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Model of defect diffusion and development of the boson peak in an amorphous solid

Shankar P. Das
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

and Hahn-Meitner Institut, Gleincker Strasse 100, D-14109 Berlin, Germany
~Received 3 June 1998!

A schematic model is proposed for understanding the boson peak as a consequence of the coupling between
slowly decaying density fluctuations and the transverse sound modes that develop in the amorphous solid. The
present analysis demonstrates that the nature of the dynamics of defect densities in the disordered system plays
a crucial role for the appearance of the peak. We compare the results for the dynamic structure factor with the
scattering data of Sokolovet al.. @J. Non-Cryst. Solids172-174, 138 ~1994!#. With the relaxation time for the
defects becoming longer which is the case more appropriate for the strong glasses as compared to the fragile
glasses where structural degradation occurs more easily, the boson peak become more pronounced.
@S1063-651X~99!13503-7#

PACS number~s!: 05.60.2k, 64.60.Cn
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I. INTRODUCTION

In recent years statistical mechanical models of flu
have been used for understanding the dynamics of su
cooled liquids over a wide range of time scales. The s
consistent mode-coupling@1,2# approximation for the
memory function has been particularly useful in understa
ing the cooperative effects in a dense liquid. A characteri
feature of supercooled or glassy systems is observatio
extra intensity in the neutron scattering@3,4# as well as in
Raman scattering@5,6# at low frequencies, distinct from th
quasielastic peak. This is usually referred to as the bo
peak in the literature, and has been ascribed@7# to the cou-
pling between the relaxational and vibrational motions in
supercooled liquid. The appearance of the broad peak in
low frequency spectrum of the amorphous solid takes pl
over a frequency range larger than that probed with sim
mode-coupling models. The usual mode-coupling appro
mation for the memory function predicts a two step rela
ation process involving the power law decay of correlat
over intermediate time scales crossing over to the stretc
exponential behavior in the long time, termed thea relax-
ation. In an extended version of the mode-coupling the
@8,9#, there is a final exponential relaxation mode of the d
sity correlation function restoring the ergodicity over t
longest time scales. These final decay mode can be ident
to be that of the defects or free volumes@10# in the amor-
phous system, resulting in a ergodic behavior in the sup
cooled system. In the present paper we describe an exten
of the simple mode-coupling formalism to include the d
tinct vibrational modes that develop at low temperatures
the amorphous state for understanding the extra intensity
pearing for the structure factor.

Following the formalism developed in Ref.@8#, we use a
Martin-Siggia-Rose-type field theory for computing the co
rections due to the nonlinearities in the dynamical set
equations for the slow variables. In the first part of the ana
sis we keep the treatment general, using a rather stan
form of the effective Hamiltonian that determines the eq
librium behavior in the system. We take into account t
renormalization to the longitudinal viscosity due to the co
PRE 591063-651X/99/59~4!/3870~6!/$15.00
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pling of the density fluctuation with the transverse sou
modes in the amorphous solid. We then analyze the mo
for a simple case where the wave vector dependence is
nored. We focus on the role of the slowly decaying def
densities which are inherent in the model, and effects of
coupling to the transverse sound modes arising from
solid like nature of the supercooled liquid. The paper is
ganized as follows: In Sec. II we give a brief description
the model studied in terms of the equations of hydrodyna
ics and consider the effect of the nonlinearities on the den
correlation functions. In Sec. III we consider a simplifie
version of the model by reducing it to a schematic for
suppressing the detailed wave vector dependence. We d
onstrate how the model can be used for an understandin
the boson peak phenomena as a consequence of the cou
of the vibrational motion with slowly decaying density fluc
tuations. We end the paper with a discussion of the resu

II. DESCRIPTION OF THE MODEL

The equations of fluctuating nonlinear hydrodynamics
the conserved variables densityr and the momentum densit
gW are standard in literature@11,8#. We note here that@12–14#
the effective free energy functional used for constructing
dynamical equations has two parts:F5FK1FU . The kinetic
part @15# FK5*dxW g2(xW )/r(xW ), and the potential partFU is
assumed to have the simple form

FU5
1

2E dxW Fg2

r
1AS dr

ro
D 2

12B
dr

ro
¹W •uW 1lS2

12mS si j 2
d i j

3
SD 2G . ~2.1!

The bulk and shear elastic moduli of the amorphous so
respectively, are given byl and m, while A and B are the
Landau parameters in terms of which the static structure
tor for the liquid can be expressed.S is the trace of the strain
tensor fieldsi j in the isotropic solid, and is defined in term
of the gradient of the fielduW (xW ) as si j 5

1
2 (¹W iuj1¹W jui).
3870 ©1999 The American Physical Society



th
lo
us
in

l-

-
ic
th

nt
he
a

lo
e
y

da
o
t
de

h
t

ns
ri
e
in
ics
ity

io
b

on

s
an

ec
id

ed
wo
t

The

ion
des
ve
ve
ent

lax-
liq-
n-
to
be

g
.
is

s

he
ruc-
ef.
f
is

is
the
the

lop-
ing
f-
nal
lf-

PRE 59 3871MODEL OF DEFECT DIFFUSION AND DEVELOPMENT . . .
uW (x), which represents the local displacement field about
amorphous structure is being introduced as an extra s
mode@16,17# in the dynamical description for the amorpho
solid, and is similar to a position variable. It is defined
terms of the nonvanishing Poisson bracket@14# with the mo-
mentum density, similar to the position variable,gW , i.e.,

$ui~xW !,gj~xW8!%5d~xW2x8W !@d i j 2¹W x
j ui~xW !#. ~2.2!

Using result~2.2! and following the same procedures as fo
lowed in obtaining the equations forr andgW , we obtain the
equation of motion foruW :

]ui

]t
2

gi

r
1

gW

r
•¹W ui1L i j

dF

duj
5 f i . ~2.3!

The dissipation coefficientL i j is approximated by the diag
onal formd i j Gu . T is the temperature. In the hydrodynam
approach the new bare transport coefficients referring to
dissipative parts in the dynamics of the new slow mode e
the theory as parameters. To keep the analysis simple,
we have ignored the energy fluctuations. The set of fluctu
ing equations thus obtained give the dynamics of the s
modes for the isotropic solid with elastic properties. In ord
to investigate the effects of nonlinearities in the hydrod
namics equations on the transport coefficients, a stan
Martin-Siggia-Rose-type field theory is used for the study
statistical properties of a classical system. Here we will lis
few results relevant for the present calculation, and for
tails we refer the reader to Ref.@8#.

The amorphous solid is assumed to be isotropic over
drodynamic length scales, and hence the correlations of
fieldsuW or gW are expressed in terms of longitudinal and tra
verse components, and denoted, respectively, with subsc
L andT in the following. It is straightforward to compute th
correlation functions in the Gaussian theory by consider
the linearized equations of the fluctuating hydrodynam
Below we list the autocorrelation functions for the dens
field r and the displacement fielduW (xW ,t) obtained using the
field theoretic analysis. The density autocorrelation funct
normalized with respect to its equal time value is denoted
c(q,t), while that of theuW field is denoted byfL(q,t) or
fT(q,t). The Laplace transforms of these time correlati
functions are

co~q,z!5
z1 iq2Go~q!

z22Vq
21 iq2zGo~q!

, ~2.4!

fo
T~q,z!5

z1 iq2h~q!

@z1 iD Tq2#@z1 iho~q!q2#2cT
2q2

, ~2.5!

where the superscripto indicates the Gaussian expression
and cT

25m/r is the speed of transverse sound waves
DT5mGu . The bare transport coefficientGo5 4

3 ho1zo,
whereho and zo are the shear and bulk viscosities resp
tively, Vq

2 refers to the microscopic frequency of the liqu

state. For long times the longitudinal part of theuW correlation
function is given by the dominant pole,
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fo
L~q,z!5

1

z1 iq2Gua
, ~2.6!

wherea5l1 4
3 m. The hydrodynamic modes are express

in the pole structures of the correlation functions. The t
poles@18# in expression~2.4! for the transverse componen
fT(q,z) are given byz56qcT2 iq2(Gum1ho /r). These
represent the two propagating transverse sound modes.
correlation functionfL

o(q,v) has a diffusive pole given by
z52 iq2Gua, and represents the slowest mode. In addit
to this there are two propagating longitudinal sound mo
which are ignored compared to the long lived diffusi
mode. In an ideal crystal with long range order, this diffusi
mode is interpreted as the vacancy diffusion. In the pres
model of the amorphous solids this is interpreted as re
ation of the defects or free volumes in the supercooled
uids. This interpretation is given from the fact that the lo
gitudinal part of the correlation function is related
(¹W •uW ), and in an ideal crystal without any vacancy would
equal to the negative of density fluctuation@19#. The differ-
ence between the two, i.e., (¹•uW 1dr/ro), is taken as a
definition for the density of defects@20,13# in an amorphous
solid, and this follows a linearized dynamics signifyin
simple diffusion @17# given by the above diffusive mode
The very long time scales of relaxation of the defects
related@12,14# to this diffusive pole, especially for system
having solid like behavior in the deep supercooled state.

The key quantity of interest for comparing results with t
experiments are the scattering functions, the dynamic st
ture factor, or the density autocorrelation function. In R
@8# the following form for the Fourier-Laplace transform o
Grr(xW ,t) normalized with respect to its equal time value
obtained in the smallq andz limit:

c~q,z!5
z1 iq2GR~q,z!

z22Vq
21 iq2zGR~q,z!

. ~2.7!

Here GR(q,z) is the generalized longitudinal viscosity
equivalent to a memory function, and takes into account
cooperative effects in a dense fluid. The correction to
transport coefficientG(q,z) in Eq. ~2.7! due to the coupling
of hydrodynamic fluctuations in a supercooled liquid@21#
provides a feedback mechanism, resulting in the deve
ment of long relaxation times in the glassy dynamics. Us
standard techniques@8,22#, the renormalized transport coe
ficients or the memory functions are obtained as a functio
of the hydrodynamic correlation functions in a se
consistent form. These involve the density correlationc(q,t)
and the correlationfL(t) and fL(t) of the uW fields intro-
duced for the amorphous solids as

G~q,t !5Go12bE dkW

~2p!3
@B2$u4fL~kW ,t !

1u2~12u2!fT~kW ,t !%c~qW 2kW ,t !

1A2Grr~kW ,t !Grr~qW 2kW ,t !#. ~2.8!
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3872 PRE 59SHANKAR P. DAS
The model where only the second term with the density c
relation functions is kept has been widely studied@1,23# with
respect to idealized glass transition models. The couplin
the correlation ofuW fields refers to the distinct nature of th
supercooled liquid developing solidlike properties near
glass transition. Here we have considered the simples
one loop, correction to the renormalized transport coe
cients. Contributions from the coupling of many other cor
lation functions are present in the renormalization of
transport coefficients. However, the coupling of the dens
correlation functions are the dominant ones, and in the s
consistent mode coupling approximation we use the ab
expression for the renormalized density correlation functi

III. SIMPLE MODEL FOR THE DYNAMIC
CORRELATION

In studying feedback effects on dynamics due to slow
decaying density fluctuations at supercooled states,@24,23#,
it has been generally assumed that the theory is not sens
to the wave vector dependence. Ignoring the wave ve
dependence in the integrals appearing in mode-coupling
tributions to the renormalized transport coefficients, we
tain the following simple form for the equation of motion fo
the density correlation functionc(t) from Eqs. ~2.7! and
~2.8!:

c̈~ t !1ċ~ t !1c~ t !1E
0

t

dsH@c~ t2s!#ċ~s!50 ~3.1!

where the unit of time is chosen in terms of the inverse of
microscopic frequencyV0 , and the bare transport coefficie
Go is chosen to be unity. The memory functionH@f(t)# is
obtained as a functional of the hydrodynamic correlat
functions in the form

H~ t !5c1F@fL~ t !,fT~ t !#c~ t !1c2c2~ t !, ~3.2!

wherec1 and c2 are dimensionless constants determined
terms of the wave vector integrals due to the mode-coup
vertex functions. If one makes a simple choice that the fu
tion F(t) is frozen in time@sayF(t)51], a simple model of
the form

H~ t !5c1c~ t !1c2c2~ t ! ~3.3!

is obtained@12#. This has been widely studied in the liter
ture as aschematicmodel for studying glass transition, e
pecially the stretched exponential relaxation@23,25#. In the
glassy phasec(t) freezes into a nonzero value over the lo
time limit corresponding to the critical values

c1* 5
2l21

l2
, c2* 5

1

l2 , ~3.4!

where 1
2 <l<1. The critical line is given by,c1* 52Ac2*

2c2* . In Fig. 1 we show the critical line separating the li
uid ~lower! from the glass~upper! phase in this simple
model, and this is an indicator of the couplingsc1 andc2 that
give rise to the glassy phase where the appearance o
boson peak is more prominent.
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Considering the model that follows from the equations
nonlinear fluctuating hydrodynamics and a proper time
pendence for the functionalF@f#, we are able to analyze th
effect of the coupling of the sound modes as well as
slowly decaying defect density mode with the density flu
tuations. Thus the functionF(t) is expressed as

F@f#5fL~ t !1 f ~s!fT~ t !. ~3.5!

Simple calculation from Eq.~2.8! yields f (s)5(12
214s)/9(122s), where s5(3l22m)/@2(3l1m)# is
Poisson’s ratio. In general, formulation of the mode-coupl
equations@14# for fT(t) andcL(t) are required for obtaining
a fully self-consistent solution of the problem. As a first ste
we approximate for theuW correlation functions with the so
lutions obtained from the linearized dynamics, and anal
the coupling of the density fluctuations withf(t)’s driving
the dynamics over time scales in which the solidlike beh
ior in the supercooled liquid persists. Apart from the prop
gating longitudinal and transverse sound modes, we ha
decaying mode of defect density, and this is linked with t
longitudinal correlation functionfL . With this, the function
F(t) takes the form

F@f#5e2dt1 f ~s!fT~ t !, ~3.6!

whered now corresponds to the time scale of very slow
decaying defect density andfT(t) is the solution of Eq.~2.5!
for the transverse sound modes. We solve for the den
correlation functionc(t) by numerically integrating the in-
tegrodifferential equation~3.1! for suitable choices of the
parameters involved.

We have used this model to fit the data of Sokolovet al.
@6# for OTP. The value for the constantsc1 andc2 are chosen
so as to be close to the glassy phase. The long time limi
the density correlation function is subtracted out, and
resulting data are Fourier transformed to obtain the fit sho
in the figure. In the simple model the density correlati
function freezes to a nonzero value, and we replace this n
decaying part by the exponentially relaxing mode signifyi
the final decay process restoring the ergodicity. We appro
mate the time scale of relaxation of this mode to be sa

FIG. 1. The phase diagram showing the dimensionless par
etersc1 and c2 for the ideal glass~upper! and the liquid phase
~lower! in the simple model withd50 ~see text!.
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PRE 59 3873MODEL OF DEFECT DIFFUSION AND DEVELOPMENT . . .
@8,13# as that of the time scale of relaxation of the slow
decaying defect density given byd. Thus the central quasi
elastic peak is fitted a Lorentian of widthd. Since the scat-
tering results are expressed in the frequency space, in F
we show the dynamic structure factor as a function of f
quency.

The value of Poisson’s ratios is taken to be 0.36. Figure
2–4 show different values of the quantityd, which denotes
the time scale for the decay of the defects density and p
a central role in the appearance of the peak on the shou
of the quasielastic peak. Asd become very small, a second
ary peak in the structure factor appear at the intermed
frequency determined byvo . However, this intermediate
peak disappears in the shoulder of the quasielastic peakd
become large, and the solidlike property of the supercoo
liquid no longer persists. This is shown by the fit of the da
of Sokolov et al. for higher temperatures in Figs. 3 and
The equations are solved forc150.56 andc252.78, corre-
sponding to the value oflo50.6 on the transition line for

FIG. 2. The Raman spectra data~in arbitrary units! of Ref. @6#
normalized with respect to the Bose factorv@n(v)11# ~open
circles! at T5245 K, vs the frequency in GHz. The solid line pr
sents the result obtained from the present model for the norma
correlation functionc.

FIG. 3. The Raman spectra data~in arbitrary units! of Ref. @6#,
normalized with respect to the Bose factorv@n(v)11# ~open
circles! at T5270 K, vs the frequency in GHz. The solid line pr
sents the result obtained from the present model for the norma
correlation functionc.
. 2
-

ys
er

te

s
d

a

Fig. 2, at T5245°. For the higher temperatures, i.e.,T
5270° and 297°, the fit is obtained with lower values ofl
50.57 and 0.53, respectively. The values of the bare tra
port coefficients are kept same in all the three fits, and
only adjustable parameter used isd. In Fig 5, we plot the
quantityd, giving the time scale of relaxation of defects v
the temperature, indicating that for lower temperatures
defect densities are long lived and the boson peak is m
pronounced. Since here we have considered a simple mo
dropping all wave vector dependences, this amounts to
proximating the relaxation modes by single exponential
laxation. A fully wave vector dependent model should hav
range of time scales for the relaxation coupling to produ
the peak. These will be determined by the structural prop
ties representing the short range order in the superco
liquid, and the position of the peak signifies the domina
frequency coming from the coupling of density fluctuatio
with the sound modes in the amorphous solid.

IV. DISCUSSION

The coupling of the slowly decaying density fluctuatio
with the sound modes in an amorphous solid in the prese

ed

ed

FIG. 4. The Raman spectra data~in arbitrary units! of Ref. @6#
normalized with respect to the Bose factorv@n(v)11# ~open
circles! at T5297 K, vs the frequency in GHz. The solid line pre
sents the result obtained from the present model for the normal
correlation functionc.

FIG. 5. d values for the three different temperatures shown
Figs. 2–4.
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3874 PRE 59SHANKAR P. DAS
of long lived defect densities gives rise to an extra intens
at an intermediate frequency following the quasielastic pe
The presence of the very slowly decaying defect den
mode is crucial in the appearance of a local peak on
shoulder of the quasielastic peak, as shown in the pre
model. The increase of the quantityd can be related to an
increase of temperature. This can also be interpreted to
resent systems which are more fragile. It is an experime
fact that in a strong glass@26#, which has a tendency to form
network type structures where structural degradation oc
less easily, the defects or voids created are long lived; in
present analysis it is demonstrated that in those system
boson peak is clearly seen. In fragile glasses, where the
ditional mode-coupling approach has been more succes
the defects relax more easily, and there the boson peak
pears to be much less prominent. This feature of the pre
model, wherethe qualitative dependence of the appearan
on the boson peak with the decreasing fragility of the am
phous solid is being captured, is a key result of the paper
Here we have used parameter values to demonstrate th
pearance of the peak as well as its crucial dependence o
quantityd related to the slow decay of defects in the am
phous solidlike structure. The solutions of the mode coupl
equations are used to fit the data for boson peak in OTP,
to Sokolovet al.

The introduction of the displacement fielduW in the case of
the amorphous solid requires reference to a rigid lattice,
the ergodicity restoring process in the system invalidates
existence of any such rigid structure. The crossover betw
these two situations requires a self-consistent treatment
possible dynamic connections between the elastic and
cous behaviors of the system. The longitudinal part of
local displacement fielduW is manifested through2¹W •uW ,
which in the case of a strictly rigid lattice will be simpl
related to the density fluctuations, while the transverse
reflects the transverse sound modes present due to the s
like nature of the system. HereuW is not an order parameter i
the amorphous solid, and translational symmetry is ma
tained over long length scales. (2¹W •uW ), which is well de-
fined on time and length scales that are not too large, is u
just to define the vacancy concentrationc(xW ,t). It is assumed
ds
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that the equations forr, gW , andc constitute a reasonable s
of equations incorporating vacancy diffusion at least bel
the mode-coupling transition temperatureTc .

Schematic models for the mode-coupling kernel ha
been used in the literature@27,28# to fit scattering data for the
boson peak. The present work thus involves a realistic st
ing point for obtaining the mode-coupling equations used
the subsequent analysis, and does not take anad hocsecond
correlator to analyze the data on the boson peak. Our m
involves a set of equations governing the dynamics of
density fluctuations that are obtained from an extension
fluctuating hydrodynamics to complex systems. It takes i
account the coupling to the transverse sound modes, w
represent the vibrational modes developing in the amorph
solid, and the density fluctuations in the presence of a v
long lived defect correlation. It demonstrates the role of lo
lived vacancies in an amorphous system in enhancing
boson peak. The present model involves splitting the co
lation of theuW fields into transverse and longitudinal parts,
applies for an isotropic system.

In the form of the mode-coupling theory used in th
present work, the explicit temperature dependence of
peak is not captured. In order to obtain this explicit tempe
ture dependence, the static or thermodynamic properties
appear in the mode-coupling integrals have to be used
inputs in the theory. This can actually be achieved by pro
modeling of the vibrational properties in terms of tempe
ture dependent parameters, presumably using comp
simulation data on simple systems. Here we have describ
simple model to demonstrate the crucial mechanism for
coupling of vibrational and translational motion in the sup
cooled system, giving rise to an extra intensity in the str
ture factor over the intermediate frequency range.
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