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Comments are short papers which criticize or correct papers of other authors previously published in thePhysical Review. Each
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Comment on ‘‘Self-similarity and transport in the standard map’’
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We show that the numerical results obtained by Benkaddaet al. @Phys. Rev. E55, 4909 ~1997!# for the
escape-time distributions in the standard map are at variance with previously published results@Europhys. Lett.
25, 565 ~1994!#. We discuss these discrepancies in terms of the relationships between the mean-squared
displacement, sticking-time, and escape-time distributions. We also report on numerical investigations of the
standard map.@S1063-651X~99!07103-2#

PACS number~s!: 05.45.2a, 47.52.1j
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In a recent paper Benkadda, Kassibrakis, White, a
Zaslavsky~BKWZ! @1# have analyzed anomalous transp
behavior in the iterated standard map. Self-similar structu
in phase space and characteristic exponents of the m
squared displacement~MSD! of escape and Poincare´-
recurrence times have been studied numerically. In their
per @1# BKWZ disagree with some of our earlier results@2#.

In what follows we would like to compare the numeric
results obtained in Ref.@1# with those of Ref.@2#. In particu-
lar, we discuss the numerically determined exponents in l
of the relationships between the exponents of the MSD
the sticking- and escape-time distributions. These relat
ships were derived in previous work cited in Ref.@1# and
were also derived in Refs.@3–7#. We also present some mor
numerical results on the escape and sticking-time distr
tions in the standard map. We begin with the relationsh
between the exponents and adopt the notations of Ref.@1# for
clarity. The standard map is defined by the mapping eq
tions

pn115pn1K sinxn , xn115xn1pn11 . ~1!

According to Eqs.~1.2!, ~1.3!, and~4.5! of @1#, the MSD ofp
is

^p2&;tm, 1,m,2 ~2!

where the case ofx(mod 2p) is considered. The escape-tim
distribution given by Eq.~5.4! of @1# is

cesc~ t !;1/tgesc, ~3!

so that, using Eq.~5.5! of @1#,

m5gesc22. ~4!

Correspondingly, an enhancement in the diffusion beha
is expected to occur forgesc.3.
PRE 591063-651X/99/59~3!/3756~5!/$15.00
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This finding contradicts our basic understanding of t
enhanced diffusion phenomenon. Equations~1!–~3! indicate
that the broader the escape-time distribution is the less
hanced the diffusion is. We consider the broadness of
probability densities as a measure of anomaly so that w
increasing broadness~smaller exponents! the anomaly in-
creases. We argue that as long as a trajectory has not esc
from resonance with an accelerator mode, the particle mo
approximately laminarly in one direction, which gives rise
a flight-type behavior well described by Le´vy flights. The
broaderthe distribution of resonance periods is, thebroader
the distribution of the flight periods is. In other words, th
smaller the exponent of the escape-time distribution,
larger the exponent of the MSD.

We continue by first briefly reviewing the basic ideas
the Lévy-walk picture within the continuous-time random
walk ~CTRW! approach. The trajectories are thought to
composed of random spatiotemporal increments. For L´vy
walks the particles are supposed to move between turn
points at a velocity chosen randomly from a given distrib
tion and the temporal intervals are also chosen rando
according to a given distribution. The trajectoryr (t) there-
fore evolves as@3–7#

r ~ t !5r ~ t i !1v i~ t2t i !, tP@ t i ,t i 11# ~5!

wherei denotes thei th motion event. For the purpose of th
paper we restrict the analysis to one dimension and to mo
at a constant velocityv. v i are thus velocitiesv i56v with
the sign chosen at random. The timet in Eq. ~5! is restricted
to the i th temporal interval@ t i ,t i 11#. The interval times
t i 112t i , termed waiting, trapping, or flight times@2–6#, are
considered to be random variables according to the pow
law distribution

c~ t !;t2g. ~6!
3756 ©1999 The American Physical Society



ga

se

c

n

Fo

d
je
-
is

in

d
u

e
e
d

i

ape
re

for
e of
of
d

ng
cor-

i-

of a

so

ac-
y is

and
yer.
nd

is
han

an
use

PRE 59 3757COMMENTS
Within these assumptions the time evolution of the propa
tor P(r ,t), the probability of being atr at time t having
started at the origin at time zero can be given in a clo
form @2–6#. In Fourier (r→k) –Laplace (t→u) space the
propagator is

P~k,u!5
C~k,u!

12c~k,u!
, ~7!

where

c~k,u!5Fr→kLt→ud~ ur u2vt !c~ t !, ~8!

C~k,u!5Fr→kLt→ud~ ur u2vt !E
t

`

c~ t8!dt8. ~9!

From the propagator the mean-squared displacement is
culated as

^r 2~ t !&52Lu→t
21 S ]2

]k2 P~k,u! D
k50

. ~10!

Depending on the moments ofc(t) the diffusional motion is
either regular or enhanced. We consider the case of a fi
mean flight time,̂ tflight&,`, which is relevant for Hamil-
tonian systems, and concentrate on the second moment.
finite second moment,̂tflight

2 &,`, the diffusion is regular

while for a diverging second moment,^tflight
2 &,W `, the diffu-

sion is enhanced. The asymptotic analysis of Eq.~10! yields
the relationship between the exponentm of the MSD andg
of the flight distribution@2–6#,

m5 H42g, 2,g,3
1, g.3. ~11!

In order to apply the Le´vy-walk approach to the standar
map we consider the following correspondence. The tra
tory r (t) corresponds topn5p(t). The flight times are speci
fied by the sticking times, periods for which the trajectory
in resonance with an accelerating mode of motion. Dur
such periods the trajectoryr (t)5„p(t),x(t)… is confined
within the boundary layerV of the island system associate
with an accelerating mode. Thus the sticking-time distrib
tion can be given as

cstick~ t !5^d@~tout2t in!2t#&, ~12!

wheret in andtout are the times of entering and leaving th
boundary layerV and the averaging is taken over th
@t in,tout# realizations. In the study of Meiss, these perio
correspond to the escape times of theincoming set@8#. As-
suming that the behavior of the MSD is asymptotically dom
nated by these resonances, the flight times@ t i ,t i 11# in Eq. ~5!
can be set to the sticking times and one may replace

c←cstick and g←gstick. ~13!

Consequently, the relationship between the exponentm and
gstick results from Eq.~11!,

m5 H42gstick, 2,gstick,3
1, gstick.3. ~14!
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No distinction is made between the sticking and esc
times by BKWZ @1#, so the corresponding exponents a
considered to be the same. In Ref.@2# we have found that the
two exponents differ by one. In order to provide evidence
the difference between the two exponents, we make us
the following arguments. Consistent with the definition
Ref. @1#, the escape timetesc(r0) denotes the time require
for a trajectory, initiated at positionr05(p0 ,x0) within the
boundary layerV, to escape to the chaotic sea. Referri
again to the work by Meiss, the escape times used here
respond to the escape times of theaccessible setin Ref. @8#.
The probability density of the escape times is

cesc~ t !5^d@ t2tesc~r0!#& r0PV , ~15!

where the average is taken over the boundary layerV. The
initial coordinater0 can be thought of as being the coord
nater (t)PV of a particular trajectory at timet which has
entered the boundary layer. Conversely, the coordinates
trajectory during a sticking periodr (t),tP@t in,tout#, can be
thought of as initial coordinates of trajectories to escape
that Eq.~15! can be written as

cesc~ t !5^d~ tesc„r ~t!…2t !& rPV

5^d~ tesc„r ~t!…2t !&tP@t in,tout# , ~16!

where the average in the last expression is taken overt re-
stricted to the sticking periods. Here we have taken into
count that for conservative systems the invariant densit
homogeneous in phase space. Equation~16! shows the
equivalence between the averaging over the geometry
over the sticking periods associated with the boundary la
We now assume a particular realization of a trajectory a
denote by@t i

in ,t i
out#, i 51,...,N its sticking intervals. For this

trajectory the average in the second equality of Eq.~16! is
cast into

cesc~ t !.
( i

N*
t

i
in

t i
out

d„tesc„r ~t!…2t)dt

( i
N*

t
i
in

t i
out

dt

5
~1/N!( i

N1u~t
i
out2t

i
in!.t

~1/N!( i
N~t i

out2t i
in!

, ~17!

where the sum in the numerator of the last expression
restricted to the cases where the interval time is larger t
time t. Clearly, asN→`, in the long trajectory limit, the
numerator is the probability of finding an interval larger th
t and the denominator is the average sticking time. Beca
tout2t in5tstick the numerator and denominator of Eq.~17!
can be calculated fromcstick, resulting in

cesc~ t !5
1

^tstick&
E

t

`

cstick~ t8!dt8, ~18!

where the denominator guarantees normalization. Thus

gstick5gesc11. ~19!
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This finding is compatible with the results in Ref.@8#. For the
exponentm of the MSD we obtain

m542gstick532gesc, 1,gesc,2 ~20!

for enhanced diffusion with a diverging mean escape tim
For gesc.2 we expect a regular diffusion behavior withm
51. Correspondingly, we also find

^upu&; H t1/gesc, 1,gesc,2
t, gesc.2 ~21!

which follows from the length-time scaling relationship@5#.
Obviously, Eq.~20! is at variance with Eq.~4!. We note that
the relevant quantity for the transport iscstick while for the
efficient numerical derivation of the asymptotic behav
cescis the quantity of choice because of its smaller expone
For the Poincare´-recurrence times of trajectories initiated
the chaotic sea all traps have to be considered. We conc
that asymptotically the Poincare´-recurrence times are gov
erned by the trap with the smallestgstick. We emphasize tha
gstick.2 for all traps so that the mean Poincare´-recurrence
time also remains finite in agreement with Kac’s theor
@8#.

The relationship between the exponents of escape
sticking times can be understood within the symbol
dynamics formulation of the problem@9#. As mentioned
above, the CTRW analysis is based on the distribution
time periods tflight[tstick of approximate laminar motion
During such periods the motion is either forward or bac
ward. We now assume motion on a cylinder,pP@2`,`#,
xP@2p,p#. Considering Eq.~1!, we notice that forward
motion, pn11.pn , is associated withxn.0 and the analo-
gously backward motion,pn11,pn , is associated withxn
,0. One can therefore partition the phase space intox,0
associated with backward motion and intox.0 associated
with forward motion. Correspondingly, we introduce the le
tersL andR for positions of the trajectory in these two are
of the partitioned phase space.

Assuming that one single fundamental accelerating m
governs the asymptotic behavior of the motion so that
iteration step is accompanied by a forward or backward s
of approximately one unit cell, the analysis of the motion
terms of CTRWs reduces to the analysis of the symb
dynamics, namely, of sequencesLL...LL and RR...RR
composed of one letter. We associate the length of th
sequences with the sticking times and find that
asymptotic behavior of the distribution of sticking times a
of the lengths follow power laws with the same expone
The numerical analysis can be based on one single trajec
by determining the sequences of eitherL or R letters. An
alternative way is to determine the number of iterations
quired to reach the nextRL letter combination for trajectorie
initiated atLR combinations, and vice versa, whenL andR
are interchanged.

To include the escape times in this picture we assoc
the escape time with the number of iterations required
reach the nextRL combination for a trajectory initiated a
any R, and to reach the nextLR for initiation at anyL. The
probability density of these numbers of iterations is expec
to follow the same asymptotic behavior as the probabi
.
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density of the escape times. From this reasoning the relat
ship between sticking- and escape-time distributions in
~18! is plausible.

We have extended the numerical calculations, as outli
in Refs.@2,10#, to longer time scales and have reproduced
values of the exponents we observed on a shorter time s
For completeness we have also carried out the calculat
for the valueK56.476 939 used in Ref.@1#. Here we present
the results for three modes: the fundamental accelera
modes `5u l u53, K51.132p and `5u l u55, K
56.476 939, and the localizing modè52, u l u50, K
56.476 939, wherel denotes the number of unit cell
stepped in period̀ . We calculated the sticking times from
long trajectories by determining the intervals@t in,tout# from
the symbolic-dynamics criteria. In every case we check
that the symbolic-dynamics criteria were concerned with o
particular accelerating or localizing mode, so that the re
nance periods could unambiguously be assigned to
mode. The escape times were calculated for trajectories
trolled in two ways. First, in the case of the symbolic dyna
ics the trajectories were initiated everywhere in the right h
of a unit cell and the exit instances were determined acco
ing to the symbolic-dynamics criterion for the particul
mode. Thus for resonance with a fundamental accelera
mode the criterion was given by motion in the forward d
rection in every step by one unit cell. For the localizin
mode @10#, the trajectory was initiated everywhere in th
right half of the unit cell and the exit was determined fro
the condition of changing side in every step and of mov
l 511 andl 521 in alternating steps. Second, the trajec
ries were initiated in a small domain enclosing the isla
structure and the exit was determined from leaving t
domain.

In the numerical calculations the long trajectories used
determine the sticking times were of the order of 1011 itera-
tion steps. We compared the histograms obtained from
jectories of different lengths with each other and chan
were observed primarily in the outermost wings of the d
tributions. Therefore there is a scatter only for the data po
of the longest times on the resolution of Figs. 1–3. We
stricted the statistics of the sticking times to less than 16

number of steps because the trajectories of 1011 iteration

FIG. 1. Escape-time distributions obtained from the iterated stand
map for theK51.132p, `5u l u53 mode centered approximately atp
.0, x.2.0. The escape times are given by dots for symbolic-dynam
calculations and by open circles for geometric exit conditions. Triangles
the results of the integration according to Eq.~18!, as indicated. The full line
gives a power law with the exponent equal to21.8.
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steps were too short for longer sticking times. In the case
escape times, trajectories of up to 108 iteration steps were
used. For the symbolic-dynamics calculations a multig
technique was applied by initiating the trajectories eve
where in the right half of a unit cell on a grid ofn3n points
excluding the area closely containing the stability islan
Within this area again trajectories were initiated on a grid
n3n points. The statistics were checked against an incre
ing grid resolution where the maximum wasn52000.

Our computed escape-time distributions are presente
Figs. 1–3. In Fig. 1, in addition to the symbolic-dynami
data, for 10,t,106 the data obtained from geometrical ex
conditions where the trajectories were initiated in the dom
~p,x! corresponding to@20.25p,0.25p#3@0.45p,0.8p# are
plotted and the exit was determined from leaving this d
main. In order to demonstrate the validity of Eq.~18!, Figs.
1–3 also display the escape-time distributions calcula
from cstick according to Eq. ~18!, namely,
^tstick&

21* t
`cstick(t8)dt8. In the range of 102<t<106 the two

decays are very similar; even the wiggly structures are c
vincingly reproduced. The overall decays follow appro
mately a power law with exponentsgesc.1.8, 1.6, 1.5 for the
`5u l u53, `5u l u55, and`52, u l u50 modes, respectively
For `5u l u55 the present value is in agreement withgesc

FIG. 2. Same as Fig. 1 but for theK56.476 939,`5u l u55, mode
centered approximately atp.0, x.1.7. Dots give the escape times calc
lated from symbolic dynamics and triangles are the results of the integra
according to Eq.~18!, as indicated. The full line gives a power law with th
exponent equal to21.6.

FIG. 3. Same as Fig. 1 but for theK56.476 939,̀ 52, u l u50, mode
centered approximately atp.p, x.p/2. Dots give the escape times calc
lated from symbolic dynamics and triangles are the results of the integra
according to Eq.~18!, as indicated. The full line gives a power law with th
exponent equal to21.5.
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.1.6, found for the short time behavior by BKWZ; how
ever, it is at variance with their valuegesc53.5 determined
for the long time behavior. For all three modes the dec
show a characteristic oscillatory behavior. For`5u l u53, K
51.132p mode humps centered approximately att.3
3102, 23104, and 33106 and for the `5u l u55, K
56.476 939 mode humps centered att.73103 and 5
3107 are observed. These oscillations can be compared
oscillations observed for transport properties in other hie
chical systems, for instance, for the autocorrelation funct
in ultrametric spaces@11# or on Sierpinski gaskets@12#. Cor-
respondingly, the oscillations observed in the decay of
escape times are considered as an inherent property o
trajectories in the hierarchical structure of islands around
lands. We therefore associate the three humps in Fig. 1
the main island and with two generations of daughter isla
and the two humps in Fig. 2 with the main island and w
the first generation daughter islands. The agreement of
escape-time distributions obtained by the different meth
may serve as a measure of the quality of the numerical d

In Fig. 4 the MSD^p2(t)& is shown for the twoK values
1.132p and K56.476 939. The MSD was calculated fro
the same trajectories that were used to determine
sticking-time distributions. The simulation results are co
pared with power laws; the corresponding exponents arm
51.2 and 1.4, in agreement withm532gesc, Eq. ~20!, us-
ing gesc51.8 and 1.6 given above for the accelerati
modes. ForK51.132p the value m51.2 is somewhat
smaller than the valuem5 4

3 determined on a shorter tim
scale,t<104, in Ref. @13#. For K56.476 939 the exponen
m51.6 agrees reasonably with the valuem51.6260.15 ob-
served by BKWZ. Oscillations are visible also for the MS
For `55 the first hump is observed approximately att
.104, in coincidence with the hump observed for the esca
and sticking times in Fig. 2. Altogether, the simulation r
sults indicate strongly that the exponentm increases with
decreasing exponentgesc, in agreement with Eq.~20! but at
variance with Eq.~4!.

In conclusion, for two fundamental accelerating modes
differentK values, and for one localizing mode, our nume
cal results indicate thatgstick,3. In the case of the acceler
ating modes,gstick,3 is a necessary condition for the MS
to be enhanced according to the predictions of Eq.~14!. Fur-

n

n

FIG. 4. The mean-squared displacement^p2(t)& for K51.132p and
6.476 939 indicated bỳ 53 and 5. Simulation results are given by fu
lines. The dashed lines are power laws with exponentsm51.2 and 1.4 for
`53 and 5, respectively.
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thermore, our data indicate very strongly thatgstick5gesc
11, in agreement with Eq.~19!. Consequently, these da
also indicate that the mean escape time diverges for all t
modes. In the case of the accelerating modes, such a d
gence is again a necessary condition for the MSD to be
hanced. Our numerical data deviate from those of BKW
For K56.476 939 the exponentgstick52.6 of this work com-
pares with 3.5 reported by BKWZ. Because we distingu
between tesc and tstick the exponentgesc of this work is
smaller by approximately 1.9 than the value reported
BKWZ. The latter disagreement is regarded as resulting fr
M

et
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r
d

ee
er-
n-
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y
m

conceptual differences in the approaches rather than f
numerical inaccuracies. Our exponentsgstick andm are con-
sistent with the relationship Eq.~14!, which has been shown
to be appropriate also in other systems@14,15#. Independent
calculations carried our for the standard map and other
tems are required in order to shed more light on these
crepancies.

We would like to thank Professor Meiss for priva
communications and Dr. M. F. Shlesinger for helpful d
cussions.
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