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Role of aperiodic order for fluxon dynamics in Josephson junction arrays
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We perform numerical simulations of a kink-shaped soliton, a fluxon, propagating in arrays of Josephson
junctions ordered according to the period-doubling sequence, the Fibonacci sequence, the paper-folding se-
guence, the Rudin-Shapiro sequence, and the Thue-Morse sequence. The equation of motion is the discrete
sine-Gordon equation with additional terms describing dissipation and an injected bias current. With the use of
an effective potential we explain the behavior of the fluxon when it gets pinned in different arrays. The
potential also gives a qualitative understanding of the deviation of the velocity of a propagating fluxon
compared with an earlier obtained formula. It turns out that the self-similarity of the underlying sequences is
important for the detailed dynamics, but not for the speed of a propagating fluxon. Finally, we show how this
effective potential can be used to arrange an array to have some desired pro&t068-651X99)05501-4

PACS numbes): 05.45.Gg, 85.25.Cp, 45.06x, 02.10.Gd

I. INTRODUCTION Compared with the “normal” discrete sine-Gordon equation
(a being the discreteness paramgtare have inserted a term
The discrete sine-Gordon equation has been extensivelyde, /ot to model the dissipation due to normal electrons
studied from different viewpoints during recent years, seetunneling across the barriers, a tefnto describe a bias
e.g., Ref[1] and references therein. It is an equation suitablecurrent which is injected in every junction, and the material
to describe several different physical phenomena, amongarametersy,, .
which we can mention DNA promoter dynami€g], the The sequences according to which we will order our junc-
Frenkel-Kontorova modd3], and Josephson junctiopd].  tions are the period-doubling sequence, the Fibonacci se-
The study of aperiodically ordered structures was for aquence, the Thue-Morse sequence, the paper-folding se-
long time of interest only for mathematicians. However, thequence, and finally the Rudin-Shapiro sequence. These
discovery of incommensurate crystals in the 19(}sand of  sequences are now well known and their construction can be
quasicrystals in 198f6] has inspired a large amount of both found in numerous papers. Nevertheless, we summarize in
theoretical and experimental work among physicists conTable | how they can be generated by the use of substitution
cerning different systems with order between periodic andules. The first 16 elements of each sequence are also shown.
random. These systems not only comprise what is found iéore detailed descriptions of these sequences, except the
nature, but also man-made materials such as superlatticgsaper-folding sequence, can be found in, e.g., Reffl. The
the first aperiodic one built already in 1983]. Recently, remaining one can be found in R¢fL2]. As comparisons,
there have also been some suggestions of other man-made will also include some results from arrays ordered peri-
systems with a possibility to possess aperiodic order. Exedically and randomly. The entity from E€L) which will be
amples are quantum dof8] and Josephson junction arrays varied aperiodically is the material parametgr, to which
[9]. The latter has today reached a stage where the technake will assign two different, positive valueg, andqgg, such
ogy is even commercially available, see, e.g., Red)]. that q,=qa(gg) if the nth element of the sequence is an
In this paper, we focus upon one-dimensional arrays ofz(B).
Josephson junctions ordered according to some different ape- |n the next sectiorill), the model and the parameter val-
riodic sequences in order to understand such behavior ags used for the numerical simulations are presented. In Sec.
soliton propagation and soliton pinning as functions of thelil we will introduce the effective potential used to describe

underlying sequence. The soliton in question is a single kinkour numerical simulations. The results are described in Sec.
soliton known as a fluxon. To do this, we use an effectivelv and finally in Sec. V we make a summary.

potential previously developed in Rgg] for treating prob-
lems of this kind.
Properly rescaled to dimensionless units, the motion of

the soliton(the phasgin a Josephson junction array is de-  The discrete sine-Gordon equation is nonintegrable, and

Il. MODEL

scribed by we study it numerically. We have chosen a fourth-order
24 1 ” Runge-Kutta method with a time-step size of either $ @r
n — ; n 104, The smaller step size is mainly used in simulations
-= +n 1~ 2hn)=—pSiNgpy—a—— —F.
ot? 2(Pneat dn-1m260) =~ nsindy gt which cover time¢>50, because otherwise we cannot guar-

(1) antee the validity of the solutions. We have also performed
simulations fort <50 with different step sizes and found that
the results are equivalent. This indicates that the numerical

*Electronic address: erile@ifm.liu.se algorithm used for the integration is acceptable.
"Electronic address: micho@ifm.liu.se As initial conditions we take ¢p(ng,t=0)
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TABLE |. Substitution rules and the beginning of the sequences we use in this paper.

Sequence Substitution rule Start of the sequence
Fibonacci A—AB, B—A ABAABABAABAABABA.-
Thue-Morse A—AB, B—BA ABBABAABBAABABBA.-
Period-doubling A—AB, B—AA ABAAABABABAAABAA.
Paper-folding a—ab, b—cbh, c—ad, d—cd

a—A, b—A, c—B, d—B AABAABBAAABBABBA-
Rudin-Shapiro a—ab, b—ac, c—db, d—dc

a—A, b—A, c—B, d—B AAABAABAAAABBBAB-

=4 arctaiexga(n—ng)/(1-?)*?]} and én(ng,t=0)= approach originally developed by Salerno and Kivgi2drIf
[—2u/(1—u?)Y?|sechia(n—ne)/(1—u?)¥?], which are We neglect the dissipative effect, the Hamiltonian leading to
nothing but the discrete values fosh<N of the approxi- EQ. 1 consists only of conservative energy terms so the
mative single fluxon solution to the perturbed continuousHamiltonian is the same as the eneigyor the system,
sine-Gordon equatiorx& na)

Nl
2b Pe 9 E=2 {50+ ($ni1— dn)*+0a(1—COSGy) +Foby
————=-sing—a——-—F. 2 n=1 2a
atz  ox? ot (5)
Hereng is the starting site for the fluxon, and The energy in this case is conserved. The fact that we have
2112 overlooked the dissipation term in the approximation implies
U= 1+(4_“) 3) that we have to restrict the analysis to the beginning of the
7F soliton motion where the effects of the dissipation are small.

It is well known that the continuous unperturb@tb dissi-
iS the ﬂuxon VelOCity in the I|m|t Of balance betWeen the pation and bias termSine_Gordon equation has different
injected power and the dissipation for a Josephson junctiognaytical soliton solutions, e.g., single fluxons, multikink
transmission line[13]. We use fixed boundary conditions fiyxons, and breathef43]. Following Ref.[2], we take as an
according to approximative solution to Eq. 1 the kink

0 n=0 0, n=0
' . ' ¢,=4 arctarie™). (6)
¢n:{277, n=N+1, ¢n=[o, n=N+1. @

Herez,=\q[na—X(t)], whereX(t) is the slowly varying
Unless otherwise specified, we have used the following valicoordinate of the fluxon center, i.& represents the point at
ues for the parameters in the model. which ¢= 7. The parameteq is our co_ntlnuous version of

(i) The discreteness parameter:0.1. This choice leads 9n- If the two values ofq, are uniformly distributed
to a discrete array but still close to the continuous limit. ~ throughout the array, a natural choice is to getoqa+ (1

(i) The dissipative constant=0.1. When the fluxon —©)ds, Whereo is the fraction of occurrences of, in the
propagates with constant velocity, the power injected®ray- _Smce this is true for the arrays studied herg, we will
through the bias currerfE) is balanced by the power dissi- US€ this approach. The ans#62 leads to the following re-
pated by thex term. This means that there is a close con-/ations for the terms in the energy expressién
nection betweemr andF, wherea fixes the scale foF. . .

(iii ) The material parametey,=1 without loss of gener- dn=—2\JqXsecliz,), (7)
ality, andgg ranges from 1 to 20.

(iv) The number of junctions in the array varies be- _[avq a\q
tween 256 and 4096. The starting gitgis somewhere in the $n+1~ Pn=4 arctar) sinh| ——|sechh z,+——||, (8)
middle of the array so that the fluxon can propagate without
interference from the boundaries.

While numerically integrating Eg. 1, we will also keep 1-cosgy=2secfi(z,), ©)
track of the position of the fluxon center, i.e., the position B 5
along thex axis where¢ = 7r. Since this will seldom be at a F ¢n=4F arctan(e’). (10

osition of an actual junction, a linear interpolation is per- . .
P J P P Of course, these relations hold only as long as Bj.is a

formed between the two sites which enclose the fluxon cens > S
ter relevant description of the fluxon. This is, however, the case

for all situations occurring in this study. In our model the
parameters andq will have values such that\/q/2<1 and
we can make the approximation ¢, 1— ¢,

In order to describe the motion of the soliton in arrays~2aﬁsech(zn). We can now write the energy for the Jo-
ordered according to the different sequences, we will use asephson junction array as

Ill. AN EFFECTIVE POTENTIAL
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2
E= 2{-2— > 4qsech(za) + Y 2(q + gn) sech®(2,) + Y 4F arctan(e™).
> . , & . _ (11)
M(X) Usa(X) Ubias(X)

The effects in the energy resulting from the underlying sequence are collected in thd Jgix), whereadJ,;,{X) contains

the influence of the bias current injected in the junctions. To obtain the effective potential for the single fluxon propagating in
the array, we use the fact that the energy is conserved. We start with a fluxon at p¥gitiam,, whereng is an integer, and

with velocity X=u. By doing this, we have for the ener@y= u?M (Xp)/2+ Ug(Xg) + Upiad Xo) - If we plug this into Eq. 11,

we can write this equation as

X2 U2 M(Xg) | [UselX)=Usa(Xo)] . [Upiad X) — Upiad Xo)]
2 2 M) M(X) * M(X) =0. (12)

The second term in Eq. 12 is neglected here becaMgeX) — M (X,)|/M(X)<10™° (at least and hence it corresponds
effectively to a constant downward shift of the potential. If we define the sum of the third and fourth terms to be the effective
potential W(X,X,), the equation reads

X2

7+W(X,XO)=0. (13
Equation 13 can be thought of as an equation of motion for the fluxon center in the effective potaX,) tells us

how a fluxon, with the center originally &,, experiences the effective potential at a positiom the array. If we setff’)

=Jag(na—X,) and use Eq. 11, the effective potential is given by

(g + ga)[sech?(2,) — sech?(z(9)] + > n Flarctan(e®) — arctan(e‘s'o) )]
2¢3", sech®(z,) o q¥, sech®(z,) 1' (14
VV'sG W;as

W(X,Xo) =

This effective potential was, in all essential parts, alreadydistributed in the same proportignare shown. Notice the
obtained in Ref[9] by the same procedures employed herevast difference between these two potentials; this periodic
We will integrate Eq. 1 numerically and use the effectivearray has an effective potential which approximately is a
potential to describe the fluxon motion in a qualitative andstraight line(dotted ling whereas the random array has an
sometimes in a quantitative way. The potential will dependeffective potential with local maxima and minimaolid
heavily on the structure of the underlying sequence. This caline). How the structure of the potential affects the fluxon
be seen in Fig. 1 where the potentials for a peridditit cell  motion will be thoroughly examined in Sec. IV.

ga0g) array and a random array{ and qg are randomly

IV. RESULTS
0 < T
Random —— | The behavior of the fluxon will depend primarily on the
wl Periodic -~ | array used and the applied bias current. In Fig. 2 we show

how the fluxon propagates in a period-doubling array. We
note that the kink shape of the fluxon remains approximately
the same throughout the propagation. This is a property
shared among all the arrays, which means that we can de-
scribe the fluxon motion by monitoring the fluxon center, the
coordinateX. To further illustrate that the fluxon has soliton
-0.77 properties, we start the fluxon ag=180 in a periodidunit
cell gagg) array withN=256. The fluxon will surely hit the
boundary, and in Fig. 3 the result of this collision can be
FIG. 1. Effective potentia] for a periodi(cunit cell quB) array seen. The biaS driVeS the ﬂuxon to the I’Ight Until the ﬂuxon
(dotted liné and a random arragsolid line). The potential for the  hits the boundary, where it bounces back. This is repeated
random array has local maxima and minima but the potential foland we can clearly see the effect of the dissipation as the
this periodic array is approximately a straight line. The fluxon will bounces get shorter and shorter. In the inset in Fig. 3 we also
behave differently in these arrays. show the corresponding motion of the fluxon center. From

100 X/a 300
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bias

-8

0 X/a 500

2048 n 4096 FIG. 4. Wy, for F=0.1, 0.3, and 0.5. The slope ¥, gets
steeper as the bias is increased. The inserted diagram shows that the

FIG. 2. Propagation of a single fluxon in a period-doubling ar- apsolute value of the slope W, varies as 1/q.
ray. F=0.11,g5=10,N=4096, andn,=2048. The dotted line is

the initial condition for the fluxon and the solid lines are snapshotsjom array has a random distribution of local maxima and
of the whole fluxon at=25, 50, 75, and 100. The fluxon travels minima. We are mainly concerned with deterministic aperi-
3_40 sites with almost constant shape through the array during thiggic arrays. The reason for this is that they have potentials
time. with local maxima and minima just like the random arrays,

. o . . but unlike the random arrays they are completely known so
these pictures it is evident that the motion of the fluxon Calnat it is easier to make predictions for the motion of the
bevr\t/-:‘presemed fl:f)y tthe motlont.ofitst Ce”tgf-t dd i fluxon. Some of the deterministic aperiodic sequences have a

€ use the efiective poten iEl4) to predic and describe special self-similarity which is reflected in the potentials.
the dynamics of the fluxon center. The effective potentlaLI-hiS can be seen in Fig. 5, wheW,g is shown for a Fi-
. 5, <

consists of two parts. The effect_of _the strugture_of the U"honacci array and a period-doubling array. The effective po-
derlying sequence on the potential is Cof‘ta'”‘?d in the te.mt]ential is the sum of the above-mentioned parts, where the
Wee throughqn, and the effect of the applied bias current is effect of the bias current is to press down the potential and
refleqted in the second terifiyas throughF._The yalues of . drive the fluxon to the right. An example of how the applied
the bias term can b_e pla(_:ed ona st_ra|ght line with a negatiViss current affects the potential can be seen in Fig. 6, where
slope wheneveX/a is an integer. This can be seen in Fig. 4, 3 nart of the effective potential for a period-doubling array
where Whis is given for different values oF. If X/ais a  .qngjsting of 500 junctions is shown for various values of the
nonlntegeer?iaSm.ay deviate from ggtralght line, but forsthe bias current. Dofmguez-Adameet al. [9] have shown that
values used in this study the deviation is bounded by"10 the fluxon can be pinned in an aperiodically ordered array
and therefore neglected. The absolute value of the slope ifjger certain conditions. It seems reasonable that the fluxon
creases linearly with the applied biés., the potential gets ;4 pe pinned in the local minima of the effective potential.
steeperand is inversely proportional to the square roofiof  £or |arge values of the potential is almost a straight line
The former is obvious and the latter can be shown for any i for low values the local maxima and minima are more

infinite array whena is small, and is confirmed for the se- ,5nqunced. This implies that there should exist a certain
quences used here in the inserted diagram in Fig. 4. The patfisica| bias currenf,, such that folF>F, the fluxon will

W, varies between different arrays. For an array where thea .t propagate freely in the array and #eeF, the
value of g, is the same for all junctions, which we will - g,,xon will get pinned. This is indeed the case and the critical

denote as anonoarray Wsg is equal to zero ifX/a is an  piag current depends on the parameters of the junction array,
integer and otherwise bounded as ks (these fluctua- ¢ g the ordering of the array, the values of the material

tions are due to the Peierls-Nabarro potenftls]). A ran-  parameters, the distance between the junctions, and the start-
ing site for the fluxon.

256
X(t)/a )
_ top to bottom Period-doubling
Wi
T Fibonacci
WAAWAWAAWAAWAWATAWAWAT WAL WAWAA WAL WAWATAWAWAYY
n 180 256 100 X/a 400
FIG. 3. Soliton properties of the fluxon in a periodimit cell FIG. 5. W for a period-doubling array and a Fibonacci array

gaQg) array consisting of 256 junctions, wheyg=10. The fluxon  both havingg=4. The self-similarity of the sequences is reflected
collides with the boundary but retains its shape. Inset: The correin the potentials. The top to bottom value is a measure of variations
sponding motion of the fluxon center. Note the effect of the dissi-of the amplitude ilW,g. The period-doubling array has in this case
pation as the bounces get shorter and shorter. a value of 0.113, and the Fibonacci array has a value of 0.015.
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2048 (a)

F=0.50
-L5F T F=100 1
1 1 1 1 1 1 ‘\.\‘ ! . . ! 2140
200 X/a 250 2040 X/a
2070

FIG. 6. Effective potential for a period-doubling array fBr
=0.01,0.5, and 1.0. The maxima and minima are suppressed when 2065 L
the bias is increased. AR WA VAR

X(t)/a
Fluxon pinning
To investigate how the dynamics of the fluxon is con- I
nected to the effective potential, we use the period-doubling 2050

array as a first example. In Fig(&f the effective potential
for F=0.02 is shown. Figure (B) shows the motion of the . .
fluxon center. We see that it first accelerates down the slope 0 t 100
of the effective potential, and when it reaches the minimum
the velocity is high enough to let the fluxon start to climb up
the potential well. The fluxon slows down and eventually the
velocity becomes zero and the fluxon drops back down in the 2100
well. This repeats itself a couple of times and leads to an X®/a [
oscillating motion. Due to the dissipation, the fluxon finally

comes to rest at site 2064, exactly at the minimum in the
effective potential.

WhenF is increased the fluxon will not get pinned in the
same minimum as before. The result from a simulation with
F=0.05 can be seen in Fig(¢j. The fluxon velocity at the
bottom of the first minimum is high enough to let the fluxon
escape from the potential well. We see in the figure that the 2450 ‘ ‘ ‘ ‘ )
velocity decreases as the fluxon climbs up the hill. After this, i
the fluxon accelerates down the second large minimum at -
site 2096 and climbs up that well also, but in the third large X(t)/a |
minimum at around site 2112 the fluxon gets pinned. Be-
cause we have neglected the dissipative term tand, we
can only see what are the possible pinning positions from the
potential, but not where the fluxon actually will be pinned.

Figure 1d) shows the case with =0.12 where the situation

is about the same, but no>F for this array so that the 2040
fluxon has enough velocity to overtake all minima and starts 0 ‘ 7 ‘ 100

to propagate in the array. There are still small changes in the

velocity due to the different maxima and minima in the po- FIG. 7. Fluxon in a period-doubling arrayN=4096,nq
tential but asF increases these will be less prominent. =2048, andgg=10. (a) Effective potential forF=0.02. (b) Pin-

Let us return to the effective potential for this array. To ning of the fluxon center at site 2064 corresponding to the first large
further confirm its connection with the fluxon dynamics, we minimum in the effective potentia(c) P_inni_ng o_f the fluxon center
have performed a simulation where we chooge: 2064 as at 2112.(d) F>F, for this array Whlch implies that'the fluxon
the initial site. This site corresponds to the first large mini-ProPagates freely[The effective potentials for the bias currents
mum in the effective potential in Fig.(&). The bias current US€d IN(©) and (d) have the same structure as that(a but are
is F=0.05, a value for which the fluxon did not get pinned tilted downwards due to the higher values of the bias currkents.
when it started from the initial sitay=2048. Now the situ-
ation is different and, as can be seen in Fig. 8, the fluxon getthe starting position of the fluxon influences the critical bias
pinned. Initially the fluxon is in a potential minimum and the currentF..
bias current drives the fluxon to the right. Unlike before, the The minima in the effective potential of the period-
velocity is now not large enough to bring the fluxon out of doubling sequence are smooth and symmetric, leading to the
the potential well and it is pinned. This also exemplifies thatwell-behaved motion of the fluxon center in, e.g., Fi¢)7

2120 ! ' !

2040

0 t 100
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TABLE II. Comparison between the final velocity of the fluxon
in different arrays. According to Eq. 15 the velocities arg
=0.762 F=0.3) andu,,=0.891 F=0.5). The top to bottom val-
ues(see Fig. 5 for definitionare the relative heights compared to
the Fibonacci array value, which is set to 1.

2067

X(t)/a

Array F=0.3 F=0.5 Top to bottom
el Monoarray 0.761 0.881 0.0
e Fibonacci 0.760 0.880 1.0
0 ‘ 100 Thue-Morse 0.756 0.880 1.4
FIG. 8. Pinning of the fluxon center at approximately site 2064.  Period-doubling 0.745 0.877 7.5
Same parameters as in Fig. 7 except thgt 2064, i.e., the first Paper-folding 0.735 0.877 9.3
large minimum in the potential in Fig.(&. The fluxon did not get Rudin-Shapiro 0.695 0.872 24.4
pinned at this site foF =0.05 when it started ai,=2048.
The situation is different for the paper-folding array, which w=|1+ 4_a 2 (15)
can be seen in Fig.(8). The minimum at site 2083 is asym- * q wF

metric and not as steep to the right as to the left. If the fluxon
gets pinned in this minimum, it can deviate more from the

equilibrium to the right-hand side. In Fig.(§ we see a This equation, however, is derived from the continuous sine-

fluxon being pinned in the minimum at site 2083 and WeGordon equation, which means that it is not necessarily ap-

clearly see that the fluxon moves further up the potential Welglicable to discrete systems. Nevertheless, Eq. 15 gives rea-
to theyri ht side as predicted from the eff([a)ctivep otential onable valuegwithin 1%) when 0.5F<0.3 (andF>F)
9 P P " for the predicted velocities for monoarrays, the Fibonacci

array, and the Thue-Morse array. For other arrays, especially
Fluxon propagation those which have irregular effective potentials, the agree-

) ) ) ment is not that good. Also, the agreement is not that good
When the applied bias exceells, the fluxon will propa-  for higher values of the bias current.

gate through the array. For a monoarrBy=0 and the We measure the final velocities for the fluxon in the de-
fluxon propagates foF >0 (the discreteness parameteis  terministic aperiodic arrays and a monoarray, all of which
chosen such that the Peierls-Nabarro potential is negligiblehave q=4.0. In these cases, the velocity might vary as a
In Ref. [9] the following formula is proposed for calcu- function of position of the fluxon in the array, due to irregu-
lating the final velocityu., for a fluxon: larities in the effective potentials. We then estimate the mean
velocity after some time when all the transient properties,
such as dependence of initial site, are lost. We use two dif-
ferent values for the bias;=0.3 andF = 0.5, which by use
of Eq. 15 gives the velocities,,=0.762 andu,,=0.891, re-
spectively. The results are summarized in Table Il. For
=0.5, Eq. 15 does not yield a good agreement even for a
monoarray. The velocities are lower than expected, which
was already noted in Rdf15]. We attribute this discrepancy
to the fact that if the bias is large, so is the fluxon velocity,
leading to a more narrow kink. This yields more prominent
discreteness effects which spoil the continuum approxima-
tion (for a< 0.1 the agreement gets better, anddor0.1 the
deviation increasgsNeither does the proposed formula take
into account the ordering of the arrays. We have seen that the
effective potentials differ in structure, but their relative mag-
nitudes are also different. A measure of the variations is the
top to bottom value, which is defined in Fig. 5. An example
of this is given in Fig. 10, wher®V; is given for a Thue-
Morse array and a Rudin-Shapiro array. The potential for the
Rudin-Shapiro array contains more drastic variations, which
means that the fluxon meets more resistance when propagat-
FIG. 9. Pinning of the fluxon center in a paper-folding array. INg- The Fibonacci array has the smallest top to bottom value
Same parameters as in Fig. @ Effective potential forF=0.15 ~ for the potential among the aperiodic arrays and the highest
around site 2083, where the potential minimum is asymmetic. ~ fluxon velocity. The Thue-Morse array has a top to bottom
Motion of the fluxon center as the fluxon gets pinned in the mini-value which is 1.4 times larger than the Fibonacci array and
mum at site 2083. The fluxon deviates more from the equilibriuma slightly lower velocity. The corresponding relations for the
position to the right because the potential is less steep in that dire®ther arrays are period-doubling 7.5, paper-folding 9.3, and
tion. Rudin-Shapiro 24.4 relative to the Fibonacci array. This or-

2090
X(t)/a

2084 | q

2082

20 t 100
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0.2l T

Wer

‘ L 02, ,
100 X/a 400 100 X/a

02], ‘

400
FIG. 10. W, for a Thue-Morse arraysolid line) and Rudin- FIG. 11. Wy for a period-doubling-like sequence generated

Shapiro array(dashed ling both havingg=4. The Rudin-Shapiro through a fourth-order Markov process. Compare Fig. 5, in which
array has larger variations in the potential than the Thue-Morsehe parameter values are the same.
array, which restrains the fluxon propagation more.

the potential does not bear much resemblance to that of the
dering is the same as for the velocities from Table II. Al- period-doubling array, except for a small part at site 300.
though the effective potential does not incorporate the dissibifferent Markov generated sequences give rise to different
pative effects in the system and hence its applicability forbehavior for the fluxon motion at low bias currents, e.g.,
describing the propagating fluxons is limited, this orderingdifferent pinning sites. For higher biases the fluxon propa-
supports the statement that the velocity is lowered for arraygates with the same constant velocity as could be expected
with potentials which contain large fluctuations. from the discussion above. The conclusion is that the order

The fluxons from different arrays have a small spread irof the junctions is of little effect for the fluxon propagating in

their velocities at higher values of the bias current. This carthe array, but not the proportions of each type of junction.
be explained if we examine Fig. 4. When the bias is in-The ordering of the junctions becomes important when the
creased, the effective potential is tilted downwards so thatletailed dynamics of the fluxon is to be considered, e.g.,
the local maxima and minima are suppressed and the potesmall variations in the velocity at bias currents just abBye
tial decreases monotonically. This behavior is universal to albr the pinning of the fluxon. The self-similarity that the sub-
the arrays and allows the fluxon to propagate with approxistitution sequences possess, and that the Markov-generated
mately the same speed in all cases, for large enough bias.sequences lack, is reflected in the shape of the effective po-

tential, being in some sense regular in the former case, but

Effects of long-range order not in the latter.

These results are in accordance with R&f, where an-
her approach is used to study the effects of long-range
rder. There, different periodic approximants of the Fi-
onacci sequence are used for a study of how the critical bias
currentF and the final velocity of the fluxon varies with the
%ngth of the periodicity of the sequence. The final velocity
Qurns out to agree with the result from an array ordered ac-
cording to the Fibonacci sequence when the length of the
unit cell exceeds the extension of the fluxon. Otherwise, the
P(B|.AB) from Ref.[17], and a random number generator to velocity is slightly reduced. This is in correspondence with
obtain what should be the third element of the sequence. IBur finding that the effects of long-range order are of little
the same way, we obtain the fourth eIement. py Cons'de”n%portance for the propagation of the fluxon. The value of
t_he second and third elements and the conditional probab'“the critical bias current increases with the length of the unit
t!es_base_d upon our knowledge of these elementg. By CorIz'ell, and no saturation is four(dp to a unit cell consisting of
tinuing this process we get a random sequence which has tllq14 elements This is a case of detailed dynamics, and ac-

same short-range arder as the penod-dogblmg sequence, b(%rdingly the ordering should be important, just as it turns
without any long-range order. Generally, in a sequence gens ¢

erated by amth-order Markov process, the conditional prob- ~
ability to obtain a specific element is based on the knowledge
of the (h—1) previous elements. This means we have to start
with a knowledge of the—1 first elements of the sequence  We finish with a study of how the array can be arranged
we mimic. This was also done in R¢fL8] for the Fibonacci so that the minima of the potential are distributed in a way
chain with a three-state Markov process. There it was nuthat appeals to us. The dotted line in Fig. 12 shaMg, for
merically shown that the quasiperiodic diffraction pattern,a periodic array with a unit cell consisting of 20 junctions,
which is crucially dependent on the long-range order, ceasdge first 16 having the valug,=1 and the last fougg=6.
to exist and instead one gets a continuous distribution, just asor this array, with evenly spaced minima in the potential, a
in the case of an amorphous material. simulation is performed where the dissipative constant
Figure 11 showsW,g for a sequence generated by a =0.2 and the bias current is injected in the form of a re-
fourth-order process, having the same parameter values geated square pulse wave of peribe 25 with a duration of
the period-doubling sequence in Fig. 5. For this realizatiomT=0.5,

We want to see what happens to the fluxon motion if a
sequence only has local order. To accomplish this we mak
period-doubling-like arrays through Markov processes of,
different orders in the same way as in, e.g., R&6]. For
example, when we simulate the period-doubling sequenc
with a three-state Markov process, we start with the first tw
elements bein@\B (as in the real period-doubling sequence
and then use the conditional probabiliti€{A|AB) and

A shift register
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FIG. 12. Fluxon in periodic(unit cell 16,4qg) array. N FIG. 13. Motion of the fluxon center in a monoarray, where
=256,n,=50,gg=10, anda=0.2. The dotted line shows thWg =4.0. The bias current is in the form of the same square pulse wave

part of the potential, which has evenly spaced minima. The bia@s in Fig. 12exceptT =30). When the bias is turned off, the fluxon
current is injected in the form of a square pulse wave which forcegloes not stop immediately, but the velocity decreases gradually.
the fluxon to make a transition from the minimum it is situated in to

the next, where it gets pinned again. suited for describing the dynamics of the fluxon, although it
3.0, if mT<t<mT+AT, m=0,1,2,3,4 does not incorporate the dissipative effects, which limits its
F(t)= usefulness somewhat.

0.0 otherwise.
(16) The effective potential shows very different behavior de-

pendent upon which ordering we consider. In a monoarray, it

e ) . is approximately a straight line, which means that the fluxon

The solid line in Fig. 12 displays the position of the fluxon ¢4 hropagate freely in the array. For the aperiodic arrays the
center for times 8:t<175. When the bias current is turned pstenial contains local maxima and minima of various am-
on, the fluxon shifts to the next potential minimum where 'tplitudes, and it is shown that the fluxon can get pinned in a
gets pinned until the next current injection. This could, €.9.jcal minimum. From the effective potential we get the pos-
be used as a shift register. One might guess that a bias injegiye pinning positions in the array, although not which one it
tion in the form of Eq. 16 would have the same effect on ayi| actually be in a specific case. The effect of the bias
monoarray. That this is not true can be seen from Fig. 13¢rrent is mainly to be an energy injection which drives the
where this case applies. The fluxon is not pinned immedis,xon in a specific direction. This can be seen from the
ately after the bias is turned off. Instead the velocity of thepotential where a higher value of the current results in a
fluxon decreases monotonically and the position where th?arger slope of the potential. The velocity of a propagating
fluxon stops depends more crucially on the parameter valugg,xon s a function of the bias current, the dissipation, and

used. The spatial localization of the fluxon center obtained iRye mean value of the material parameters, but also of the

the first case is thereby lost. variation in amplitude of the effective potential and the dis-
creteness of the array.
V. SUMMARY Finally, we have shown one example of how the potential

can be used to customize an array to have exactly the prop-

We have studied different aspects of fluxon motion inerties we like. In this case we used a periodic array to con-
one-dimensional arrays of Josephson junctions when the ostruct a device which effectively is nothing but a shift regis-
der of the junctions has been aperiodic. The dynamics of theer.
fluxon is governed by the discrete sine-Gordon equation,
V\{here we have insgrted two extra terms, correspondin_g to ACKNOWLEDGMENTS
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