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Role of aperiodic order for fluxon dynamics in Josephson junction arrays

Erik Lennholm* and Michael Ho¨rnquist†

Department of Physics and Measurement Technology, Linko¨ping University, S-581 83 Linko¨ping, Sweden
~Received 26 August 1998!

We perform numerical simulations of a kink-shaped soliton, a fluxon, propagating in arrays of Josephson
junctions ordered according to the period-doubling sequence, the Fibonacci sequence, the paper-folding se-
quence, the Rudin-Shapiro sequence, and the Thue-Morse sequence. The equation of motion is the discrete
sine-Gordon equation with additional terms describing dissipation and an injected bias current. With the use of
an effective potential we explain the behavior of the fluxon when it gets pinned in different arrays. The
potential also gives a qualitative understanding of the deviation of the velocity of a propagating fluxon
compared with an earlier obtained formula. It turns out that the self-similarity of the underlying sequences is
important for the detailed dynamics, but not for the speed of a propagating fluxon. Finally, we show how this
effective potential can be used to arrange an array to have some desired properties.@S1063-651X~99!05501-4#

PACS number~s!: 05.45.Gg, 85.25.Cp, 45.05.1x, 02.10.Gd
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I. INTRODUCTION

The discrete sine-Gordon equation has been extensi
studied from different viewpoints during recent years, s
e.g., Ref.@1# and references therein. It is an equation suita
to describe several different physical phenomena, am
which we can mention DNA promoter dynamics@2#, the
Frenkel-Kontorova model@3#, and Josephson junctions@4#.

The study of aperiodically ordered structures was fo
long time of interest only for mathematicians. However, t
discovery of incommensurate crystals in the 1960s@5# and of
quasicrystals in 1984@6# has inspired a large amount of bo
theoretical and experimental work among physicists c
cerning different systems with order between periodic a
random. These systems not only comprise what is foun
nature, but also man-made materials such as superlatt
the first aperiodic one built already in 1985@7#. Recently,
there have also been some suggestions of other man-m
systems with a possibility to possess aperiodic order.
amples are quantum dots@8# and Josephson junction array
@9#. The latter has today reached a stage where the tech
ogy is even commercially available, see, e.g., Ref.@10#.

In this paper, we focus upon one-dimensional arrays
Josephson junctions ordered according to some different
riodic sequences in order to understand such behavio
soliton propagation and soliton pinning as functions of
underlying sequence. The soliton in question is a single k
soliton known as a fluxon. To do this, we use an effect
potential previously developed in Ref.@2# for treating prob-
lems of this kind.

Properly rescaled to dimensionless units, the motion
the soliton~the phase! in a Josephson junction array is d
scribed by

]2fn

]t2
2
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a2
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Compared with the ‘‘normal’’ discrete sine-Gordon equati
(a being the discreteness parameter!, we have inserted a term
a]fn /]t to model the dissipation due to normal electro
tunneling across the barriers, a termF to describe a bias
current which is injected in every junction, and the mater
parametersqn .

The sequences according to which we will order our jun
tions are the period-doubling sequence, the Fibonacci
quence, the Thue-Morse sequence, the paper-folding
quence, and finally the Rudin-Shapiro sequence. Th
sequences are now well known and their construction can
found in numerous papers. Nevertheless, we summariz
Table I how they can be generated by the use of substitu
rules. The first 16 elements of each sequence are also sh
More detailed descriptions of these sequences, except
paper-folding sequence, can be found in, e.g., Ref.@11#. The
remaining one can be found in Ref.@12#. As comparisons,
we will also include some results from arrays ordered pe
odically and randomly. The entity from Eq.~1! which will be
varied aperiodically is the material parameterqn , to which
we will assign two different, positive valuesqA andqB , such
that qn5qA(qB) if the nth element of the sequence is a
A(B).

In the next section~II !, the model and the parameter va
ues used for the numerical simulations are presented. In
III we will introduce the effective potential used to describ
our numerical simulations. The results are described in S
IV and finally in Sec. V we make a summary.

II. MODEL

The discrete sine-Gordon equation is nonintegrable,
we study it numerically. We have chosen a fourth-ord
Runge-Kutta method with a time-step size of either 1023 or
1024. The smaller step size is mainly used in simulatio
which cover timest.50, because otherwise we cannot gu
antee the validity of the solutions. We have also perform
simulations fort,50 with different step sizes and found th
the results are equivalent. This indicates that the numer
algorithm used for the integration is acceptable.

As initial conditions we take fn(n0 ,t50)
381 ©1999 The American Physical Society
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TABLE I. Substitution rules and the beginning of the sequences we use in this paper.

Sequence Substitution rule Start of the sequence

Fibonacci A→AB, B→A ABAABABAABAABABA•••
Thue-Morse A→AB, B→BA ABBABAABBAABABBA•••
Period-doubling A→AB, B→AA ABAAABABABAAABAA•••
Paper-folding a→ab, b→cb, c→ad, d→cd

a→A, b→A, c→B, d→B AABAABBAAABBABBA•••
Rudin-Shapiro a→ab, b→ac, c→db, d→dc

a→A, b→A, c→B, d→B AAABAABAAAABBBAB•••
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54 arctan$exp@a(n2n0)/(12u2)1/2#% and ḟn(n0 ,t50)5
@22u/(12u2)1/2#sech@a(n2n0)/(12u2)1/2#, which are
nothing but the discrete values for 1<n<N of the approxi-
mative single fluxon solution to the perturbed continuo
sine-Gordon equation (x5na)

]2f

]t2
2

]2f

]x2
52sinf2a

]f

]t
2F. ~2!

Heren0 is the starting site for the fluxon, and

u5F11S 4a

pF D 2G21/2

~3!

is the fluxon velocity in the limit of balance between th
injected power and the dissipation for a Josephson junc
transmission line@13#. We use fixed boundary condition
according to

fn5H 0, n50

2p, n5N11, ḟn5H 0, n50

0, n5N11. ~4!

Unless otherwise specified, we have used the following v
ues for the parameters in the model.

~i! The discreteness parametera50.1. This choice leads
to a discrete array but still close to the continuous limit.

~ii ! The dissipative constanta50.1. When the fluxon
propagates with constant velocity, the power injec
through the bias current~F! is balanced by the power diss
pated by thea term. This means that there is a close co
nection betweena andF, wherea fixes the scale forF.

~iii ! The material parameterqA51 without loss of gener-
ality, andqB ranges from 1 to 20.

~iv! The number of junctions in the arrayN varies be-
tween 256 and 4096. The starting siten0 is somewhere in the
middle of the array so that the fluxon can propagate with
interference from the boundaries.

While numerically integrating Eq. 1, we will also kee
track of the position of the fluxon center, i.e., the positi
along thex axis wheref5p. Since this will seldom be at a
position of an actual junction, a linear interpolation is pe
formed between the two sites which enclose the fluxon c
ter.

III. AN EFFECTIVE POTENTIAL

In order to describe the motion of the soliton in arra
ordered according to the different sequences, we will use
s

n

l-

d

-

t

-
n-

n

approach originally developed by Salerno and Kivshar@2#. If
we neglect the dissipative effect, the Hamiltonian leading
Eq. 1 consists only of conservative energy terms so
Hamiltonian is the same as the energyE for the system,

E5 (
n51

N H 1

2
ḟn

21
1

2a2
~fn112fn!21qn~12cosfn!1FfnJ .

~5!

The energy in this case is conserved. The fact that we h
overlooked the dissipation term in the approximation impl
that we have to restrict the analysis to the beginning of
soliton motion where the effects of the dissipation are sm
It is well known that the continuous unperturbed~no dissi-
pation and bias terms! sine-Gordon equation has differen
analytical soliton solutions, e.g., single fluxons, multikin
fluxons, and breathers@13#. Following Ref.@2#, we take as an
approximative solution to Eq. 1 the kink

fn.4 arctan~ezn!. ~6!

Here zn5Aq@na2X(t)#, whereX(t) is the slowly varying
coordinate of the fluxon center, i.e.,X represents the point a
which f5p. The parameterq is our continuous version o
qn . If the two values of qn are uniformly distributed
throughout the array, a natural choice is to setq5sqA1(1
2s)qB , wheres is the fraction of occurrences ofqA in the
array. Since this is true for the arrays studied here, we
use this approach. The ansatz~6! leads to the following re-
lations for the terms in the energy expression~5!:

ḟn522AqẊsech~zn!, ~7!

fn112fn54 arctanFsinhS aAq

2 D sechS zn1
aAq

2 D G , ~8!

12cosfn52sech2~zn!, ~9!

Ffn54F arctan~ezn!. ~10!

Of course, these relations hold only as long as Eq.~6! is a
relevant description of the fluxon. This is, however, the ca
for all situations occurring in this study. In our model th
parametersa andq will have values such thataAq/2!1 and
we can make the approximation fn112fn

'2aAqsech(zn). We can now write the energy for the Jo
sephson junction array as
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~11!

The effects in the energy resulting from the underlying sequence are collected in the termUsG(X), whereasUbias(X) contains
the influence of the bias current injected in the junctions. To obtain the effective potential for the single fluxon propag
the array, we use the fact that the energy is conserved. We start with a fluxon at positionX05an0 , wheren0 is an integer, and
with velocity Ẋ5u. By doing this, we have for the energyE5u2M (X0)/21UsG(X0)1Ubias(X0). If we plug this into Eq. 11,
we can write this equation as

Ẋ2

2
2

u2

2

M ~X0!

M ~X!
1

@UsG~X!2UsG~X0!#

M ~X!
1

@Ubias~X!2Ubias~X0!#

M ~X!
50. ~12!

The second term in Eq. 12 is neglected here becauseuM (X)2M (X0)u/M (X),1029 ~at least! and hence it correspond
effectively to a constant downward shift of the potential. If we define the sum of the third and fourth terms to be the e
potentialW(X,X0), the equation reads

Ẋ2

2
1W~X,X0!50. ~13!

Equation 13 can be thought of as an equation of motion for the fluxon center in the effective potential.W(X,X0) tells us
how a fluxon, with the center originally atX0 , experiences the effective potential at a positionX in the array. If we setzn

(0)

5Aq(na2X0) and use Eq. 11, the effective potential is given by

~14!
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This effective potential was, in all essential parts, alrea
obtained in Ref.@9# by the same procedures employed he
We will integrate Eq. 1 numerically and use the effecti
potential to describe the fluxon motion in a qualitative a
sometimes in a quantitative way. The potential will depe
heavily on the structure of the underlying sequence. This
be seen in Fig. 1 where the potentials for a periodic~unit cell
qAqB) array and a random array (qA and qB are randomly

FIG. 1. Effective potential for a periodic~unit cell qAqB) array
~dotted line! and a random array~solid line!. The potential for the
random array has local maxima and minima but the potential
this periodic array is approximately a straight line. The fluxon w
behave differently in these arrays.
y
.

d
n

distributed in the same proportions! are shown. Notice the
vast difference between these two potentials; this perio
array has an effective potential which approximately is
straight line~dotted line! whereas the random array has
effective potential with local maxima and minima~solid
line!. How the structure of the potential affects the fluxo
motion will be thoroughly examined in Sec. IV.

IV. RESULTS

The behavior of the fluxon will depend primarily on th
array used and the applied bias current. In Fig. 2 we sh
how the fluxon propagates in a period-doubling array. W
note that the kink shape of the fluxon remains approxima
the same throughout the propagation. This is a prope
shared among all the arrays, which means that we can
scribe the fluxon motion by monitoring the fluxon center, t
coordinateX. To further illustrate that the fluxon has solito
properties, we start the fluxon atn05180 in a periodic~unit
cell qAqB) array withN5256. The fluxon will surely hit the
boundary, and in Fig. 3 the result of this collision can
seen. The bias drives the fluxon to the right until the flux
hits the boundary, where it bounces back. This is repea
and we can clearly see the effect of the dissipation as
bounces get shorter and shorter. In the inset in Fig. 3 we
show the corresponding motion of the fluxon center. Fr

r
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these pictures it is evident that the motion of the fluxon c
be represented by the motion of its center.

We use the effective potential~14! to predict and describe
the dynamics of the fluxon center. The effective poten
consists of two parts. The effect of the structure of the
derlying sequence on the potential is contained in the t
WsG throughqn , and the effect of the applied bias current
reflected in the second termWbias throughF. The values of
the bias term can be placed on a straight line with a nega
slope wheneverX/a is an integer. This can be seen in Fig.
whereWbias is given for different values ofF. If X/a is a
noninteger,Wbiasmay deviate from a straight line, but for th
values used in this study the deviation is bounded by 123

and therefore neglected. The absolute value of the slope
creases linearly with the applied bias~i.e., the potential gets
steeper! and is inversely proportional to the square root ofq.
The former is obvious and the latter can be shown for
infinite array whena is small, and is confirmed for the se
quences used here in the inserted diagram in Fig. 4. The
WsG varies between different arrays. For an array where
value of qn is the same for all junctions, which we wi
denote as amonoarray, WsG is equal to zero ifX/a is an
integer and otherwise bounded as forWbias ~these fluctua-
tions are due to the Peierls-Nabarro potential@14#!. A ran-

FIG. 2. Propagation of a single fluxon in a period-doubling
ray. F50.11,qB510,N54096, andn052048. The dotted line is
the initial condition for the fluxon and the solid lines are snapsh
of the whole fluxon att525, 50, 75, and 100. The fluxon trave
340 sites with almost constant shape through the array during
time.

FIG. 3. Soliton properties of the fluxon in a periodic~unit cell
qAqB) array consisting of 256 junctions, whereqB510. The fluxon
collides with the boundary but retains its shape. Inset: The co
sponding motion of the fluxon center. Note the effect of the dis
pation as the bounces get shorter and shorter.
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dom array has a random distribution of local maxima a
minima. We are mainly concerned with deterministic ape
odic arrays. The reason for this is that they have potent
with local maxima and minima just like the random array
but unlike the random arrays they are completely known
that it is easier to make predictions for the motion of t
fluxon. Some of the deterministic aperiodic sequences ha
special self-similarity which is reflected in the potentia
This can be seen in Fig. 5, whereWsG is shown for a Fi-
bonacci array and a period-doubling array. The effective
tential is the sum of the above-mentioned parts, where
effect of the bias current is to press down the potential a
drive the fluxon to the right. An example of how the applie
bias current affects the potential can be seen in Fig. 6, wh
a part of the effective potential for a period-doubling arr
consisting of 500 junctions is shown for various values of
bias current. Domı´nguez-Adameet al. @9# have shown that
the fluxon can be pinned in an aperiodically ordered ar
under certain conditions. It seems reasonable that the flu
can be pinned in the local minima of the effective potenti
For large values ofF the potential is almost a straight lin
but for low values the local maxima and minima are mo
pronounced. This implies that there should exist a cert
critical bias currentFc , such that forF.Fc the fluxon will
start to propagate freely in the array and forF<Fc the
fluxon will get pinned. This is indeed the case and the criti
bias current depends on the parameters of the junction a
e.g., the ordering of the array, the values of the mate
parameters, the distance between the junctions, and the
ing site for the fluxon.

-

s

is

e-
i-

FIG. 4. Wbias for F50.1, 0.3, and 0.5. The slope ofWbias gets
steeper as the bias is increased. The inserted diagram shows th
absolute value of the slope ofWbias varies as 1/Aq.

FIG. 5. WsG for a period-doubling array and a Fibonacci arr
both havingq54. The self-similarity of the sequences is reflect
in the potentials. The top to bottom value is a measure of variati
of the amplitude inWsG. The period-doubling array has in this cas
a value of 0.113, and the Fibonacci array has a value of 0.015
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Fluxon pinning

To investigate how the dynamics of the fluxon is co
nected to the effective potential, we use the period-doub
array as a first example. In Fig. 7~a! the effective potential
for F50.02 is shown. Figure 7~b! shows the motion of the
fluxon center. We see that it first accelerates down the s
of the effective potential, and when it reaches the minim
the velocity is high enough to let the fluxon start to climb
the potential well. The fluxon slows down and eventually t
velocity becomes zero and the fluxon drops back down in
well. This repeats itself a couple of times and leads to
oscillating motion. Due to the dissipation, the fluxon fina
comes to rest at site 2064, exactly at the minimum in
effective potential.

WhenF is increased the fluxon will not get pinned in th
same minimum as before. The result from a simulation w
F50.05 can be seen in Fig. 7~c!. The fluxon velocity at the
bottom of the first minimum is high enough to let the fluxo
escape from the potential well. We see in the figure that
velocity decreases as the fluxon climbs up the hill. After th
the fluxon accelerates down the second large minimum
site 2096 and climbs up that well also, but in the third lar
minimum at around site 2112 the fluxon gets pinned. B
cause we have neglected the dissipative term andt@0, we
can only see what are the possible pinning positions from
potential, but not where the fluxon actually will be pinne
Figure 7~d! shows the case withF50.12 where the situation
is about the same, but nowF.Fc for this array so that the
fluxon has enough velocity to overtake all minima and sta
to propagate in the array. There are still small changes in
velocity due to the different maxima and minima in the p
tential but asF increases these will be less prominent.

Let us return to the effective potential for this array. T
further confirm its connection with the fluxon dynamics, w
have performed a simulation where we choosen052064 as
the initial site. This site corresponds to the first large mi
mum in the effective potential in Fig. 7~a!. The bias current
is F50.05, a value for which the fluxon did not get pinne
when it started from the initial siten052048. Now the situ-
ation is different and, as can be seen in Fig. 8, the fluxon g
pinned. Initially the fluxon is in a potential minimum and th
bias current drives the fluxon to the right. Unlike before, t
velocity is now not large enough to bring the fluxon out
the potential well and it is pinned. This also exemplifies th

FIG. 6. Effective potential for a period-doubling array forF
50.01,0.5, and 1.0. The maxima and minima are suppressed w
the bias is increased.
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the starting position of the fluxon influences the critical b
currentFc .

The minima in the effective potential of the period
doubling sequence are smooth and symmetric, leading to
well-behaved motion of the fluxon center in, e.g., Fig. 7~b!.

en

FIG. 7. Fluxon in a period-doubling array.N54096,n0

52048, andqB510. ~a! Effective potential forF50.02. ~b! Pin-
ning of the fluxon center at site 2064 corresponding to the first la
minimum in the effective potential.~c! Pinning of the fluxon center
at 2112. ~d! F.Fc for this array which implies that the fluxon
propagates freely.@The effective potentials for the bias curren
used in~c! and ~d! have the same structure as that in~a! but are
tilted downwards due to the higher values of the bias currents.#
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The situation is different for the paper-folding array, whi
can be seen in Fig. 9~a!. The minimum at site 2083 is asym
metric and not as steep to the right as to the left. If the flux
gets pinned in this minimum, it can deviate more from t
equilibrium to the right-hand side. In Fig. 9~b! we see a
fluxon being pinned in the minimum at site 2083 and
clearly see that the fluxon moves further up the potential w
to the right side as predicted from the effective potential.

Fluxon propagation

When the applied bias exceedsFc , the fluxon will propa-
gate through the array. For a monoarrayFc50 and the
fluxon propagates forF.0 ~the discreteness parametera is
chosen such that the Peierls-Nabarro potential is negligib!.

In Ref. @9# the following formula is proposed for calcu
lating the final velocityu` for a fluxon:

FIG. 8. Pinning of the fluxon center at approximately site 20
Same parameters as in Fig. 7 except thatn052064, i.e., the first
large minimum in the potential in Fig. 7~a!. The fluxon did not get
pinned at this site forF50.05 when it started atn052048.

FIG. 9. Pinning of the fluxon center in a paper-folding arra
Same parameters as in Fig. 7.~a! Effective potential forF50.15
around site 2083, where the potential minimum is asymmetric.~b!
Motion of the fluxon center as the fluxon gets pinned in the m
mum at site 2083. The fluxon deviates more from the equilibri
position to the right because the potential is less steep in that d
tion.
n

ll

u`5F11qS 4a

pF D 2G21/2

. ~15!

This equation, however, is derived from the continuous si
Gordon equation, which means that it is not necessarily
plicable to discrete systems. Nevertheless, Eq. 15 gives
sonable values~within 1%! when 0.1<F<0.3 ~andF.Fc)
for the predicted velocities for monoarrays, the Fibona
array, and the Thue-Morse array. For other arrays, espec
those which have irregular effective potentials, the agr
ment is not that good. Also, the agreement is not that g
for higher values of the bias current.

We measure the final velocities for the fluxon in the d
terministic aperiodic arrays and a monoarray, all of whi
have q54.0. In these cases, the velocity might vary as
function of position of the fluxon in the array, due to irreg
larities in the effective potentials. We then estimate the m
velocity after some time when all the transient properti
such as dependence of initial site, are lost. We use two
ferent values for the bias,F50.3 andF50.5, which by use
of Eq. 15 gives the velocitiesu`50.762 andu`50.891, re-
spectively. The results are summarized in Table II. ForF
50.5, Eq. 15 does not yield a good agreement even fo
monoarray. The velocities are lower than expected, wh
was already noted in Ref.@15#. We attribute this discrepanc
to the fact that if the bias is large, so is the fluxon veloci
leading to a more narrow kink. This yields more promine
discreteness effects which spoil the continuum approxim
tion ~for a,0.1 the agreement gets better, and fora.0.1 the
deviation increases!. Neither does the proposed formula ta
into account the ordering of the arrays. We have seen tha
effective potentials differ in structure, but their relative ma
nitudes are also different. A measure of the variations is
top to bottom value, which is defined in Fig. 5. An examp
of this is given in Fig. 10, whereWsG is given for a Thue-
Morse array and a Rudin-Shapiro array. The potential for
Rudin-Shapiro array contains more drastic variations, wh
means that the fluxon meets more resistance when propa
ing. The Fibonacci array has the smallest top to bottom va
for the potential among the aperiodic arrays and the high
fluxon velocity. The Thue-Morse array has a top to botto
value which is 1.4 times larger than the Fibonacci array a
a slightly lower velocity. The corresponding relations for t
other arrays are period-doubling 7.5, paper-folding 9.3, a
Rudin-Shapiro 24.4 relative to the Fibonacci array. This

.

.

-

c-

TABLE II. Comparison between the final velocity of the fluxo
in different arrays. According to Eq. 15 the velocities areu`

50.762 (F50.3) andu`50.891 (F50.5). The top to bottom val-
ues~see Fig. 5 for definition! are the relative heights compared
the Fibonacci array value, which is set to 1.

Array F50.3 F50.5 Top to bottom

Monoarray 0.761 0.881 0.0
Fibonacci 0.760 0.880 1.0
Thue-Morse 0.756 0.880 1.4
Period-doubling 0.745 0.877 7.5
Paper-folding 0.735 0.877 9.3
Rudin-Shapiro 0.695 0.872 24.4
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dering is the same as for the velocities from Table II. A
though the effective potential does not incorporate the di
pative effects in the system and hence its applicability
describing the propagating fluxons is limited, this orderi
supports the statement that the velocity is lowered for arr
with potentials which contain large fluctuations.

The fluxons from different arrays have a small spread
their velocities at higher values of the bias current. This c
be explained if we examine Fig. 4. When the bias is
creased, the effective potential is tilted downwards so t
the local maxima and minima are suppressed and the po
tial decreases monotonically. This behavior is universal to
the arrays and allows the fluxon to propagate with appro
mately the same speed in all cases, for large enough bia

Effects of long-range order

We want to see what happens to the fluxon motion i
sequence only has local order. To accomplish this we m
period-doubling-like arrays through Markov processes
different orders in the same way as in, e.g., Ref.@16#. For
example, when we simulate the period-doubling seque
with a three-state Markov process, we start with the first t
elements beingAB ~as in the real period-doubling sequenc!
and then use the conditional probabilitiesP(AuAB) and
P(BuAB) from Ref.@17#, and a random number generator
obtain what should be the third element of the sequence
the same way, we obtain the fourth element by conside
the second and third elements and the conditional proba
ties based upon our knowledge of these elements. By c
tinuing this process we get a random sequence which ha
same short-range order as the period-doubling sequence
without any long-range order. Generally, in a sequence g
erated by annth-order Markov process, the conditional pro
ability to obtain a specific element is based on the knowle
of the (n21) previous elements. This means we have to s
with a knowledge of then21 first elements of the sequenc
we mimic. This was also done in Ref.@18# for the Fibonacci
chain with a three-state Markov process. There it was
merically shown that the quasiperiodic diffraction patte
which is crucially dependent on the long-range order, cea
to exist and instead one gets a continuous distribution, jus
in the case of an amorphous material.

Figure 11 showsWsG for a sequence generated by
fourth-order process, having the same parameter value
the period-doubling sequence in Fig. 5. For this realizat

FIG. 10. WsG for a Thue-Morse array~solid line! and Rudin-
Shapiro array~dashed line! both havingq54. The Rudin-Shapiro
array has larger variations in the potential than the Thue-Mo
array, which restrains the fluxon propagation more.
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the potential does not bear much resemblance to that of
period-doubling array, except for a small part at site 3
Different Markov generated sequences give rise to differ
behavior for the fluxon motion at low bias currents, e.
different pinning sites. For higher biases the fluxon prop
gates with the same constant velocity as could be expe
from the discussion above. The conclusion is that the or
of the junctions is of little effect for the fluxon propagating
the array, but not the proportions of each type of junctio
The ordering of the junctions becomes important when
detailed dynamics of the fluxon is to be considered, e
small variations in the velocity at bias currents just aboveFc
or the pinning of the fluxon. The self-similarity that the su
stitution sequences possess, and that the Markov-gene
sequences lack, is reflected in the shape of the effective
tential, being in some sense regular in the former case,
not in the latter.

These results are in accordance with Ref.@9#, where an-
other approach is used to study the effects of long-ra
order. There, different periodic approximants of the F
bonacci sequence are used for a study of how the critical
currentFc and the final velocity of the fluxon varies with th
length of the periodicity of the sequence. The final veloc
turns out to agree with the result from an array ordered
cording to the Fibonacci sequence when the length of
unit cell exceeds the extension of the fluxon. Otherwise,
velocity is slightly reduced. This is in correspondence w
our finding that the effects of long-range order are of lit
importance for the propagation of the fluxon. The value
the critical bias current increases with the length of the u
cell, and no saturation is found~up to a unit cell consisting of
144 elements!. This is a case of detailed dynamics, and a
cordingly the ordering should be important, just as it tur
out.

A shift register

We finish with a study of how the array can be arrang
so that the minima of the potential are distributed in a w
that appeals to us. The dotted line in Fig. 12 showsWsG for
a periodic array with a unit cell consisting of 20 junction
the first 16 having the valueqA51 and the last fourqB56.
For this array, with evenly spaced minima in the potentia
simulation is performed where the dissipative constanta
50.2 and the bias current is injected in the form of a
peated square pulse wave of periodT525 with a duration of
DT50.5,

e

FIG. 11. WsG for a period-doubling-like sequence generat
through a fourth-order Markov process. Compare Fig. 5, in wh
the parameter values are the same.
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F~ t !5H 3.0, if mT,t,mT1DT, m50,1,2,3,4

0.0 otherwise.
~16!

The solid line in Fig. 12 displays the position of the fluxo
center for times 0,t,175. When the bias current is turne
on, the fluxon shifts to the next potential minimum where
gets pinned until the next current injection. This could, e
be used as a shift register. One might guess that a bias in
tion in the form of Eq. 16 would have the same effect on
monoarray. That this is not true can be seen from Fig.
where this case applies. The fluxon is not pinned imme
ately after the bias is turned off. Instead the velocity of t
fluxon decreases monotonically and the position where
fluxon stops depends more crucially on the parameter va
used. The spatial localization of the fluxon center obtaine
the first case is thereby lost.

V. SUMMARY

We have studied different aspects of fluxon motion
one-dimensional arrays of Josephson junctions when the
der of the junctions has been aperiodic. The dynamics of
fluxon is governed by the discrete sine-Gordon equat
where we have inserted two extra terms, correspondin
dissipation and a bias current, respectively. Our princi
tool in the investigation has been an effective potent
which consists of one part reflecting the order of the ar
and the other part the influence of the bias current. I
shown by some examples of direct integration of the eq
tions of motion that the effective potential is rather we

FIG. 12. Fluxon in periodic~unit cell 16qA4qB) array. N
5256,n0550, qB510, anda50.2. The dotted line shows theWsG

part of the potential, which has evenly spaced minima. The b
current is injected in the form of a square pulse wave which for
the fluxon to make a transition from the minimum it is situated in
the next, where it gets pinned again.
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suited for describing the dynamics of the fluxon, although
does not incorporate the dissipative effects, which limits
usefulness somewhat.

The effective potential shows very different behavior d
pendent upon which ordering we consider. In a monoarra
is approximately a straight line, which means that the flux
can propagate freely in the array. For the aperiodic arrays
potential contains local maxima and minima of various a
plitudes, and it is shown that the fluxon can get pinned i
local minimum. From the effective potential we get the po
sible pinning positions in the array, although not which one
will actually be in a specific case. The effect of the bi
current is mainly to be an energy injection which drives t
fluxon in a specific direction. This can be seen from t
potential where a higher value of the current results in
larger slope of the potential. The velocity of a propagati
fluxon is a function of the bias current, the dissipation, a
the mean value of the material parameters, but also of
variation in amplitude of the effective potential and the d
creteness of the array.

Finally, we have shown one example of how the poten
can be used to customize an array to have exactly the p
erties we like. In this case we used a periodic array to c
struct a device which effectively is nothing but a shift reg
ter.
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FIG. 13. Motion of the fluxon center in a monoarray, whereq
54.0. The bias current is in the form of the same square pulse w
as in Fig. 12~exceptT530). When the bias is turned off, the fluxo
does not stop immediately, but the velocity decreases graduall
ys.
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