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Synchronous versus asynchronous updating in the “game of Life”
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The rules for the “game of Life” are modified to allow for only a random fraction of sites to be updated in
each time step. Under variation of this fraction from the parallel updating limit down to the Poisson limit, a
critical phase transition is observed that explains why the game of Life appears to obey self-organized criti-
cality. The critical exponents are calculated and the static exponents appear to belong to the directed percola-
tion universality class in 21 dimensions. The dynamic exponents, however, are nonuniversal, as seen in other
systems with multiple absorbing stat¢S1063-651X99)13903-3

PACS numbes): 05.40-a, 05.50+q, 64.60.Fr, 64.60.Ht

In mathematical modeling of complex, many-particle sys-clude sequential updating and combinations where some
tems the issue of updating arises. Typically the model seekslements are updated in a fixed sequence and others ran-
to emulate the temporal evolution of some natural processjomly.
either analytically or via simulation. In nature time is a con-  The question naturally arises: Does it matter which type
tinuous variable but in mathematical models it is often morepf updating is chosen? There is significant evidence that it
convenient to discretize time. Computer simulations, in pardoes matter indeed. Many different finite-differencing
ticular, must discretize time because all numbers are represchemes have been developed for numerical solutions to ini-
sented by a fixed number of binary digits. tial value partial differential equatiof®DE’s) in order to try

How time is discretized tends to depend on the systemand avoid instabilities and spurious artifacts, introduced by
being modeled and the preferences of the modeler. Differediscretization, not found in the original PDE8]. Further,
fields have adopted one of two techniques. Ecologists, fomaps(diffeomorphismg often exhibit more complexity than
example, observe the natural periodicity in the popul@ton their equivalent PDE. Consider the logistic mag, ;
being studied and choose time steps on the same EEhle =, x,(1—x,), which exhibits a “period-doubling route to
Such a model for the number of individudi§ of species  chaos” asu increases from 3 to 4. The corresponding logis-

might look like tic differential equationd;x=ux(1—x)—x, on the other
N hand, has only a single stable equilibrium=0 for u<1,
N =N 1= —2t ]+ M(N: . N: ), andx=(u—1)/u for u>1]. Indeed, the differential equa-
e A "t< Ki 2 (Ni.e.Nj.o) tion does not exhibit the same complexity seen in the map.

Other illustrations of the significance of updating schemes
where the indices andj range over the number of species can be found in Ref§4—7].
being modeled, the first term represents some internal single In this paper we explore the effects of synchronous and
species dynamics for estimating the change in the populatioasynchronous updating in one particular model based on the
over one cycle, and the second term represents the effects tame of Life,” a cellular automatoiCA) invented by John
species interactions. Time is represented by the inteti@t  Horton Conway and made famous by Martin Gardner in the
counts the number of cyclg¢such as yeajghat have passed. 1970s(Gardner’s articles have been collected &j).

This type of updating is callegarallel or synchronousup- The game of Life(GL) is defined on a square two-
dating. It is also commonly found in coupled map latticesdimensional lattice of sites which are eithalive or dead
meant to describe intermittency in turbulent flo@). The lattice is(traditionally) updated synchronously and the

In nature the probability that two events occur at exactlyrules governing the evolution vaguely mimic logistic dynam-
the same time has measure zero because time is infinitelgs: (1) a live site will remain alive if exactly two or three of
divisible. Some models take this into account by updatingts eight nearest neighbors are alive, otherwise it will (2.
each individual component of the model separately. Updatéf a dead site has exactly three live neighbors, it will be
times for all the elements are calculated and the element wittbggled to the live statébirth). A random initial population
the shortest time is updated first, and then the update timesill evolve in a complex manner over time and will eventu-
are recalculated as needed and the process repeated. Thlly settle down to a steady-state configuration which is very
type of updating is calle@synchronousipdating. If all the sensitive to small perturbations.
elements in a model can be updated at random times, but The game of Life has enjoyed renewed interest since it
each has a known average rate then they are Poisson pr@as proposed that it exhibits self-organized critical®0Q
cesses and the updating scheme is often called Poisson Uj®,10], a description of systems that naturally tend toward a
dating. Other types of asynchronous updating methods ireritical state(lacking any natural length scajewithout re-

quiring any tuning of external parameters. Recent evidence
suggests GL is actually slightly subcritiddl1-13.
*Electronic address: blok@physics.ubc.ca In this paper we consider the effects of relaxing the syn-
"Electronic address: birger@physics.ubc.ca chronous updating requirement in GL. Instead of updating all

1063-651X/99/504)/38764)/$15.00 PRE 59 3876 ©1999 The American Physical Society



PRE 59 SYNCHRONOUS VERSUS ASYNCHRONOUS UPDATING IN ... 3877

1O G B 05 . . — — —
“ density analysis ——
o 045 | fit e 1
e n 04t Ttk :
ERN
&£ 0351 B
8° 2 N
w 8 oz} ES
m @
'I,:,'a g 02t ﬁi
& 2 o5t ffzi ;
" e, o o1t} R‘ 1
$=0.89 005 I “#9“’;
0 ; . . . . s . . .
FIG. 1. Sample steady-state configurations for two simulations 0 01 02 03 04 05 06 07 08 09 1
on a 64x 64 lattice with periodic boundaries. A=0.10 (left) a synchronicity, s
dense state of live site®() organizing into regions of vertical and . ) .
horizontal stripes can be discerned. In contrast(.89 (right), just _FIG. 2. The steady-state density of live sites clearly shows a
below the critical point, shows a largely stationary backdrop ofCritical phase Fran3|t|0ns as the fraction of sﬁes updatsd/arlgq.
relatively low density, with isolatedvalanchef high activity. A power-law fit (dotted curvg near the transition reveals a critical

point s.=0.9083:0.0010 and a critical exponenB=0.617

the sites in parallel, each site is updated with some probabil¢9-011 for simulations on a 128128 lattice with periodic bound-
ity s. We label our new model SGEJ. If s=1 we recover aMes.
the traditional GL[ SGL(1)=GL], but ass— +0 the updat- ) -
ing becomes Plo-gsson.( 'I20 kegp the average rate %f everf@proach the mean-field prediction @£0.37[14].
uniform time is rescaled bg. All simulations were run on Similarly, the steady-state activity undergoes a critical
square lattices with periodic boundaries from initially ran-ransition as shown in Fig. 3 from which the critical point
dom, 50% occupied configuration@vidence indicates that @nd €xponeni3’ can again be estimated via a nonlinear
periodic boundary conditions tend to minimize finite-size ef-power-law fitao(s,—s)#.
fects[11,13.) The final equilibrium state is very robust with ~ To eliminate finite-size effects a scaling analysis is re-
respect to the initial density; simulations starting with quired. Data were collected from nine runs on square lattices
25%—-99% initial occupation yielded indistinguishable final with sides ranging fronh. =32 toL =512. The critical point,
states. The time to equilibrate, however, does appear to egensity exponent, and activity exponent were computed as
hibit a weak dependence on the initial density. above for these lattices and are plotted in Fig. 4, 5, and 6.

Two distinct phases are observedsds varied: for large  These values appear to converge for the larger lattices sug-
s the system eventually decays to a low-density frozen statéesting boundary effects are minimized. It appears that in the
The one exception is= 1 which also allows simple periodic thermodynamic limit the values converge $§”=0.9060
structures to survive, but is identical in all other respects. Onx 0.0004,3*) = 0.595+ 0.004 (density exponent and B’(w)
the other hand, for smal the system converge@fter an =0 595+ 0.006 (activity exponent The error margins may
initial transien} to a randomly fluctuating steady stat®f  have been underestimated because only nine different lattice
course, for finite simulations the system must always drogizes were used.

into the absorbed state eventually, but in simulation the The compatibility of these exponents with directed perco-
steady state was stable for periods much longer than the tran-

sient) As s—+0 the steady-state is characterized by do- 0.4 . . . T ety anaes
mains of alternatingleadandlive stripes. Most of the activ- 0.35 - fit —woeeee ]
ity in this case occurs at the domain boundaries. Typical A
snapshots of the steady state for low and moderately figh . 03}
values are given in Fig. 1. For some intermedimtkere is a 2 o025 N I\}\
transition from one phase to the other. o H %

We choose two typical order parameters to visualize the § 02t . ! \}
phase transition: the density of live sites and the activity € 0.5} ;! {%
(fraction of updated sites which flip stajedoth of which 7 0 { 11 : thi
exhibit distinct time evolutions for high and low values. '
The absorbed statéor larges) has no active sitea=0 and 0.05
a low densitypy=0.026+ 0.001[slightly lower than SGI1) 0 SR |
because of the lack of oscillatdrehile the fluctuating state 0 01 02 03 04 05 06 07 08 09
is characterized by a very active, high-density population. synchronicity, 8

As s is varied the density of live sites(neglecting the FIG. 3. The steady-state activity, the fraction of updated sites
transient exhibits a distinct second-orderitical) phase  that fiip states in each time step, also shows a critical phase transi-
transition as demonstrated in Fig. 2. The critical psinind  {jon as the fraction of sites updateds varied. In this case the fitted
critical power-law exponenB can be estimated via a non- power law (dotted curve predicts s,=0.9085-0.0015 andg’
linear Levenberg-Marquardt fi{t3] of a power lawp—pg =0.599+ 0.026 for simulations on a 128128 lattice with periodic
= (s.—S)? wherep,=0.026 as calculated above. Notice that boundaries. No activity is possible in the absorbed dtatthe right
in the Poisson limit §—0) the steady-state density does notof the critical poin} except whers=1 (GL).
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FIG. 4. As the lattice dimensioh is scaled the critical point, FIG. 6. As the lattice dimensioh is scaled the activity expo-

computed from both the density and activity analyses, convergesent converge&dotted ling to ,3'(”)& 0.595+ 0.006 for simulations

(dotted ling to s{*)=0.9060+ 0.0004 for simulations on square lat- on square lattices with periodic boundaries.

tices with periodic boundaries. The data points have been shifted

slightly in the plot to improve readability. namical exponents has been observed in other critical behav-
_ _ . . ) ior. The key ingredient for this to occur appears to be the

lation (DP) in 2+1 dimensions, 3=pB’'=0.586-0.014  possibility of the system settling into one of many possible

[15,16], leads us to hypothesize that SGLY belongs to the absorbing statefl6].

DP (Reggeon field theojyuniversality class. This suggests  |n summary, we modified the rules for the game of Life

that many of the details, including the particular game of(GL) to allow for only a random fractiors of sites to be

Life rules, are irrelevant near the critical point. updated in each time step. Aswas decreased from GL
Up to this point we have only discussed the steady-statgs=1) a critical transition was observed that explains why

behavior, neglecting the initial transient. But near a criticalGL appears to obey self-organized criticali§O0—in fact
point the transient should also reveal dynamical critical beit is just close to a traditional dynamical critical point st
havior. The probability that an avalanche survives for time ~q.906.

near a critical point i®; =t~ °¢((s—s)t""1), wheres is the The distinct behavior of high- and lowsimulations un-
survival exponenty is the temporal correlation coefficient, derscores the importance of choosing a relevant updating
and ¢ is an unknown scaling functiofl.7]. scheme. Often, either parallel or Poisson updating is chosen
To recover the dynamical exponents we require the plotsor convenience, but to avoid spurious artifacts the modeler
of Pyt® vs (s—s)t*"l for different values of (but a singlel  should explore alternate schemes where possible.
valug to collapse onto one another. A sample of the col-  Some SOC models can be directly mapped onto ordinary
lapsed data fot. =91 is shown in Fig. 7. critical models with an explicit control parameter. In some
The results of 400 experiments involvireg=0.92 ands  cases, such as the sand-pile model, the control parameter is
=0.93 on lattice sizes df =64, 91, and 128 using the pre- the driving rate, which is reduced to zdr8]. In other cases
vious calculateds(cm>=0_906 indicate exponent$=0.25  variation of the conservation law moves the system between
*0.04 andy=0.93+0.02. In contrast, the directed percola- subcritical and supercritical regim¢$9]. Our results indi-
tion exponents in 2 1 dimensions aré=0.451*+0.003 and

v=1.295+0.006[17]. It is not surprising that these values 10 — . p—
do not agree; evidence of such nonuniversality in the dy- =092
o8 ' ensity analysis —— )
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0.4 32 64 128 256 512 FIG. 7. By tuning the exponents and v the plots ofP,t° vs
system size, L (s—s )t for different values o can be overlapped, yielding the

critical exponentgwhereP, is the probability of a disturbance sur-
FIG. 5. As the lattice dimensiobnis scaled the density exponent viving for t iterationg. This plot represents the collapsed plots for
converges(dotted ling to B)=0.595+0.004 for simulations on L=91 usings,=0.906. The tails of the distributions(t’ small
square lattices with periodic boundaries. are subject to excessive noise and are neglected in the fit.
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cate that GL falls into this subset of SOC: GL's inclusion in ered some surprising results: namely, that the dynamic criti-
the SOC paradigm results from an accidental choice of theal exponents do not fall into the directed percolation univer-
control parametefsynchronicity at a value near the critical sality class. Our model exhibits a characteristic property of
point. nonuniversal critical behavior, the existence of multiple ab-
The compatibility of the critical exponents suggests thatsorbing states. Further research in this area is required to
GL belongs to the directed percolation universality class ireXplain both the nature of the phase transition and the inter-
2+1 dimensions as was first suggested by Paczuski, Maslo$Sting behavior of GL under Poisson updating.
and Bal{20]. Nordfalk and Alstfon [12] also observed com-  Thjs work has received partial support from the Crisis
patibility for different (temporal exponents. This behavior points Group, Peter Wall Institute of Advanced Studies at
should not be too surprising because the spread of a pertugBC, and from the Natural Sciences and Engineering Re-
bation in a nearly stable configuration looks qualitatively search Council of Canada. We gratefully acknowledge Dr. P.
very much like a directed percolation cluster. Greenwood for helpful comments on initial versions of the
Our own exploration of the dynamical behavior uncov- manuscript.
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