ 1/2) corresponding to the two
unit circle. orbits shown in the figure. Compare Figs. 2.
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10' M=(1,2) 101 M=(1,3) x”(u,w)=—wJ dE[f(E)—f(E—ﬁw)]aEB (WalAlgrg)

X (gl Alh) S(hw—E,+Eg) S(E-E,). (71)

Assuming that botth w and 8~ ! are small compared to en-
ergy scales over which the integrand differs significantly
from its value at u, we expand f(E—Aw)=f(E)
—f'(E) hw. This gives

x"w,w>=—wﬁwf dE1(E) 3, (lAluy)

X(5|Althe) S(hw—E,+Eg) S(E-E,).
(72)

Making use of the expressions derived in Sec. lll, one ob-
tains

X' (w,w)=— Wﬁwf dE f'(E)

FIG. 20. Shows a comparison between the amplituCig&\ z)

extracted from the quantum-mechanical dataZerx (in the inte- ® )

grable casecompared with their semiclassical approximations; for X f dt e (A(p;,r)A(p,N). (73
the tori M=(1,2), M=(1,3), M=(1,4), M=(1,5), andM=(2,5). o
The quantum data are shown@s the semiclassical theory as solid

lines Equation (73) is the desired classical approximation to

x"(u,»). We emphasize that in the derivation it has been
VI. RESPONSE FUNCTIONS assumed that .the Fogrier transform(af p; ,r;) A(p,r)) with
respect ta varies sufficiently slowly on the scale 6fw and
In the two previous sections we described the semiclassig—1,
cal analysis of Eq(6) according to the theory laid outin Sec.  The real party’(u,w) of the susceptibility can be ob-
lll. We have shown that the structures @{E,%w) closely  tained along similar lines. In the following, however, we
reflect the way in which classical phase space is organizegjive a slightly different derivation that leads to a form
We have described the influence of phase space inhomogetearly exhibiting the symmetry properties of the classical
neities in chaotic, ergodic systems and have discussed regdpproximation toy(u,»). We start from Eq(69) and ap-
lar systems, where phase space is organized as a foliation pfoximate the commutator by the Poisson brackel

tori. =—if{,}. This is analogous to the approximati¢i¥). One
In this section we wish to point out that the function gptains

C(E,iw) is also of considerable interest experimentally

since it governs the response of the quantum system in ques- 2 it ,

tion to external perturbations. This is immediately obvious x(p, )= J;) dte f dpdr f'[H(p,r)]
since the response of a quantum system is given by the tran-

sition amplitudes according to Fermi's golden rule. To be X{A(p;,ry),H(p,N}A(p,r),

more precise, we note that the response of a quantum system
to an external, time-dependent perturbation is given by ~ assuming that the boundary terms vanish. Using the classical
1 equations of motion we obtain
xmo)= o7 [Cat(IA AL exion (69 .
X(,u,w)ZJ' dtexp(iwt)
N ~ ~ ~ ~ 0
where A;=exp(—iHt/A)Aexp(Ht/A) and A does not com-
mute with the HamiltoniarH. In terms of eigenenergids, Xf dEf'(E) E<A(pt AR, (74
and eigenstateg,, of H, one has dt

f—f . -
x(wo) =3 o (WAl (Wl Al ),

70 pwr=—5- | dven| aErEADAG)

wheref ,=f(E,)=[expB(E,—n)+1] ! is the Fermi func-
tion, B=(kgT) ! and u is the chemical potential. For the
imaginary part ofy we have

We introduce the classical function

:_jdEf’(E)C(E,w). (75)
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At low temperatures] —0, we havd (u,w)— C(E,w). Us-  The antidot arrays studied experimentd#g] exhibit mixed
ing Eq. (74) we obtain the following representation for the classical dynamics, where stable islands coexist with con-
susceptibility nected chaotic regions in phase space. Our theory can be
extended to this case in the following way. We group our
o'l(w,o0") states into those associated with stable isldretpular states
: (76) and irregular states associated with the chaotic phase-space
regions[49,50. We neglect nondiagonal matrix elements be-
For the real and imaginary parts of the susceptibility we opfween regular and irregular statéassuming that they are
tain exponentially suppressgdThen Eq.(6) consists of two
terms,

x(u,m:—ﬁwdw’

w—w'

X'(M,w):'pfw deMV C(E.hw)~C™E fiw)+ C™UE hw). (81
—® w—w
C'"™Y(E,Aw) can be analyzed according to the semiclassical
X' (pw)=—mol(n, ). (770  formulas set out in Sec. Il A, an@™YE,% ) can be calcu-
lated according to the formulas given in Sec. 11l B by defin-
The second of Eqs(77) is just Eq.(73). These equations ing action and angle variables local to a given stable island.
constitute a classical approximation for the real and imagiA first step in this direction has been discussed2a]. We
nary parts ofy(u,w). Equations(77) are of the same form note that stable islands contribute in two waysC{E, % o).
as the spectral representation for susceptibilities in quanturRirst, there is the obvious contribution througffyE,% ).
mechanics. The quantum spectral function is replaced by 8econd, a stable island is surrounded by comparatively stable
classical spectral functioh(u, ). regions within the connected chaotic component. These com-
For integrable systems, an explicit expressionl{qr, ) paratively stable regions cause resonance€'fiYE,% ),
can be derived as follows. Using Eq®8) and (41), we  of the nature discussed in Secs. VA2 and V A 3.
obtain It is clear from the discussion in Sec. Il that there may be
semiclassical corrections to the classical magnetoconductiv-
(e “’):_f dIf TH()] ity calculated in Ref[25]. These Wou_ld be of oscillatory
’ nature and of the form&38) or (59), for integrable and cha-
otic systems, respectively. Such oscillatory contributions
XX A*(WA,(DSlo—v-w(l)]. (78  have in fact been observ¢d0] and have been discussed in
v Refs.[31,32. A comparison of such contributions with exact

- L ) quantum-mechanical calculations was first performel@#
Substituting this into Eq(76), we obtain and[23)].

X(M,w)zf dif' [H()] VIl. SUMMARY AND CONCLUSIONS

In this article, we have reported on semiclassical sum
v-o(l) (79 rules constraining local densities of matrix elements in
o—v-ol)+iot’ single-particle quantum systems. It was to be expected and
has been worked out in detail that the semiclassical estimates
This provides an easily evaluated classical approximation fodepend on the nature of the dynamics of the classical system.
susceptibilites in classically integrable quantum systems, ife have studied systems exhibiting chaotic, largely ergodic
terms of the Fourier coefficients of the observablid, 6), dynamics and systems with regular classical dynamics.
which are periodic functions of on a given torud, and in In both cases, there are two contributions to the sum rules:
terms of the corresponding frequenciesw. a smooth and an oscillatory part. The smooth contribution is
For chaotic systems, there is no explicit expression availgiven as the Fourier transform of a classical correlation func-
able forl(u,») — such as Eq(78) for integrable systems. tion. This is of course true in both cases, for ergodic and for
In ergodic systems, however, the phase-space average in Bggular systems. In ergodic systems, this correlation function
(73) can be evaluated as a time average along an ergodiday be evaluated along an ergodic trajectory. Despite being
trajectory. ergodic, however, the energy shell may be far from homoge-
Equations(77) show that the resonance structures dis-neous. The ergodic trajectory may be trapped in the vicinity
cussed in Secs. VA 2 and V A 3 can, in principle, be foundof weakly unstable regions. We have shown how this inter-
experimentally. In Refd.26,27,44 a possible absorption ex- Mmittent behavior gives rise to pronounced resonances in the
periment was discussed where these structures would be réimooth part of the quantum density. Quantum mechanically,
evant. We note that our semiclassical treatment allows us tthese resonances are due to wave function localization in the
justify and extend the classical model of the static magnetovicinity of weakly unstable regions in phase space. Classi-
coductivity in antidot arrays discussed in REZ5]. We re-  cally, these structures are just resonances in the autocorrela-
produce the classical model for the magnetoconductivitytion function. We have discussed this analogy and analyzed
from Eqgs.(6) wherew=0 andA=]j, (j is the current irx it quantitatively.
direction), In regular systems, the smooth contribution is also given
as a phase-space average of autocorrelations. In this case,
ol Ep) =0 YY" (Eg,0=0). (80 however, the invariant objects in phase space are tori and we

X2 AE(DAL
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average over autocorrelations on tori in order to obtain thehe Hamiltonian phase flow may be parameterized such that
smooth contribution to the quantum density of nondiagonahll quantities characterizing classical motion are energy in-
matrix elements. There are three important differences frondependent. In a billiard witim=1/2, for example, solutions
the ergodic case. First, the resonances are sharper in intef Hamilton's equations at energi€&andEy=1 are related
grable systems. This is a consequence of selection rules dwé the transformation
to the high symmetry of integrable systems. Second, motion
along invariant tori is alwaygquasjperiodic and thus de- p(t)=vVEpo(te), r(t)=ro(to), (A1)
correlates very slowly. As a function af— the variable
conjugate to the energy separatibm=E,—E; between provided the time is scaled appropriately=E ~?t,. Other
initial and final states — the smooth contribution decays asbservables are assumed to scale as
~t~(@=D2 for Jarget. This was shown within a stationary
phase analysis and is valid provided the points of stationary A(p,r)=EYAx(pg,ro) (A2)
phase are isolated and sufficiently far away from the bound-
ary. Third, in ergodic system&(E,t)) has the following which defines the exponent The Maupertuis action along a
limiting behavior for large times'C(E,t))~(d(E)) (A)2. In  trajectory scales as
integrable systems, on the otzher hand, one fi(@6E,t))
~(d(E)) fdl STE—=H(1)]Aq(l)*, whereAy(l) denotes the
av<erage> of the observabig1, 6) over the torus with actions S:f pdr= \/Ef Podro=z%
l.

In addition to the smooth part, semiclassical theory prewith z=\/E. One notes that the scaled actifg= J p,dqy is

dicts periodic orbit contributions to the quantum densitiesjyst the arclengti_ along the trajectory, sinc&,=dJS/dz

We have analyzed the periodic orbit contributions in detail,=tjE/9z=2zt=L. The phase flow inL is generated by
for integrable as well as for chaotic systems. Again, the simi-\/m.

larity between the integrable and the chaotic is apparent: ex- There is no direct analogue in quantum mechanics, since
ploiting the scaling property of the system, the contributionihe  quantum-mechanical propagator corresponding  to
of each orbit may be obtained by Fourier transformation ofm does not satisfy Schdinger's equation. As is well
the oscillating part of the spectral function with respect to 3nown, however, a scaled version of Gutzwiller's trace for-

scaled energy variable. In the chaotic case, we find the amy, 15 may be obtained by definint(z) dz=d(E) dE. Start-
plitudes to be modulated by correlation functions along theing from Eq.(49) one has withT,= JS, /JE andz _ g2
respective isolated periodic orbits. In the integrable case, ' P P ©oTer

these amplitudes are averaged over all periodic orbits on a

given torus. da(D=2 (alAlpa) 8(z—2,)=(dn(2))
In summary, we have provided a comprehensive and con- a

clusive study of all aspects of the semiclassical evaluation of

(A3)

local densities of quantum-mechanical matrix elements. This + EReE Lo Wpr Ay exr(izLy,—imu,/2)].
includes, in particular, the results of two previously pub- p.r
lished articles[24,23 and goes considerably beyond what (A4)

could be discussed there.

The results published in this paper are not only of interestqyation(A4) is a Fourier series iaand the contribution of
theoretically. As we have pointed out, the density of nondi-g5¢h periodic orbit to the density of states may be easily
agonal matrix elements characterizes the linear response gktracted by Fourier transformatigb2]. In order to elimi-
quantum systems to external, time-dependent perturbationgate all energy dependences of the semiclassical amplitudes,
Using the framework provided in this article, it is possible to {he operators should be scaled with energy according to their
derive classical and semiclassical approximations tqassical scaling propertig#\2).
guantum-mechanical response functions. Most recently, us- T derive a scaling expression for non-diagonal matrix

ing the results of this article, we have studied the response fiements, one makes use of the following scaling relation for
small metal particles to electromagnetic radiation, for diffu-

sive [29] and for ballistic dynamic§47], and taking into 0.3

account the magnetic dipole interaction in both diffusive and = :
.. 2 0.25F
ballistic systemg51]. W :
o 0.2;—
~0.15F
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APPENDIX: SEMICLASSICAL QUANTIZATION w/2vE

FOR SCALING SYSTEMS ] ) )
FIG. 21. Scaling behavior of the spectral functiGfE, w) for

In this Appendix we summarize, for convenience, severap=x and »=0.2. Shown are various values o \E, namelyz
well-known facts about scaling systems. In a scaling system+=80 (®), z=90 (M), z=100, andz=110 .
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autocorrelation functionsC(E,t)=E2?"f(2Et)=E2"f(L).
Applying this to the Weyl part o€(E, w), one obtaingwith
h=1)

(C(E,w))=2EY2"2Y(d(E)) f(w/2JE).  (A5)

In Fig. 21, we showC(E,w)) for A=x as a function ofw
for several values oE. After scaling thex andy axis appro-

B. MEHLIG
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which has the semiclassical expansion

C(z,Az)=(C(z,Az))
1 : .
+ ;Reg Cp(AZ) Lywp, explr(izLy—imu,y/2)]

(AB)

priately, the data fall on the same energy-independent cun@ith

f( ). A similar scaling relation holds for the periodic-orbit

contributions. This scaling property suggests to work from

the outset with scaled variables: \E andAz= w/2E, i.e.,
to consider

C(z,Az>=EB (al Al )| 28(2—2,) 8(Az—2,+2p),

(C(z,Az))z(d(z))%fldL expiAzL) CY(L)

and C,(Az) defined analogously. Unlike EqA4), the
scaled sum rulgA6) is not exact. It is valid provided
>Az.

[1] M. Berry, in Chaos and Quantum Physjcedited by M. J.
Giannoni, A. Voros, and J. Zinn-Just{iiNorth—Holland, Am-
sterdam, 19911 p. 251.

[2] M. Gutzwiller, Chaos in Classical and Quantum Mechanics
(Springer, Berlin, 1990

[3] C. E. Porter,Statistical Theories of Specti@cademic, New
York, 1969, p. 2.

[4] M. Wilkinson, Phys. Rev. A1, 4645(199)).

[5] M. Wilkinson, J. Phys. A21, 1173(1988.

[6] E. B. Bogomolny and J. P. Keating, Phys. Rev. Léft. 1472
(1996.

[7] B. Eckhardtet al,, Phys. Rev. E52, 5893(1995.

[8] B. Eckhardt and J. Main, Phys. Rev. Letb, 2300(1995.

[9] M. Wilkinson and P. N. Walker, J. Phys. 28, 6143(1996.

[10] P. Jacquod and J.-P. Amiet, J. Phys3@ 2963(1997.

[11] B. Eckhardt, Physica 209 53 (1997.

[12] A. Backer, R. Schubert, and P. Stifter, Phys. Re\6 5425
(1998; 58, 5192E(1998.

[13] T. O. de Carvalho, J. Robbins, and J. P. Keating, J. Phyl, A
5631(1998.

[14] B. Mehlig and N. Taniguch{unpublisheg

[15] M. Feingold and A. Peres, Phys. Rev.34, 591(1986.

[16] M. Wilkinson, J. Phys. A20, 2415(1987).

[17] B. Eckhardt, S. Fishman, K. Mier, and D. Wintgen, Phys.
Rev. A 45, 3531(1992.

[18] E. J. Austin and M. Wilkinson, Europhys. LeR0, 589(1992.

[19] E. J. Austin and M. Wilkinson, Nonlinearity, 1137(1992.

[20] T. Prosen and M. Robnik, J. Phys.26, 319(1993.

[21] T. Prosen, Ann. PhygN.Y.) 27, 115(1994.

[22] D. Boose J. Main, B. Mehlig, and K. Mlier, Europhys. Lett.
32, 295(1995.

[23] B. Mehlig, Phys. Rev. B55, 10 193(1997.

[24] B. Mehlig, D. Boose and K. Miler, Phys. Rev. Lett75, 57
(1995.

[27] E. J. Austin and M. Wilkinson, J. Phys.: Condens. Matigr
8461 (1993.

[28] M. Wilkinson and E. J. Austin, J. Phys.: Condens. Ma#igr
4153(1994.

[29] B. Mehlig and M. Wilkinson, J. Phys.: Condens. Mat&&r
3277(1997).

[30] D. Weisset al, Phys. Rev. Lett70, 4118(1993.

[31] K. Richter, Europhys. Let29, 7 (1995.

[32] G. Hackenbroich and F. v. Oppen, Z. Phys9B 157 (1995.

[33] M. Robnik, J. Phys. AL6, 3971(1983.

[34] M. Robnik, J. Phys. AL7, 1049(1983.

[35] T. Prosen, J. Phys. 27, 569 (1994).

[36] J. B. Keller and S. I. Rubinow, Ann. Phy@\.Y.) 9, 24(1960.

[37] A. Hayli, T. Dumont, J. Moulin-Ollagnier, and J.-M. Strelcyn,
J. Phys. A20, 3237(1987.

[38] M. Berry, Philos. Trans. R. Soc. London, Ser. 287, 30
(2977.

[39] M. V. Berry and M. Tabor, J. Phys. AQ, 371(1977.

[40] M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser349
101 (1977.

[41] M. Kac, Am. Math. Monthly73, 1 (1966.

[42] I. Ussishkin, Master’s thesis, Feinberg Graduate School, Weiz-
mann Institute of Science, 1994.

[43] B. Eckhardt, J. M. G. Llorente, and E. Pollak, Chem. Phys.
Lett. 174, 325(1990.

[44] The coordinate system on the surface of section is then not
canonical, but this is irrelevant for the present purpose.

[45] K. Mller and D. Wintgen, J. Phys. B7, 2693(1994.

[46] G. Casati, F. Valzgris, and |. Guarneri, Physica3D 644
(1981).

[47] B. Mehlig and K. Richter, Phys. Rev. Le0, 1936(1998.

[48] D. Weisset al, Phys. Rev. Lett66, 2790(1991).

[49] I. C. Percival, J. Phys. B, 229(1973.

[25] R. Fleischmann, T. Geisel, and R. Ketzmerick, Phys. Rev[50] I. C. Percival, Adv. Chem. Phy86, 1 (1977.

Lett. 68, 1367(1992.

[26] D. Weiss, G. Leutjering, and K. Richter, Chaos Solitons Frac-

tals 8, 1337(1997.

[51] M. Wilkinson, B. Mehlig, and P. Walker, J. Phys. XD, 2739
(1998.
[52] D. Wintgen, Phys. Rev. Let68, 1589(1987.



