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Model of defect diffusion and development of the boson peak in an amorphous solid
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A schematic model is proposed for understanding the boson peak as a consequence of the coupling between
slowly decaying density fluctuations and the transverse sound modes that develop in the amorphous solid. The
present analysis demonstrates that the nature of the dynamics of defect densities in the disordered system plays
a crucial role for the appearance of the peak. We compare the results for the dynamic structure factor with the
scattering data of Sokolost al.. [J. Non-Cryst. Solid472-174 138(1994)]. With the relaxation time for the
defects becoming longer which is the case more appropriate for the strong glasses as compared to the fragile
glasses where structural degradation occurs more easily, the boson peak become more pronounced.
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[. INTRODUCTION pling of the density fluctuation with the transverse sound
modes in the amorphous solid. We then analyze the model
In recent years statistical mechanical models of fluidgor a simple case where the wave vector dependence is ig-
have been used for understanding the dynamics of supepored. We focus on the role of the slowly decaying defect
cooled liquids over a wide range of time scales. The selflensities which are inherent in the model, and effects of its
consistent mode-coupling1,2] approximation for the coupling to the transverse sound modes arising from the
memory function has been particularly useful in understandsolid like nature of the supercooled liquid. The paper is or-
ing the cooperative effects in a dense liquid. A characteristi@anized as follows: In Sec. Il we give a brief description of
feature of supercooled or glassy systems is observation dhe model studied in terms of the equations of hydrodynam-
extra intensity in the neutron scatterifi§,4] as well as in  ics and consider the effect of the nonlinearities on the density
Raman scatterinfp,6] at low frequencies, distinct from the correlation functions. In Sec. Ill we consider a simplified
quasielastic peak. This is usually referred to as the bosoMersion of the model by reducing it to a schematic form,
peak in the literature, and has been ascripddo the cou-  suppressing the detailed wave vector dependence. We dem-
pling between the relaxational and vibrational motions in theonstrate how the model can be used for an understanding of
supercooled liquid. The appearance of the broad peak in th&€ boson peak phenomena as a consequence of the coupling
low frequency spectrum of the amorphous solid takes placéf the vibrational motion with slowly decaying density fluc-
over a frequency range |arger than that probed with Simp|éuati0ns. We end the paper with a discussion of the results.
mode-coupling models. The usual mode-coupling approxi-
mation for the memory function predicts a two step relax- Il. DESCRIPTION OF THE MODEL
ation process involving the power law decay of correlation
over intermediate time scales crossing over to the stretched The equations of fluctuating nonlinear hydrodynamics for
exponential behavior in the long time, termed thaelax-  the conserved variables densityand the momentum density
ation. In an extended version of the mode-coupling theoryy are standard in literatufd 1,8]. We note here thdtl2—14
[8,9], there is a final exponential relaxation mode of the denthe effective free energy functional used for constructing the
sity correlation function restoring the ergodicity over the dynamical equations has two parfts= Fx+F . The kinetic
longest time scales. These final decay mode can be identifigehyt[15] F, = fdx g2(x)/p(X), and the potential paf, is
to be that of the defects or free volumikl] in the amor-  assumed to have the simple form
phous system, resulting in a ergodic behavior in the super-

cooled system. In the present paper we describe an extension 1 2 5o\ 2 5
. . . . . - P p- - 2
of the simple mode-coupling formalism to include the dis- Fu=z| dx—+A|—]| +2B—V-u+A\S
tinct vibrational modes that develop at low temperatures in 2 p Po Po
the amorphous state for understanding the extra intensity ap- 5. \2
pearing for the structure factor. +2u| 55— %S) } (2.2)

Following the formalism developed in RdB], we use a
Martin-Siggia-Rose-type field theory for computing the cor- ) ] )
rections due to the nonlinearities in the dynamical set off e bulk and shear elastic moduli of the amorphous solid,
equations for the slow variables. In the first part of the analy/espectively, are given by and u, while A andB are the
sis we keep the treatment genera'y using a rather Standalﬁ@.ndau parameters In terms Of Wh|Ch the static structure fa.C'
form of the effective Hamiltonian that determines the equi-tor for the liquid can be expresse8iis the trace of the strain
|ibrium beha\/ior in the System_ We take into account thetensor fleldSij in the ISOtI‘OpIC SO“d, and is defined in terms
renormalization to the longitudinal viscosity due to the cou-of the gradient of the field](i) as sjj= %(Viuj+Vjui).
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G(x), which represents the local displacement field about the

amorphous structure is being introduced as an extra slow ¢°.(q,2)=

mode[16,17] in the dynamical description for the amorphous

solid, and is similar to a position variable. It is defined in

terms of the nonvanishing Poisson bradket] with the mo-  wherea=\+ % u. The hydrodynamic modes are expressed

mentum density, similar to the position variabig, i.e., in the pole structures of the correlation functions. The two
poles[18] in expression2.4) for the transverse component

{Ui(;),gj(f’)}=5(>Z—>7)[5ij—ﬁiui(i)]- 2.2 #+1(q,z) are given byz:tch—iqz(Fu/_LJr 170/p). These

represent the two propagating transverse sound modes. The

Using result(2.2) and following the same procedures as fol- correlation functiongy(q,») has a diffusive pole given by

> — _in2 i+
lowed in obtaining the equations ferandg, we obtain the 2= —1d°T'ye, and represents the slowest mode. In addition
equation of motion fol: to this there are two propagating longitudinal sound modes

which are ignored compared to the long lived diffusive
- mode. In an ideal crystal with long range order, this diffusive
%_ %Jr 9_V+U,+A,_ 5_':_ . 2.3 mode is interpreted as the vacancy diffusion. In the present
a p p 0 Hou ' model of the amorphous solids this is interpreted as relax-
ation of the defects or free volumes in the supercooled lig-
The dissipation coefficiend;; is approximated by the diag- yids. This interpretation is given from the fact that the lon-
onal form 5;T",. T is the temperature. In the hydrodynamic gitudinal part of the correlation function is related to

approach the new bare transport coefficients referring to thiv*,a)’ and in an ideal crystal without any vacancy would be

dissipative parts in the dynamics of the new SIO.W ”.‘Ode ente gual to the negative of density fluctuatigt8]. The differ-
the theory as parameters. To keep the analysis simple, here

: : between the two, i.e.,V(J+ oplpy), is taken as a
we have ignored the energy fluctuations. The set of fluctuateNce ! . o’
ing equations thus obtained give the dynamics of the slovfi€finition for the density of defec{0,13 in an amorphous

modes for the isotropic solid with elastic properties. In orderS_O"d'I ag_?f this fi)gow_s a Iti)nez?]rizedb dy”?jf_‘f‘fics_ signifyéing
to investigate the effects of nonlinearities in the hydrody—s'mpe ! u3|on_[ | given by the a ove difiusive mode.
'Bhe very long time scales of relaxation of the defects is

namics equations on the transport coefficients, a standar o O :
Martin-Siggia-Rose-type field theory is used for the study Ofrelated[12,14] to this diffusive pole, especially for systems

statistical properties of a classical system. Here we will list apavmg solid like _beha\_/lor in the deep su_percooled state.
few results relevant for the present calculation, and for de- Th_e key quantity of Interest for comparing results W'th the
tails we refer the reader to ReB] experiments are the scattering functions, the dynamic struc-

The amorphous solid is assumed to be isotropic over hy'gure factor, or the density autocorrelation function. In Ref.

drodynamic length scales, and hence the correlations of th@] thﬁe following form for the Fourier-Laplace transform of

fieldsu orj are expressed in terms of longitudinal and trans-GPP(X’t) normalized with respect to its equal time value is

verse components, and denoted, respectively, with subscripfPt@ineéd in the smaly andz limit:

L andT in the following. It is straightforward to compute the

correlation functions in the Gaussian theory by considering z+iq’TR(q,2)
the linearized equations of the fluctuating hydrodynamics. ¥(q,2)=

Below we list the autocorrelation functions for the density

field p and the displacement field(x,t) obtained using the

field theoretic analysis. The density autocorrelation functiorHere I'?(q,z) is the generalized longitudinal viscosity is
normalized with respect to its equal time value is denoted bygquivalent to a memory function, and takes into account the
#(q,t), while that of theu field is denoted by, (q,t) or ~ cooperative effects in a dense fluid. The correction to the

#-(q,t). The Laplace transforms of these time correlationtransport coefficient’(q,2) in Eq. (2.7) due to the coupling
functions are of hydrodynamic fluctuations in a supercooled liqUiil]

provides a feedback mechanism, resulting in the develop-

_, 2.6
z+i9°T ,a @9

. 2.
2-0%+ig%zI'¥(q,2) @

z+iq2r°(q) ment of long re_laxation times in the glassy dynamics. Using
P(0,20)= 55— , (2.4)  standard techniqud$,22], the renormalized transport coef-
= Qg+iq zZI'°(q) ficients or the memory functions are obtained as a functional
of the hydrodynamic correlation functions in a self-
o 3 z+i9%7(q) consistent form. These involve the density Eorrelathq,t)
¢°1(a.2)= (2.9 and the correlationp (t) and ¢ (t) of the u fields intro-

[z+1Dra Iz +ino(@)a”] —c1q duced for the amorphous solids as

where the superscript indicates the Gaussian expressions,

and c$=,u/p is the speed of transverse sound waves and dk .
Dt=ul',. The bare transport coefficierf®=%7,+ o, F(q,t)=1“0+2,8f > S[BAH{uteL(k,b)
where , and {, are the shear and bulk viscosities respec- (2m)

. 2 . . . . o > N
tively, Qg refers to the microscopic frequency of the liquid +u2(1—u?) pr(K, DY (G—K,t)

state. For long times the longitudinal part of theorrelation _ Lo
function is given by the dominant pole, +AZGpp(k,t)Gpp(q—k,t)]. (2.9
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The model where only the second term with the density cor- Considering the model that follows from the equations of
relation functions is kept has been widely studig®3] with nonlinear fluctuating hydrodynamics and a proper time de-
respect to idealized glass transition models. The coupling tpendence for the function&l ¢], we are able to analyze the

the correlation of fields refers to the distinct nature of the €ffect of the coupling of the sound modes as well as the
supercooled liquid developing solidlike properties near theslowly decaying defect density mode with the density fluc-
glass transition. Here we have considered the simplest, diations. Thus the functioR(t) is expressed as

one loop, correction to the renormalized transport coeffi-

cients. Contributions from the coupling of many other corre- FLel=oL(t) + (o) d(D). 3.9
lation functions are present in the renormalization of the . , )

transport coefficients. However, the coupling of the density Simple calculation from Eq.(2.8 yields f("):(l,z
correlation functions are the dominant ones, and in the self-’ 1_4‘7)/?(1_ 20), where o=(3\—2u)/[2(3\+pu)] is
consistent mode coupling approximation we use the abovEoisson’s ratio. In general, formulation of the mode-coupling

expression for the renormalized density correlation functionduationg14] for ¢(t) andy (t) are required for obtaining

a fully self-consistent solution of the problem. As a first step,
. SIMPLE MODEL EOR THE DYNAMIC we approximate for thel co'rrelat.ion function; with the so-
CORRELATION lutions optalned from the_z Imeanzeql dynamlcs, ano_l gnalyze
the coupling of the density fluctuations with(t)’s driving
In studying feedback effects on dynamics due to slowlythe dynamics over time scales in which the solidlike behav-
decaying density fluctuations at supercooled std@$23,  ior in the supercooled liquid persists. Apart from the propa-
it has been generally assumed that the theory is not sensitiygating longitudinal and transverse sound modes, we have a
to the wave vector dependence. Ignoring the wave vectotiecaying mode of defect density, and this is linked with the
dependence in the integrals appearing in mode-coupling conengitudinal correlation functioms, . With this, the function
tributions to the renormalized transport coefficients, we ob+(t) takes the form
tain the following simple form for the equation of motion for
the density correlation functiog/(t) from Egs.(2.7) and Flol=e %+ f(0) (1), (3.6
(2.9:
where § now corresponds to the time scale of very slowly
decaying defect density anbl(t) is the solution of Eq(2.5)
for the transverse sound modes. We solve for the density
correlation functiong(t) by numerically integrating the in-
where the unit of time is chosen in terms of the inverse of théegrodifferential equatior{3.1) for suitable choices of the
microscopic frequenc§l,, and the bare transport coefficient parameters involved.

. . t :
() + () + (1) + deSH[ P(t=9s)](s)=0 (3.1)

I', is chosen to be unity. The memory functiéti ¢(t)] is We have used this model to fit the data of Sokoémal.
obtained as a functional of the hydrodynamic correlation[6] for OTP. The value for the constarggandc, are chosen
functions in the form S0 as to be close to the glassy phase. The long time limit of

the density correlation function is subtracted out, and the
H(t)=ciF[oL(t), dr(D) () +c9’(t), (3.2 resulting data are Fourier transformed to obtain the fit shown
] . ] _in the figure. In the simple model the density correlation
wherec, andc, are dimensionless constants determined infynction freezes to a nonzero value, and we replace this non-
terms of the wave vector |ntegral5- due to the mode'COUp“ngjecaying part by the exponentia"y relaxing mode Slgn|fy|ng
vertex functions. If one makes a simple choice that the functhe final decay process restoring the ergodicity. We approxi-

tihoan(t) is frozen in time[sayF(t) = 1], a simple model of mate the time scale of relaxation of this mode to be same
the form

1.0

H(t)=cyg(t) + coyp?(t) (3.3

is obtained12]. This has been widely studied in the litera- 0.8+
ture as aschematicmodel for studying glass transition, es-
pecially the stretched exponential relaxati@8,25. In the
glassy phas@(t) freezes into a nonzero value over the long
time limit corresponding to the critical values

0.6

S

0.4

. 2\ —1 . 1
Cl = )\2 y Cz :F, (3.4) 0.2
1 o~ e i x _ *
where L<\<1. The critical line is given byc*=2\/c} 00— ———r——————

1.0 15 2.0 25 3.0 35 4.0
S

—c5 . In Fig. 1 we show the critical line separating the lig-
uid (lower) from the glass(uppe) phase in this simple
model, and this is an indicator of the couplingsandc, that FIG. 1. The phase diagram showing the dimensionless param-
give rise to the glassy phase where the appearance of thegersc, and c, for the ideal glasqupped and the liquid phase
boson peak is more prominent. (lowen in the simple model with5=0 (see text
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) ) FIG. 4. The Raman spectra ddia arbitrary unit$ of Ref. [6]
FIG. 2. The Raman spectra ddfa arbitrary unit$ of Ref.[6]  normalized with respect to the Bose factefn(w)+1] (open

normalized with respect to the Bose factefn(w)+1] (open  circleg at T=297 K, vs the frequency in GHz. The solid line pre-

circles at T=245K, vs the frequency in GHz. The solid line pre- sents the result obtained from the present model for the normalized
sents the result obtained from the present model for the normalizegoyrelation functiony.

correlation functiong.
Fig. 2, at T=245°. For the higher temperatures, i.g.,

[8,13 as that of the time scale of relaxation of the slowly =270° and 297¢, the fit is obtained with lower values\of
decaying defect density given by Thus the central quasi- =0.57 and 0.53, respectively. The values of the bare trans-
elastic peak is fitted a Lorentian of width Since the scat- port coefficients are kept same in all the three fits, and the
tering results are expressed in the frequency space, in Fig. ghly adjustable parameter usedds In Fig 5, we plot the
we show the dynamic structure factor as a function of freqquantity 5, giving the time scale of relaxation of defects vs
quency. the temperature, indicating that for lower temperatures the

The value of Poisson’s ratie is taken to be 0.36. Figures defect densities are long lived and the boson peak is more
2-4 show different values of the quantiy which denotes pronounced. Since here we have considered a simple model,
the time scale for the decay of the defects density and playgropping all wave vector dependences, this amounts to ap-
a central role in the appearance of the peak on the shouldgfoximating the relaxation modes by single exponential re-
of the quasielastic peak. A8 become very small, a second- laxation. A fully wave vector dependent model should have a
ary peak in the structure factor appear at the intermediateange of time scales for the relaxation coupling to produce
frequency determined bw,. However, this intermediate the peak. These will be determined by the structural proper-
peak disappears in the shoulder of the quasielastic peak asties representing the short range order in the supercooled
become large, and the solidlike property of the supercooletiquid, and the position of the peak signifies the dominant
liquid no longer persists. This is shown by the fit of the datafrequency coming from the coupling of density fluctuations
of Sokolov et al. for higher temperatures in Figs. 3 and 4. with the sound modes in the amorphous solid.
The equations are solved fo;=0.56 andc,=2.78, corre-

sponding to the value of,=0.6 on the transition line for IV. DISCUSSION
) The coupling of the slowly decaying density fluctuations
y with the sound modes in an amorphous solid in the presence
- 0.012
] :
= ] 0.010 - .
’t -
Z
£ 7 0.008
3
—. © 0.006 +
4 0.004 °
0 1CI)O ' 260 360 | 4(IJO l 560 ' 660 ' 700 0.002 -
FREQUENCY .
0.000

FIG. 3. The Raman spectra ddta arbitrary unit$ of Ref. [6], 220 | 2;30 | 2‘;0 | 2;—,0 ' zéo | 2;0 | 2&0 | 2&0 | 360 | 3»;0 320
normalized with respect to the Bose factefn(w)+1] (open Temperature T
circles at T=270K, vs the frequency in GHz. The solid line pre-
sents the result obtained from the present model for the normalized FIG. 5. § values for the three different temperatures shown in
correlation functiory. Figs. 2-4.
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of long lived defect densities gives rise to an extra intensityp 4t the equations fqp d andc constitute a reasonable set

at an intermediate frequency following the quasielastic peakof equations incorporating vacancy diffusion at least below

The presence of the very slowly decaying defect densit3{he mode-coupling transition temperatrg

mode is crucial in the appearance of a local peak on the Schematic models for the mode-coupling kernel have

shoulder of fche quasielastic peak., as shown in the prese'Bteen used in the literatuf@7,2§ to fit scattering data for the
model. The increase of the quantifycan be related to an

: : . boson peak. The present work thus involves a realistic start-
increase of temperature. This can al_so be_ mterpreteq to rey?—g point for obtaining the mode-coupling equations used in
resent systems which are more fragile. It is an experimentg} subsequent analysis, and does not takadahocsecond
fact that in a strong gla4®6], which has a tendency to form correlator to analyze the data on the boson peak. Our model
network _type structures whgre strucural degradatlon 0CCYL olves a set of equations governing the dynamics of the
less easily, the defects or voids created are long lived; in th((?iensity fluctuations that are obtained from an extension of

present analysis it is demonstrateq that in those system t ﬁjctuating hydrodynamics to complex systems. It takes into
boson peak is clearly seen. In fragile glasses, where the tra-

ditional mode-counling aporoach has been more successt ccount the coupling to the transverse sound modes, which
piing appr épresent the vibrational modes developing in the amorphous
the defects relax more easily, and there the boson peak a

pears to be much less prominent. This feature of the presee lid, and the density fluctuations in the presence of a very

o ng lived defect correlation. It demonstrates the role of long
model, wherethe qua[ltatlve depend(_ance of_the appearance; o vacancies in an amorphous system in enhancing the
on the boson peak with the decreasing fragility of the amoryoson peak. The present model involves splitting the corre-
phous solid is being captureds a key result of the paper. :

Here we have used parameter values to demonstrate the dgtion of theu fields into transverse and longitudinal parts, as
pearance of the peak as well as its crucial dependence on tR@Plies for an isotropic system. ,
quantity & related to the slow decay of defects in the amor- " the form of the mode-coupling theory used in the
phous solidlike structure. The solutions of the mode couplind?™€Sent work, the explicit temperature dependence of the

equations are used to fit the data for boson peak in OTP, duifak is not captured. In order to obtain this explicit tempera-
to Sokolovet al. ture dependence, the static or thermodynamic properties that

. . . = appear in the mode-coupling integrals have to be used as
The mtroductlon_ of the §j|splacement fiakdn 'th'e case of inputs in the theory. This can actually be achieved by proper
the amorphous solid requires reference to a rigid lattice, an

- . . - : odeling of the vibrational properties in terms of tempera-
the ergodicity restoring process in the system invalidates thﬁjre dependent parameters, presumably using computer

existence Of any such rigi.d structure. Th? crossover betwe?gmulation data on simple systems. Here we have described a
thesg two S|tuat|_ons requires a self-consistent treqtment W!t imple model to demonstrate the crucial mechanism for the
possible dynamic connections between the elastic and vig;,

. L oupling of vibrational and translational motion in the super-
cous behaviors of the system. The longitudinal part 0 f thecooled system, giving rise to an extra intensity in the struc-

local displacement fields is manifested throggh—ﬁ_u, ture factor over the intermediate frequency range.
which in the case of a strictly rigid lattice will be simply

related to the density fluctuations, while the transverse part
reflects the transverse sound modes present due to the solid- ACKNOWLEDGMENTS
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