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We show that the numerical results obtained by Benkaetda. [Phys. Rev. E55, 4909(1997] for the
escape-time distributions in the standard map are at variance with previously published Ezsolt$ys. Lett.
25, 565 (1994]. We discuss these discrepancies in terms of the relationships between the mean-squared
displacement, sticking-time, and escape-time distributions. We also report on numerical investigations of the
standard magd.S1063-651X99)07103-2

PACS numbes): 05.45-a, 47.52+]

In a recent paper Benkadda, Kassibrakis, White, and This finding contradicts our basic understanding of the
Zaslavsky(BKWZ) [1] have analyzed anomalous transportenhanced diffusion phenomenon. Equati¢hs-(3) indicate
behavior in the iterated standard map. Self-similar structurethat the broader the escape-time distribution is the less en-
in phase space and characteristic exponents of the meahanced the diffusion is. We consider the broadness of the
squared displacemenfMSD) of escape and Poincare probability densities as a measure of anomaly so that with
recurrence times have been studied numerically. In their pancreasing broadnes@maller exponenjsthe anomaly in-
per[1] BKWZ disagree with some of our earlier resuls. creases. We argue that as long as a trajectory has not escaped

In what follows we would like to compare the numerical from resonance with an accelerator mode, the particle moves
results obtained in Refl] with those of Ref[2]. In particu-  approximately laminarly in one direction, which gives rise to
lar, we discuss the numerically determined exponents in ligh& flight-type behavior well described by e flights. The
of the relationships between the exponents of the MSD, obroaderthe distribution of resonance periods is, tireader
the sticking- and escape-time distributions. These relationthe distribution of the flight periods is. In other words, the
ships were derived in previous work cited in REf] and smaller the exponent of the escape-time distribution, the
were also derived in Reff3—-7]. We also present some more larger the exponent of the MSD.
numerical results on the escape and sticking-time distribu- We continue by first briefly reviewing the basic ideas of
tions in the standard map. We begin with the relationshipghe Levy-walk picture within the continuous-time random
between the exponents and adopt the notations of|Rgfor ~ walk (CTRW) approach. The trajectories are thought to be
clarity. The standard map is defined by the mapping equacomposed of random spatiotemporal increments. FatyLe
tions walks the particles are supposed to move between turning

points at a velocity chosen randomly from a given distribu-
Pni1=PntKsinX,, Xp:t1=Xn+Pni1- (1) tion and the temporal intervals are also chosen randomly
according to a given distribution. The trajectarft) there-
According to Eqgs(1.2), (1.3), and(4.5) of [1], the MSD ofp  fore evolves a$3—7]
is

(pAH~t+, 1<u<2 2 r)=r(t)+toi(t=t), teltti] &)

where the case of(mod 27) is considered. The escape-time

wherei denotes théth motion event. For the purpose of this
distribution given by Eq(5.4) of [1] is purp

paper we restrict the analysis to one dimension and to motion
Yool D) ~ Lt 7ess 3 at a constant velocity. v; are thus velocities; = v with
es ' the sign chosen at random. The titi@ Eq. (5) is restricted
. to the ith temporal intervallt;,t;.1]. The interval times
so that, using Eq(5.5) of [1], t..,—t;, termed waiting, trapping, or flight img&—6], are
considered to be random variables according to the power-
W= Yesc™ 2. @ Jaw distribution

Correspondingly, an enhancement in the diffusion behavior
is expected to occur fopess> 3. P(t)~t= 7. (6)
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Within these assumptions the time evolution of the propaga- No distinction is made between the sticking and escape

tor P(r,t), the probability of being at at timet having times by BKWZ[1], so the corresponding exponents are

started at the origin at time zero can be given in a closedonsidered to be the same. In Re&X] we have found that the

form [2-6]. In Fourier { —k)—Laplace {—u) space the two exponents differ by one. In order to provide evidence for

propagator is the difference between the two exponents, we make use of
the following arguments. Consistent with the definition of

Pk . Ref.[1], the escape time.(r) denotes the time required

=T gkou)’ () for a trajectory, initiated at position,=(pq,Xo) Within the
boundary layer(}, to escape to the chaotic sea. Referring

where again to the work by Meiss, the escape times used here cor-

respond to the escape times of tieessible saén Ref.[8].
Pk, u) = Fr i Ly (| r[ = t) (D), ®  The probability density of the escape times is

P(k,u)

\P(k,u)z]-‘mkﬁtﬂué(lrl—vt)ﬁxzp(t’)dt’. (9) Pesdt) =(S[t—tesdT0) i ca (15

From the propagator the mean-squared displacement is Ca\{v_here the average is taken over the boundary I&yeThe
culated asp pag q P |hitial coordinatery can be thought of as being the coordi-
nater(7) e () of a particular trajectory at time which has
52 entered the boundary layer. Conversely, the coordinates of a
(r3(t))= —/Juit(m P(k,u)) (100 trajectory during a sticking period 7), e[ 7", 7%, can be
k=0 thought of as initial coordinates of trajectories to escape so

. . . L that Eq.(15 b itt
Depending on the moments ¢{t) the diffusional motion is at Eq.(19) can be written as

either regular or enhanced. We consider the case of a finite
; ) L ) t) =(O(tesdr —t
mean flight time (tgigny) <°°, which is relevant for Hamil- Vesd ) =(8ltesdl ()~ V)re
tonian systems, and concentrate on the second moment. For a =(8(tesdr (7)) —1)) ;[ 7in soury, (16

finite second momentgtﬁight><oo, the diffusion is regular
while for a diverging second momemtﬁight>£m, the diffu- Where the average in the last expression is taken ever

sion is enhanced. The asymptotic analysis of @@) yields ~ Stricted to the sticking periods. Here we have taken into ac-
the relationship between the exponenbf the MSD andy  count that for conservative systems the invariant density is

of the flight distribution[2—6], homogeneous in phase space. Equati@) shows the
equivalence between the averaging over the geometry and
4—y, 2<y<3 over the sticking periods associated with the boundary layer.
M=, y>3. (11 We now assume a particular realization of a trajectory and

denote by 7", 7™, i=1,...N its sticking intervals. For this

In order to apply the Ley-walk approach to the standard trajectory the average in the second equality of B is
map we consider the following correspondence. The trajeceast into
tory r(t) corresponds tp,= p(t). The flight times are speci-
fied by the sticking times, periods for which the trajectory is

out
N 7 _
in resonance with an accelerating mode of motion. During 2 fT!n S(tesdr(m)—t)dr

such periods the trajectory(t)=(p(t),x(t)) is confined Pesdt)= o
within the boundary layef) of the island system associated Z U” dr
with an accelerating mode. Thus the sticking-time distribu- i
tion can be given as (1/N)EiN1|<Ti°uL At
) = , 1
Ve ©)=(SL(5%= 77 —1]), 12 AN 7

where 7" and 7" are the times of entering and leaving the where the sum in the numerator of the last expression is
boundary layer() and the averaging is taken over the restricted to the cases where the interval time is larger than
[7",7°1] realizations. In the study of Meiss, these periodstime t. Clearly, asN—=, in the long trajectory limit, the
correspond to the escape times of theoming se{8]. As-  numerator is the probability of finding an interval larger than
suming that the behavior of the MSD is asymptotically domi-t and the denominator is the average sticking time. Because
nated by these resonances, the flight tifitgs$; . ;] in Eq.(5) ~ zout_zn—t . the numerator and denominator of E4.7)

can be set to the sticking times and one may replace can be calculated frongg, resulting in
b sick and  y— ystick- (13 1 w
t =—f et H)dt’, 18
Consequently, the relationship between the expopeand Vesdt) (tstick Jt Vil t') 18

Vstick results from Eq(11),
where the denominator guarantees normalization. Thus
_ 4= Ysiicks  2<Ystick<3

14
K 1, st 3. (149

Vstick™ Yesct 1. (19
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K =6.716809
@ = | 1 | =3
« symbolic dynamics

This finding is compatible with the results in RE8). For the LW
exponentu of the MSD we obtain :

=4 Ysiiok= 3~ Yeso 1< Vesc<2 (20) o

o geometric exit

for enhanced diffusion with a diverging mean escape time. s T
t

For yesc>2 we expect a regular diffusion behavior with

o R B Rl Bk B Bis Bi B R i e B |

=1. Correspondingly, we also find 10
o trese 1<y, <2 o1
< p> t, 765(,>2 ( ) 10—15
1 10° 10* 10° 4 10°
which follows from the length-time scaling relationsHi.
Obviously Eq.(20) is at variance with Eq(.4). We note that FIG. 1. Escape-time distributions obtained from the iterated standard
’ map for theK=1.1x2m, p=|I|=3 mode centered approximately pt

ﬂ}fe. relevant quantllt)gfor th.e trar}Spr?rt YBrick Whll(.a fog tr:]e . =0, x=2.0. The escape times are given by dots for symbolic-dynamics
efficient numerical derivation of the asymptotic be avior caculations and by open circles for geometric exit conditions. Triangles are

Pescis the quaqtity of choice because of its smaller exponentine results of the integration according to Etg), as indicated. The full line

For the Poincargecurrence times of trajectories initiated in gives a power law with the exponent equal-td..8.

the chaotic sea all traps have to be considered. We conclude

that asymptotically the Poincarecurrence times are gov- density of the escape times. From this reasoning the relation-

erned by the trap with the smallegt;... We emphasize that ship between sticking- and escape-time distributions in Eq.

Ysic>2 for all traps so that the mean Poincaeeurrence  (18) is plausible.

time also remains finite in agreement with Kac's theorem We have extended the numerical calculations, as outlined

[8]. in Refs.[2,10], to longer time scales and have reproduced the
The relationship between the exponents of escape andhlues of the exponents we observed on a shorter time scale.

sticking times can be understood within the symbolic-For completeness we have also carried out the calculations

dynamics formulation of the problerf@]. As mentioned for the valueK=6.476 939 used in Refl]. Here we present

above, the CTRW analysis is based on the distribution ofthe results for three modes: the fundamental accelerating

time periodstggn=tsick Of approximate laminar motion. modes p=|I|=3, K=1.1x27 and p=|l|=5 K
During such periods the motion is either forward or back-=6.476 939, and the localizing modg=2, |I|=0, K
ward. We now assume motion on a cylindprg [ —,%], =6.476939, wherel denotes the number of unit cells

xe[—m,7]. Considering Eq(1), we notice that forward stepped in periogp. We calculated the sticking times from
motion, p,,;+ 1> Py, is associated witlx,>0 and the analo- long trajectories by determining the intervalg", 7°"] from
gously backward motionp,,,1<p,, iS associated witkx,  the symbolic-dynamics criteria. In every case we checked
<0. One can therefore partition the phase spacexrt®  that the symbolic-dynamics criteria were concerned with one
associated with backward motion and inkt-0 associated particular accelerating or localizing mode, so that the reso-
with forward motion. Correspondingly, we introduce the let-nance periods could unambiguously be assigned to that
tersL andR for positions of the trajectory in these two areasmode. The escape times were calculated for trajectories con-
of the partitioned phase space. trolled in two ways. First, in the case of the symbolic dynam-

Assuming that one single fundamental accelerating modécs the trajectories were initiated everywhere in the right half
governs the asymptotic behavior of the motion so that amf a unit cell and the exit instances were determined accord-
iteration step is accompanied by a forward or backward stepng to the symbolic-dynamics criterion for the particular
of approximately one unit cell, the analysis of the motion inmode. Thus for resonance with a fundamental accelerating
terms of CTRWs reduces to the analysis of the symbolionode the criterion was given by motion in the forward di-
dynamics, namely, of sequencéd ...LL and RR..RR rection in every step by one unit cell. For the localizing
composed of one letter. We associate the length of thesmode [10], the trajectory was initiated everywhere in the
sequences with the sticking times and find that theright half of the unit cell and the exit was determined from
asymptotic behavior of the distribution of sticking times andthe condition of changing side in every step and of moving
of the lengths follow power laws with the same exponentl=+1 andl=—1 in alternating steps. Second, the trajecto-
The numerical analysis can be based on one single trajectories were initiated in a small domain enclosing the island
by determining the sequences of eitherr R letters. An  structure and the exit was determined from leaving that
alternative way is to determine the number of iterations redomain.

quired to reach the neRL letter combination for trajectories In the numerical calculations the long trajectories used to
initiated atLR combinations, and vice versa, wherandR  determine the sticking times were of the order ot4itera-
are interchanged. tion steps. We compared the histograms obtained from tra-

To include the escape times in this picture we associatgectories of different lengths with each other and changes
the escape time with the number of iterations required tovere observed primarily in the outermost wings of the dis-
reach the nexRL combination for a trajectory initiated at tributions. Therefore there is a scatter only for the data points
any R, and to reach the nextR for initiation at anyL. The  of the longest times on the resolution of Figs. 1-3. We re-
probability density of these numbers of iterations is expectedtricted the statistics of the sticking times to less thaf 10
to follow the same asymptotic behavior as the probabilitynumber of steps because the trajectories oft iration
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FIG. 2. Same as Fig. 1 but for tH¢=6.476 939, =|I|=5, mode FIG. 4. The mean-squared displacemépi(t)) for K=1.1x 27 and

centered approximately @=0, x=1.7. Dots give the escape times calcu- 6.476 939 indicated by =3 and 5. Simulation results are given by full
lated from symbolic dynamics and triangles are the results of the integratiofines. The dashed lines are power laws with expongntsl.2 and 1.4 for
according to Eq(18), as indicated. The full line gives a power law with the =3 and 5, respectively.

exponent equal te-1.6.

Lo =1.6, found for the short time behavior by BKWZ; how-
steps were too short for longer sticking times. In the case oéver, it is at variance with their valug,.=3.5 determined

escape times, trajectories of up to®literation steps were o "iyo long time behavior. For all three modes the decays
used. For the symbolic-dynamics calculations a multigridg;, o\ o characteristic oscillatory behavior. For |1|=3, K
technique was applied by initiating the trajectories every-_; 155 mode humps centered approximately ta'%3
where in the right half of a unit cell on a grid a<n points . 12 510 and 3<1f and for the po=11=5, K
excluding the area closely containing the stability isla1nds.:6_4’76 939 rr'10de humps centered tat 7 x 10° an'd 5

Within this area again trajectories were initiated on a grid of,, 10/ are observed. These oscillations can be compared with
nxn pé)mts. I‘I’?e staﬂstlcsﬂ\]/vere checked agaérz)sotoan INCrea¥scillations observed for transport properties in other hierar-
INg grid resolution where the maximum was- ' chical systems, for instance, for the autocorrelation function

Our computed escape-time distributions are presented i Ultrametric spaceEL1] or on Sierpinski gaskefd.2]. Cor-

Figs. 1-3. In Fig. 1, in addltlon_to the symbollc-dynamps respondingly, the oscillations observed in the decay of the
data,_ f_or 16<t<10F the o_Iata o_btamed f_ro_”ﬁ geometncal exit escape times are considered as an inherent property of the
conditions where the trajectories were initiated in the domainy ;e ctories in the hierarchical structure of islands around is-
(p.X) correspondlng' tcﬁ_0'2577’0'2.5”]X[0'45”’0'.8W] ar® |ands. We therefore associate the three humps in Fig. 1 with
plotted and the exit was determined from leaving this do+ne main island and with two generations of daughter islands
main. In order to demonstrate the validity of E48), Figs. nd the two humps in Fig. 2 with the main island and with
1-3 also display the 'escape-time distributions calculateghe first generation daughter islands. The agreement of the
from 71¢§tick a,ccofd'”g to  Eq. (18, namely, oqcanetime distributions obtained by the different methods
(tsicw /1 Usio(t')dU’. Inthe range of 10<t<1C° the wo 3y serve as a measure of the quality of the numerical data.
decays are very similar; even the wiggly structures are con- |, Fig. 4 the MSD(p2(t)) is shown for the twd< values
vincingly reproduced.. The overall decays follow approxi- 1 1x 2.+ andK=6.476939. The MSD was calculated from
mately a power law with exponenigs=1.8, 1.6, 1.5forthe e same trajectories that were used to determine the
9=[l1=3, p=[l|=5, andp =2, [I[=0 modes, respectively. gficking-time distributions. The simulation results are com-
For p=|I|=5 the present value is in agreement Withs:  pared with power laws; the corresponding exponentsyare
=1.2 and 1.4, in agreement wifla=3— y.s., EQ. (20), us-
L ing ye.s—1.8 and 1.6 given above for the accelerating
P K =6.476939 modes. ForK=1.1X2x the value u=1.2 is somewhat
. p=2,[1=0 smaller than the valug.=3% determined on a shorter time
+ symbolic dynamics scale,t<10% in Ref.[13]. For K=6.476 939 the exponent
v T ()dr u=1.6 agrees reasonably with the value-1.62+0.15 ob-
g served by BKWZ. Oscillations are visible also for the MSD.
For ¢ =5 the first hump is observed approximately tat
=10 in coincidence with the hump observed for the escape
and sticking times in Fig. 2. Altogether, the simulation re-
. sults indicate strongly that the exponemtincreases with
10 e E e — . decreasing exponent,, in agreement with Eq20) but at
1 10 10 100 4 10 variance with Eq(4).
In conclusion, for two fundamental accelerating modes at
. . . differentK values, and for one localizing mode, our humeri-
centered approximately at=m, x=m/2. Dots give the escape times calcu-

lated from symbolic dynamics and triangles are the results of the integratiorqal results indicate thagg;c<3. In the case of the acceler-

according to Eq(18), as indicated. The full line gives a power law with the atiNg MOdes;ysick< 3 is_a necessary C_On_dition for the MSD
exponent equal te-1.5. to be enhanced according to the predictions of #4). Fur-

e B Bl i R R

i By Bl B B M)

FIG. 3. Same as Fig. 1 but for th€=6.476 939,0=2, |||=0, mode
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thermore, our data indicate very strongly thatia=vesc CONCeptual differences in the approaches rather than from
+1, in agreement with Eq(19). Consequently, these data numerical inaccuracies. Our exponentg and u are con-
also indicate that the mean escape time diverges for all thregistent with the relationship E¢14), which has been shown
modes. In the case of the accelerating modes, such a diveie be appropriate also in other systefiid,15. Independent
gence is again a necessary condition for the MSD to be ergalculations carried our for the standard map and other sys-
hanced. Our numerical data deviate from those of BKWZtems are required in order to shed more light on these dis-
ForK=6.476 939 the exponent;q= 2.6 of this work com-  crepancies.

pares with 3.5 reported by BKWZ. Because we distinguish

betweent,s, and tgi the exponenty,s. of this work is We would like to thank Professor Meiss for private
smaller by approximately 1.9 than the value reported bycommunications and Dr. M. F. Shlesinger for helpful dis-
BKWZ. The latter disagreement is regarded as resulting frongussions.
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